blob: c47266d1c7c27936ddbf00e235e0221f4d78c3da [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/* Copyright (c) 2021, Microsoft Corporation. */
#include <uapi/linux/bpf.h>
#include <linux/inetdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/filter.h>
#include <linux/mm.h>
#include <linux/pci.h>
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <net/page_pool/helpers.h>
#include <net/xdp.h>
#include <net/mana/mana.h>
#include <net/mana/mana_auxiliary.h>
static DEFINE_IDA(mana_adev_ida);
static int mana_adev_idx_alloc(void)
{
return ida_alloc(&mana_adev_ida, GFP_KERNEL);
}
static void mana_adev_idx_free(int idx)
{
ida_free(&mana_adev_ida, idx);
}
/* Microsoft Azure Network Adapter (MANA) functions */
static int mana_open(struct net_device *ndev)
{
struct mana_port_context *apc = netdev_priv(ndev);
int err;
err = mana_alloc_queues(ndev);
if (err)
return err;
apc->port_is_up = true;
/* Ensure port state updated before txq state */
smp_wmb();
netif_carrier_on(ndev);
netif_tx_wake_all_queues(ndev);
return 0;
}
static int mana_close(struct net_device *ndev)
{
struct mana_port_context *apc = netdev_priv(ndev);
if (!apc->port_is_up)
return 0;
return mana_detach(ndev, true);
}
static bool mana_can_tx(struct gdma_queue *wq)
{
return mana_gd_wq_avail_space(wq) >= MAX_TX_WQE_SIZE;
}
static unsigned int mana_checksum_info(struct sk_buff *skb)
{
if (skb->protocol == htons(ETH_P_IP)) {
struct iphdr *ip = ip_hdr(skb);
if (ip->protocol == IPPROTO_TCP)
return IPPROTO_TCP;
if (ip->protocol == IPPROTO_UDP)
return IPPROTO_UDP;
} else if (skb->protocol == htons(ETH_P_IPV6)) {
struct ipv6hdr *ip6 = ipv6_hdr(skb);
if (ip6->nexthdr == IPPROTO_TCP)
return IPPROTO_TCP;
if (ip6->nexthdr == IPPROTO_UDP)
return IPPROTO_UDP;
}
/* No csum offloading */
return 0;
}
static void mana_add_sge(struct mana_tx_package *tp, struct mana_skb_head *ash,
int sg_i, dma_addr_t da, int sge_len, u32 gpa_mkey)
{
ash->dma_handle[sg_i] = da;
ash->size[sg_i] = sge_len;
tp->wqe_req.sgl[sg_i].address = da;
tp->wqe_req.sgl[sg_i].mem_key = gpa_mkey;
tp->wqe_req.sgl[sg_i].size = sge_len;
}
static int mana_map_skb(struct sk_buff *skb, struct mana_port_context *apc,
struct mana_tx_package *tp, int gso_hs)
{
struct mana_skb_head *ash = (struct mana_skb_head *)skb->head;
int hsg = 1; /* num of SGEs of linear part */
struct gdma_dev *gd = apc->ac->gdma_dev;
int skb_hlen = skb_headlen(skb);
int sge0_len, sge1_len = 0;
struct gdma_context *gc;
struct device *dev;
skb_frag_t *frag;
dma_addr_t da;
int sg_i;
int i;
gc = gd->gdma_context;
dev = gc->dev;
if (gso_hs && gso_hs < skb_hlen) {
sge0_len = gso_hs;
sge1_len = skb_hlen - gso_hs;
} else {
sge0_len = skb_hlen;
}
da = dma_map_single(dev, skb->data, sge0_len, DMA_TO_DEVICE);
if (dma_mapping_error(dev, da))
return -ENOMEM;
mana_add_sge(tp, ash, 0, da, sge0_len, gd->gpa_mkey);
if (sge1_len) {
sg_i = 1;
da = dma_map_single(dev, skb->data + sge0_len, sge1_len,
DMA_TO_DEVICE);
if (dma_mapping_error(dev, da))
goto frag_err;
mana_add_sge(tp, ash, sg_i, da, sge1_len, gd->gpa_mkey);
hsg = 2;
}
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
sg_i = hsg + i;
frag = &skb_shinfo(skb)->frags[i];
da = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag),
DMA_TO_DEVICE);
if (dma_mapping_error(dev, da))
goto frag_err;
mana_add_sge(tp, ash, sg_i, da, skb_frag_size(frag),
gd->gpa_mkey);
}
return 0;
frag_err:
for (i = sg_i - 1; i >= hsg; i--)
dma_unmap_page(dev, ash->dma_handle[i], ash->size[i],
DMA_TO_DEVICE);
for (i = hsg - 1; i >= 0; i--)
dma_unmap_single(dev, ash->dma_handle[i], ash->size[i],
DMA_TO_DEVICE);
return -ENOMEM;
}
/* Handle the case when GSO SKB linear length is too large.
* MANA NIC requires GSO packets to put only the packet header to SGE0.
* So, we need 2 SGEs for the skb linear part which contains more than the
* header.
* Return a positive value for the number of SGEs, or a negative value
* for an error.
*/
static int mana_fix_skb_head(struct net_device *ndev, struct sk_buff *skb,
int gso_hs)
{
int num_sge = 1 + skb_shinfo(skb)->nr_frags;
int skb_hlen = skb_headlen(skb);
if (gso_hs < skb_hlen) {
num_sge++;
} else if (gso_hs > skb_hlen) {
if (net_ratelimit())
netdev_err(ndev,
"TX nonlinear head: hs:%d, skb_hlen:%d\n",
gso_hs, skb_hlen);
return -EINVAL;
}
return num_sge;
}
/* Get the GSO packet's header size */
static int mana_get_gso_hs(struct sk_buff *skb)
{
int gso_hs;
if (skb->encapsulation) {
gso_hs = skb_inner_tcp_all_headers(skb);
} else {
if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
gso_hs = skb_transport_offset(skb) +
sizeof(struct udphdr);
} else {
gso_hs = skb_tcp_all_headers(skb);
}
}
return gso_hs;
}
netdev_tx_t mana_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
enum mana_tx_pkt_format pkt_fmt = MANA_SHORT_PKT_FMT;
struct mana_port_context *apc = netdev_priv(ndev);
int gso_hs = 0; /* zero for non-GSO pkts */
u16 txq_idx = skb_get_queue_mapping(skb);
struct gdma_dev *gd = apc->ac->gdma_dev;
bool ipv4 = false, ipv6 = false;
struct mana_tx_package pkg = {};
struct netdev_queue *net_txq;
struct mana_stats_tx *tx_stats;
struct gdma_queue *gdma_sq;
unsigned int csum_type;
struct mana_txq *txq;
struct mana_cq *cq;
int err, len;
if (unlikely(!apc->port_is_up))
goto tx_drop;
if (skb_cow_head(skb, MANA_HEADROOM))
goto tx_drop_count;
txq = &apc->tx_qp[txq_idx].txq;
gdma_sq = txq->gdma_sq;
cq = &apc->tx_qp[txq_idx].tx_cq;
tx_stats = &txq->stats;
pkg.tx_oob.s_oob.vcq_num = cq->gdma_id;
pkg.tx_oob.s_oob.vsq_frame = txq->vsq_frame;
if (txq->vp_offset > MANA_SHORT_VPORT_OFFSET_MAX) {
pkg.tx_oob.l_oob.long_vp_offset = txq->vp_offset;
pkt_fmt = MANA_LONG_PKT_FMT;
} else {
pkg.tx_oob.s_oob.short_vp_offset = txq->vp_offset;
}
if (skb_vlan_tag_present(skb)) {
pkt_fmt = MANA_LONG_PKT_FMT;
pkg.tx_oob.l_oob.inject_vlan_pri_tag = 1;
pkg.tx_oob.l_oob.pcp = skb_vlan_tag_get_prio(skb);
pkg.tx_oob.l_oob.dei = skb_vlan_tag_get_cfi(skb);
pkg.tx_oob.l_oob.vlan_id = skb_vlan_tag_get_id(skb);
}
pkg.tx_oob.s_oob.pkt_fmt = pkt_fmt;
if (pkt_fmt == MANA_SHORT_PKT_FMT) {
pkg.wqe_req.inline_oob_size = sizeof(struct mana_tx_short_oob);
u64_stats_update_begin(&tx_stats->syncp);
tx_stats->short_pkt_fmt++;
u64_stats_update_end(&tx_stats->syncp);
} else {
pkg.wqe_req.inline_oob_size = sizeof(struct mana_tx_oob);
u64_stats_update_begin(&tx_stats->syncp);
tx_stats->long_pkt_fmt++;
u64_stats_update_end(&tx_stats->syncp);
}
pkg.wqe_req.inline_oob_data = &pkg.tx_oob;
pkg.wqe_req.flags = 0;
pkg.wqe_req.client_data_unit = 0;
pkg.wqe_req.num_sge = 1 + skb_shinfo(skb)->nr_frags;
if (skb->protocol == htons(ETH_P_IP))
ipv4 = true;
else if (skb->protocol == htons(ETH_P_IPV6))
ipv6 = true;
if (skb_is_gso(skb)) {
int num_sge;
gso_hs = mana_get_gso_hs(skb);
num_sge = mana_fix_skb_head(ndev, skb, gso_hs);
if (num_sge > 0)
pkg.wqe_req.num_sge = num_sge;
else
goto tx_drop_count;
u64_stats_update_begin(&tx_stats->syncp);
if (skb->encapsulation) {
tx_stats->tso_inner_packets++;
tx_stats->tso_inner_bytes += skb->len - gso_hs;
} else {
tx_stats->tso_packets++;
tx_stats->tso_bytes += skb->len - gso_hs;
}
u64_stats_update_end(&tx_stats->syncp);
pkg.tx_oob.s_oob.is_outer_ipv4 = ipv4;
pkg.tx_oob.s_oob.is_outer_ipv6 = ipv6;
pkg.tx_oob.s_oob.comp_iphdr_csum = 1;
pkg.tx_oob.s_oob.comp_tcp_csum = 1;
pkg.tx_oob.s_oob.trans_off = skb_transport_offset(skb);
pkg.wqe_req.client_data_unit = skb_shinfo(skb)->gso_size;
pkg.wqe_req.flags = GDMA_WR_OOB_IN_SGL | GDMA_WR_PAD_BY_SGE0;
if (ipv4) {
ip_hdr(skb)->tot_len = 0;
ip_hdr(skb)->check = 0;
tcp_hdr(skb)->check =
~csum_tcpudp_magic(ip_hdr(skb)->saddr,
ip_hdr(skb)->daddr, 0,
IPPROTO_TCP, 0);
} else {
ipv6_hdr(skb)->payload_len = 0;
tcp_hdr(skb)->check =
~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr, 0,
IPPROTO_TCP, 0);
}
} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
csum_type = mana_checksum_info(skb);
u64_stats_update_begin(&tx_stats->syncp);
tx_stats->csum_partial++;
u64_stats_update_end(&tx_stats->syncp);
if (csum_type == IPPROTO_TCP) {
pkg.tx_oob.s_oob.is_outer_ipv4 = ipv4;
pkg.tx_oob.s_oob.is_outer_ipv6 = ipv6;
pkg.tx_oob.s_oob.comp_tcp_csum = 1;
pkg.tx_oob.s_oob.trans_off = skb_transport_offset(skb);
