blob: e9cd7939c407ac10b5e3e3db4f6dac704b191d14 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright(c) 2023 Intel Corporation. All rights reserved. */
#include <linux/acpi.h>
#include <linux/xarray.h>
#include <linux/fw_table.h>
#include <linux/node.h>
#include <linux/overflow.h>
#include "cxlpci.h"
#include "cxlmem.h"
#include "core.h"
#include "cxl.h"
struct dsmas_entry {
struct range dpa_range;
u8 handle;
struct access_coordinate coord[ACCESS_COORDINATE_MAX];
struct access_coordinate cdat_coord[ACCESS_COORDINATE_MAX];
int entries;
int qos_class;
};
static u32 cdat_normalize(u16 entry, u64 base, u8 type)
{
u32 value;
/*
* Check for invalid and overflow values
*/
if (entry == 0xffff || !entry)
return 0;
else if (base > (UINT_MAX / (entry)))
return 0;
/*
* CDAT fields follow the format of HMAT fields. See table 5 Device
* Scoped Latency and Bandwidth Information Structure in Coherent Device
* Attribute Table (CDAT) Specification v1.01.
*/
value = entry * base;
switch (type) {
case ACPI_HMAT_ACCESS_LATENCY:
case ACPI_HMAT_READ_LATENCY:
case ACPI_HMAT_WRITE_LATENCY:
value = DIV_ROUND_UP(value, 1000);
break;
default:
break;
}
return value;
}
static int cdat_dsmas_handler(union acpi_subtable_headers *header, void *arg,
const unsigned long end)
{
struct acpi_cdat_header *hdr = &header->cdat;
struct acpi_cdat_dsmas *dsmas;
int size = sizeof(*hdr) + sizeof(*dsmas);
struct xarray *dsmas_xa = arg;
struct dsmas_entry *dent;
u16 len;
int rc;
len = le16_to_cpu((__force __le16)hdr->length);
if (len != size || (unsigned long)hdr + len > end) {
pr_warn("Malformed DSMAS table length: (%u:%u)\n", size, len);
return -EINVAL;
}
/* Skip common header */
dsmas = (struct acpi_cdat_dsmas *)(hdr + 1);
dent = kzalloc(sizeof(*dent), GFP_KERNEL);
if (!dent)
return -ENOMEM;
dent->handle = dsmas->dsmad_handle;
dent->dpa_range.start = le64_to_cpu((__force __le64)dsmas->dpa_base_address);
dent->dpa_range.end = le64_to_cpu((__force __le64)dsmas->dpa_base_address) +
le64_to_cpu((__force __le64)dsmas->dpa_length) - 1;
rc = xa_insert(dsmas_xa, dent->handle, dent, GFP_KERNEL);
if (rc) {
kfree(dent);
return rc;
}
return 0;
}
static void __cxl_access_coordinate_set(struct access_coordinate *coord,
int access, unsigned int val)
{
switch (access) {
case ACPI_HMAT_ACCESS_LATENCY:
coord->read_latency = val;
coord->write_latency = val;
break;
case ACPI_HMAT_READ_LATENCY:
coord->read_latency = val;
break;
case ACPI_HMAT_WRITE_LATENCY:
coord->write_latency = val;
break;
case ACPI_HMAT_ACCESS_BANDWIDTH:
coord->read_bandwidth = val;
coord->write_bandwidth = val;
break;
case ACPI_HMAT_READ_BANDWIDTH:
coord->read_bandwidth = val;
break;
case ACPI_HMAT_WRITE_BANDWIDTH:
coord->write_bandwidth = val;
break;
}
}
static void cxl_access_coordinate_set(struct access_coordinate *coord,
int access, unsigned int val)
{
for (int i = 0; i < ACCESS_COORDINATE_MAX; i++)
__cxl_access_coordinate_set(&coord[i], access, val);
}
static int cdat_dslbis_handler(union acpi_subtable_headers *header, void *arg,
const unsigned long end)
{
struct acpi_cdat_header *hdr = &header->cdat;
struct acpi_cdat_dslbis *dslbis;
int size = sizeof(*hdr) + sizeof(*dslbis);
struct xarray *dsmas_xa = arg;
struct dsmas_entry *dent;
__le64 le_base;
__le16 le_val;
u64 val;
u16 len;
len = le16_to_cpu((__force __le16)hdr->length);
if (len != size || (unsigned long)hdr + len > end) {
pr_warn("Malformed DSLBIS table length: (%u:%u)\n", size, len);
