| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Xen hypercall batching. |
| * |
| * Xen allows multiple hypercalls to be issued at once, using the |
| * multicall interface. This allows the cost of trapping into the |
| * hypervisor to be amortized over several calls. |
| * |
| * This file implements a simple interface for multicalls. There's a |
| * per-cpu buffer of outstanding multicalls. When you want to queue a |
| * multicall for issuing, you can allocate a multicall slot for the |
| * call and its arguments, along with storage for space which is |
| * pointed to by the arguments (for passing pointers to structures, |
| * etc). When the multicall is actually issued, all the space for the |
| * commands and allocated memory is freed for reuse. |
| * |
| * Multicalls are flushed whenever any of the buffers get full, or |
| * when explicitly requested. There's no way to get per-multicall |
| * return results back. It will BUG if any of the multicalls fail. |
| * |
| * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 |
| */ |
| #include <linux/percpu.h> |
| #include <linux/hardirq.h> |
| #include <linux/debugfs.h> |
| #include <linux/jump_label.h> |
| #include <linux/printk.h> |
| |
| #include <asm/xen/hypercall.h> |
| |
| #include "xen-ops.h" |
| |
| #define MC_BATCH 32 |
| |
| #define MC_ARGS (MC_BATCH * 16) |
| |
| |
| struct mc_buffer { |
| unsigned mcidx, argidx, cbidx; |
| struct multicall_entry entries[MC_BATCH]; |
| unsigned char args[MC_ARGS]; |
| struct callback { |
| void (*fn)(void *); |
| void *data; |
| } callbacks[MC_BATCH]; |
| }; |
| |
| struct mc_debug_data { |
| struct multicall_entry entries[MC_BATCH]; |
| void *caller[MC_BATCH]; |
| size_t argsz[MC_BATCH]; |
| unsigned long *args[MC_BATCH]; |
| }; |
| |
| static DEFINE_PER_CPU(struct mc_buffer, mc_buffer); |
| static struct mc_debug_data mc_debug_data_early __initdata; |
| static DEFINE_PER_CPU(struct mc_debug_data *, mc_debug_data) = |
| &mc_debug_data_early; |
| static struct mc_debug_data __percpu *mc_debug_data_ptr; |
| DEFINE_PER_CPU(unsigned long, xen_mc_irq_flags); |
| |
| static struct static_key mc_debug __ro_after_init; |
| static bool mc_debug_enabled __initdata; |
| |
| static int __init xen_parse_mc_debug(char *arg) |
| { |
| mc_debug_enabled = true; |
| static_key_slow_inc(&mc_debug); |
| |
| return 0; |
| } |
| early_param("xen_mc_debug", xen_parse_mc_debug); |
| |
| void mc_percpu_init(unsigned int cpu) |
| { |
| per_cpu(mc_debug_data, cpu) = per_cpu_ptr(mc_debug_data_ptr, cpu); |
| } |
| |
| static int __init mc_debug_enable(void) |
| { |
| unsigned long flags; |
| |
| if (!mc_debug_enabled) |
| return 0; |
| |
| mc_debug_data_ptr = alloc_percpu(struct mc_debug_data); |
| if (!mc_debug_data_ptr) { |
| pr_err("xen_mc_debug inactive\n"); |
| static_key_slow_dec(&mc_debug); |
| return -ENOMEM; |
| } |
| |
| /* Be careful when switching to percpu debug data. */ |
| local_irq_save(flags); |
| xen_mc_flush(); |
| mc_percpu_init(0); |
| local_irq_restore(flags); |
| |
| pr_info("xen_mc_debug active\n"); |
| |
| return 0; |
| } |
| early_initcall(mc_debug_enable); |
| |
| /* Number of parameters of hypercalls used via multicalls. */ |
| static const uint8_t hpcpars[] = { |
| [__HYPERVISOR_mmu_update] = 4, |
| [__HYPERVISOR_stack_switch] = 2, |
| [__HYPERVISOR_fpu_taskswitch] = 1, |
| [__HYPERVISOR_update_descriptor] = 2, |
| [__HYPERVISOR_update_va_mapping] = 3, |
| [__HYPERVISOR_mmuext_op] = 4, |
| }; |
| |
| static void print_debug_data(struct mc_buffer *b, struct mc_debug_data *mcdb, |
| int idx) |
| { |
| unsigned int arg; |
| unsigned int opidx = mcdb->entries[idx].op & 0xff; |
| unsigned int pars = 0; |
| |
| pr_err(" call %2d: op=%lu result=%ld caller=%pS ", idx + 1, |
| mcdb->entries[idx].op, b->entries[idx].result, |
| mcdb->caller[idx]); |
| if (opidx < ARRAY_SIZE(hpcpars)) |
| pars = hpcpars[opidx]; |
| if (pars) { |
| pr_cont("pars="); |
| for (arg = 0; arg < pars; arg++) |
| pr_cont("%lx ", mcdb->entries[idx].args[arg]); |
| } |
| if (mcdb->argsz[idx]) { |
| pr_cont("args="); |