} else if (csum_type == IPPROTO_UDP) {
pkg.tx_oob.s_oob.is_outer_ipv4 = ipv4;
pkg.tx_oob.s_oob.is_outer_ipv6 = ipv6;
pkg.tx_oob.s_oob.comp_udp_csum = 1;
} else {
/* Can't do offload of this type of checksum */
if (skb_checksum_help(skb))
goto tx_drop_count;
}
}
WARN_ON_ONCE(pkg.wqe_req.num_sge > MAX_TX_WQE_SGL_ENTRIES);
if (pkg.wqe_req.num_sge <= ARRAY_SIZE(pkg.sgl_array)) {
pkg.wqe_req.sgl = pkg.sgl_array;
} else {
pkg.sgl_ptr = kmalloc_array(pkg.wqe_req.num_sge,
sizeof(struct gdma_sge),
GFP_ATOMIC);
if (!pkg.sgl_ptr)
goto tx_drop_count;
pkg.wqe_req.sgl = pkg.sgl_ptr;
}
if (mana_map_skb(skb, apc, &pkg, gso_hs)) {
u64_stats_update_begin(&tx_stats->syncp);
tx_stats->mana_map_err++;
u64_stats_update_end(&tx_stats->syncp);
goto free_sgl_ptr;
}
skb_queue_tail(&txq->pending_skbs, skb);
len = skb->len;
net_txq = netdev_get_tx_queue(ndev, txq_idx);
err = mana_gd_post_work_request(gdma_sq, &pkg.wqe_req,
(struct gdma_posted_wqe_info *)skb->cb);
if (!mana_can_tx(gdma_sq)) {
netif_tx_stop_queue(net_txq);
apc->eth_stats.stop_queue++;
}
if (err) {
(void)skb_dequeue_tail(&txq->pending_skbs);
netdev_warn(ndev, "Failed to post TX OOB: %d\n", err);
err = NETDEV_TX_BUSY;
goto tx_busy;
}
err = NETDEV_TX_OK;
atomic_inc(&txq->pending_sends);
mana_gd_wq_ring_doorbell(gd->gdma_context, gdma_sq);
/* skb may be freed after mana_gd_post_work_request. Do not use it. */
skb = NULL;
tx_stats = &txq->stats;
u64_stats_update_begin(&tx_stats->syncp);
tx_stats->packets++;
tx_stats->bytes += len;
u64_stats_update_end(&tx_stats->syncp);
tx_busy:
if (netif_tx_queue_stopped(net_txq) && mana_can_tx(gdma_sq)) {
netif_tx_wake_queue(net_txq);
apc->eth_stats.wake_queue++;
}
kfree(pkg.sgl_ptr);
return err;
free_sgl_ptr:
kfree(pkg.sgl_ptr);
tx_drop_count:
ndev->stats.tx_dropped++;
tx_drop:
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
static void mana_get_stats64(struct net_device *ndev,
struct rtnl_link_stats64 *st)
{
struct mana_port_context *apc = netdev_priv(ndev);
unsigned int num_queues = apc->num_queues;
struct mana_stats_rx *rx_stats;
struct mana_stats_tx *tx_stats;
unsigned int start;
u64 packets, bytes;
int q;
if (!apc->port_is_up)
return;
netdev_stats_to_stats64(st, &ndev->stats);
for (q = 0; q < num_queues; q++) {
rx_stats = &apc->rxqs[q]->stats;
do {
start = u64_stats_fetch_begin(&rx_stats->syncp);
packets = rx_stats->packets;
bytes = rx_stats->bytes;
} while (u64_stats_fetch_retry(&rx_stats->syncp, start));
st->rx_packets += packets;
st->rx_bytes += bytes;
}
for (q = 0; q < num_queues; q++) {
tx_stats = &apc->tx_qp[q].txq.stats;
do {
start = u64_stats_fetch_begin(&tx_stats->syncp);
packets = tx_stats->packets;
bytes = tx_stats->bytes;
} while (u64_stats_fetch_retry(&tx_stats->syncp, start));
st->tx_packets += packets;
st->tx_bytes += bytes;
}
}
static int mana_get_tx_queue(struct net_device *ndev, struct sk_buff *skb,
int old_q)
{
struct mana_port_context *apc = netdev_priv(ndev);
u32 hash = skb_get_hash(skb);
struct sock *sk = skb->sk;
int txq;
txq = apc->indir_table[hash & (apc->indir_table_sz - 1)];
if (txq != old_q && sk && sk_fullsock(sk) &&
rcu_access_pointer(sk->sk_dst_cache))
sk_tx_queue_set(sk, txq);
return txq;
}
static u16 mana_select_queue(struct net_device *ndev, struct sk_buff *skb,
struct net_device *sb_dev)
{
int txq;
if (ndev->real_num_tx_queues == 1)
return 0;
txq = sk_tx_queue_get(skb->sk);
if (txq < 0 || skb->ooo_okay || txq >= ndev->real_num_tx_queues) {
if (skb_rx_queue_recorded(skb))
txq = skb_get_rx_queue(skb);
else
txq = mana_get_tx_queue(ndev, skb, txq);
}
return txq;
}
/* Release pre-allocated RX buffers */
void mana_pre_dealloc_rxbufs(struct mana_port_context *mpc)
{
struct device *dev;
int i;
dev = mpc->ac->gdma_dev->gdma_context->dev;
if (!mpc->rxbufs_pre)
goto out1;
if (!mpc->das_pre)
goto out2;
while (mpc->rxbpre_total) {
i = --mpc->rxbpre_total;
dma_unmap_single(dev, mpc->das_pre[i], mpc->rxbpre_datasize,
DMA_FROM_DEVICE);
put_page(virt_to_head_page(mpc->rxbufs_pre[i]));
}
kfree(mpc->das_pre);
mpc->das_pre = NULL;
out2:
kfree(mpc->rxbufs_pre);
mpc->rxbufs_pre = NULL;
out1:
mpc->rxbpre_datasize = 0;
mpc->rxbpre_alloc_size = 0;
mpc->rxbpre_headroom = 0;
}
/* Get a buffer from the pre-allocated RX buffers */
static void *mana_get_rxbuf_pre(struct mana_rxq *rxq, dma_addr_t *da)
{
struct net_device *ndev = rxq->ndev;
struct mana_port_context *mpc;
void *va;
mpc = netdev_priv(ndev);
if (!mpc->rxbufs_pre || !mpc->das_pre || !mpc->rxbpre_total) {
netdev_err(ndev, "No RX pre-allocated bufs\n");
return NULL;
}
/* Check sizes to catch unexpected coding error */
if (mpc->rxbpre_datasize != rxq->datasize) {
netdev_err(ndev, "rxbpre_datasize mismatch: %u: %u\n",
mpc->rxbpre_datasize, rxq->datasize);
return NULL;
}
if (mpc->rxbpre_alloc_size != rxq->alloc_size) {
netdev_err(ndev, "rxbpre_alloc_size mismatch: %u: %u\n",
mpc->rxbpre_alloc_size, rxq->alloc_size);
return NULL;
}
if (mpc->rxbpre_headroom != rxq->headroom) {
netdev_err(ndev, "rxbpre_headroom mismatch: %u: %u\n",
mpc->rxbpre_headroom, rxq->headroom);
return NULL;
}
mpc->rxbpre_total--;
*da = mpc->das_pre[mpc->rxbpre_total];
va = mpc->rxbufs_pre[mpc->rxbpre_total];
mpc->rxbufs_pre[mpc->rxbpre_total] = NULL;
/* Deallocate the array after all buffers are gone */
if (!mpc->rxbpre_total)
mana_pre_dealloc_rxbufs(mpc);
return va;
}
/* Get RX buffer's data size, alloc size, XDP headroom based on MTU */
static void mana_get_rxbuf_cfg(int mtu, u32 *datasize, u32 *alloc_size,
u32 *headroom)
{
if (mtu > MANA_XDP_MTU_MAX)
*headroom = 0; /* no support for XDP */
else
*headroom = XDP_PACKET_HEADROOM;
*alloc_size = SKB_DATA_ALIGN(mtu + MANA_RXBUF_PAD + *headroom);
/* Using page pool in this case, so alloc_size is PAGE_SIZE */
if (*alloc_size < PAGE_SIZE)
*alloc_size = PAGE_SIZE;
*datasize = mtu + ETH_HLEN;
}
int mana_pre_alloc_rxbufs(struct mana_port_context *mpc, int new_mtu, int num_queues)
{
struct device *dev;
struct page *page;
dma_addr_t da;
int num_rxb;
void *va;
int i;
mana_get_rxbuf_cfg(new_mtu, &mpc->rxbpre_datasize,
&mpc->rxbpre_alloc_size, &mpc->rxbpre_headroom);
dev = mpc->ac->gdma_dev->gdma_context->dev;
num_rxb = num_queues * mpc->rx_queue_size;
WARN(mpc->rxbufs_pre, "mana rxbufs_pre exists\n");
mpc->rxbufs_pre = kmalloc_array(num_rxb, sizeof(void *), GFP_KERNEL);
if (!mpc->rxbufs_pre)
goto error;
mpc->das_pre = kmalloc_array(num_rxb, sizeof(dma_addr_t), GFP_KERNEL);
if (!mpc->das_pre)
goto error;
mpc->rxbpre_total = 0;
for (i = 0; i < num_rxb; i++) {
if (mpc->rxbpre_alloc_size > PAGE_SIZE) {
va = netdev_alloc_frag(mpc->rxbpre_alloc_size);
if (!va)
goto error;
page = virt_to_head_page(va);
/* Check if the frag falls back to single page */
if (compound_order(page) <
get_order(mpc->rxbpre_alloc_size)) {
put_page(page);
goto error;
}
} else {
page = dev_alloc_page();
if (!page)
goto error;
va = page_to_virt(page);
}
da = dma_map_single(dev, va + mpc->rxbpre_headroom,
mpc->rxbpre_datasize, DMA_FROM_DEVICE);
if (dma_mapping_error(dev, da)) {
put_page(virt_to_head_page(va));
goto error;
}
mpc->rxbufs_pre[i] = va;
mpc->das_pre[i] = da;
mpc->rxbpre_total = i + 1;
}
return 0;
error:
mana_pre_dealloc_rxbufs(mpc);
return -ENOMEM;
}
static int mana_change_mtu(struct net_device *ndev, int new_mtu)
{
struct mana_port_context *mpc = netdev_priv(ndev);
unsigned int old_mtu = ndev->mtu;
int err;
/* Pre-allocate buffers to prevent failure in mana_attach later */
err = mana_pre_alloc_rxbufs(mpc, new_mtu, mpc->num_queues);
if (err) {
netdev_err(ndev, "Insufficient memory for new MTU\n");
return err;
}
err = mana_detach(ndev, false);
if (err) {
netdev_err(ndev, "mana_detach failed: %d\n", err);
goto out;
}
WRITE_ONCE(ndev->mtu, new_mtu);
err = mana_attach(ndev);
if (err) {
netdev_err(ndev, "mana_attach failed: %d\n", err);
WRITE_ONCE(ndev->mtu, old_mtu);
}
out:
mana_pre_dealloc_rxbufs(mpc);
return err;
}
static const struct net_device_ops mana_devops = {
.ndo_open = mana_open,
.ndo_stop = mana_close,
.ndo_select_queue = mana_select_queue,
.ndo_start_xmit = mana_start_xmit,
.ndo_validate_addr = eth_validate_addr,
.ndo_get_stats64 = mana_get_stats64,
.ndo_bpf = mana_bpf,
