| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * ACPI Time and Alarm (TAD) Device Driver |
| * |
| * Copyright (C) 2018 Intel Corporation |
| * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> |
| * |
| * This driver is based on Section 9.18 of the ACPI 6.2 specification revision. |
| * |
| * It only supports the system wakeup capabilities of the TAD. |
| * |
| * Provided are sysfs attributes, available under the TAD platform device, |
| * allowing user space to manage the AC and DC wakeup timers of the TAD: |
| * set and read their values, set and check their expire timer wake policies, |
| * check and clear their status and check the capabilities of the TAD reported |
| * by AML. The DC timer attributes are only present if the TAD supports a |
| * separate DC alarm timer. |
| * |
| * The wakeup events handling and power management of the TAD is expected to |
| * be taken care of by the ACPI PM domain attached to its platform device. |
| */ |
| |
| #include <linux/acpi.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/suspend.h> |
| |
| MODULE_DESCRIPTION("ACPI Time and Alarm (TAD) Device Driver"); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_AUTHOR("Rafael J. Wysocki"); |
| |
| /* ACPI TAD capability flags (ACPI 6.2, Section 9.18.2) */ |
| #define ACPI_TAD_AC_WAKE BIT(0) |
| #define ACPI_TAD_DC_WAKE BIT(1) |
| #define ACPI_TAD_RT BIT(2) |
| #define ACPI_TAD_RT_IN_MS BIT(3) |
| #define ACPI_TAD_S4_S5__GWS BIT(4) |
| #define ACPI_TAD_AC_S4_WAKE BIT(5) |
| #define ACPI_TAD_AC_S5_WAKE BIT(6) |
| #define ACPI_TAD_DC_S4_WAKE BIT(7) |
| #define ACPI_TAD_DC_S5_WAKE BIT(8) |
| |
| /* ACPI TAD alarm timer selection */ |
| #define ACPI_TAD_AC_TIMER (u32)0 |
| #define ACPI_TAD_DC_TIMER (u32)1 |
| |
| /* Special value for disabled timer or expired timer wake policy. */ |
| #define ACPI_TAD_WAKE_DISABLED (~(u32)0) |
| |
| struct acpi_tad_driver_data { |
| u32 capabilities; |
| }; |
| |
| struct acpi_tad_rt { |
| u16 year; /* 1900 - 9999 */ |
| u8 month; /* 1 - 12 */ |
| u8 day; /* 1 - 31 */ |
| u8 hour; /* 0 - 23 */ |
| u8 minute; /* 0 - 59 */ |
| u8 second; /* 0 - 59 */ |
| u8 valid; /* 0 (failed) or 1 (success) for reads, 0 for writes */ |
| u16 msec; /* 1 - 1000 */ |
| s16 tz; /* -1440 to 1440 or 2047 (unspecified) */ |
| u8 daylight; |
| u8 padding[3]; /* must be 0 */ |
| } __packed; |
| |
| static int acpi_tad_set_real_time(struct device *dev, struct acpi_tad_rt *rt) |
| { |
| acpi_handle handle = ACPI_HANDLE(dev); |
| union acpi_object args[] = { |
| { .type = ACPI_TYPE_BUFFER, }, |
| }; |
| struct acpi_object_list arg_list = { |
| .pointer = args, |
| .count = ARRAY_SIZE(args), |
| }; |
| unsigned long long retval; |
| acpi_status status; |
| |
| if (rt->year < 1900 || rt->year > 9999 || |
| rt->month < 1 || rt->month > 12 || |
| rt->hour > 23 || rt->minute > 59 || rt->second > 59 || |
| rt->tz < -1440 || (rt->tz > 1440 && rt->tz != 2047) || |
| rt->daylight > 3) |
| return -ERANGE; |
| |
| args[0].buffer.pointer = (u8 *)rt; |
| args[0].buffer.length = sizeof(*rt); |
| |
| pm_runtime_get_sync(dev); |
| |
| status = acpi_evaluate_integer(handle, "_SRT", &arg_list, &retval); |
| |
| pm_runtime_put_sync(dev); |
| |
| if (ACPI_FAILURE(status) || retval) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| static int acpi_tad_get_real_time(struct device *dev, struct acpi_tad_rt *rt) |
| { |
| acpi_handle handle = ACPI_HANDLE(dev); |
| struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER }; |
| union acpi_object *out_obj; |