return -EINVAL;
}
/* Skip common header */
dslbis = (struct acpi_cdat_dslbis *)(hdr + 1);
/* Skip unrecognized data type */
if (dslbis->data_type > ACPI_HMAT_WRITE_BANDWIDTH)
return 0;
/* Not a memory type, skip */
if ((dslbis->flags & ACPI_HMAT_MEMORY_HIERARCHY) != ACPI_HMAT_MEMORY)
return 0;
dent = xa_load(dsmas_xa, dslbis->handle);
if (!dent) {
pr_warn("No matching DSMAS entry for DSLBIS entry.\n");
return 0;
}
le_base = (__force __le64)dslbis->entry_base_unit;
le_val = (__force __le16)dslbis->entry[0];
val = cdat_normalize(le16_to_cpu(le_val), le64_to_cpu(le_base),
dslbis->data_type);
cxl_access_coordinate_set(dent->cdat_coord, dslbis->data_type, val);
return 0;
}
static int cdat_table_parse_output(int rc)
{
if (rc < 0)
return rc;
if (rc == 0)
return -ENOENT;
return 0;
}
static int cxl_cdat_endpoint_process(struct cxl_port *port,
struct xarray *dsmas_xa)
{
int rc;
rc = cdat_table_parse(ACPI_CDAT_TYPE_DSMAS, cdat_dsmas_handler,
dsmas_xa, port->cdat.table, port->cdat.length);
rc = cdat_table_parse_output(rc);
if (rc)
return rc;
rc = cdat_table_parse(ACPI_CDAT_TYPE_DSLBIS, cdat_dslbis_handler,
dsmas_xa, port->cdat.table, port->cdat.length);
return cdat_table_parse_output(rc);
}
static int cxl_port_perf_data_calculate(struct cxl_port *port,
struct xarray *dsmas_xa)
{
struct access_coordinate ep_c[ACCESS_COORDINATE_MAX];
struct dsmas_entry *dent;
int valid_entries = 0;
unsigned long index;
int rc;
rc = cxl_endpoint_get_perf_coordinates(port, ep_c);
if (rc) {
dev_dbg(&port->dev, "Failed to retrieve ep perf coordinates.\n");
return rc;
}
struct cxl_root *cxl_root __free(put_cxl_root) = find_cxl_root(port);
if (!cxl_root)
return -ENODEV;
if (!cxl_root->ops || !cxl_root->ops->qos_class)
return -EOPNOTSUPP;
xa_for_each(dsmas_xa, index, dent) {
int qos_class;
cxl_coordinates_combine(dent->coord, dent->cdat_coord, ep_c);
dent->entries = 1;
rc = cxl_root->ops->qos_class(cxl_root,
&dent->coord[ACCESS_COORDINATE_CPU],
1, &qos_class);
if (rc != 1)
continue;
valid_entries++;
dent->qos_class = qos_class;
}
if (!valid_entries)
return -ENOENT;
return 0;
}
static void update_perf_entry(struct device *dev, struct dsmas_entry *dent,
struct cxl_dpa_perf *dpa_perf)
{
for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
dpa_perf->coord[i] = dent->coord[i];
dpa_perf->cdat_coord[i] = dent->cdat_coord[i];
}
dpa_perf->dpa_range = dent->dpa_range;
dpa_perf->qos_class = dent->qos_class;
dev_dbg(dev,
"DSMAS: dpa: %#llx qos: %d read_bw: %d write_bw %d read_lat: %d write_lat: %d\n",
dent->dpa_range.start, dpa_perf->qos_class,
dent->coord[ACCESS_COORDINATE_CPU].read_bandwidth,
dent->coord[ACCESS_COORDINATE_CPU].write_bandwidth,
dent->coord[ACCESS_COORDINATE_CPU].read_latency,
dent->coord[ACCESS_COORDINATE_CPU].write_latency);
}
static void cxl_memdev_set_qos_class(struct cxl_dev_state *cxlds,
struct xarray *dsmas_xa)
{
struct cxl_memdev_state *mds = to_cxl_memdev_state(cxlds);
struct device *dev = cxlds->dev;
struct range pmem_range = {
.start = cxlds->pmem_res.start,
.end = cxlds->pmem_res.end,
};
struct range ram_range = {
.start = cxlds->ram_res.start,
.end = cxlds->ram_res.end,
};
struct dsmas_entry *dent;
unsigned long index;
xa_for_each(dsmas_xa, index, dent) {
if (resource_size(&cxlds->ram_res) &&
range_contains(&ram_range, &dent->dpa_range))
update_perf_entry(dev, dent, &mds->ram_perf);
else if (resource_size(&cxlds->pmem_res) &&