.ndo_xdp_xmit = mana_xdp_xmit,
.ndo_change_mtu = mana_change_mtu,
};
static void mana_cleanup_port_context(struct mana_port_context *apc)
{
kfree(apc->rxqs);
apc->rxqs = NULL;
}
static void mana_cleanup_indir_table(struct mana_port_context *apc)
{
apc->indir_table_sz = 0;
kfree(apc->indir_table);
kfree(apc->rxobj_table);
}
static int mana_init_port_context(struct mana_port_context *apc)
{
apc->rxqs = kcalloc(apc->num_queues, sizeof(struct mana_rxq *),
GFP_KERNEL);
return !apc->rxqs ? -ENOMEM : 0;
}
static int mana_send_request(struct mana_context *ac, void *in_buf,
u32 in_len, void *out_buf, u32 out_len)
{
struct gdma_context *gc = ac->gdma_dev->gdma_context;
struct gdma_resp_hdr *resp = out_buf;
struct gdma_req_hdr *req = in_buf;
struct device *dev = gc->dev;
static atomic_t activity_id;
int err;
req->dev_id = gc->mana.dev_id;
req->activity_id = atomic_inc_return(&activity_id);
err = mana_gd_send_request(gc, in_len, in_buf, out_len,
out_buf);
if (err || resp->status) {
dev_err(dev, "Failed to send mana message: %d, 0x%x\n",
err, resp->status);
return err ? err : -EPROTO;
}
if (req->dev_id.as_uint32 != resp->dev_id.as_uint32 ||
req->activity_id != resp->activity_id) {
dev_err(dev, "Unexpected mana message response: %x,%x,%x,%x\n",
req->dev_id.as_uint32, resp->dev_id.as_uint32,
req->activity_id, resp->activity_id);
return -EPROTO;
}
return 0;
}
static int mana_verify_resp_hdr(const struct gdma_resp_hdr *resp_hdr,
const enum mana_command_code expected_code,
const u32 min_size)
{
if (resp_hdr->response.msg_type != expected_code)
return -EPROTO;
if (resp_hdr->response.msg_version < GDMA_MESSAGE_V1)
return -EPROTO;
if (resp_hdr->response.msg_size < min_size)
return -EPROTO;
return 0;
}
static int mana_pf_register_hw_vport(struct mana_port_context *apc)
{
struct mana_register_hw_vport_resp resp = {};
struct mana_register_hw_vport_req req = {};
int err;
mana_gd_init_req_hdr(&req.hdr, MANA_REGISTER_HW_PORT,
sizeof(req), sizeof(resp));
req.attached_gfid = 1;
req.is_pf_default_vport = 1;
req.allow_all_ether_types = 1;
err = mana_send_request(apc->ac, &req, sizeof(req), &resp,
sizeof(resp));
if (err) {
netdev_err(apc->ndev, "Failed to register hw vPort: %d\n", err);
return err;
}
err = mana_verify_resp_hdr(&resp.hdr, MANA_REGISTER_HW_PORT,
sizeof(resp));
if (err || resp.hdr.status) {
netdev_err(apc->ndev, "Failed to register hw vPort: %d, 0x%x\n",
err, resp.hdr.status);
return err ? err : -EPROTO;
}
apc->port_handle = resp.hw_vport_handle;
return 0;
}
static void mana_pf_deregister_hw_vport(struct mana_port_context *apc)
{
struct mana_deregister_hw_vport_resp resp = {};
struct mana_deregister_hw_vport_req req = {};
int err;
mana_gd_init_req_hdr(&req.hdr, MANA_DEREGISTER_HW_PORT,
sizeof(req), sizeof(resp));
req.hw_vport_handle = apc->port_handle;
err = mana_send_request(apc->ac, &req, sizeof(req), &resp,
sizeof(resp));
if (err) {
netdev_err(apc->ndev, "Failed to unregister hw vPort: %d\n",
err);
return;
}
err = mana_verify_resp_hdr(&resp.hdr, MANA_DEREGISTER_HW_PORT,
sizeof(resp));
if (err || resp.hdr.status)
netdev_err(apc->ndev,
"Failed to deregister hw vPort: %d, 0x%x\n",
err, resp.hdr.status);
}
static int mana_pf_register_filter(struct mana_port_context *apc)
{
struct mana_register_filter_resp resp = {};
struct mana_register_filter_req req = {};
int err;
mana_gd_init_req_hdr(&req.hdr, MANA_REGISTER_FILTER,
sizeof(req), sizeof(resp));
req.vport = apc->port_handle;
memcpy(req.mac_addr, apc->mac_addr, ETH_ALEN);
err = mana_send_request(apc->ac, &req, sizeof(req), &resp,
sizeof(resp));
if (err) {
netdev_err(apc->ndev, "Failed to register filter: %d\n", err);
return err;
}
err = mana_verify_resp_hdr(&resp.hdr, MANA_REGISTER_FILTER,
sizeof(resp));
if (err || resp.hdr.status) {
netdev_err(apc->ndev, "Failed to register filter: %d, 0x%x\n",
err, resp.hdr.status);
return err ? err : -EPROTO;
}
apc->pf_filter_handle = resp.filter_handle;
return 0;
}
static void mana_pf_deregister_filter(struct mana_port_context *apc)
{
struct mana_deregister_filter_resp resp = {};
struct mana_deregister_filter_req req = {};
int err;
mana_gd_init_req_hdr(&req.hdr, MANA_DEREGISTER_FILTER,
sizeof(req), sizeof(resp));
req.filter_handle = apc->pf_filter_handle;
err = mana_send_request(apc->ac, &req, sizeof(req), &resp,
sizeof(resp));
if (err) {
netdev_err(apc->ndev, "Failed to unregister filter: %d\n",
err);
return;
}
err = mana_verify_resp_hdr(&resp.hdr, MANA_DEREGISTER_FILTER,
sizeof(resp));
if (err || resp.hdr.status)
netdev_err(apc->ndev,
"Failed to deregister filter: %d, 0x%x\n",
err, resp.hdr.status);
}
static int mana_query_device_cfg(struct mana_context *ac, u32 proto_major_ver,
u32 proto_minor_ver, u32 proto_micro_ver,
u16 *max_num_vports)
{
struct gdma_context *gc = ac->gdma_dev->gdma_context;
struct mana_query_device_cfg_resp resp = {};
struct mana_query_device_cfg_req req = {};
struct device *dev = gc->dev;
int err = 0;
mana_gd_init_req_hdr(&req.hdr, MANA_QUERY_DEV_CONFIG,
sizeof(req), sizeof(resp));
req.hdr.resp.msg_version = GDMA_MESSAGE_V2;
req.proto_major_ver = proto_major_ver;
req.proto_minor_ver = proto_minor_ver;
req.proto_micro_ver = proto_micro_ver;
err = mana_send_request(ac, &req, sizeof(req), &resp, sizeof(resp));
if (err) {
dev_err(dev, "Failed to query config: %d", err);
return err;
}
err = mana_verify_resp_hdr(&resp.hdr, MANA_QUERY_DEV_CONFIG,
sizeof(resp));
if (err || resp.hdr.status) {
dev_err(dev, "Invalid query result: %d, 0x%x\n", err,
resp.hdr.status);
if (!err)
err = -EPROTO;
return err;
}
*max_num_vports = resp.max_num_vports;
if (resp.hdr.response.msg_version == GDMA_MESSAGE_V2)
gc->adapter_mtu = resp.adapter_mtu;
else
gc->adapter_mtu = ETH_FRAME_LEN;
return 0;
}
static int mana_query_vport_cfg(struct mana_port_context *apc, u32 vport_index,
u32 *max_sq, u32 *max_rq, u32 *num_indir_entry)
{
struct mana_query_vport_cfg_resp resp = {};
struct mana_query_vport_cfg_req req = {};
int err;
mana_gd_init_req_hdr(&req.hdr, MANA_QUERY_VPORT_CONFIG,
sizeof(req), sizeof(resp));
req.vport_index = vport_index;
err = mana_send_request(apc->ac, &req, sizeof(req), &resp,
sizeof(resp));
if (err)
return err;
err = mana_verify_resp_hdr(&resp.hdr, MANA_QUERY_VPORT_CONFIG,
sizeof(resp));
if (err)
return err;
if (resp.hdr.status)
return -EPROTO;
*max_sq = resp.max_num_sq;
*max_rq = resp.max_num_rq;
if (resp.num_indirection_ent > 0 &&
resp.num_indirection_ent <= MANA_INDIRECT_TABLE_MAX_SIZE &&
is_power_of_2(resp.num_indirection_ent)) {
*num_indir_entry = resp.num_indirection_ent;
} else {
netdev_warn(apc->ndev,
"Setting indirection table size to default %d for vPort %d\n",
MANA_INDIRECT_TABLE_DEF_SIZE, apc->port_idx);
*num_indir_entry = MANA_INDIRECT_TABLE_DEF_SIZE;
}
apc->port_handle = resp.vport;
ether_addr_copy(apc->mac_addr, resp.mac_addr);
return 0;
}
void mana_uncfg_vport(struct mana_port_context *apc)
{
mutex_lock(&apc->vport_mutex);
apc->vport_use_count--;
WARN_ON(apc->vport_use_count < 0);
mutex_unlock(&apc->vport_mutex);
}
EXPORT_SYMBOL_NS(mana_uncfg_vport, NET_MANA);
int mana_cfg_vport(struct mana_port_context *apc, u32 protection_dom_id,
u32 doorbell_pg_id)
{
struct mana_config_vport_resp resp = {};
struct mana_config_vport_req req = {};
int err;
/* This function is used to program the Ethernet port in the hardware
* table. It can be called from the Ethernet driver or the RDMA driver.
*
* For Ethernet usage, the hardware supports only one active user on a
* physical port. The driver checks on the port usage before programming
* the hardware when creating the RAW QP (RDMA driver) or exposing the
* device to kernel NET layer (Ethernet driver).
*
* Because the RDMA driver doesn't know in advance which QP type the
* user will create, it exposes the device with all its ports. The user
* may not be able to create RAW QP on a port if this port is already
* in used by the Ethernet driver from the kernel.
*
* This physical port limitation only applies to the RAW QP. For RC QP,
* the hardware doesn't have this limitation. The user can create RC
* QPs on a physical port up to the hardware limits independent of the
* Ethernet usage on the same port.
