blob: c3a20507d6dbccc05375d9cd17be55aaf7a36c4d [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2013--2024 Intel Corporation
*/
#include <asm/barrier.h>
#include <linux/align.h>
#include <linux/atomic.h>
#include <linux/bitops.h>
#include <linux/bits.h>
#include <linux/bug.h>
#include <linux/cacheflush.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/gfp.h>
#include <linux/io.h>
#include <linux/iova.h>
#include <linux/math.h>
#include <linux/minmax.h>
#include <linux/mm.h>
#include <linux/pfn.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <linux/vmalloc.h>
#include "ipu6.h"
#include "ipu6-dma.h"
#include "ipu6-mmu.h"
#include "ipu6-platform-regs.h"
#define ISP_PAGE_SHIFT 12
#define ISP_PAGE_SIZE BIT(ISP_PAGE_SHIFT)
#define ISP_PAGE_MASK (~(ISP_PAGE_SIZE - 1))
#define ISP_L1PT_SHIFT 22
#define ISP_L1PT_MASK (~((1U << ISP_L1PT_SHIFT) - 1))
#define ISP_L2PT_SHIFT 12
#define ISP_L2PT_MASK (~(ISP_L1PT_MASK | (~(ISP_PAGE_MASK))))
#define ISP_L1PT_PTES 1024
#define ISP_L2PT_PTES 1024
#define ISP_PADDR_SHIFT 12
#define REG_TLB_INVALIDATE 0x0000
#define REG_L1_PHYS 0x0004 /* 27-bit pfn */
#define REG_INFO 0x0008
#define TBL_PHYS_ADDR(a) ((phys_addr_t)(a) << ISP_PADDR_SHIFT)
static void tlb_invalidate(struct ipu6_mmu *mmu)
{
unsigned long flags;
unsigned int i;
spin_lock_irqsave(&mmu->ready_lock, flags);
if (!mmu->ready) {
spin_unlock_irqrestore(&mmu->ready_lock, flags);
return;
}
for (i = 0; i < mmu->nr_mmus; i++) {
/*
* To avoid the HW bug induced dead lock in some of the IPU6
* MMUs on successive invalidate calls, we need to first do a
* read to the page table base before writing the invalidate
* register. MMUs which need to implement this WA, will have
* the insert_read_before_invalidate flags set as true.
* Disregard the return value of the read.
*/
if (mmu->mmu_hw[i].insert_read_before_invalidate)
readl(mmu->mmu_hw[i].base + REG_L1_PHYS);
writel(0xffffffff, mmu->mmu_hw[i].base +
REG_TLB_INVALIDATE);
/*
* The TLB invalidation is a "single cycle" (IOMMU clock cycles)
* When the actual MMIO write reaches the IPU6 TLB Invalidate
* register, wmb() will force the TLB invalidate out if the CPU
* attempts to update the IOMMU page table (or sooner).
*/
wmb();
}
spin_unlock_irqrestore(&mmu->ready_lock, flags);
}
#ifdef DEBUG
static void page_table_dump(struct ipu6_mmu_info *mmu_info)
{
u32 l1_idx;
dev_dbg(mmu_info->dev, "begin IOMMU page table dump\n");
for (l1_idx = 0; l1_idx < ISP_L1PT_PTES; l1_idx++) {
u32 l2_idx;
u32 iova = (phys_addr_t)l1_idx << ISP_L1PT_SHIFT;
if (mmu_info->l1_pt[l1_idx] == mmu_info->dummy_l2_pteval)
continue;
dev_dbg(mmu_info->dev,
"l1 entry %u; iovas 0x%8.8x-0x%8.8x, at %pa\n",
l1_idx, iova, iova + ISP_PAGE_SIZE,
TBL_PHYS_ADDR(mmu_info->l1_pt[l1_idx]));
for (l2_idx = 0; l2_idx < ISP_L2PT_PTES; l2_idx++) {
u32 *l2_pt = mmu_info->l2_pts[l1_idx];
u32 iova2 = iova + (l2_idx << ISP_L2PT_SHIFT);