range_contains(&pmem_range, &dent->dpa_range))
update_perf_entry(dev, dent, &mds->pmem_perf);
else
dev_dbg(dev, "no partition for dsmas dpa: %#llx\n",
dent->dpa_range.start);
}
}
static int match_cxlrd_qos_class(struct device *dev, void *data)
{
int dev_qos_class = *(int *)data;
struct cxl_root_decoder *cxlrd;
if (!is_root_decoder(dev))
return 0;
cxlrd = to_cxl_root_decoder(dev);
if (cxlrd->qos_class == CXL_QOS_CLASS_INVALID)
return 0;
if (cxlrd->qos_class == dev_qos_class)
return 1;
return 0;
}
static void reset_dpa_perf(struct cxl_dpa_perf *dpa_perf)
{
*dpa_perf = (struct cxl_dpa_perf) {
.qos_class = CXL_QOS_CLASS_INVALID,
};
}
static bool cxl_qos_match(struct cxl_port *root_port,
struct cxl_dpa_perf *dpa_perf)
{
if (dpa_perf->qos_class == CXL_QOS_CLASS_INVALID)
return false;
if (!device_for_each_child(&root_port->dev, &dpa_perf->qos_class,
match_cxlrd_qos_class))
return false;
return true;
}
static int match_cxlrd_hb(struct device *dev, void *data)
{
struct device *host_bridge = data;
struct cxl_switch_decoder *cxlsd;
struct cxl_root_decoder *cxlrd;
if (!is_root_decoder(dev))
return 0;
cxlrd = to_cxl_root_decoder(dev);
cxlsd = &cxlrd->cxlsd;
guard(rwsem_read)(&cxl_region_rwsem);
for (int i = 0; i < cxlsd->nr_targets; i++) {
if (host_bridge == cxlsd->target[i]->dport_dev)
return 1;
}
return 0;
}
static int cxl_qos_class_verify(struct cxl_memdev *cxlmd)
{
struct cxl_dev_state *cxlds = cxlmd->cxlds;
struct cxl_memdev_state *mds = to_cxl_memdev_state(cxlds);
struct cxl_port *root_port;
int rc;
struct cxl_root *cxl_root __free(put_cxl_root) =
find_cxl_root(cxlmd->endpoint);
if (!cxl_root)
return -ENODEV;
root_port = &cxl_root->port;
/* Check that the QTG IDs are all sane between end device and root decoders */
if (!cxl_qos_match(root_port, &mds->ram_perf))
reset_dpa_perf(&mds->ram_perf);
if (!cxl_qos_match(root_port, &mds->pmem_perf))
reset_dpa_perf(&mds->pmem_perf);
/* Check to make sure that the device's host bridge is under a root decoder */
rc = device_for_each_child(&root_port->dev,
cxlmd->endpoint->host_bridge, match_cxlrd_hb);
if (!rc) {
reset_dpa_perf(&mds->ram_perf);
reset_dpa_perf(&mds->pmem_perf);
}
return rc;
}
static void discard_dsmas(struct xarray *xa)
{
unsigned long index;
void *ent;
xa_for_each(xa, index, ent) {
xa_erase(xa, index);
kfree(ent);
}
xa_destroy(xa);
}
DEFINE_FREE(dsmas, struct xarray *, if (_T) discard_dsmas(_T))
void cxl_endpoint_parse_cdat(struct cxl_port *port)
{
struct cxl_memdev *cxlmd = to_cxl_memdev(port->uport_dev);
struct cxl_dev_state *cxlds = cxlmd->cxlds;
struct xarray __dsmas_xa;
struct xarray *dsmas_xa __free(dsmas) = &__dsmas_xa;
int rc;
xa_init(&__dsmas_xa);
if (!port->cdat.table)
return;
rc = cxl_cdat_endpoint_process(port, dsmas_xa);
if (rc < 0) {
dev_dbg(&port->dev, "Failed to parse CDAT: %d\n", rc);
return;
}
rc = cxl_port_perf_data_calculate(port, dsmas_xa);
if (rc) {
dev_dbg(&port->dev, "Failed to do perf coord calculations.\n");
return;
}
cxl_memdev_set_qos_class(cxlds, dsmas_xa);
cxl_qos_class_verify(cxlmd);
cxl_memdev_update_perf(cxlmd);
}
EXPORT_SYMBOL_NS_GPL(cxl_endpoint_parse_cdat, CXL);
static int cdat_sslbis_handler(union acpi_subtable_headers *header, void *arg,
const unsigned long end)
{
struct acpi_cdat_sslbis_table {
struct acpi_cdat_header header;
struct acpi_cdat_sslbis sslbis_header;
struct acpi_cdat_sslbe entries[];
} *tbl = (struct acpi_cdat_sslbis_table *)header;
int size = sizeof(header->cdat) + sizeof(tbl->sslbis_header);