| struct acpi_tad_rt *data; |
| acpi_status status; |
| int ret = -EIO; |
| |
| pm_runtime_get_sync(dev); |
| |
| status = acpi_evaluate_object(handle, "_GRT", NULL, &output); |
| |
| pm_runtime_put_sync(dev); |
| |
| if (ACPI_FAILURE(status)) |
| goto out_free; |
| |
| out_obj = output.pointer; |
| if (out_obj->type != ACPI_TYPE_BUFFER) |
| goto out_free; |
| |
| if (out_obj->buffer.length != sizeof(*rt)) |
| goto out_free; |
| |
| data = (struct acpi_tad_rt *)(out_obj->buffer.pointer); |
| if (!data->valid) |
| goto out_free; |
| |
| memcpy(rt, data, sizeof(*rt)); |
| ret = 0; |
| |
| out_free: |
| ACPI_FREE(output.pointer); |
| return ret; |
| } |
| |
| static char *acpi_tad_rt_next_field(char *s, int *val) |
| { |
| char *p; |
| |
| p = strchr(s, ':'); |
| if (!p) |
| return NULL; |
| |
| *p = '\0'; |
| if (kstrtoint(s, 10, val)) |
| return NULL; |
| |
| return p + 1; |
| } |
| |
| static ssize_t time_store(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct acpi_tad_rt rt; |
| char *str, *s; |
| int val, ret = -ENODATA; |
| |
| str = kmemdup_nul(buf, count, GFP_KERNEL); |
| if (!str) |
| return -ENOMEM; |
| |
| s = acpi_tad_rt_next_field(str, &val); |
| if (!s) |
| goto out_free; |
| |
| rt.year = val; |
| |
| s = acpi_tad_rt_next_field(s, &val); |
| if (!s) |
| goto out_free; |
| |
| rt.month = val; |
| |
| s = acpi_tad_rt_next_field(s, &val); |
| if (!s) |
| goto out_free; |
| |
| rt.day = val; |
| |
| s = acpi_tad_rt_next_field(s, &val); |
| if (!s) |
| goto out_free; |
| |
| rt.hour = val; |
| |
| s = acpi_tad_rt_next_field(s, &val); |
| if (!s) |
| goto out_free; |
| |
| rt.minute = val; |
| |
| s = acpi_tad_rt_next_field(s, &val); |
| if (!s) |
| goto out_free; |
| |
| rt.second = val; |
| |
| s = acpi_tad_rt_next_field(s, &val); |
| if (!s) |
| goto out_free; |
| |
| rt.tz = val; |
| |
| if (kstrtoint(s, 10, &val)) |
| goto out_free; |
| |
| rt.daylight = val; |
| |
| rt.valid = 0; |
| rt.msec = 0; |
| memset(rt.padding, 0, 3); |
| |
| ret = acpi_tad_set_real_time(dev, &rt); |
| |
| out_free: |
| kfree(str); |
| return ret ? ret : count; |
| } |
| |
| static ssize_t time_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct acpi_tad_rt rt; |
| int ret; |
| |
| ret = acpi_tad_get_real_time(dev, &rt); |
| if (ret) |
| return ret; |
| |
| return sprintf(buf, "%u:%u:%u:%u:%u:%u:%d:%u\n", |
| rt.year, rt.month, rt.day, rt.hour, rt.minute, rt.second, |
| rt.tz, rt.daylight); |
| } |
| |
| static DEVICE_ATTR_RW(time); |
| |
| static struct attribute *acpi_tad_time_attrs[] = { |
| &dev_attr_time.attr, |
| NULL, |
| }; |
| static const struct attribute_group acpi_tad_time_attr_group = { |
| .attrs = acpi_tad_time_attrs, |
| }; |
| |
| static int acpi_tad_wake_set(struct device *dev, char *method, u32 timer_id, |
| u32 value) |
| { |
| acpi_handle handle = ACPI_HANDLE(dev); |
| union acpi_object args[] = { |
| { .type = ACPI_TYPE_INTEGER, }, |
| { .type = ACPI_TYPE_INTEGER, }, |
| }; |
| struct acpi_object_list arg_list = { |
| .pointer = args, |
| .count = ARRAY_SIZE(args), |
| }; |
| unsigned long long retval; |
| acpi_status status; |
| |
| args[0].integer.value = timer_id; |
| args[1].integer.value = value; |
| |
| pm_runtime_get_sync(dev); |
| |
| status = acpi_evaluate_integer(handle, method, &arg_list, &retval); |
| |
| pm_runtime_put_sync(dev); |
| |
| if (ACPI_FAILURE(status) || retval) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| static int acpi_tad_wake_write(struct device *dev, const char *buf, char *method, |