if (l2_pt[l2_idx] == mmu_info->dummy_page_pteval)
continue;
dev_dbg(mmu_info->dev,
"\tl2 entry %u; iova 0x%8.8x, phys %pa\n",
l2_idx, iova2,
TBL_PHYS_ADDR(l2_pt[l2_idx]));
}
}
dev_dbg(mmu_info->dev, "end IOMMU page table dump\n");
}
#endif /* DEBUG */
static dma_addr_t map_single(struct ipu6_mmu_info *mmu_info, void *ptr)
{
dma_addr_t dma;
dma = dma_map_single(mmu_info->dev, ptr, PAGE_SIZE, DMA_BIDIRECTIONAL);
if (dma_mapping_error(mmu_info->dev, dma))
return 0;
return dma;
}
static int get_dummy_page(struct ipu6_mmu_info *mmu_info)
{
void *pt = (void *)get_zeroed_page(GFP_ATOMIC | GFP_DMA32);
dma_addr_t dma;
if (!pt)
return -ENOMEM;
dev_dbg(mmu_info->dev, "dummy_page: get_zeroed_page() == %p\n", pt);
dma = map_single(mmu_info, pt);
if (!dma) {
dev_err(mmu_info->dev, "Failed to map dummy page\n");
goto err_free_page;
}
mmu_info->dummy_page = pt;
mmu_info->dummy_page_pteval = dma >> ISP_PAGE_SHIFT;
return 0;
err_free_page:
free_page((unsigned long)pt);
return -ENOMEM;
}
static void free_dummy_page(struct ipu6_mmu_info *mmu_info)
{
dma_unmap_single(mmu_info->dev,
TBL_PHYS_ADDR(mmu_info->dummy_page_pteval),
PAGE_SIZE, DMA_BIDIRECTIONAL);
free_page((unsigned long)mmu_info->dummy_page);
}
static int alloc_dummy_l2_pt(struct ipu6_mmu_info *mmu_info)
{
u32 *pt = (u32 *)get_zeroed_page(GFP_ATOMIC | GFP_DMA32);
dma_addr_t dma;
unsigned int i;
if (!pt)
return -ENOMEM;
dev_dbg(mmu_info->dev, "dummy_l2: get_zeroed_page() = %p\n", pt);
dma = map_single(mmu_info, pt);
if (!dma) {
dev_err(mmu_info->dev, "Failed to map l2pt page\n");
goto err_free_page;
}
for (i = 0; i < ISP_L2PT_PTES; i++)
pt[i] = mmu_info->dummy_page_pteval;
mmu_info->dummy_l2_pt = pt;
mmu_info->dummy_l2_pteval = dma >> ISP_PAGE_SHIFT;
return 0;
err_free_page:
free_page((unsigned long)pt);
return -ENOMEM;
}
static void free_dummy_l2_pt(struct ipu6_mmu_info *mmu_info)
{
dma_unmap_single(mmu_info->dev,
TBL_PHYS_ADDR(mmu_info->dummy_l2_pteval),
PAGE_SIZE, DMA_BIDIRECTIONAL);
free_page((unsigned long)mmu_info->dummy_l2_pt);
}
static u32 *alloc_l1_pt(struct ipu6_mmu_info *mmu_info)
{
u32 *pt = (u32 *)get_zeroed_page(GFP_ATOMIC | GFP_DMA32);
dma_addr_t dma;
unsigned int i;
if (!pt)
return NULL;
dev_dbg(mmu_info->dev, "alloc_l1: get_zeroed_page() = %p\n", pt);
for (i = 0; i < ISP_L1PT_PTES; i++)
pt[i] = mmu_info->dummy_l2_pteval;
dma = map_single(mmu_info, pt);
if (!dma) {
dev_err(mmu_info->dev, "Failed to map l1pt page\n");
goto err_free_page;
}
mmu_info->l1_pt_dma = dma >> ISP_PADDR_SHIFT;
dev_dbg(mmu_info->dev, "l1 pt %p mapped at %llx\n", pt, dma);
return pt;
err_free_page:
free_page((unsigned long)pt);
return NULL;
}
static u32 *alloc_l2_pt(struct ipu6_mmu_info *mmu_info)
{
u32 *pt = (u32 *)get_zeroed_page(GFP_ATOMIC | GFP_DMA32);
unsigned int i;
if (!pt)
return NULL;
dev_dbg(mmu_info->dev, "alloc_l2: get_zeroed_page() = %p\n", pt);
for (i = 0; i < ISP_L1PT_PTES; i++)