struct acpi_cdat_sslbis *sslbis;
struct cxl_port *port = arg;
struct device *dev = &port->dev;
int remain, entries, i;
u16 len;
len = le16_to_cpu((__force __le16)header->cdat.length);
remain = len - size;
if (!remain || remain % sizeof(tbl->entries[0]) ||
(unsigned long)header + len > end) {
dev_warn(dev, "Malformed SSLBIS table length: (%u)\n", len);
return -EINVAL;
}
sslbis = &tbl->sslbis_header;
/* Unrecognized data type, we can skip */
if (sslbis->data_type > ACPI_HMAT_WRITE_BANDWIDTH)
return 0;
entries = remain / sizeof(tbl->entries[0]);
if (struct_size(tbl, entries, entries) != len)
return -EINVAL;
for (i = 0; i < entries; i++) {
u16 x = le16_to_cpu((__force __le16)tbl->entries[i].portx_id);
u16 y = le16_to_cpu((__force __le16)tbl->entries[i].porty_id);
__le64 le_base;
__le16 le_val;
struct cxl_dport *dport;
unsigned long index;
u16 dsp_id;
u64 val;
switch (x) {
case ACPI_CDAT_SSLBIS_US_PORT:
dsp_id = y;
break;
case ACPI_CDAT_SSLBIS_ANY_PORT:
switch (y) {
case ACPI_CDAT_SSLBIS_US_PORT:
dsp_id = x;
break;
case ACPI_CDAT_SSLBIS_ANY_PORT:
dsp_id = ACPI_CDAT_SSLBIS_ANY_PORT;
break;
default:
dsp_id = y;
break;
}
break;
default:
dsp_id = x;
break;
}
le_base = (__force __le64)tbl->sslbis_header.entry_base_unit;
le_val = (__force __le16)tbl->entries[i].latency_or_bandwidth;
val = cdat_normalize(le16_to_cpu(le_val), le64_to_cpu(le_base),
sslbis->data_type);
xa_for_each(&port->dports, index, dport) {
if (dsp_id == ACPI_CDAT_SSLBIS_ANY_PORT ||
dsp_id == dport->port_id) {
cxl_access_coordinate_set(dport->coord,
sslbis->data_type,
val);
}
}
}
return 0;
}
void cxl_switch_parse_cdat(struct cxl_port *port)
{
int rc;
if (!port->cdat.table)
return;
rc = cdat_table_parse(ACPI_CDAT_TYPE_SSLBIS, cdat_sslbis_handler,
port, port->cdat.table, port->cdat.length);
rc = cdat_table_parse_output(rc);
if (rc)
dev_dbg(&port->dev, "Failed to parse SSLBIS: %d\n", rc);
}
EXPORT_SYMBOL_NS_GPL(cxl_switch_parse_cdat, CXL);
static void __cxl_coordinates_combine(struct access_coordinate *out,
struct access_coordinate *c1,
struct access_coordinate *c2)
{
if (c1->write_bandwidth && c2->write_bandwidth)
out->write_bandwidth = min(c1->write_bandwidth,
c2->write_bandwidth);
out->write_latency = c1->write_latency + c2->write_latency;
if (c1->read_bandwidth && c2->read_bandwidth)
out->read_bandwidth = min(c1->read_bandwidth,
c2->read_bandwidth);
out->read_latency = c1->read_latency + c2->read_latency;
}
/**
* cxl_coordinates_combine - Combine the two input coordinates
*
* @out: Output coordinate of c1 and c2 combined
* @c1: input coordinates
* @c2: input coordinates
*/
void cxl_coordinates_combine(struct access_coordinate *out,
struct access_coordinate *c1,
struct access_coordinate *c2)
{
for (int i = 0; i < ACCESS_COORDINATE_MAX; i++)
__cxl_coordinates_combine(&out[i], &c1[i], &c2[i]);
}
MODULE_IMPORT_NS(CXL);
static void cxl_bandwidth_add(struct access_coordinate *coord,
struct access_coordinate *c1,
struct access_coordinate *c2)
{
for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
coord[i].read_bandwidth = c1[i].read_bandwidth +
c2[i].read_bandwidth;
coord[i].write_bandwidth = c1[i].write_bandwidth +
c2[i].write_bandwidth;
}
}
static bool dpa_perf_contains(struct cxl_dpa_perf *perf,
struct resource *dpa_res)
{
struct range dpa = {
.start = dpa_res->start,
.end = dpa_res->end,
};
return range_contains(&perf->dpa_range, &dpa);
}