| u32 timer_id, const char *specval) |
| { |
| u32 value; |
| |
| if (sysfs_streq(buf, specval)) { |
| value = ACPI_TAD_WAKE_DISABLED; |
| } else { |
| int ret = kstrtou32(buf, 0, &value); |
| |
| if (ret) |
| return ret; |
| |
| if (value == ACPI_TAD_WAKE_DISABLED) |
| return -EINVAL; |
| } |
| |
| return acpi_tad_wake_set(dev, method, timer_id, value); |
| } |
| |
| static ssize_t acpi_tad_wake_read(struct device *dev, char *buf, char *method, |
| u32 timer_id, const char *specval) |
| { |
| acpi_handle handle = ACPI_HANDLE(dev); |
| union acpi_object args[] = { |
| { .type = ACPI_TYPE_INTEGER, }, |
| }; |
| struct acpi_object_list arg_list = { |
| .pointer = args, |
| .count = ARRAY_SIZE(args), |
| }; |
| unsigned long long retval; |
| acpi_status status; |
| |
| args[0].integer.value = timer_id; |
| |
| pm_runtime_get_sync(dev); |
| |
| status = acpi_evaluate_integer(handle, method, &arg_list, &retval); |
| |
| pm_runtime_put_sync(dev); |
| |
| if (ACPI_FAILURE(status)) |
| return -EIO; |
| |
| if ((u32)retval == ACPI_TAD_WAKE_DISABLED) |
| return sprintf(buf, "%s\n", specval); |
| |
| return sprintf(buf, "%u\n", (u32)retval); |
| } |
| |
| static const char *alarm_specval = "disabled"; |
| |
| static int acpi_tad_alarm_write(struct device *dev, const char *buf, |
| u32 timer_id) |
| { |
| return acpi_tad_wake_write(dev, buf, "_STV", timer_id, alarm_specval); |
| } |
| |
| static ssize_t acpi_tad_alarm_read(struct device *dev, char *buf, u32 timer_id) |
| { |
| return acpi_tad_wake_read(dev, buf, "_TIV", timer_id, alarm_specval); |
| } |
| |
| static const char *policy_specval = "never"; |
| |
| static int acpi_tad_policy_write(struct device *dev, const char *buf, |
| u32 timer_id) |
| { |
| return acpi_tad_wake_write(dev, buf, "_STP", timer_id, policy_specval); |
| } |
| |
| static ssize_t acpi_tad_policy_read(struct device *dev, char *buf, u32 timer_id) |
| { |
| return acpi_tad_wake_read(dev, buf, "_TIP", timer_id, policy_specval); |
| } |
| |
| static int acpi_tad_clear_status(struct device *dev, u32 timer_id) |
| { |
| acpi_handle handle = ACPI_HANDLE(dev); |
| union acpi_object args[] = { |
| { .type = ACPI_TYPE_INTEGER, }, |
| }; |
| struct acpi_object_list arg_list = { |
| .pointer = args, |
| .count = ARRAY_SIZE(args), |
| }; |
| unsigned long long retval; |
| acpi_status status; |
| |
| args[0].integer.value = timer_id; |
| |
| pm_runtime_get_sync(dev); |
| |
| status = acpi_evaluate_integer(handle, "_CWS", &arg_list, &retval); |
| |
| pm_runtime_put_sync(dev); |
| |
| if (ACPI_FAILURE(status) || retval) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| static int acpi_tad_status_write(struct device *dev, const char *buf, u32 timer_id) |
| { |
| int ret, value; |
| |
| ret = kstrtoint(buf, 0, &value); |
| if (ret) |
| return ret; |
| |
| if (value) |
| return -EINVAL; |
| |
| return acpi_tad_clear_status(dev, timer_id); |
| } |
| |
| static ssize_t acpi_tad_status_read(struct device *dev, char *buf, u32 timer_id) |
| { |
| acpi_handle handle = ACPI_HANDLE(dev); |
| union acpi_object args[] = { |
| { .type = ACPI_TYPE_INTEGER, }, |
| }; |
| struct acpi_object_list arg_list = { |
| .pointer = args, |
| .count = ARRAY_SIZE(args), |
| }; |
| unsigned long long retval; |
| acpi_status status; |
| |
| args[0].integer.value = timer_id; |
| |
| pm_runtime_get_sync(dev); |
| |
| status = acpi_evaluate_integer(handle, "_GWS", &arg_list, &retval); |
| |
| pm_runtime_put_sync(dev); |
| |
| if (ACPI_FAILURE(status)) |