pt[i] = mmu_info->dummy_page_pteval;
return pt;
}
static int l2_map(struct ipu6_mmu_info *mmu_info, unsigned long iova,
phys_addr_t paddr, size_t size)
{
u32 l1_idx = iova >> ISP_L1PT_SHIFT;
u32 iova_start = iova;
u32 *l2_pt, *l2_virt;
unsigned int l2_idx;
unsigned long flags;
dma_addr_t dma;
u32 l1_entry;
dev_dbg(mmu_info->dev,
"mapping l2 page table for l1 index %u (iova %8.8x)\n",
l1_idx, (u32)iova);
spin_lock_irqsave(&mmu_info->lock, flags);
l1_entry = mmu_info->l1_pt[l1_idx];
if (l1_entry == mmu_info->dummy_l2_pteval) {
l2_virt = mmu_info->l2_pts[l1_idx];
if (likely(!l2_virt)) {
l2_virt = alloc_l2_pt(mmu_info);
if (!l2_virt) {
spin_unlock_irqrestore(&mmu_info->lock, flags);
return -ENOMEM;
}
}
dma = map_single(mmu_info, l2_virt);
if (!dma) {
dev_err(mmu_info->dev, "Failed to map l2pt page\n");
free_page((unsigned long)l2_virt);
spin_unlock_irqrestore(&mmu_info->lock, flags);
return -EINVAL;
}
l1_entry = dma >> ISP_PADDR_SHIFT;
dev_dbg(mmu_info->dev, "page for l1_idx %u %p allocated\n",
l1_idx, l2_virt);
mmu_info->l1_pt[l1_idx] = l1_entry;
mmu_info->l2_pts[l1_idx] = l2_virt;
clflush_cache_range((void *)&mmu_info->l1_pt[l1_idx],
sizeof(mmu_info->l1_pt[l1_idx]));
}
l2_pt = mmu_info->l2_pts[l1_idx];
dev_dbg(mmu_info->dev, "l2_pt at %p with dma 0x%x\n", l2_pt, l1_entry);
paddr = ALIGN(paddr, ISP_PAGE_SIZE);
l2_idx = (iova_start & ISP_L2PT_MASK) >> ISP_L2PT_SHIFT;
dev_dbg(mmu_info->dev, "l2_idx %u, phys 0x%8.8x\n", l2_idx,
l2_pt[l2_idx]);
if (l2_pt[l2_idx] != mmu_info->dummy_page_pteval) {
spin_unlock_irqrestore(&mmu_info->lock, flags);
return -EINVAL;
}
l2_pt[l2_idx] = paddr >> ISP_PADDR_SHIFT;
clflush_cache_range((void *)&l2_pt[l2_idx], sizeof(l2_pt[l2_idx]));
spin_unlock_irqrestore(&mmu_info->lock, flags);
dev_dbg(mmu_info->dev, "l2 index %u mapped as 0x%8.8x\n", l2_idx,
l2_pt[l2_idx]);
return 0;
}
static int __ipu6_mmu_map(struct ipu6_mmu_info *mmu_info, unsigned long iova,
phys_addr_t paddr, size_t size)
{
u32 iova_start = round_down(iova, ISP_PAGE_SIZE);
u32 iova_end = ALIGN(iova + size, ISP_PAGE_SIZE);
dev_dbg(mmu_info->dev,
"mapping iova 0x%8.8x--0x%8.8x, size %zu at paddr 0x%10.10llx\n",
iova_start, iova_end, size, paddr);
return l2_map(mmu_info, iova_start, paddr, size);
}
static size_t l2_unmap(struct ipu6_mmu_info *mmu_info, unsigned long iova,
phys_addr_t dummy, size_t size)
{
u32 l1_idx = iova >> ISP_L1PT_SHIFT;
u32 iova_start = iova;
unsigned int l2_idx;
size_t unmapped = 0;
unsigned long flags;
u32 *l2_pt;
dev_dbg(mmu_info->dev, "unmapping l2 page table for l1 index %u (iova 0x%8.8lx)\n",
l1_idx, iova);
spin_lock_irqsave(&mmu_info->lock, flags);
if (mmu_info->l1_pt[l1_idx] == mmu_info->dummy_l2_pteval) {
spin_unlock_irqrestore(&mmu_info->lock, flags);
dev_err(mmu_info->dev,
"unmap iova 0x%8.8lx l1 idx %u which was not mapped\n",
iova, l1_idx);
return 0;
}