static struct cxl_dpa_perf *cxled_get_dpa_perf(struct cxl_endpoint_decoder *cxled,
enum cxl_decoder_mode mode)
{
struct cxl_memdev *cxlmd = cxled_to_memdev(cxled);
struct cxl_memdev_state *mds = to_cxl_memdev_state(cxlmd->cxlds);
struct cxl_dpa_perf *perf;
switch (mode) {
case CXL_DECODER_RAM:
perf = &mds->ram_perf;
break;
case CXL_DECODER_PMEM:
perf = &mds->pmem_perf;
break;
default:
return ERR_PTR(-EINVAL);
}
if (!dpa_perf_contains(perf, cxled->dpa_res))
return ERR_PTR(-EINVAL);
return perf;
}
/*
* Transient context for containing the current calculation of bandwidth when
* doing walking the port hierarchy to deal with shared upstream link.
*/
struct cxl_perf_ctx {
struct access_coordinate coord[ACCESS_COORDINATE_MAX];
struct cxl_port *port;
};
/**
* cxl_endpoint_gather_bandwidth - collect all the endpoint bandwidth in an xarray
* @cxlr: CXL region for the bandwidth calculation
* @cxled: endpoint decoder to start on
* @usp_xa: (output) the xarray that collects all the bandwidth coordinates
* indexed by the upstream device with data of 'struct cxl_perf_ctx'.
* @gp_is_root: (output) bool of whether the grandparent is cxl root.
*
* Return: 0 for success or -errno
*
* Collects aggregated endpoint bandwidth and store the bandwidth in
* an xarray indexed by the upstream device of the switch or the RP
* device. Each endpoint consists the minimum of the bandwidth from DSLBIS
* from the endpoint CDAT, the endpoint upstream link bandwidth, and the
* bandwidth from the SSLBIS of the switch CDAT for the switch upstream port to
* the downstream port that's associated with the endpoint. If the
* device is directly connected to a RP, then no SSLBIS is involved.
*/
static int cxl_endpoint_gather_bandwidth(struct cxl_region *cxlr,
struct cxl_endpoint_decoder *cxled,
struct xarray *usp_xa,
bool *gp_is_root)
{
struct cxl_port *endpoint = to_cxl_port(cxled->cxld.dev.parent);
struct cxl_port *parent_port = to_cxl_port(endpoint->dev.parent);
struct cxl_port *gp_port = to_cxl_port(parent_port->dev.parent);
struct access_coordinate pci_coord[ACCESS_COORDINATE_MAX];
struct access_coordinate sw_coord[ACCESS_COORDINATE_MAX];
struct access_coordinate ep_coord[ACCESS_COORDINATE_MAX];
struct cxl_memdev *cxlmd = cxled_to_memdev(cxled);
struct cxl_dev_state *cxlds = cxlmd->cxlds;
struct pci_dev *pdev = to_pci_dev(cxlds->dev);
struct cxl_perf_ctx *perf_ctx;
struct cxl_dpa_perf *perf;
unsigned long index;
void *ptr;
int rc;
if (!dev_is_pci(cxlds->dev))
return -ENODEV;
if (cxlds->rcd)
return -ENODEV;
perf = cxled_get_dpa_perf(cxled, cxlr->mode);
if (IS_ERR(perf))
return PTR_ERR(perf);
gp_port = to_cxl_port(parent_port->dev.parent);
*gp_is_root = is_cxl_root(gp_port);
/*
* If the grandparent is cxl root, then index is the root port,
* otherwise it's the parent switch upstream device.
*/
if (*gp_is_root)
index = (unsigned long)endpoint->parent_dport->dport_dev;
else
index = (unsigned long)parent_port->uport_dev;
perf_ctx = xa_load(usp_xa, index);
if (!perf_ctx) {
struct cxl_perf_ctx *c __free(kfree) =
kzalloc(sizeof(*perf_ctx), GFP_KERNEL);
if (!c)
return -ENOMEM;
ptr = xa_store(usp_xa, index, c, GFP_KERNEL);
if (xa_is_err(ptr))
return xa_err(ptr);
perf_ctx = no_free_ptr(c);
perf_ctx->port = parent_port;
}
/* Direct upstream link from EP bandwidth */
rc = cxl_pci_get_bandwidth(pdev, pci_coord);
if (rc < 0)
return rc;
/*
* Min of upstream link bandwidth and Endpoint CDAT bandwidth from
* DSLBIS.