| return -EIO; |
| |
| return sprintf(buf, "0x%02X\n", (u32)retval); |
| } |
| |
| static ssize_t caps_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct acpi_tad_driver_data *dd = dev_get_drvdata(dev); |
| |
| return sprintf(buf, "0x%02X\n", dd->capabilities); |
| } |
| |
| static DEVICE_ATTR_RO(caps); |
| |
| static ssize_t ac_alarm_store(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| int ret = acpi_tad_alarm_write(dev, buf, ACPI_TAD_AC_TIMER); |
| |
| return ret ? ret : count; |
| } |
| |
| static ssize_t ac_alarm_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| return acpi_tad_alarm_read(dev, buf, ACPI_TAD_AC_TIMER); |
| } |
| |
| static DEVICE_ATTR_RW(ac_alarm); |
| |
| static ssize_t ac_policy_store(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| int ret = acpi_tad_policy_write(dev, buf, ACPI_TAD_AC_TIMER); |
| |
| return ret ? ret : count; |
| } |
| |
| static ssize_t ac_policy_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| return acpi_tad_policy_read(dev, buf, ACPI_TAD_AC_TIMER); |
| } |
| |
| static DEVICE_ATTR_RW(ac_policy); |
| |
| static ssize_t ac_status_store(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| int ret = acpi_tad_status_write(dev, buf, ACPI_TAD_AC_TIMER); |
| |
| return ret ? ret : count; |
| } |
| |
| static ssize_t ac_status_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| return acpi_tad_status_read(dev, buf, ACPI_TAD_AC_TIMER); |
| } |
| |
| static DEVICE_ATTR_RW(ac_status); |
| |
| static struct attribute *acpi_tad_attrs[] = { |
| &dev_attr_caps.attr, |
| &dev_attr_ac_alarm.attr, |
| &dev_attr_ac_policy.attr, |
| &dev_attr_ac_status.attr, |
| NULL, |
| }; |
| static const struct attribute_group acpi_tad_attr_group = { |
| .attrs = acpi_tad_attrs, |
| }; |
| |
| static ssize_t dc_alarm_store(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| int ret = acpi_tad_alarm_write(dev, buf, ACPI_TAD_DC_TIMER); |
| |
| return ret ? ret : count; |
| } |
| |
| static ssize_t dc_alarm_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| return acpi_tad_alarm_read(dev, buf, ACPI_TAD_DC_TIMER); |
| } |
| |
| static DEVICE_ATTR_RW(dc_alarm); |
| |
| static ssize_t dc_policy_store(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| int ret = acpi_tad_policy_write(dev, buf, ACPI_TAD_DC_TIMER); |
| |
| return ret ? ret : count; |
| } |
| |
| static ssize_t dc_policy_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| return acpi_tad_policy_read(dev, buf, ACPI_TAD_DC_TIMER); |
| } |
| |
| static DEVICE_ATTR_RW(dc_policy); |
| |
| static ssize_t dc_status_store(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| int ret = acpi_tad_status_write(dev, buf, ACPI_TAD_DC_TIMER); |
| |
| return ret ? ret : count; |
| } |
| |
| static ssize_t dc_status_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| return acpi_tad_status_read(dev, buf, ACPI_TAD_DC_TIMER); |
| } |
| |
| static DEVICE_ATTR_RW(dc_status); |
| |
| static struct attribute *acpi_tad_dc_attrs[] = { |
| &dev_attr_dc_alarm.attr, |
| &dev_attr_dc_policy.attr, |
| &dev_attr_dc_status.attr, |
| NULL, |
| }; |
| static const struct attribute_group acpi_tad_dc_attr_group = { |
| .attrs = acpi_tad_dc_attrs, |
| }; |
| |
| static int acpi_tad_disable_timer(struct device *dev, u32 timer_id) |
| { |
| return acpi_tad_wake_set(dev, "_STV", timer_id, ACPI_TAD_WAKE_DISABLED); |
| } |
| |
| static void acpi_tad_remove(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| acpi_handle handle = ACPI_HANDLE(dev); |