*/
mutex_lock(&apc->vport_mutex);
if (apc->vport_use_count > 0) {
mutex_unlock(&apc->vport_mutex);
return -EBUSY;
}
apc->vport_use_count++;
mutex_unlock(&apc->vport_mutex);
mana_gd_init_req_hdr(&req.hdr, MANA_CONFIG_VPORT_TX,
sizeof(req), sizeof(resp));
req.vport = apc->port_handle;
req.pdid = protection_dom_id;
req.doorbell_pageid = doorbell_pg_id;
err = mana_send_request(apc->ac, &req, sizeof(req), &resp,
sizeof(resp));
if (err) {
netdev_err(apc->ndev, "Failed to configure vPort: %d\n", err);
goto out;
}
err = mana_verify_resp_hdr(&resp.hdr, MANA_CONFIG_VPORT_TX,
sizeof(resp));
if (err || resp.hdr.status) {
netdev_err(apc->ndev, "Failed to configure vPort: %d, 0x%x\n",
err, resp.hdr.status);
if (!err)
err = -EPROTO;
goto out;
}
apc->tx_shortform_allowed = resp.short_form_allowed;
apc->tx_vp_offset = resp.tx_vport_offset;
netdev_info(apc->ndev, "Configured vPort %llu PD %u DB %u\n",
apc->port_handle, protection_dom_id, doorbell_pg_id);
out:
if (err)
mana_uncfg_vport(apc);
return err;
}
EXPORT_SYMBOL_NS(mana_cfg_vport, NET_MANA);
static int mana_cfg_vport_steering(struct mana_port_context *apc,
enum TRI_STATE rx,
bool update_default_rxobj, bool update_key,
bool update_tab)
{
struct mana_cfg_rx_steer_req_v2 *req;
struct mana_cfg_rx_steer_resp resp = {};
struct net_device *ndev = apc->ndev;
u32 req_buf_size;
int err;
req_buf_size = struct_size(req, indir_tab, apc->indir_table_sz);
req = kzalloc(req_buf_size, GFP_KERNEL);
if (!req)
return -ENOMEM;
mana_gd_init_req_hdr(&req->hdr, MANA_CONFIG_VPORT_RX, req_buf_size,
sizeof(resp));
req->hdr.req.msg_version = GDMA_MESSAGE_V2;
req->vport = apc->port_handle;
req->num_indir_entries = apc->indir_table_sz;
req->indir_tab_offset = offsetof(struct mana_cfg_rx_steer_req_v2,
indir_tab);
req->rx_enable = rx;
req->rss_enable = apc->rss_state;
req->update_default_rxobj = update_default_rxobj;
req->update_hashkey = update_key;
req->update_indir_tab = update_tab;
req->default_rxobj = apc->default_rxobj;
req->cqe_coalescing_enable = 0;
if (update_key)
memcpy(&req->hashkey, apc->hashkey, MANA_HASH_KEY_SIZE);
if (update_tab)
memcpy(req->indir_tab, apc->rxobj_table,
flex_array_size(req, indir_tab, req->num_indir_entries));
err = mana_send_request(apc->ac, req, req_buf_size, &resp,
sizeof(resp));
if (err) {
netdev_err(ndev, "Failed to configure vPort RX: %d\n", err);
goto out;
}
err = mana_verify_resp_hdr(&resp.hdr, MANA_CONFIG_VPORT_RX,
sizeof(resp));
if (err) {
netdev_err(ndev, "vPort RX configuration failed: %d\n", err);
goto out;
}
if (resp.hdr.status) {
netdev_err(ndev, "vPort RX configuration failed: 0x%x\n",
resp.hdr.status);
err = -EPROTO;
}
netdev_info(ndev, "Configured steering vPort %llu entries %u\n",
apc->port_handle, apc->indir_table_sz);
out:
kfree(req);
return err;
}
int mana_create_wq_obj(struct mana_port_context *apc,
mana_handle_t vport,
u32 wq_type, struct mana_obj_spec *wq_spec,
struct mana_obj_spec *cq_spec,
mana_handle_t *wq_obj)
{
struct mana_create_wqobj_resp resp = {};
struct mana_create_wqobj_req req = {};
struct net_device *ndev = apc->ndev;
int err;
mana_gd_init_req_hdr(&req.hdr, MANA_CREATE_WQ_OBJ,
sizeof(req), sizeof(resp));
req.vport = vport;
req.wq_type = wq_type;
req.wq_gdma_region = wq_spec->gdma_region;
req.cq_gdma_region = cq_spec->gdma_region;
req.wq_size = wq_spec->queue_size;
req.cq_size = cq_spec->queue_size;
req.cq_moderation_ctx_id = cq_spec->modr_ctx_id;
req.cq_parent_qid = cq_spec->attached_eq;
err = mana_send_request(apc->ac, &req, sizeof(req), &resp,
sizeof(resp));
if (err) {
netdev_err(ndev, "Failed to create WQ object: %d\n", err);
goto out;
}
err = mana_verify_resp_hdr(&resp.hdr, MANA_CREATE_WQ_OBJ,
sizeof(resp));
if (err || resp.hdr.status) {
netdev_err(ndev, "Failed to create WQ object: %d, 0x%x\n", err,
resp.hdr.status);
if (!err)
err = -EPROTO;
goto out;
}
if (resp.wq_obj == INVALID_MANA_HANDLE) {
netdev_err(ndev, "Got an invalid WQ object handle\n");
err = -EPROTO;
goto out;
}
*wq_obj = resp.wq_obj;
wq_spec->queue_index = resp.wq_id;
cq_spec->queue_index = resp.cq_id;
return 0;
out:
return err;
}
EXPORT_SYMBOL_NS(mana_create_wq_obj, NET_MANA);
void mana_destroy_wq_obj(struct mana_port_context *apc, u32 wq_type,
mana_handle_t wq_obj)
{
struct mana_destroy_wqobj_resp resp = {};
struct mana_destroy_wqobj_req req = {};
struct net_device *ndev = apc->ndev;
int err;
mana_gd_init_req_hdr(&req.hdr, MANA_DESTROY_WQ_OBJ,
sizeof(req), sizeof(resp));
req.wq_type = wq_type;
req.wq_obj_handle = wq_obj;
err = mana_send_request(apc->ac, &req, sizeof(req), &resp,
sizeof(resp));
if (err) {
netdev_err(ndev, "Failed to destroy WQ object: %d\n", err);
return;
}
err = mana_verify_resp_hdr(&resp.hdr, MANA_DESTROY_WQ_OBJ,
sizeof(resp));
if (err || resp.hdr.status)
netdev_err(ndev, "Failed to destroy WQ object: %d, 0x%x\n", err,
resp.hdr.status);
}
EXPORT_SYMBOL_NS(mana_destroy_wq_obj, NET_MANA);
static void mana_destroy_eq(struct mana_context *ac)
{
struct gdma_context *gc = ac->gdma_dev->gdma_context;
struct gdma_queue *eq;
int i;
if (!ac->eqs)
return;
for (i = 0; i < gc->max_num_queues; i++) {
eq = ac->eqs[i].eq;
if (!eq)
continue;
mana_gd_destroy_queue(gc, eq);
}
kfree(ac->eqs);
ac->eqs = NULL;
}
static int mana_create_eq(struct mana_context *ac)
{
struct gdma_dev *gd = ac->gdma_dev;
struct gdma_context *gc = gd->gdma_context;
struct gdma_queue_spec spec = {};
int err;
int i;
ac->eqs = kcalloc(gc->max_num_queues, sizeof(struct mana_eq),
GFP_KERNEL);
if (!ac->eqs)
return -ENOMEM;
spec.type = GDMA_EQ;
spec.monitor_avl_buf = false;
spec.queue_size = EQ_SIZE;
spec.eq.callback = NULL;
spec.eq.context = ac->eqs;
spec.eq.log2_throttle_limit = LOG2_EQ_THROTTLE;
for (i = 0; i < gc->max_num_queues; i++) {
spec.eq.msix_index = (i + 1) % gc->num_msix_usable;
err = mana_gd_create_mana_eq(gd, &spec, &ac->eqs[i].eq);
if (err)
goto out;
}
return 0;
out:
mana_destroy_eq(ac);
return err;
}
static int mana_fence_rq(struct mana_port_context *apc, struct mana_rxq *rxq)
{
struct mana_fence_rq_resp resp = {};
struct mana_fence_rq_req req = {};
int err;
init_completion(&rxq->fence_event);
mana_gd_init_req_hdr(&req.hdr, MANA_FENCE_RQ,
sizeof(req), sizeof(resp));
req.wq_obj_handle = rxq->rxobj;
err = mana_send_request(apc->ac, &req, sizeof(req), &resp,
sizeof(resp));
if (err) {
netdev_err(apc->ndev, "Failed to fence RQ %u: %d\n",
rxq->rxq_idx, err);
return err;
}
err = mana_verify_resp_hdr(&resp.hdr, MANA_FENCE_RQ, sizeof(resp));
if (err || resp.hdr.status) {
netdev_err(apc->ndev, "Failed to fence RQ %u: %d, 0x%x\n",
rxq->rxq_idx, err, resp.hdr.status);
if (!err)
err = -EPROTO;
return err;
}
if (wait_for_completion_timeout(&rxq->fence_event, 10 * HZ) == 0) {
netdev_err(apc->ndev, "Failed to fence RQ %u: timed out\n",
rxq->rxq_idx);
return -ETIMEDOUT;
}
return 0;
}
static void mana_fence_rqs(struct mana_port_context *apc)
{
unsigned int rxq_idx;
struct mana_rxq *rxq;
int err;
for (rxq_idx = 0; rxq_idx < apc->num_queues; rxq_idx++) {
rxq = apc->rxqs[rxq_idx];
err = mana_fence_rq(apc, rxq);
/* In case of any error, use sleep instead. */
if (err)
msleep(100);
}
}
static int mana_move_wq_tail(struct gdma_queue *wq, u32 num_units)
{
u32 used_space_old;
u32 used_space_new;
used_space_old = wq->head - wq->tail;
used_space_new = wq->head - (wq->tail + num_units);
if (WARN_ON_ONCE(used_space_new > used_space_old))
return -ERANGE;
wq->tail += num_units;
return 0;
}
static void mana_unmap_skb(struct sk_buff *skb, struct mana_port_context *apc)
{
struct mana_skb_head *ash = (struct mana_skb_head *)skb->head;
struct gdma_context *gc = apc->ac->gdma_dev->gdma_context;
struct device *dev = gc->dev;
int hsg, i;
/* Number of SGEs of linear part */
hsg = (skb_is_gso(skb) && skb_headlen(skb) > ash->size[0]) ? 2 : 1;
for (i = 0; i < hsg; i++)
dma_unmap_single(dev, ash->dma_handle[i], ash->size[i],
DMA_TO_DEVICE);
for (i = hsg; i < skb_shinfo(skb)->nr_frags + hsg; i++)
dma_unmap_page(dev, ash->dma_handle[i], ash->size[i],
DMA_TO_DEVICE);
}
static void mana_poll_tx_cq(struct mana_cq *cq)
{
struct gdma_comp *completions = cq->gdma_comp_buf;
struct gdma_posted_wqe_info *wqe_info;
unsigned int pkt_transmitted = 0;
unsigned int wqe_unit_cnt = 0;
struct mana_txq *txq = cq->txq;
struct mana_port_context *apc;
struct netdev_queue *net_txq;
struct gdma_queue *gdma_wq;
unsigned int avail_space;
struct net_device *ndev;
struct sk_buff *skb;
bool txq_stopped;
int comp_read;
int i;
ndev = txq->ndev;
apc = netdev_priv(ndev);
comp_read = mana_gd_poll_cq(cq->gdma_cq, completions,
CQE_POLLING_BUFFER);
if (comp_read < 1)
return;
for (i = 0; i < comp_read; i++) {
struct mana_tx_comp_oob *cqe_oob;
if (WARN_ON_ONCE(!completions[i].is_sq))
return;
cqe_oob = (struct mana_tx_comp_oob *)completions[i].cqe_data;
if (WARN_ON_ONCE(cqe_oob->cqe_hdr.client_type !=
MANA_CQE_COMPLETION))
return;
switch (cqe_oob->cqe_hdr.cqe_type) {
case CQE_TX_OKAY:
break;
case CQE_TX_SA_DROP:
case CQE_TX_MTU_DROP:
case CQE_TX_INVALID_OOB:
case CQE_TX_INVALID_ETH_TYPE:
case CQE_TX_HDR_PROCESSING_ERROR:
case CQE_TX_VF_DISABLED:
case CQE_TX_VPORT_IDX_OUT_OF_RANGE:
case CQE_TX_VPORT_DISABLED:
case CQE_TX_VLAN_TAGGING_VIOLATION:
if (net_ratelimit())
netdev_err(ndev, "TX: CQE error %d\n",
cqe_oob->cqe_hdr.cqe_type);
apc->eth_stats.tx_cqe_err++;
break;
default:
/* If the CQE type is unknown, log an error,
* and still free the SKB, update tail, etc.