*/
cxl_coordinates_combine(ep_coord, pci_coord, perf->cdat_coord);
/*
* If grandparent port is root, then there's no switch involved and
* the endpoint is connected to a root port.
*/
if (!*gp_is_root) {
/*
* Retrieve the switch SSLBIS for switch downstream port
* associated with the endpoint bandwidth.
*/
rc = cxl_port_get_switch_dport_bandwidth(endpoint, sw_coord);
if (rc)
return rc;
/*
* Min of the earlier coordinates with the switch SSLBIS
* bandwidth
*/
cxl_coordinates_combine(ep_coord, ep_coord, sw_coord);
}
/*
* Aggregate the computed bandwidth with the current aggregated bandwidth
* of the endpoints with the same switch upstream device or RP.
*/
cxl_bandwidth_add(perf_ctx->coord, perf_ctx->coord, ep_coord);
return 0;
}
static void free_perf_xa(struct xarray *xa)
{
struct cxl_perf_ctx *ctx;
unsigned long index;
if (!xa)
return;
xa_for_each(xa, index, ctx)
kfree(ctx);
xa_destroy(xa);
kfree(xa);
}
DEFINE_FREE(free_perf_xa, struct xarray *, if (_T) free_perf_xa(_T))
/**
* cxl_switch_gather_bandwidth - collect all the bandwidth at switch level in an xarray
* @cxlr: The region being operated on
* @input_xa: xarray indexed by upstream device of a switch with data of 'struct
* cxl_perf_ctx'
* @gp_is_root: (output) bool of whether the grandparent is cxl root.
*
* Return: a xarray of resulting cxl_perf_ctx per parent switch or root port
* or ERR_PTR(-errno)
*
* Iterate through the xarray. Take the minimum of the downstream calculated
* bandwidth, the upstream link bandwidth, and the SSLBIS of the upstream
* switch if exists. Sum the resulting bandwidth under the switch upstream
* device or a RP device. The function can be iterated over multiple switches
* if the switches are present.
*/
static struct xarray *cxl_switch_gather_bandwidth(struct cxl_region *cxlr,
struct xarray *input_xa,
bool *gp_is_root)
{
struct xarray *res_xa __free(free_perf_xa) =
kzalloc(sizeof(*res_xa), GFP_KERNEL);
struct access_coordinate coords[ACCESS_COORDINATE_MAX];
struct cxl_perf_ctx *ctx, *us_ctx;
unsigned long index, us_index;
int dev_count = 0;
int gp_count = 0;
void *ptr;
int rc;
if (!res_xa)
return ERR_PTR(-ENOMEM);
xa_init(res_xa);
xa_for_each(input_xa, index, ctx) {
struct device *dev = (struct device *)index;
struct cxl_port *port = ctx->port;
struct cxl_port *parent_port = to_cxl_port(port->dev.parent);
struct cxl_port *gp_port = to_cxl_port(parent_port->dev.parent);
struct cxl_dport *dport = port->parent_dport;
bool is_root = false;
dev_count++;
if (is_cxl_root(gp_port)) {
is_root = true;
gp_count++;
}
/*
* If the grandparent is cxl root, then index is the root port,
* otherwise it's the parent switch upstream device.
*/
if (is_root)
us_index = (unsigned long)port->parent_dport->dport_dev;
else
us_index = (unsigned long)parent_port->uport_dev;
us_ctx = xa_load(res_xa, us_index);
if (!us_ctx) {
struct cxl_perf_ctx *n __free(kfree) =
kzalloc(sizeof(*n), GFP_KERNEL);
if (!n)
return ERR_PTR(-ENOMEM);
ptr = xa_store(res_xa, us_index, n, GFP_KERNEL);
if (xa_is_err(ptr))
return ERR_PTR(xa_err(ptr));
us_ctx = no_free_ptr(n);
us_ctx->port = parent_port;
}
/*
* If the device isn't an upstream PCIe port, there's something
* wrong with the topology.