for (l2_idx = (iova_start & ISP_L2PT_MASK) >> ISP_L2PT_SHIFT;
(iova_start & ISP_L1PT_MASK) + (l2_idx << ISP_PAGE_SHIFT)
< iova_start + size && l2_idx < ISP_L2PT_PTES; l2_idx++) {
l2_pt = mmu_info->l2_pts[l1_idx];
dev_dbg(mmu_info->dev,
"unmap l2 index %u with pteval 0x%10.10llx\n",
l2_idx, TBL_PHYS_ADDR(l2_pt[l2_idx]));
l2_pt[l2_idx] = mmu_info->dummy_page_pteval;
clflush_cache_range((void *)&l2_pt[l2_idx],
sizeof(l2_pt[l2_idx]));
unmapped++;
}
spin_unlock_irqrestore(&mmu_info->lock, flags);
return unmapped << ISP_PAGE_SHIFT;
}
static size_t __ipu6_mmu_unmap(struct ipu6_mmu_info *mmu_info,
unsigned long iova, size_t size)
{
return l2_unmap(mmu_info, iova, 0, size);
}
static int allocate_trash_buffer(struct ipu6_mmu *mmu)
{
unsigned int n_pages = PHYS_PFN(PAGE_ALIGN(IPU6_MMUV2_TRASH_RANGE));
struct iova *iova;
unsigned int i;
dma_addr_t dma;
unsigned long iova_addr;
int ret;
/* Allocate 8MB in iova range */
iova = alloc_iova(&mmu->dmap->iovad, n_pages,
PHYS_PFN(mmu->dmap->mmu_info->aperture_end), 0);
if (!iova) {
dev_err(mmu->dev, "cannot allocate iova range for trash\n");
return -ENOMEM;
}
dma = dma_map_page(mmu->dmap->mmu_info->dev, mmu->trash_page, 0,
PAGE_SIZE, DMA_BIDIRECTIONAL);
if (dma_mapping_error(mmu->dmap->mmu_info->dev, dma)) {
dev_err(mmu->dmap->mmu_info->dev, "Failed to map trash page\n");
ret = -ENOMEM;
goto out_free_iova;
}
mmu->pci_trash_page = dma;
/*
* Map the 8MB iova address range to the same physical trash page
* mmu->trash_page which is already reserved at the probe
*/
iova_addr = iova->pfn_lo;
for (i = 0; i < n_pages; i++) {
ret = ipu6_mmu_map(mmu->dmap->mmu_info, PFN_PHYS(iova_addr),
mmu->pci_trash_page, PAGE_SIZE);
if (ret) {
dev_err(mmu->dev,
"mapping trash buffer range failed\n");
goto out_unmap;
}
iova_addr++;
}
mmu->iova_trash_page = PFN_PHYS(iova->pfn_lo);
dev_dbg(mmu->dev, "iova trash buffer for MMUID: %d is %u\n",
mmu->mmid, (unsigned int)mmu->iova_trash_page);
return 0;
out_unmap:
ipu6_mmu_unmap(mmu->dmap->mmu_info, PFN_PHYS(iova->pfn_lo),
PFN_PHYS(iova_size(iova)));
dma_unmap_page(mmu->dmap->mmu_info->dev, mmu->pci_trash_page,
PAGE_SIZE, DMA_BIDIRECTIONAL);
out_free_iova:
__free_iova(&mmu->dmap->iovad, iova);
return ret;
}
int ipu6_mmu_hw_init(struct ipu6_mmu *mmu)
{
struct ipu6_mmu_info *mmu_info;
unsigned long flags;
unsigned int i;
mmu_info = mmu->dmap->mmu_info;
/* Initialise the each MMU HW block */
for (i = 0; i < mmu->nr_mmus; i++) {
struct ipu6_mmu_hw *mmu_hw = &mmu->mmu_hw[i];
unsigned int j;
u16 block_addr;
/* Write page table address per MMU */
writel((phys_addr_t)mmu_info->l1_pt_dma,
mmu->mmu_hw[i].base + REG_L1_PHYS);
/* Set info bits per MMU */
writel(mmu->mmu_hw[i].info_bits,
mmu->mmu_hw[i].base + REG_INFO);
/* Configure MMU TLB stream configuration for L1 */
for (j = 0, block_addr = 0; j < mmu_hw->nr_l1streams;
block_addr += mmu->mmu_hw[i].l1_block_sz[j], j++) {
if (block_addr > IPU6_MAX_LI_BLOCK_ADDR) {