| for (arg = 0; arg < mcdb->argsz[idx] / 8; arg++) |
| pr_cont("%lx ", mcdb->args[idx][arg]); |
| } |
| pr_cont("\n"); |
| } |
| |
| void xen_mc_flush(void) |
| { |
| struct mc_buffer *b = this_cpu_ptr(&mc_buffer); |
| struct multicall_entry *mc; |
| struct mc_debug_data *mcdb = NULL; |
| int ret = 0; |
| unsigned long flags; |
| int i; |
| |
| BUG_ON(preemptible()); |
| |
| /* Disable interrupts in case someone comes in and queues |
| something in the middle */ |
| local_irq_save(flags); |
| |
| trace_xen_mc_flush(b->mcidx, b->argidx, b->cbidx); |
| |
| if (static_key_false(&mc_debug)) { |
| mcdb = __this_cpu_read(mc_debug_data); |
| memcpy(mcdb->entries, b->entries, |
| b->mcidx * sizeof(struct multicall_entry)); |
| } |
| |
| switch (b->mcidx) { |
| case 0: |
| /* no-op */ |
| BUG_ON(b->argidx != 0); |
| break; |
| |
| case 1: |
| /* Singleton multicall - bypass multicall machinery |
| and just do the call directly. */ |
| mc = &b->entries[0]; |
| |
| mc->result = xen_single_call(mc->op, mc->args[0], mc->args[1], |
| mc->args[2], mc->args[3], |
| mc->args[4]); |
| ret = mc->result < 0; |
| break; |
| |
| default: |
| if (HYPERVISOR_multicall(b->entries, b->mcidx) != 0) |
| BUG(); |
| for (i = 0; i < b->mcidx; i++) |
| if (b->entries[i].result < 0) |
| ret++; |
| } |
| |
| if (WARN_ON(ret)) { |
| pr_err("%d of %d multicall(s) failed: cpu %d\n", |
| ret, b->mcidx, smp_processor_id()); |
| for (i = 0; i < b->mcidx; i++) { |
| if (static_key_false(&mc_debug)) { |
| print_debug_data(b, mcdb, i); |
| } else if (b->entries[i].result < 0) { |
| pr_err(" call %2d: op=%lu arg=[%lx] result=%ld\n", |
| i + 1, |
| b->entries[i].op, |
| b->entries[i].args[0], |
| b->entries[i].result); |
| } |
| } |
| } |
| |
| b->mcidx = 0; |
| b->argidx = 0; |
| |
| for (i = 0; i < b->cbidx; i++) { |
| struct callback *cb = &b->callbacks[i]; |
| |
| (*cb->fn)(cb->data); |
| } |
| b->cbidx = 0; |
| |
| local_irq_restore(flags); |
| } |
| |
| struct multicall_space __xen_mc_entry(size_t args) |
| { |
| struct mc_buffer *b = this_cpu_ptr(&mc_buffer); |
| struct multicall_space ret; |
| unsigned argidx = roundup(b->argidx, sizeof(u64)); |
| |
| trace_xen_mc_entry_alloc(args); |
| |
| BUG_ON(preemptible()); |
| BUG_ON(b->argidx >= MC_ARGS); |
| |
| if (unlikely(b->mcidx == MC_BATCH || |
| (argidx + args) >= MC_ARGS)) { |
| trace_xen_mc_flush_reason((b->mcidx == MC_BATCH) ? |
| XEN_MC_FL_BATCH : XEN_MC_FL_ARGS); |
| xen_mc_flush(); |
| argidx = roundup(b->argidx, sizeof(u64)); |
| } |
| |
| ret.mc = &b->entries[b->mcidx]; |
| if (static_key_false(&mc_debug)) { |
| struct mc_debug_data *mcdb = __this_cpu_read(mc_debug_data); |
| |
| mcdb->caller[b->mcidx] = __builtin_return_address(0); |
| mcdb->argsz[b->mcidx] = args; |
| mcdb->args[b->mcidx] = (unsigned long *)(&b->args[argidx]); |
| } |
| b->mcidx++; |
| ret.args = &b->args[argidx]; |
| b->argidx = argidx + args; |
| |
| BUG_ON(b->argidx >= MC_ARGS); |
| return ret; |
| } |
| |
| struct multicall_space xen_mc_extend_args(unsigned long op, size_t size) |
| { |
| struct mc_buffer *b = this_cpu_ptr(&mc_buffer); |
| struct multicall_space ret = { NULL, NULL }; |
| |
| BUG_ON(preemptible()); |
| BUG_ON(b->argidx >= MC_ARGS); |
| |
| if (unlikely(b->mcidx == 0 || |
| b->entries[b->mcidx - 1].op != op)) { |
| trace_xen_mc_extend_args(op, size, XEN_MC_XE_BAD_OP); |
| goto out; |
| } |
| |
| if (unlikely((b->argidx + size) >= MC_ARGS)) { |
| trace_xen_mc_extend_args(op, size, XEN_MC_XE_NO_SPACE); |
| goto out; |
| } |
| |
| ret.mc = &b->entries[b->mcidx - 1]; |
| ret.args = &b->args[b->argidx]; |
| b->argidx += size; |
| |
| BUG_ON(b->argidx >= MC_ARGS); |
| |
| trace_xen_mc_extend_args(op, size, XEN_MC_XE_OK); |
| out: |
| return ret; |
| } |
| |
| void xen_mc_callback(void (*fn)(void *), void *data) |
| { |
| struct mc_buffer *b = this_cpu_ptr(&mc_buffer); |
| struct callback *cb; |
| |
| if (b->cbidx == MC_BATCH) { |
| trace_xen_mc_flush_reason(XEN_MC_FL_CALLBACK); |
| xen_mc_flush(); |
| } |
| |
| trace_xen_mc_callback(fn, data); |
| |
| cb = &b->callbacks[b->cbidx++]; |
| cb->fn = fn; |
| cb->data = data; |
| } |