*/
if (!dev_is_pci(dev))
return ERR_PTR(-EINVAL);
/* Retrieve the upstream link bandwidth */
rc = cxl_pci_get_bandwidth(to_pci_dev(dev), coords);
if (rc)
return ERR_PTR(-ENXIO);
/*
* Take the min of downstream bandwidth and the upstream link
* bandwidth.
*/
cxl_coordinates_combine(coords, coords, ctx->coord);
/*
* Take the min of the calculated bandwdith and the upstream
* switch SSLBIS bandwidth if there's a parent switch
*/
if (!is_root)
cxl_coordinates_combine(coords, coords, dport->coord);
/*
* Aggregate the calculated bandwidth common to an upstream
* switch.
*/
cxl_bandwidth_add(us_ctx->coord, us_ctx->coord, coords);
}
/* Asymmetric topology detected. */
if (gp_count) {
if (gp_count != dev_count) {
dev_dbg(&cxlr->dev,
"Asymmetric hierarchy detected, bandwidth not updated\n");
return ERR_PTR(-EOPNOTSUPP);
}
*gp_is_root = true;
}
return no_free_ptr(res_xa);
}
/**
* cxl_rp_gather_bandwidth - handle the root port level bandwidth collection
* @xa: the xarray that holds the cxl_perf_ctx that has the bandwidth calculated
* below each root port device.
*
* Return: xarray that holds cxl_perf_ctx per host bridge or ERR_PTR(-errno)
*/
static struct xarray *cxl_rp_gather_bandwidth(struct xarray *xa)
{
struct xarray *hb_xa __free(free_perf_xa) =
kzalloc(sizeof(*hb_xa), GFP_KERNEL);
struct cxl_perf_ctx *ctx;
unsigned long index;
if (!hb_xa)
return ERR_PTR(-ENOMEM);
xa_init(hb_xa);
xa_for_each(xa, index, ctx) {
struct cxl_port *port = ctx->port;
unsigned long hb_index = (unsigned long)port->uport_dev;
struct cxl_perf_ctx *hb_ctx;
void *ptr;
hb_ctx = xa_load(hb_xa, hb_index);
if (!hb_ctx) {
struct cxl_perf_ctx *n __free(kfree) =
kzalloc(sizeof(*n), GFP_KERNEL);
if (!n)
return ERR_PTR(-ENOMEM);
ptr = xa_store(hb_xa, hb_index, n, GFP_KERNEL);
if (xa_is_err(ptr))
return ERR_PTR(xa_err(ptr));
hb_ctx = no_free_ptr(n);
hb_ctx->port = port;
}
cxl_bandwidth_add(hb_ctx->coord, hb_ctx->coord, ctx->coord);
}
return no_free_ptr(hb_xa);
}
/**
* cxl_hb_gather_bandwidth - handle the host bridge level bandwidth collection
* @xa: the xarray that holds the cxl_perf_ctx that has the bandwidth calculated
* below each host bridge.
*
* Return: xarray that holds cxl_perf_ctx per ACPI0017 device or ERR_PTR(-errno)
*/
static struct xarray *cxl_hb_gather_bandwidth(struct xarray *xa)
{
struct xarray *mw_xa __free(free_perf_xa) =
kzalloc(sizeof(*mw_xa), GFP_KERNEL);
struct cxl_perf_ctx *ctx;
unsigned long index;
if (!mw_xa)
return ERR_PTR(-ENOMEM);
xa_init(mw_xa);
xa_for_each(xa, index, ctx) {
struct cxl_port *port = ctx->port;
struct cxl_port *parent_port;
struct cxl_perf_ctx *mw_ctx;
struct cxl_dport *dport;
unsigned long mw_index;
void *ptr;
parent_port = to_cxl_port(port->dev.parent);
mw_index = (unsigned long)parent_port->uport_dev;
mw_ctx = xa_load(mw_xa, mw_index);
if (!mw_ctx) {
struct cxl_perf_ctx *n __free(kfree) =
kzalloc(sizeof(*n), GFP_KERNEL);
if (!n)
return ERR_PTR(-ENOMEM);
ptr = xa_store(mw_xa, mw_index, n, GFP_KERNEL);
if (xa_is_err(ptr))
return ERR_PTR(xa_err(ptr));
mw_ctx = no_free_ptr(n);
}
dport = port->parent_dport;
cxl_coordinates_combine(ctx->coord, ctx->coord, dport->coord);
cxl_bandwidth_add(mw_ctx->coord, mw_ctx->coord, ctx->coord);
}
return no_free_ptr(mw_xa);
}
/**
* cxl_region_update_bandwidth - Update the bandwidth access coordinates of a region
* @cxlr: The region being operated on
* @input_xa: xarray holds cxl_perf_ctx wht calculated bandwidth per ACPI0017 instance
*/
static void cxl_region_update_bandwidth(struct cxl_region *cxlr,
struct xarray *input_xa)
{
struct access_coordinate coord[ACCESS_COORDINATE_MAX];
struct cxl_perf_ctx *ctx;
unsigned long index;
memset(coord, 0, sizeof(coord));
xa_for_each(input_xa, index, ctx)
cxl_bandwidth_add(coord, coord, ctx->coord);
for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
cxlr->coord[i].read_bandwidth = coord[i].read_bandwidth;
cxlr->coord[i].write_bandwidth = coord[i].write_bandwidth;
}
}
/**
* cxl_region_shared_upstream_bandwidth_update - Recalculate the bandwidth for
* the region
* @cxlr: the cxl region to recalculate
*
* The function walks the topology from bottom up and calculates the bandwidth. It
* starts at the endpoints, processes at the switches if any, processes at the rootport
* level, at the host bridge level, and finally aggregates at the region.