dev_err(mmu->dev, "invalid L1 configuration\n");
return -EINVAL;
}
/* Write block start address for each streams */
writel(block_addr, mmu_hw->base +
mmu_hw->l1_stream_id_reg_offset + 4 * j);
}
/* Configure MMU TLB stream configuration for L2 */
for (j = 0, block_addr = 0; j < mmu_hw->nr_l2streams;
block_addr += mmu->mmu_hw[i].l2_block_sz[j], j++) {
if (block_addr > IPU6_MAX_L2_BLOCK_ADDR) {
dev_err(mmu->dev, "invalid L2 configuration\n");
return -EINVAL;
}
writel(block_addr, mmu_hw->base +
mmu_hw->l2_stream_id_reg_offset + 4 * j);
}
}
if (!mmu->trash_page) {
int ret;
mmu->trash_page = alloc_page(GFP_KERNEL);
if (!mmu->trash_page) {
dev_err(mmu->dev, "insufficient memory for trash buffer\n");
return -ENOMEM;
}
ret = allocate_trash_buffer(mmu);
if (ret) {
__free_page(mmu->trash_page);
mmu->trash_page = NULL;
dev_err(mmu->dev, "trash buffer allocation failed\n");
return ret;
}
}
spin_lock_irqsave(&mmu->ready_lock, flags);
mmu->ready = true;
spin_unlock_irqrestore(&mmu->ready_lock, flags);
return 0;
}
EXPORT_SYMBOL_NS_GPL(ipu6_mmu_hw_init, INTEL_IPU6);
static struct ipu6_mmu_info *ipu6_mmu_alloc(struct ipu6_device *isp)
{
struct ipu6_mmu_info *mmu_info;
int ret;
mmu_info = kzalloc(sizeof(*mmu_info), GFP_KERNEL);
if (!mmu_info)
return NULL;
mmu_info->aperture_start = 0;
mmu_info->aperture_end = DMA_BIT_MASK(isp->secure_mode ?
IPU6_MMU_ADDR_BITS :
IPU6_MMU_ADDR_BITS_NON_SECURE);
mmu_info->pgsize_bitmap = SZ_4K;
mmu_info->dev = &isp->pdev->dev;
ret = get_dummy_page(mmu_info);
if (ret)
goto err_free_info;
ret = alloc_dummy_l2_pt(mmu_info);
if (ret)
goto err_free_dummy_page;
mmu_info->l2_pts = vzalloc(ISP_L2PT_PTES * sizeof(*mmu_info->l2_pts));
if (!mmu_info->l2_pts)
goto err_free_dummy_l2_pt;
/*
* We always map the L1 page table (a single page as well as
* the L2 page tables).
*/
mmu_info->l1_pt = alloc_l1_pt(mmu_info);
if (!mmu_info->l1_pt)
goto err_free_l2_pts;
spin_lock_init(&mmu_info->lock);
dev_dbg(mmu_info->dev, "domain initialised\n");
return mmu_info;
err_free_l2_pts:
vfree(mmu_info->l2_pts);
err_free_dummy_l2_pt:
free_dummy_l2_pt(mmu_info);
err_free_dummy_page:
free_dummy_page(mmu_info);
err_free_info:
kfree(mmu_info);
return NULL;
}
void ipu6_mmu_hw_cleanup(struct ipu6_mmu *mmu)
{
unsigned long flags;
spin_lock_irqsave(&mmu->ready_lock, flags);
mmu->ready = false;
spin_unlock_irqrestore(&mmu->ready_lock, flags);
}
EXPORT_SYMBOL_NS_GPL(ipu6_mmu_hw_cleanup, INTEL_IPU6);
static struct ipu6_dma_mapping *alloc_dma_mapping(struct ipu6_device *isp)
{
struct ipu6_dma_mapping *dmap;
dmap = kzalloc(sizeof(*dmap), GFP_KERNEL);
if (!dmap)
return NULL;
dmap->mmu_info = ipu6_mmu_alloc(isp);
if (!dmap->mmu_info) {
kfree(dmap);
return NULL;
}
init_iova_domain(&dmap->iovad, SZ_4K, 1);
dmap->mmu_info->dmap = dmap;
dev_dbg(&isp->pdev->dev, "alloc mapping\n");
iova_cache_get();
return dmap;
}