*/
if (net_ratelimit())
netdev_err(ndev, "TX: unknown CQE type %d\n",
cqe_oob->cqe_hdr.cqe_type);
apc->eth_stats.tx_cqe_unknown_type++;
break;
}
if (WARN_ON_ONCE(txq->gdma_txq_id != completions[i].wq_num))
return;
skb = skb_dequeue(&txq->pending_skbs);
if (WARN_ON_ONCE(!skb))
return;
wqe_info = (struct gdma_posted_wqe_info *)skb->cb;
wqe_unit_cnt += wqe_info->wqe_size_in_bu;
mana_unmap_skb(skb, apc);
napi_consume_skb(skb, cq->budget);
pkt_transmitted++;
}
if (WARN_ON_ONCE(wqe_unit_cnt == 0))
return;
mana_move_wq_tail(txq->gdma_sq, wqe_unit_cnt);
gdma_wq = txq->gdma_sq;
avail_space = mana_gd_wq_avail_space(gdma_wq);
/* Ensure tail updated before checking q stop */
smp_mb();
net_txq = txq->net_txq;
txq_stopped = netif_tx_queue_stopped(net_txq);
/* Ensure checking txq_stopped before apc->port_is_up. */
smp_rmb();
if (txq_stopped && apc->port_is_up && avail_space >= MAX_TX_WQE_SIZE) {
netif_tx_wake_queue(net_txq);
apc->eth_stats.wake_queue++;
}
if (atomic_sub_return(pkt_transmitted, &txq->pending_sends) < 0)
WARN_ON_ONCE(1);
cq->work_done = pkt_transmitted;
}
static void mana_post_pkt_rxq(struct mana_rxq *rxq)
{
struct mana_recv_buf_oob *recv_buf_oob;
u32 curr_index;
int err;
curr_index = rxq->buf_index++;
if (rxq->buf_index == rxq->num_rx_buf)
rxq->buf_index = 0;
recv_buf_oob = &rxq->rx_oobs[curr_index];
err = mana_gd_post_work_request(rxq->gdma_rq, &recv_buf_oob->wqe_req,
&recv_buf_oob->wqe_inf);
if (WARN_ON_ONCE(err))
return;
WARN_ON_ONCE(recv_buf_oob->wqe_inf.wqe_size_in_bu != 1);
}
static struct sk_buff *mana_build_skb(struct mana_rxq *rxq, void *buf_va,
uint pkt_len, struct xdp_buff *xdp)
{
struct sk_buff *skb = napi_build_skb(buf_va, rxq->alloc_size);
if (!skb)
return NULL;
if (xdp->data_hard_start) {
skb_reserve(skb, xdp->data - xdp->data_hard_start);
skb_put(skb, xdp->data_end - xdp->data);
return skb;
}
skb_reserve(skb, rxq->headroom);
skb_put(skb, pkt_len);
return skb;
}
static void mana_rx_skb(void *buf_va, bool from_pool,
struct mana_rxcomp_oob *cqe, struct mana_rxq *rxq)
{
struct mana_stats_rx *rx_stats = &rxq->stats;
struct net_device *ndev = rxq->ndev;
uint pkt_len = cqe->ppi[0].pkt_len;
u16 rxq_idx = rxq->rxq_idx;
struct napi_struct *napi;
struct xdp_buff xdp = {};
struct sk_buff *skb;
u32 hash_value;
u32 act;
rxq->rx_cq.work_done++;
napi = &rxq->rx_cq.napi;
if (!buf_va) {
++ndev->stats.rx_dropped;
return;
}
act = mana_run_xdp(ndev, rxq, &xdp, buf_va, pkt_len);
if (act == XDP_REDIRECT && !rxq->xdp_rc)
return;
if (act != XDP_PASS && act != XDP_TX)
goto drop_xdp;
skb = mana_build_skb(rxq, buf_va, pkt_len, &xdp);
if (!skb)
goto drop;
if (from_pool)
skb_mark_for_recycle(skb);
skb->dev = napi->dev;
skb->protocol = eth_type_trans(skb, ndev);
skb_checksum_none_assert(skb);
skb_record_rx_queue(skb, rxq_idx);
if ((ndev->features & NETIF_F_RXCSUM) && cqe->rx_iphdr_csum_succeed) {
if (cqe->rx_tcp_csum_succeed || cqe->rx_udp_csum_succeed)
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
if (cqe->rx_hashtype != 0 && (ndev->features & NETIF_F_RXHASH)) {
hash_value = cqe->ppi[0].pkt_hash;
if (cqe->rx_hashtype & MANA_HASH_L4)
skb_set_hash(skb, hash_value, PKT_HASH_TYPE_L4);
else
skb_set_hash(skb, hash_value, PKT_HASH_TYPE_L3);
}
if (cqe->rx_vlantag_present) {
u16 vlan_tci = cqe->rx_vlan_id;
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
}
u64_stats_update_begin(&rx_stats->syncp);
rx_stats->packets++;
rx_stats->bytes += pkt_len;
if (act == XDP_TX)
rx_stats->xdp_tx++;
u64_stats_update_end(&rx_stats->syncp);
if (act == XDP_TX) {
skb_set_queue_mapping(skb, rxq_idx);
mana_xdp_tx(skb, ndev);
return;
}
napi_gro_receive(napi, skb);
return;
drop_xdp:
u64_stats_update_begin(&rx_stats->syncp);
rx_stats->xdp_drop++;
u64_stats_update_end(&rx_stats->syncp);
drop:
if (from_pool) {
page_pool_recycle_direct(rxq->page_pool,
virt_to_head_page(buf_va));
} else {
WARN_ON_ONCE(rxq->xdp_save_va);
/* Save for reuse */
rxq->xdp_save_va = buf_va;
}
++ndev->stats.rx_dropped;
return;
}
static void *mana_get_rxfrag(struct mana_rxq *rxq, struct device *dev,
dma_addr_t *da, bool *from_pool, bool is_napi)
{
struct page *page;
void *va;
*from_pool = false;
/* Reuse XDP dropped page if available */
if (rxq->xdp_save_va) {
va = rxq->xdp_save_va;
rxq->xdp_save_va = NULL;
} else if (rxq->alloc_size > PAGE_SIZE) {
if (is_napi)
va = napi_alloc_frag(rxq->alloc_size);
else
va = netdev_alloc_frag(rxq->alloc_size);
if (!va)
return NULL;
page = virt_to_head_page(va);
/* Check if the frag falls back to single page */
if (compound_order(page) < get_order(rxq->alloc_size)) {
put_page(page);
return NULL;
}
} else {
page = page_pool_dev_alloc_pages(rxq->page_pool);
if (!page)
return NULL;
*from_pool = true;
va = page_to_virt(page);
}
*da = dma_map_single(dev, va + rxq->headroom, rxq->datasize,
DMA_FROM_DEVICE);
if (dma_mapping_error(dev, *da)) {
if (*from_pool)
page_pool_put_full_page(rxq->page_pool, page, false);
else
put_page(virt_to_head_page(va));
return NULL;
}
return va;
}
/* Allocate frag for rx buffer, and save the old buf */
static void mana_refill_rx_oob(struct device *dev, struct mana_rxq *rxq,
struct mana_recv_buf_oob *rxoob, void **old_buf,
bool *old_fp)
{
bool from_pool;
dma_addr_t da;
void *va;
va = mana_get_rxfrag(rxq, dev, &da, &from_pool, true);
if (!va)
return;
dma_unmap_single(dev, rxoob->sgl[0].address, rxq->datasize,
DMA_FROM_DEVICE);
*old_buf = rxoob->buf_va;
*old_fp = rxoob->from_pool;
rxoob->buf_va = va;
rxoob->sgl[0].address = da;
rxoob->from_pool = from_pool;
}
static void mana_process_rx_cqe(struct mana_rxq *rxq, struct mana_cq *cq,
struct gdma_comp *cqe)
{
struct mana_rxcomp_oob *oob = (struct mana_rxcomp_oob *)cqe->cqe_data;
struct gdma_context *gc = rxq->gdma_rq->gdma_dev->gdma_context;
struct net_device *ndev = rxq->ndev;
struct mana_recv_buf_oob *rxbuf_oob;
struct mana_port_context *apc;
struct device *dev = gc->dev;
void *old_buf = NULL;
u32 curr, pktlen;
bool old_fp;
apc = netdev_priv(ndev);
switch (oob->cqe_hdr.cqe_type) {
case CQE_RX_OKAY:
break;
case CQE_RX_TRUNCATED:
++ndev->stats.rx_dropped;
rxbuf_oob = &rxq->rx_oobs[rxq->buf_index];
netdev_warn_once(ndev, "Dropped a truncated packet\n");
goto drop;
case CQE_RX_COALESCED_4:
netdev_err(ndev, "RX coalescing is unsupported\n");
apc->eth_stats.rx_coalesced_err++;
return;
case CQE_RX_OBJECT_FENCE:
complete(&rxq->fence_event);
return;
default:
netdev_err(ndev, "Unknown RX CQE type = %d\n",
oob->cqe_hdr.cqe_type);
apc->eth_stats.rx_cqe_unknown_type++;
return;
}
pktlen = oob->ppi[0].pkt_len;
if (pktlen == 0) {
/* data packets should never have packetlength of zero */
netdev_err(ndev, "RX pkt len=0, rq=%u, cq=%u, rxobj=0x%llx\n",
rxq->gdma_id, cq->gdma_id, rxq->rxobj);
return;
}
curr = rxq->buf_index;
rxbuf_oob = &rxq->rx_oobs[curr];
WARN_ON_ONCE(rxbuf_oob->wqe_inf.wqe_size_in_bu != 1);
mana_refill_rx_oob(dev, rxq, rxbuf_oob, &old_buf, &old_fp);
/* Unsuccessful refill will have old_buf == NULL.
* In this case, mana_rx_skb() will drop the packet.
*/
mana_rx_skb(old_buf, old_fp, oob, rxq);
drop:
mana_move_wq_tail(rxq->gdma_rq, rxbuf_oob->wqe_inf.wqe_size_in_bu);
mana_post_pkt_rxq(rxq);
}
static void mana_poll_rx_cq(struct mana_cq *cq)
{
struct gdma_comp *comp = cq->gdma_comp_buf;
struct mana_rxq *rxq = cq->rxq;
int comp_read, i;
comp_read = mana_gd_poll_cq(cq->gdma_cq, comp, CQE_POLLING_BUFFER);
WARN_ON_ONCE(comp_read > CQE_POLLING_BUFFER);
rxq->xdp_flush = false;
for (i = 0; i < comp_read; i++) {
if (WARN_ON_ONCE(comp[i].is_sq))
return;
/* verify recv cqe references the right rxq */
if (WARN_ON_ONCE(comp[i].wq_num != cq->rxq->gdma_id))
return;
mana_process_rx_cqe(rxq, cq, &comp[i]);
}
if (comp_read > 0) {
struct gdma_context *gc = rxq->gdma_rq->gdma_dev->gdma_context;
mana_gd_wq_ring_doorbell(gc, rxq->gdma_rq);
}
if (rxq->xdp_flush)
xdp_do_flush();
}
static int mana_cq_handler(void *context, struct gdma_queue *gdma_queue)
{
struct mana_cq *cq = context;
int w;
WARN_ON_ONCE(cq->gdma_cq != gdma_queue);
if (cq->type == MANA_CQ_TYPE_RX)
mana_poll_rx_cq(cq);
else
mana_poll_tx_cq(cq);
w = cq->work_done;
cq->work_done_since_doorbell += w;
if (w < cq->budget) {
mana_gd_ring_cq(gdma_queue, SET_ARM_BIT);
cq->work_done_since_doorbell = 0;
napi_complete_done(&cq->napi, w);
} else if (cq->work_done_since_doorbell >
cq->gdma_cq->queue_size / COMP_ENTRY_SIZE * 4) {
/* MANA hardware requires at least one doorbell ring every 8
* wraparounds of CQ even if there is no need to arm the CQ.
* This driver rings the doorbell as soon as we have exceeded
* 4 wraparounds.
*/
mana_gd_ring_cq(gdma_queue, 0);
cq->work_done_since_doorbell = 0;
}
return w;
}
static int mana_poll(struct napi_struct *napi, int budget)
{
struct mana_cq *cq = container_of(napi, struct mana_cq, napi);
int w;
cq->work_done = 0;
cq->budget = budget;
w = mana_cq_handler(cq, cq->gdma_cq);
return min(w, budget);
}
static void mana_schedule_napi(void *context, struct gdma_queue *gdma_queue)
{
struct mana_cq *cq = context;
napi_schedule_irqoff(&cq->napi);
}
static void mana_deinit_cq(struct mana_port_context *apc, struct mana_cq *cq)
{
struct gdma_dev *gd = apc->ac->gdma_dev;
if (!cq->gdma_cq)
return;
mana_gd_destroy_queue(gd->gdma_context, cq->gdma_cq);
}
static void mana_deinit_txq(struct mana_port_context *apc, struct mana_txq *txq)
{
struct gdma_dev *gd = apc->ac->gdma_dev;
if (!txq->gdma_sq)
return;
mana_gd_destroy_queue(gd->gdma_context, txq->gdma_sq);
}
static void mana_destroy_txq(struct mana_port_context *apc)
{
struct napi_struct *napi;
int i;
if (!apc->tx_qp)
return;
for (i = 0; i < apc->num_queues; i++) {
napi = &apc->tx_qp[i].tx_cq.napi;
if (apc->tx_qp[i].txq.napi_initialized) {
napi_synchronize(napi);
napi_disable(napi);
netif_napi_del(napi);
apc->tx_qp[i].txq.napi_initialized = false;
}
mana_destroy_wq_obj(apc, GDMA_SQ, apc->tx_qp[i].tx_object);
mana_deinit_cq(apc, &apc->tx_qp[i].tx_cq);
mana_deinit_txq(apc, &apc->tx_qp[i].txq);
}
kfree(apc->tx_qp);
apc->tx_qp = NULL;
}
static int mana_create_txq(struct mana_port_context *apc,
struct net_device *net)
{
struct mana_context *ac = apc->ac;
struct gdma_dev *gd = ac->gdma_dev;
struct mana_obj_spec wq_spec;
struct mana_obj_spec cq_spec;
struct gdma_queue_spec spec;
struct gdma_context *gc;
struct mana_txq *txq;
struct mana_cq *cq;
u32 txq_size;
u32 cq_size;
int err;
int i;
apc->tx_qp = kcalloc(apc->num_queues, sizeof(struct mana_tx_qp),
GFP_KERNEL);
if (!apc->tx_qp)
return -ENOMEM;
/* The minimum size of the WQE is 32 bytes, hence
* apc->tx_queue_size represents the maximum number of WQEs
* the SQ can store. This value is then used to size other queues
* to prevent overflow.