*/
void cxl_region_shared_upstream_bandwidth_update(struct cxl_region *cxlr)
{
struct xarray *working_xa;
int root_count = 0;
bool is_root;
int rc;
lockdep_assert_held(&cxl_dpa_rwsem);
struct xarray *usp_xa __free(free_perf_xa) =
kzalloc(sizeof(*usp_xa), GFP_KERNEL);
if (!usp_xa)
return;
xa_init(usp_xa);
/* Collect bandwidth data from all the endpoints. */
for (int i = 0; i < cxlr->params.nr_targets; i++) {
struct cxl_endpoint_decoder *cxled = cxlr->params.targets[i];
is_root = false;
rc = cxl_endpoint_gather_bandwidth(cxlr, cxled, usp_xa, &is_root);
if (rc)
return;
root_count += is_root;
}
/* Detect asymmetric hierarchy with some direct attached endpoints. */
if (root_count && root_count != cxlr->params.nr_targets) {
dev_dbg(&cxlr->dev,
"Asymmetric hierarchy detected, bandwidth not updated\n");
return;
}
/*
* Walk up one or more switches to deal with the bandwidth of the
* switches if they exist. Endpoints directly attached to RPs skip
* over this part.
*/
if (!root_count) {
do {
working_xa = cxl_switch_gather_bandwidth(cxlr, usp_xa,
&is_root);
if (IS_ERR(working_xa))
return;
free_perf_xa(usp_xa);
usp_xa = working_xa;
} while (!is_root);
}
/* Handle the bandwidth at the root port of the hierarchy */
working_xa = cxl_rp_gather_bandwidth(usp_xa);
if (IS_ERR(working_xa))
return;
free_perf_xa(usp_xa);
usp_xa = working_xa;
/* Handle the bandwidth at the host bridge of the hierarchy */
working_xa = cxl_hb_gather_bandwidth(usp_xa);
if (IS_ERR(working_xa))
return;
free_perf_xa(usp_xa);
usp_xa = working_xa;
/*
* Aggregate all the bandwidth collected per CFMWS (ACPI0017) and
* update the region bandwidth with the final calculated values.
*/
cxl_region_update_bandwidth(cxlr, usp_xa);
}
void cxl_region_perf_data_calculate(struct cxl_region *cxlr,
struct cxl_endpoint_decoder *cxled)
{
struct cxl_dpa_perf *perf;
lockdep_assert_held(&cxl_dpa_rwsem);
perf = cxled_get_dpa_perf(cxled, cxlr->mode);
if (IS_ERR(perf))
return;
for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
/* Get total bandwidth and the worst latency for the cxl region */
cxlr->coord[i].read_latency = max_t(unsigned int,
cxlr->coord[i].read_latency,
perf->coord[i].read_latency);
cxlr->coord[i].write_latency = max_t(unsigned int,
cxlr->coord[i].write_latency,
perf->coord[i].write_latency);
cxlr->coord[i].read_bandwidth += perf->coord[i].read_bandwidth;
cxlr->coord[i].write_bandwidth += perf->coord[i].write_bandwidth;
}
}
int cxl_update_hmat_access_coordinates(int nid, struct cxl_region *cxlr,
enum access_coordinate_class access)
{
return hmat_update_target_coordinates(nid, &cxlr->coord[access], access);
}
bool cxl_need_node_perf_attrs_update(int nid)
{
return !acpi_node_backed_by_real_pxm(nid);
}