phys_addr_t ipu6_mmu_iova_to_phys(struct ipu6_mmu_info *mmu_info,
dma_addr_t iova)
{
phys_addr_t phy_addr;
unsigned long flags;
u32 *l2_pt;
spin_lock_irqsave(&mmu_info->lock, flags);
l2_pt = mmu_info->l2_pts[iova >> ISP_L1PT_SHIFT];
phy_addr = (phys_addr_t)l2_pt[(iova & ISP_L2PT_MASK) >> ISP_L2PT_SHIFT];
phy_addr <<= ISP_PAGE_SHIFT;
spin_unlock_irqrestore(&mmu_info->lock, flags);
return phy_addr;
}
static size_t ipu6_mmu_pgsize(unsigned long pgsize_bitmap,
unsigned long addr_merge, size_t size)
{
unsigned int pgsize_idx;
size_t pgsize;
/* Max page size that still fits into 'size' */
pgsize_idx = __fls(size);
if (likely(addr_merge)) {
/* Max page size allowed by address */
unsigned int align_pgsize_idx = __ffs(addr_merge);
pgsize_idx = min(pgsize_idx, align_pgsize_idx);
}
pgsize = (1UL << (pgsize_idx + 1)) - 1;
pgsize &= pgsize_bitmap;
WARN_ON(!pgsize);
/* pick the biggest page */
pgsize_idx = __fls(pgsize);
pgsize = 1UL << pgsize_idx;
return pgsize;
}
size_t ipu6_mmu_unmap(struct ipu6_mmu_info *mmu_info, unsigned long iova,
size_t size)
{
size_t unmapped_page, unmapped = 0;
unsigned int min_pagesz;
/* find out the minimum page size supported */
min_pagesz = 1 << __ffs(mmu_info->pgsize_bitmap);
/*
* The virtual address and the size of the mapping must be
* aligned (at least) to the size of the smallest page supported
* by the hardware
*/
if (!IS_ALIGNED(iova | size, min_pagesz)) {
dev_err(NULL, "unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
iova, size, min_pagesz);
return -EINVAL;
}
/*
* Keep iterating until we either unmap 'size' bytes (or more)
* or we hit an area that isn't mapped.
*/
while (unmapped < size) {
size_t pgsize = ipu6_mmu_pgsize(mmu_info->pgsize_bitmap,
iova, size - unmapped);
unmapped_page = __ipu6_mmu_unmap(mmu_info, iova, pgsize);
if (!unmapped_page)
break;
dev_dbg(mmu_info->dev, "unmapped: iova 0x%lx size 0x%zx\n",
iova, unmapped_page);
iova += unmapped_page;
unmapped += unmapped_page;
}
return unmapped;
}
int ipu6_mmu_map(struct ipu6_mmu_info *mmu_info, unsigned long iova,
phys_addr_t paddr, size_t size)
{
unsigned long orig_iova = iova;
unsigned int min_pagesz;
size_t orig_size = size;
int ret = 0;
if (mmu_info->pgsize_bitmap == 0UL)
return -ENODEV;
/* find out the minimum page size supported */
min_pagesz = 1 << __ffs(mmu_info->pgsize_bitmap);
/*
* both the virtual address and the physical one, as well as
* the size of the mapping, must be aligned (at least) to the
* size of the smallest page supported by the hardware
*/
if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
dev_err(mmu_info->dev,
"unaligned: iova %lx pa %pa size %zx min_pagesz %x\n",
iova, &paddr, size, min_pagesz);
return -EINVAL;
}
dev_dbg(mmu_info->dev, "map: iova 0x%lx pa %pa size 0x%zx\n",
iova, &paddr, size);
while (size) {
size_t pgsize = ipu6_mmu_pgsize(mmu_info->pgsize_bitmap,
iova | paddr, size);
dev_dbg(mmu_info->dev,