* Also note that the txq_size is always going to be MANA_PAGE_ALIGNED,
* as min val of apc->tx_queue_size is 128 and that would make
* txq_size 128*32 = 4096 and the other higher values of apc->tx_queue_size
* are always power of two
*/
txq_size = apc->tx_queue_size * 32;
cq_size = apc->tx_queue_size * COMP_ENTRY_SIZE;
gc = gd->gdma_context;
for (i = 0; i < apc->num_queues; i++) {
apc->tx_qp[i].tx_object = INVALID_MANA_HANDLE;
/* Create SQ */
txq = &apc->tx_qp[i].txq;
u64_stats_init(&txq->stats.syncp);
txq->ndev = net;
txq->net_txq = netdev_get_tx_queue(net, i);
txq->vp_offset = apc->tx_vp_offset;
txq->napi_initialized = false;
skb_queue_head_init(&txq->pending_skbs);
memset(&spec, 0, sizeof(spec));
spec.type = GDMA_SQ;
spec.monitor_avl_buf = true;
spec.queue_size = txq_size;
err = mana_gd_create_mana_wq_cq(gd, &spec, &txq->gdma_sq);
if (err)
goto out;
/* Create SQ's CQ */
cq = &apc->tx_qp[i].tx_cq;
cq->type = MANA_CQ_TYPE_TX;
cq->txq = txq;
memset(&spec, 0, sizeof(spec));
spec.type = GDMA_CQ;
spec.monitor_avl_buf = false;
spec.queue_size = cq_size;
spec.cq.callback = mana_schedule_napi;
spec.cq.parent_eq = ac->eqs[i].eq;
spec.cq.context = cq;
err = mana_gd_create_mana_wq_cq(gd, &spec, &cq->gdma_cq);
if (err)
goto out;
memset(&wq_spec, 0, sizeof(wq_spec));
memset(&cq_spec, 0, sizeof(cq_spec));
wq_spec.gdma_region = txq->gdma_sq->mem_info.dma_region_handle;
wq_spec.queue_size = txq->gdma_sq->queue_size;
cq_spec.gdma_region = cq->gdma_cq->mem_info.dma_region_handle;
cq_spec.queue_size = cq->gdma_cq->queue_size;
cq_spec.modr_ctx_id = 0;
cq_spec.attached_eq = cq->gdma_cq->cq.parent->id;
err = mana_create_wq_obj(apc, apc->port_handle, GDMA_SQ,
&wq_spec, &cq_spec,
&apc->tx_qp[i].tx_object);
if (err)
goto out;
txq->gdma_sq->id = wq_spec.queue_index;
cq->gdma_cq->id = cq_spec.queue_index;
txq->gdma_sq->mem_info.dma_region_handle =
GDMA_INVALID_DMA_REGION;
cq->gdma_cq->mem_info.dma_region_handle =
GDMA_INVALID_DMA_REGION;
txq->gdma_txq_id = txq->gdma_sq->id;
cq->gdma_id = cq->gdma_cq->id;
if (WARN_ON(cq->gdma_id >= gc->max_num_cqs)) {
err = -EINVAL;
goto out;
}
gc->cq_table[cq->gdma_id] = cq->gdma_cq;
netif_napi_add_tx(net, &cq->napi, mana_poll);
napi_enable(&cq->napi);
txq->napi_initialized = true;
mana_gd_ring_cq(cq->gdma_cq, SET_ARM_BIT);
}
return 0;
out:
mana_destroy_txq(apc);
return err;
}
static void mana_destroy_rxq(struct mana_port_context *apc,
struct mana_rxq *rxq, bool napi_initialized)
{
struct gdma_context *gc = apc->ac->gdma_dev->gdma_context;
struct mana_recv_buf_oob *rx_oob;
struct device *dev = gc->dev;
struct napi_struct *napi;
struct page *page;
int i;
if (!rxq)
return;
napi = &rxq->rx_cq.napi;
if (napi_initialized) {
napi_synchronize(napi);
napi_disable(napi);
netif_napi_del(napi);
}
xdp_rxq_info_unreg(&rxq->xdp_rxq);
mana_destroy_wq_obj(apc, GDMA_RQ, rxq->rxobj);
mana_deinit_cq(apc, &rxq->rx_cq);
if (rxq->xdp_save_va)
put_page(virt_to_head_page(rxq->xdp_save_va));
for (i = 0; i < rxq->num_rx_buf; i++) {
rx_oob = &rxq->rx_oobs[i];
if (!rx_oob->buf_va)
continue;
dma_unmap_single(dev, rx_oob->sgl[0].address,
rx_oob->sgl[0].size, DMA_FROM_DEVICE);
page = virt_to_head_page(rx_oob->buf_va);
if (rx_oob->from_pool)
page_pool_put_full_page(rxq->page_pool, page, false);
else
put_page(page);
rx_oob->buf_va = NULL;
}
page_pool_destroy(rxq->page_pool);
if (rxq->gdma_rq)
mana_gd_destroy_queue(gc, rxq->gdma_rq);
kfree(rxq);
}
static int mana_fill_rx_oob(struct mana_recv_buf_oob *rx_oob, u32 mem_key,
struct mana_rxq *rxq, struct device *dev)
{
struct mana_port_context *mpc = netdev_priv(rxq->ndev);
bool from_pool = false;
dma_addr_t da;
void *va;
if (mpc->rxbufs_pre)
va = mana_get_rxbuf_pre(rxq, &da);
else
va = mana_get_rxfrag(rxq, dev, &da, &from_pool, false);
if (!va)
return -ENOMEM;
rx_oob->buf_va = va;
rx_oob->from_pool = from_pool;
rx_oob->sgl[0].address = da;
rx_oob->sgl[0].size = rxq->datasize;
rx_oob->sgl[0].mem_key = mem_key;
return 0;
}
#define MANA_WQE_HEADER_SIZE 16
#define MANA_WQE_SGE_SIZE 16
static int mana_alloc_rx_wqe(struct mana_port_context *apc,
struct mana_rxq *rxq, u32 *rxq_size, u32 *cq_size)
{
struct gdma_context *gc = apc->ac->gdma_dev->gdma_context;
struct mana_recv_buf_oob *rx_oob;
struct device *dev = gc->dev;
u32 buf_idx;
int ret;
WARN_ON(rxq->datasize == 0);
*rxq_size = 0;
*cq_size = 0;
for (buf_idx = 0; buf_idx < rxq->num_rx_buf; buf_idx++) {
rx_oob = &rxq->rx_oobs[buf_idx];
memset(rx_oob, 0, sizeof(*rx_oob));
rx_oob->num_sge = 1;
ret = mana_fill_rx_oob(rx_oob, apc->ac->gdma_dev->gpa_mkey, rxq,
dev);
if (ret)
return ret;
rx_oob->wqe_req.sgl = rx_oob->sgl;
rx_oob->wqe_req.num_sge = rx_oob->num_sge;
rx_oob->wqe_req.inline_oob_size = 0;
rx_oob->wqe_req.inline_oob_data = NULL;
rx_oob->wqe_req.flags = 0;
rx_oob->wqe_req.client_data_unit = 0;
*rxq_size += ALIGN(MANA_WQE_HEADER_SIZE +
MANA_WQE_SGE_SIZE * rx_oob->num_sge, 32);
*cq_size += COMP_ENTRY_SIZE;
}
return 0;
}
static int mana_push_wqe(struct mana_rxq *rxq)
{
struct mana_recv_buf_oob *rx_oob;
u32 buf_idx;
int err;
for (buf_idx = 0; buf_idx < rxq->num_rx_buf; buf_idx++) {
rx_oob = &rxq->rx_oobs[buf_idx];
err = mana_gd_post_and_ring(rxq->gdma_rq, &rx_oob->wqe_req,
&rx_oob->wqe_inf);
if (err)
return -ENOSPC;
}
return 0;
}
static int mana_create_page_pool(struct mana_rxq *rxq, struct gdma_context *gc)
{
struct mana_port_context *mpc = netdev_priv(rxq->ndev);
struct page_pool_params pprm = {};
int ret;
pprm.pool_size = mpc->rx_queue_size;
pprm.nid = gc->numa_node;
pprm.napi = &rxq->rx_cq.napi;
pprm.netdev = rxq->ndev;
rxq->page_pool = page_pool_create(&pprm);
if (IS_ERR(rxq->page_pool)) {
ret = PTR_ERR(rxq->page_pool);
rxq->page_pool = NULL;
return ret;
}
return 0;
}
static struct mana_rxq *mana_create_rxq(struct mana_port_context *apc,
u32 rxq_idx, struct mana_eq *eq,
struct net_device *ndev)
{
struct gdma_dev *gd = apc->ac->gdma_dev;
struct mana_obj_spec wq_spec;
struct mana_obj_spec cq_spec;
struct gdma_queue_spec spec;
struct mana_cq *cq = NULL;
struct gdma_context *gc;
u32 cq_size, rq_size;
struct mana_rxq *rxq;
int err;
gc = gd->gdma_context;
rxq = kzalloc(struct_size(rxq, rx_oobs, apc->rx_queue_size),
GFP_KERNEL);
if (!rxq)
return NULL;
rxq->ndev = ndev;
rxq->num_rx_buf = apc->rx_queue_size;
rxq->rxq_idx = rxq_idx;
rxq->rxobj = INVALID_MANA_HANDLE;
mana_get_rxbuf_cfg(ndev->mtu, &rxq->datasize, &rxq->alloc_size,
&rxq->headroom);
/* Create page pool for RX queue */
err = mana_create_page_pool(rxq, gc);
if (err) {
netdev_err(ndev, "Create page pool err:%d\n", err);
goto out;
}
err = mana_alloc_rx_wqe(apc, rxq, &rq_size, &cq_size);
if (err)
goto out;
rq_size = MANA_PAGE_ALIGN(rq_size);
cq_size = MANA_PAGE_ALIGN(cq_size);
/* Create RQ */
memset(&spec, 0, sizeof(spec));
spec.type = GDMA_RQ;
spec.monitor_avl_buf = true;
spec.queue_size = rq_size;
err = mana_gd_create_mana_wq_cq(gd, &spec, &rxq->gdma_rq);
if (err)
goto out;
/* Create RQ's CQ */
cq = &rxq->rx_cq;
cq->type = MANA_CQ_TYPE_RX;
cq->rxq = rxq;
memset(&spec, 0, sizeof(spec));
spec.type = GDMA_CQ;
spec.monitor_avl_buf = false;
spec.queue_size = cq_size;
spec.cq.callback = mana_schedule_napi;
spec.cq.parent_eq = eq->eq;
spec.cq.context = cq;
err = mana_gd_create_mana_wq_cq(gd, &spec, &cq->gdma_cq);
if (err)
goto out;
memset(&wq_spec, 0, sizeof(wq_spec));
memset(&cq_spec, 0, sizeof(cq_spec));
wq_spec.gdma_region = rxq->gdma_rq->mem_info.dma_region_handle;
wq_spec.queue_size = rxq->gdma_rq->queue_size;
cq_spec.gdma_region = cq->gdma_cq->mem_info.dma_region_handle;
cq_spec.queue_size = cq->gdma_cq->queue_size;
cq_spec.modr_ctx_id = 0;
cq_spec.attached_eq = cq->gdma_cq->cq.parent->id;
err = mana_create_wq_obj(apc, apc->port_handle, GDMA_RQ,
&wq_spec, &cq_spec, &rxq->rxobj);
if (err)
goto out;
rxq->gdma_rq->id = wq_spec.queue_index;
cq->gdma_cq->id = cq_spec.queue_index;
rxq->gdma_rq->mem_info.dma_region_handle = GDMA_INVALID_DMA_REGION;
cq->gdma_cq->mem_info.dma_region_handle = GDMA_INVALID_DMA_REGION;
rxq->gdma_id = rxq->gdma_rq->id;
cq->gdma_id = cq->gdma_cq->id;
err = mana_push_wqe(rxq);
if (err)
goto out;
if (WARN_ON(cq->gdma_id >= gc->max_num_cqs)) {
err = -EINVAL;
goto out;
}
gc->cq_table[cq->gdma_id] = cq->gdma_cq;
netif_napi_add_weight(ndev, &cq->napi, mana_poll, 1);
WARN_ON(xdp_rxq_info_reg(&rxq->xdp_rxq, ndev, rxq_idx,
cq->napi.napi_id));
WARN_ON(xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
rxq->page_pool));
napi_enable(&cq->napi);