| struct acpi_tad_driver_data *dd = dev_get_drvdata(dev); |
| |
| device_init_wakeup(dev, false); |
| |
| pm_runtime_get_sync(dev); |
| |
| if (dd->capabilities & ACPI_TAD_DC_WAKE) |
| sysfs_remove_group(&dev->kobj, &acpi_tad_dc_attr_group); |
| |
| sysfs_remove_group(&dev->kobj, &acpi_tad_attr_group); |
| |
| acpi_tad_disable_timer(dev, ACPI_TAD_AC_TIMER); |
| acpi_tad_clear_status(dev, ACPI_TAD_AC_TIMER); |
| if (dd->capabilities & ACPI_TAD_DC_WAKE) { |
| acpi_tad_disable_timer(dev, ACPI_TAD_DC_TIMER); |
| acpi_tad_clear_status(dev, ACPI_TAD_DC_TIMER); |
| } |
| |
| pm_runtime_put_sync(dev); |
| pm_runtime_disable(dev); |
| acpi_remove_cmos_rtc_space_handler(handle); |
| } |
| |
| static int acpi_tad_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| acpi_handle handle = ACPI_HANDLE(dev); |
| struct acpi_tad_driver_data *dd; |
| acpi_status status; |
| unsigned long long caps; |
| int ret; |
| |
| ret = acpi_install_cmos_rtc_space_handler(handle); |
| if (ret < 0) { |
| dev_info(dev, "Unable to install space handler\n"); |
| return -ENODEV; |
| } |
| /* |
| * Initialization failure messages are mostly about firmware issues, so |
| * print them at the "info" level. |
| */ |
| status = acpi_evaluate_integer(handle, "_GCP", NULL, &caps); |
| if (ACPI_FAILURE(status)) { |
| dev_info(dev, "Unable to get capabilities\n"); |
| ret = -ENODEV; |
| goto remove_handler; |
| } |
| |
| if (!(caps & ACPI_TAD_AC_WAKE)) { |
| dev_info(dev, "Unsupported capabilities\n"); |
| ret = -ENODEV; |
| goto remove_handler; |
| } |
| |
| if (!acpi_has_method(handle, "_PRW")) { |
| dev_info(dev, "Missing _PRW\n"); |
| ret = -ENODEV; |
| goto remove_handler; |
| } |
| |
| dd = devm_kzalloc(dev, sizeof(*dd), GFP_KERNEL); |
| if (!dd) { |
| ret = -ENOMEM; |
| goto remove_handler; |
| } |
| |
| dd->capabilities = caps; |
| dev_set_drvdata(dev, dd); |
| |
| /* |
| * Assume that the ACPI PM domain has been attached to the device and |
| * simply enable system wakeup and runtime PM and put the device into |
| * runtime suspend. Everything else should be taken care of by the ACPI |
| * PM domain callbacks. |
| */ |
| device_init_wakeup(dev, true); |
| dev_pm_set_driver_flags(dev, DPM_FLAG_SMART_SUSPEND | |
| DPM_FLAG_MAY_SKIP_RESUME); |
| /* |
| * The platform bus type layer tells the ACPI PM domain powers up the |
| * device, so set the runtime PM status of it to "active". |
| */ |
| pm_runtime_set_active(dev); |
| pm_runtime_enable(dev); |
| pm_runtime_suspend(dev); |
| |
| ret = sysfs_create_group(&dev->kobj, &acpi_tad_attr_group); |
| if (ret) |
| goto fail; |
| |
| if (caps & ACPI_TAD_DC_WAKE) { |
| ret = sysfs_create_group(&dev->kobj, &acpi_tad_dc_attr_group); |
| if (ret) |
| goto fail; |
| } |
| |
| if (caps & ACPI_TAD_RT) { |
| ret = sysfs_create_group(&dev->kobj, &acpi_tad_time_attr_group); |
| if (ret) |
| goto fail; |
| } |
| |
| return 0; |
| |
| fail: |
| acpi_tad_remove(pdev); |
| /* Don't fallthrough because cmos rtc space handler is removed in acpi_tad_remove() */ |
| return ret; |
| |
| remove_handler: |
| acpi_remove_cmos_rtc_space_handler(handle); |
| return ret; |
| } |
| |
| static const struct acpi_device_id acpi_tad_ids[] = { |
| {"ACPI000E", 0}, |
| {} |
| }; |
| |
| static struct platform_driver acpi_tad_driver = { |
| .driver = { |
| .name = "acpi-tad", |
| .acpi_match_table = acpi_tad_ids, |
| }, |
| .probe = acpi_tad_probe, |
| .remove_new = acpi_tad_remove, |
| }; |
| MODULE_DEVICE_TABLE(acpi, acpi_tad_ids); |
| |
| module_platform_driver(acpi_tad_driver); |