"mapping: iova 0x%lx pa %pa pgsize 0x%zx\n",
iova, &paddr, pgsize);
ret = __ipu6_mmu_map(mmu_info, iova, paddr, pgsize);
if (ret)
break;
iova += pgsize;
paddr += pgsize;
size -= pgsize;
}
/* unroll mapping in case something went wrong */
if (ret)
ipu6_mmu_unmap(mmu_info, orig_iova, orig_size - size);
return ret;
}
static void ipu6_mmu_destroy(struct ipu6_mmu *mmu)
{
struct ipu6_dma_mapping *dmap = mmu->dmap;
struct ipu6_mmu_info *mmu_info = dmap->mmu_info;
struct iova *iova;
u32 l1_idx;
if (mmu->iova_trash_page) {
iova = find_iova(&dmap->iovad, PHYS_PFN(mmu->iova_trash_page));
if (iova) {
/* unmap and free the trash buffer iova */
ipu6_mmu_unmap(mmu_info, PFN_PHYS(iova->pfn_lo),
PFN_PHYS(iova_size(iova)));
__free_iova(&dmap->iovad, iova);
} else {
dev_err(mmu->dev, "trash buffer iova not found.\n");
}
mmu->iova_trash_page = 0;
dma_unmap_page(mmu_info->dev, mmu->pci_trash_page,
PAGE_SIZE, DMA_BIDIRECTIONAL);
mmu->pci_trash_page = 0;
__free_page(mmu->trash_page);
}
for (l1_idx = 0; l1_idx < ISP_L1PT_PTES; l1_idx++) {
if (mmu_info->l1_pt[l1_idx] != mmu_info->dummy_l2_pteval) {
dma_unmap_single(mmu_info->dev,
TBL_PHYS_ADDR(mmu_info->l1_pt[l1_idx]),
PAGE_SIZE, DMA_BIDIRECTIONAL);
free_page((unsigned long)mmu_info->l2_pts[l1_idx]);
}
}
vfree(mmu_info->l2_pts);
free_dummy_page(mmu_info);
dma_unmap_single(mmu_info->dev, TBL_PHYS_ADDR(mmu_info->l1_pt_dma),
PAGE_SIZE, DMA_BIDIRECTIONAL);
free_page((unsigned long)mmu_info->dummy_l2_pt);
free_page((unsigned long)mmu_info->l1_pt);
kfree(mmu_info);
}
struct ipu6_mmu *ipu6_mmu_init(struct device *dev,
void __iomem *base, int mmid,
const struct ipu6_hw_variants *hw)
{
struct ipu6_device *isp = pci_get_drvdata(to_pci_dev(dev));
struct ipu6_mmu_pdata *pdata;
struct ipu6_mmu *mmu;
unsigned int i;
if (hw->nr_mmus > IPU6_MMU_MAX_DEVICES)
return ERR_PTR(-EINVAL);
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return ERR_PTR(-ENOMEM);
for (i = 0; i < hw->nr_mmus; i++) {
struct ipu6_mmu_hw *pdata_mmu = &pdata->mmu_hw[i];
const struct ipu6_mmu_hw *src_mmu = &hw->mmu_hw[i];
if (src_mmu->nr_l1streams > IPU6_MMU_MAX_TLB_L1_STREAMS ||
src_mmu->nr_l2streams > IPU6_MMU_MAX_TLB_L2_STREAMS)
return ERR_PTR(-EINVAL);
*pdata_mmu = *src_mmu;
pdata_mmu->base = base + src_mmu->offset;
}
mmu = devm_kzalloc(dev, sizeof(*mmu), GFP_KERNEL);
if (!mmu)
return ERR_PTR(-ENOMEM);
mmu->mmid = mmid;
mmu->mmu_hw = pdata->mmu_hw;
mmu->nr_mmus = hw->nr_mmus;
mmu->tlb_invalidate = tlb_invalidate;
mmu->ready = false;
INIT_LIST_HEAD(&mmu->vma_list);
spin_lock_init(&mmu->ready_lock);
mmu->dmap = alloc_dma_mapping(isp);
if (!mmu->dmap) {
dev_err(dev, "can't alloc dma mapping\n");
return ERR_PTR(-ENOMEM);
}
return mmu;
}
void ipu6_mmu_cleanup(struct ipu6_mmu *mmu)
{
struct ipu6_dma_mapping *dmap = mmu->dmap;
ipu6_mmu_destroy(mmu);
mmu->dmap = NULL;
iova_cache_put();
put_iova_domain(&dmap->iovad);
kfree(dmap);
}