mana_gd_ring_cq(cq->gdma_cq, SET_ARM_BIT);
out:
if (!err)
return rxq;
netdev_err(ndev, "Failed to create RXQ: err = %d\n", err);
mana_destroy_rxq(apc, rxq, false);
if (cq)
mana_deinit_cq(apc, cq);
return NULL;
}
static int mana_add_rx_queues(struct mana_port_context *apc,
struct net_device *ndev)
{
struct mana_context *ac = apc->ac;
struct mana_rxq *rxq;
int err = 0;
int i;
for (i = 0; i < apc->num_queues; i++) {
rxq = mana_create_rxq(apc, i, &ac->eqs[i], ndev);
if (!rxq) {
err = -ENOMEM;
goto out;
}
u64_stats_init(&rxq->stats.syncp);
apc->rxqs[i] = rxq;
}
apc->default_rxobj = apc->rxqs[0]->rxobj;
out:
return err;
}
static void mana_destroy_vport(struct mana_port_context *apc)
{
struct gdma_dev *gd = apc->ac->gdma_dev;
struct mana_rxq *rxq;
u32 rxq_idx;
for (rxq_idx = 0; rxq_idx < apc->num_queues; rxq_idx++) {
rxq = apc->rxqs[rxq_idx];
if (!rxq)
continue;
mana_destroy_rxq(apc, rxq, true);
apc->rxqs[rxq_idx] = NULL;
}
mana_destroy_txq(apc);
mana_uncfg_vport(apc);
if (gd->gdma_context->is_pf)
mana_pf_deregister_hw_vport(apc);
}
static int mana_create_vport(struct mana_port_context *apc,
struct net_device *net)
{
struct gdma_dev *gd = apc->ac->gdma_dev;
int err;
apc->default_rxobj = INVALID_MANA_HANDLE;
if (gd->gdma_context->is_pf) {
err = mana_pf_register_hw_vport(apc);
if (err)
return err;
}
err = mana_cfg_vport(apc, gd->pdid, gd->doorbell);
if (err)
return err;
return mana_create_txq(apc, net);
}
static int mana_rss_table_alloc(struct mana_port_context *apc)
{
if (!apc->indir_table_sz) {
netdev_err(apc->ndev,
"Indirection table size not set for vPort %d\n",
apc->port_idx);
return -EINVAL;
}
apc->indir_table = kcalloc(apc->indir_table_sz, sizeof(u32), GFP_KERNEL);
if (!apc->indir_table)
return -ENOMEM;
apc->rxobj_table = kcalloc(apc->indir_table_sz, sizeof(mana_handle_t), GFP_KERNEL);
if (!apc->rxobj_table) {
kfree(apc->indir_table);
return -ENOMEM;
}
return 0;
}
static void mana_rss_table_init(struct mana_port_context *apc)
{
int i;
for (i = 0; i < apc->indir_table_sz; i++)
apc->indir_table[i] =
ethtool_rxfh_indir_default(i, apc->num_queues);
}
int mana_config_rss(struct mana_port_context *apc, enum TRI_STATE rx,
bool update_hash, bool update_tab)
{
u32 queue_idx;
int err;
int i;
if (update_tab) {
for (i = 0; i < apc->indir_table_sz; i++) {
queue_idx = apc->indir_table[i];
apc->rxobj_table[i] = apc->rxqs[queue_idx]->rxobj;
}
}
err = mana_cfg_vport_steering(apc, rx, true, update_hash, update_tab);
if (err)
return err;
mana_fence_rqs(apc);
return 0;
}
void mana_query_gf_stats(struct mana_port_context *apc)
{
struct mana_query_gf_stat_resp resp = {};
struct mana_query_gf_stat_req req = {};
struct net_device *ndev = apc->ndev;
int err;
mana_gd_init_req_hdr(&req.hdr, MANA_QUERY_GF_STAT,
sizeof(req), sizeof(resp));
req.req_stats = STATISTICS_FLAGS_RX_DISCARDS_NO_WQE |
STATISTICS_FLAGS_RX_ERRORS_VPORT_DISABLED |
STATISTICS_FLAGS_HC_RX_BYTES |
STATISTICS_FLAGS_HC_RX_UCAST_PACKETS |
STATISTICS_FLAGS_HC_RX_UCAST_BYTES |
STATISTICS_FLAGS_HC_RX_MCAST_PACKETS |
STATISTICS_FLAGS_HC_RX_MCAST_BYTES |
STATISTICS_FLAGS_HC_RX_BCAST_PACKETS |
STATISTICS_FLAGS_HC_RX_BCAST_BYTES |
STATISTICS_FLAGS_TX_ERRORS_GF_DISABLED |
STATISTICS_FLAGS_TX_ERRORS_VPORT_DISABLED |
STATISTICS_FLAGS_TX_ERRORS_INVAL_VPORT_OFFSET_PACKETS |
STATISTICS_FLAGS_TX_ERRORS_VLAN_ENFORCEMENT |
STATISTICS_FLAGS_TX_ERRORS_ETH_TYPE_ENFORCEMENT |
STATISTICS_FLAGS_TX_ERRORS_SA_ENFORCEMENT |
STATISTICS_FLAGS_TX_ERRORS_SQPDID_ENFORCEMENT |
STATISTICS_FLAGS_TX_ERRORS_CQPDID_ENFORCEMENT |
STATISTICS_FLAGS_TX_ERRORS_MTU_VIOLATION |
STATISTICS_FLAGS_TX_ERRORS_INVALID_OOB |
STATISTICS_FLAGS_HC_TX_BYTES |
STATISTICS_FLAGS_HC_TX_UCAST_PACKETS |
STATISTICS_FLAGS_HC_TX_UCAST_BYTES |
STATISTICS_FLAGS_HC_TX_MCAST_PACKETS |
STATISTICS_FLAGS_HC_TX_MCAST_BYTES |
STATISTICS_FLAGS_HC_TX_BCAST_PACKETS |
STATISTICS_FLAGS_HC_TX_BCAST_BYTES |
STATISTICS_FLAGS_TX_ERRORS_GDMA_ERROR;
err = mana_send_request(apc->ac, &req, sizeof(req), &resp,
sizeof(resp));
if (err) {
netdev_err(ndev, "Failed to query GF stats: %d\n", err);
return;
}
err = mana_verify_resp_hdr(&resp.hdr, MANA_QUERY_GF_STAT,
sizeof(resp));
if (err || resp.hdr.status) {
netdev_err(ndev, "Failed to query GF stats: %d, 0x%x\n", err,
resp.hdr.status);
return;
}
apc->eth_stats.hc_rx_discards_no_wqe = resp.rx_discards_nowqe;
apc->eth_stats.hc_rx_err_vport_disabled = resp.rx_err_vport_disabled;
apc->eth_stats.hc_rx_bytes = resp.hc_rx_bytes;
apc->eth_stats.hc_rx_ucast_pkts = resp.hc_rx_ucast_pkts;
apc->eth_stats.hc_rx_ucast_bytes = resp.hc_rx_ucast_bytes;
apc->eth_stats.hc_rx_bcast_pkts = resp.hc_rx_bcast_pkts;
apc->eth_stats.hc_rx_bcast_bytes = resp.hc_rx_bcast_bytes;
apc->eth_stats.hc_rx_mcast_pkts = resp.hc_rx_mcast_pkts;
apc->eth_stats.hc_rx_mcast_bytes = resp.hc_rx_mcast_bytes;
apc->eth_stats.hc_tx_err_gf_disabled = resp.tx_err_gf_disabled;
apc->eth_stats.hc_tx_err_vport_disabled = resp.tx_err_vport_disabled;
apc->eth_stats.hc_tx_err_inval_vportoffset_pkt =
resp.tx_err_inval_vport_offset_pkt;
apc->eth_stats.hc_tx_err_vlan_enforcement =
resp.tx_err_vlan_enforcement;
apc->eth_stats.hc_tx_err_eth_type_enforcement =
resp.tx_err_ethtype_enforcement;
apc->eth_stats.hc_tx_err_sa_enforcement = resp.tx_err_SA_enforcement;
apc->eth_stats.hc_tx_err_sqpdid_enforcement =
resp.tx_err_SQPDID_enforcement;
apc->eth_stats.hc_tx_err_cqpdid_enforcement =
resp.tx_err_CQPDID_enforcement;
apc->eth_stats.hc_tx_err_mtu_violation = resp.tx_err_mtu_violation;
apc->eth_stats.hc_tx_err_inval_oob = resp.tx_err_inval_oob;
apc->eth_stats.hc_tx_bytes = resp.hc_tx_bytes;
apc->eth_stats.hc_tx_ucast_pkts = resp.hc_tx_ucast_pkts;
apc->eth_stats.hc_tx_ucast_bytes = resp.hc_tx_ucast_bytes;
apc->eth_stats.hc_tx_bcast_pkts = resp.hc_tx_bcast_pkts;
apc->eth_stats.hc_tx_bcast_bytes = resp.hc_tx_bcast_bytes;
apc->eth_stats.hc_tx_mcast_pkts = resp.hc_tx_mcast_pkts;
apc->eth_stats.hc_tx_mcast_bytes = resp.hc_tx_mcast_bytes;
apc->eth_stats.hc_tx_err_gdma = resp.tx_err_gdma;
}
static int mana_init_port(struct net_device *ndev)
{
struct mana_port_context *apc = netdev_priv(ndev);
u32 max_txq, max_rxq, max_queues;
int port_idx = apc->port_idx;
int err;
err = mana_init_port_context(apc);
if (err)
return err;
err = mana_query_vport_cfg(apc, port_idx, &max_txq, &max_rxq,
&apc->indir_table_sz);
if (err) {
netdev_err(ndev, "Failed to query info for vPort %d\n",
port_idx);
goto reset_apc;
}
max_queues = min_t(u32, max_txq, max_rxq);
if (apc->max_queues > max_queues)
apc->max_queues = max_queues;
if (apc->num_queues > apc->max_queues)
apc->num_queues = apc->max_queues;
eth_hw_addr_set(ndev, apc->mac_addr);
return 0;
reset_apc:
mana_cleanup_port_context(apc);
return err;
}
int mana_alloc_queues(struct net_device *ndev)
{
struct mana_port_context *apc = netdev_priv(ndev);
struct gdma_dev *gd = apc->ac->gdma_dev;
int err;
err = mana_create_vport(apc, ndev);
if (err)
return err;
err = netif_set_real_num_tx_queues(ndev, apc->num_queues);
if (err)
goto destroy_vport;
err = mana_add_rx_queues(apc, ndev);
if (err)
goto destroy_vport;
apc->rss_state = apc->num_queues > 1 ? TRI_STATE_TRUE : TRI_STATE_FALSE;
err = netif_set_real_num_rx_queues(ndev, apc->num_queues);
if (err)
goto destroy_vport;
mana_rss_table_init(apc);
err = mana_config_rss(apc, TRI_STATE_TRUE, true, true);
if (err)
goto destroy_vport;
if (gd->gdma_context->is_pf) {
err = mana_pf_register_filter(apc);
if (err)
goto destroy_vport;
}
mana_chn_setxdp(apc, mana_xdp_get(apc));
return 0;
destroy_vport:
mana_destroy_vport(apc);
return err;
}
int mana_attach(struct net_device *ndev)
{
struct mana_port_context *apc = netdev_priv(ndev);
int err;
ASSERT_RTNL();
err = mana_init_port(ndev);
if (err)
return err;
if (apc->port_st_save) {
err = mana_alloc_queues(ndev);
if (err) {
mana_cleanup_port_context(apc);
return err;
}
}
apc->port_is_up = apc->port_st_save;
/* Ensure port state updated before txq state */
smp_wmb();
if (apc->port_is_up)
netif_carrier_on(ndev);
netif_device_attach(ndev);
return 0;
}
static int mana_dealloc_queues(struct net_device *ndev)
{
struct mana_port_context *apc = netdev_priv(ndev);
unsigned long timeout = jiffies + 120 * HZ;
struct gdma_dev *gd = apc->ac->gdma_dev;
struct mana_txq *txq;
struct sk_buff *skb;
int i, err;
u32 tsleep;
if (apc->port_is_up)
return -EINVAL;
mana_chn_setxdp(apc, NULL);
if (gd->gdma_context->is_pf)
mana_pf_deregister_filter(apc);
/* No packet can be transmitted now since apc->port_is_up is false.
* There is still a tiny chance that mana_poll_tx_cq() can re-enable
* a txq because it may not timely see apc->port_is_up being cleared
* to false, but it doesn't matter since mana_start_xmit() drops any
* new packets due to apc->port_is_up being false.
*
* Drain all the in-flight TX packets.
* A timeout of 120 seconds for all the queues is used.
* This will break the while loop when h/w is not responding.
* This value of 120 has been decided here considering max
* number of queues.
*/
for (i = 0; i < apc->num_queues; i++) {
txq = &apc->tx_qp[i].txq;
tsleep = 1000;
while (atomic_read(&txq->pending_sends) > 0 &&
time_before(jiffies, timeout)) {
usleep_range(tsleep, tsleep + 1000);
tsleep <<= 1;
}
if (atomic_read(&txq->pending_sends)) {
err = pcie_flr(to_pci_dev(gd->gdma_context->dev));
if (err) {
netdev_err(ndev, "flr failed %d with %d pkts pending in txq %u\n",
err, atomic_read(&txq->pending_sends),
txq->gdma_txq_id);
}
break;
}
}
for (i = 0; i < apc->num_queues; i++) {
txq = &apc->tx_qp[i].txq;
while ((skb = skb_dequeue(&txq->pending_skbs))) {
mana_unmap_skb(skb, apc);
dev_kfree_skb_any(skb);
}
atomic_set(&txq->pending_sends, 0);
}
/* We're 100% sure the queues can no longer be woken up, because
* we're sure now mana_poll_tx_cq() can't be running.
*/
apc->rss_state = TRI_STATE_FALSE;
err = mana_config_rss(apc, TRI_STATE_FALSE, false, false);
if (err) {
netdev_err(ndev, "Failed to disable vPort: %d\n", err);
return err;
}
mana_destroy_vport(apc);
return 0;
}
int mana_detach(struct net_device *ndev, bool from_close)
{
struct mana_port_context *apc = netdev_priv(ndev);
int err;
ASSERT_RTNL();
apc->port_st_save = apc->port_is_up;
apc->port_is_up = false;
/* Ensure port state updated before txq state */
smp_wmb();
netif_tx_disable(ndev);
netif_carrier_off(ndev);
if (apc->port_st_save) {
err = mana_dealloc_queues(ndev);
if (err)
return err;
}
if (!from_close) {
netif_device_detach(ndev);
mana_cleanup_port_context(apc);
}
return 0;
}
static int mana_probe_port(struct mana_context *ac, int port_idx,
struct net_device **ndev_storage)
{
struct gdma_context *gc = ac->gdma_dev->gdma_context;
struct mana_port_context *apc;
struct net_device *ndev;
int err;
ndev = alloc_etherdev_mq(sizeof(struct mana_port_context),
gc->max_num_queues);
if (!ndev)
return -ENOMEM;
*ndev_storage = ndev;
apc = netdev_priv(ndev);
apc->ac = ac;
apc->ndev = ndev;
apc->max_queues = gc->max_num_queues;
apc->num_queues = gc->max_num_queues;
apc->tx_queue_size = DEF_TX_BUFFERS_PER_QUEUE;
apc->rx_queue_size = DEF_RX_BUFFERS_PER_QUEUE;
apc->port_handle = INVALID_MANA_HANDLE;
apc->pf_filter_handle = INVALID_MANA_HANDLE;
apc->port_idx = port_idx;
mutex_init(&apc->vport_mutex);
apc->vport_use_count = 0;
ndev->netdev_ops = &mana_devops;
ndev->ethtool_ops = &mana_ethtool_ops;
ndev->mtu = ETH_DATA_LEN;
ndev->max_mtu = gc->adapter_mtu - ETH_HLEN;
ndev->min_mtu = ETH_MIN_MTU;
ndev->needed_headroom = MANA_HEADROOM;
ndev->dev_port = port_idx;
SET_NETDEV_DEV(ndev, gc->dev);
netif_carrier_off(ndev);
netdev_rss_key_fill(apc->hashkey, MANA_HASH_KEY_SIZE);
err = mana_init_port(ndev);
if (err)
goto free_net;
err = mana_rss_table_alloc(apc);
if (err)
goto reset_apc;
netdev_lockdep_set_classes(ndev);
ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
ndev->hw_features |= NETIF_F_RXCSUM;
ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
ndev->hw_features |= NETIF_F_RXHASH;
ndev->features = ndev->hw_features | NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_HW_VLAN_CTAG_RX;
ndev->vlan_features = ndev->features;
xdp_set_features_flag(ndev, NETDEV_XDP_ACT_BASIC |
NETDEV_XDP_ACT_REDIRECT |
NETDEV_XDP_ACT_NDO_XMIT);
err = register_netdev(ndev);
if (err) {
netdev_err(ndev, "Unable to register netdev.\n");
goto free_indir;
}
return 0;
free_indir:
mana_cleanup_indir_table(apc);
reset_apc:
mana_cleanup_port_context(apc);
free_net:
*ndev_storage = NULL;
netdev_err(ndev, "Failed to probe vPort %d: %d\n", port_idx, err);
free_netdev(ndev);
return err;
}
static void adev_release(struct device *dev)
{
struct mana_adev *madev = container_of(dev, struct mana_adev, adev.dev);
kfree(madev);
}
static void remove_adev(struct gdma_dev *gd)
{
struct auxiliary_device *adev = gd->adev;
int id = adev->id;
auxiliary_device_delete(adev);
auxiliary_device_uninit(adev);
mana_adev_idx_free(id);
gd->adev = NULL;
}
static int add_adev(struct gdma_dev *gd)
{
struct auxiliary_device *adev;
struct mana_adev *madev;
int ret;
madev = kzalloc(sizeof(*madev), GFP_KERNEL);
if (!madev)
return -ENOMEM;
adev = &madev->adev;
ret = mana_adev_idx_alloc();
if (ret < 0)
goto idx_fail;
adev->id = ret;
adev->name = "rdma";
adev->dev.parent = gd->gdma_context->dev;
adev->dev.release = adev_release;
madev->mdev = gd;
ret = auxiliary_device_init(adev);
if (ret)
goto init_fail;
/* madev is owned by the auxiliary device */
madev = NULL;
ret = auxiliary_device_add(adev);
if (ret)
goto add_fail;
gd->adev = adev;
return 0;
add_fail:
auxiliary_device_uninit(adev);
init_fail:
mana_adev_idx_free(adev->id);
idx_fail:
kfree(madev);
return ret;
}
int mana_probe(struct gdma_dev *gd, bool resuming)
{
struct gdma_context *gc = gd->gdma_context;
struct mana_context *ac = gd->driver_data;
struct device *dev = gc->dev;
u16 num_ports = 0;
int err;
int i;
dev_info(dev,
"Microsoft Azure Network Adapter protocol version: %d.%d.%d\n",
MANA_MAJOR_VERSION, MANA_MINOR_VERSION, MANA_MICRO_VERSION);
err = mana_gd_register_device(gd);
if (err)
return err;
if (!resuming) {
ac = kzalloc(sizeof(*ac), GFP_KERNEL);
if (!ac)
return -ENOMEM;
ac->gdma_dev = gd;
gd->driver_data = ac;
}
err = mana_create_eq(ac);
if (err)
goto out;
err = mana_query_device_cfg(ac, MANA_MAJOR_VERSION, MANA_MINOR_VERSION,
MANA_MICRO_VERSION, &num_ports);
if (err)
goto out;
if (!resuming) {
ac->num_ports = num_ports;
} else {
if (ac->num_ports != num_ports) {
dev_err(dev, "The number of vPorts changed: %d->%d\n",
ac->num_ports, num_ports);
err = -EPROTO;
goto out;
}
}
if (ac->num_ports == 0)
dev_err(dev, "Failed to detect any vPort\n");
if (ac->num_ports > MAX_PORTS_IN_MANA_DEV)
ac->num_ports = MAX_PORTS_IN_MANA_DEV;
if (!resuming) {
for (i = 0; i < ac->num_ports; i++) {
err = mana_probe_port(ac, i, &ac->ports[i]);
/* we log the port for which the probe failed and stop
* probes for subsequent ports.
* Note that we keep running ports, for which the probes
* were successful, unless add_adev fails too
*/
if (err) {
dev_err(dev, "Probe Failed for port %d\n", i);
break;
}
}
} else {
for (i = 0; i < ac->num_ports; i++) {
rtnl_lock();
err = mana_attach(ac->ports[i]);
rtnl_unlock();
/* we log the port for which the attach failed and stop
* attach for subsequent ports
* Note that we keep running ports, for which the attach
* were successful, unless add_adev fails too
*/
if (err) {
dev_err(dev, "Attach Failed for port %d\n", i);
break;
}
}
}
err = add_adev(gd);
out:
if (err)
mana_remove(gd, false);
return err;
}
void mana_remove(struct gdma_dev *gd, bool suspending)
{
struct gdma_context *gc = gd->gdma_context;
struct mana_context *ac = gd->driver_data;
struct mana_port_context *apc;
struct device *dev = gc->dev;
struct net_device *ndev;
int err;
int i;
/* adev currently doesn't support suspending, always remove it */
if (gd->adev)
remove_adev(gd);
for (i = 0; i < ac->num_ports; i++) {
ndev = ac->ports[i];
apc = netdev_priv(ndev);
if (!ndev) {
if (i == 0)
dev_err(dev, "No net device to remove\n");
goto out;
}
/* All cleanup actions should stay after rtnl_lock(), otherwise
* other functions may access partially cleaned up data.
*/
rtnl_lock();
err = mana_detach(ndev, false);
if (err)
netdev_err(ndev, "Failed to detach vPort %d: %d\n",
i, err);
if (suspending) {
/* No need to unregister the ndev. */
rtnl_unlock();
continue;
}
unregister_netdevice(ndev);
mana_cleanup_indir_table(apc);
rtnl_unlock();
free_netdev(ndev);
}
mana_destroy_eq(ac);
out:
mana_gd_deregister_device(gd);
if (suspending)
return;
gd->driver_data = NULL;
gd->gdma_context = NULL;
kfree(ac);
}
struct net_device *mana_get_primary_netdev_rcu(struct mana_context *ac, u32 port_index)
{
struct net_device *ndev;
RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
"Taking primary netdev without holding the RCU read lock");
if (port_index >= ac->num_ports)
return NULL;
/* When mana is used in netvsc, the upper netdevice should be returned. */
if (ac->ports[port_index]->flags & IFF_SLAVE)
ndev = netdev_master_upper_dev_get_rcu(ac->ports[port_index]);
else
ndev = ac->ports[port_index];
return ndev;
}
EXPORT_SYMBOL_NS(mana_get_primary_netdev_rcu, NET_MANA);