blob: 646e1737d4c47c4c29abbec8cae8d02dc476accd [file] [log] [blame]
// SPDX-License-Identifier: ISC
/*
* Copyright (c) 2005-2011 Atheros Communications Inc.
* Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
* Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
* Copyright (c) 2021-2024 Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include "mac.h"
#include <net/cfg80211.h>
#include <net/mac80211.h>
#include <linux/etherdevice.h>
#include <linux/acpi.h>
#include <linux/of.h>
#include <linux/bitfield.h>
#include "hif.h"
#include "core.h"
#include "debug.h"
#include "wmi.h"
#include "htt.h"
#include "txrx.h"
#include "testmode.h"
#include "wmi-tlv.h"
#include "wmi-ops.h"
#include "wow.h"
#include "leds.h"
/*********/
/* Rates */
/*********/
static struct ieee80211_rate ath10k_rates[] = {
{ .bitrate = 10,
.hw_value = ATH10K_HW_RATE_CCK_LP_1M },
{ .bitrate = 20,
.hw_value = ATH10K_HW_RATE_CCK_LP_2M,
.hw_value_short = ATH10K_HW_RATE_CCK_SP_2M,
.flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 55,
.hw_value = ATH10K_HW_RATE_CCK_LP_5_5M,
.hw_value_short = ATH10K_HW_RATE_CCK_SP_5_5M,
.flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 110,
.hw_value = ATH10K_HW_RATE_CCK_LP_11M,
.hw_value_short = ATH10K_HW_RATE_CCK_SP_11M,
.flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 60, .hw_value = ATH10K_HW_RATE_OFDM_6M },
{ .bitrate = 90, .hw_value = ATH10K_HW_RATE_OFDM_9M },
{ .bitrate = 120, .hw_value = ATH10K_HW_RATE_OFDM_12M },
{ .bitrate = 180, .hw_value = ATH10K_HW_RATE_OFDM_18M },
{ .bitrate = 240, .hw_value = ATH10K_HW_RATE_OFDM_24M },
{ .bitrate = 360, .hw_value = ATH10K_HW_RATE_OFDM_36M },
{ .bitrate = 480, .hw_value = ATH10K_HW_RATE_OFDM_48M },
{ .bitrate = 540, .hw_value = ATH10K_HW_RATE_OFDM_54M },
};
static struct ieee80211_rate ath10k_rates_rev2[] = {
{ .bitrate = 10,
.hw_value = ATH10K_HW_RATE_REV2_CCK_LP_1M },
{ .bitrate = 20,
.hw_value = ATH10K_HW_RATE_REV2_CCK_LP_2M,
.hw_value_short = ATH10K_HW_RATE_REV2_CCK_SP_2M,
.flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 55,
.hw_value = ATH10K_HW_RATE_REV2_CCK_LP_5_5M,
.hw_value_short = ATH10K_HW_RATE_REV2_CCK_SP_5_5M,
.flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 110,
.hw_value = ATH10K_HW_RATE_REV2_CCK_LP_11M,
.hw_value_short = ATH10K_HW_RATE_REV2_CCK_SP_11M,
.flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 60, .hw_value = ATH10K_HW_RATE_OFDM_6M },
{ .bitrate = 90, .hw_value = ATH10K_HW_RATE_OFDM_9M },
{ .bitrate = 120, .hw_value = ATH10K_HW_RATE_OFDM_12M },
{ .bitrate = 180, .hw_value = ATH10K_HW_RATE_OFDM_18M },
{ .bitrate = 240, .hw_value = ATH10K_HW_RATE_OFDM_24M },
{ .bitrate = 360, .hw_value = ATH10K_HW_RATE_OFDM_36M },
{ .bitrate = 480, .hw_value = ATH10K_HW_RATE_OFDM_48M },
{ .bitrate = 540, .hw_value = ATH10K_HW_RATE_OFDM_54M },
};
static const struct cfg80211_sar_freq_ranges ath10k_sar_freq_ranges[] = {
{.start_freq = 2402, .end_freq = 2494 },
{.start_freq = 5170, .end_freq = 5875 },
};
static const struct cfg80211_sar_capa ath10k_sar_capa = {
.type = NL80211_SAR_TYPE_POWER,
.num_freq_ranges = (ARRAY_SIZE(ath10k_sar_freq_ranges)),
.freq_ranges = &ath10k_sar_freq_ranges[0],
};
#define ATH10K_MAC_FIRST_OFDM_RATE_IDX 4
#define ath10k_a_rates (ath10k_rates + ATH10K_MAC_FIRST_OFDM_RATE_IDX)
#define ath10k_a_rates_size (ARRAY_SIZE(ath10k_rates) - \
ATH10K_MAC_FIRST_OFDM_RATE_IDX)
#define ath10k_g_rates (ath10k_rates + 0)
#define ath10k_g_rates_size (ARRAY_SIZE(ath10k_rates))
#define ath10k_g_rates_rev2 (ath10k_rates_rev2 + 0)
#define ath10k_g_rates_rev2_size (ARRAY_SIZE(ath10k_rates_rev2))
#define ath10k_wmi_legacy_rates ath10k_rates
static bool ath10k_mac_bitrate_is_cck(int bitrate)
{
switch (bitrate) {
case 10:
case 20:
case 55:
case 110:
return true;
}
return false;
}
static u8 ath10k_mac_bitrate_to_rate(int bitrate)
{
return DIV_ROUND_UP(bitrate, 5) |
(ath10k_mac_bitrate_is_cck(bitrate) ? BIT(7) : 0);
}
u8 ath10k_mac_hw_rate_to_idx(const struct ieee80211_supported_band *sband,
u8 hw_rate, bool cck)
{
const struct ieee80211_rate *rate;
int i;
for (i = 0; i < sband->n_bitrates; i++) {
rate = &sband->bitrates[i];
if (ath10k_mac_bitrate_is_cck(rate->bitrate) != cck)
continue;
if (rate->hw_value == hw_rate)
return i;
else if (rate->flags & IEEE80211_RATE_SHORT_PREAMBLE &&
rate->hw_value_short == hw_rate)
return i;
}
return 0;
}
u8 ath10k_mac_bitrate_to_idx(const struct ieee80211_supported_band *sband,
u32 bitrate)
{
int i;
for (i = 0; i < sband->n_bitrates; i++)
if (sband->bitrates[i].bitrate == bitrate)
return i;
return 0;
}
static int ath10k_mac_get_rate_hw_value(int bitrate)
{
int i;
u8 hw_value_prefix = 0;
if (ath10k_mac_bitrate_is_cck(bitrate))
hw_value_prefix = WMI_RATE_PREAMBLE_CCK << 6;
for (i = 0; i < ARRAY_SIZE(ath10k_rates); i++) {
if (ath10k_rates[i].bitrate == bitrate)
return hw_value_prefix | ath10k_rates[i].hw_value;
}
return -EINVAL;
}
static int ath10k_mac_get_max_vht_mcs_map(u16 mcs_map, int nss)
{
switch ((mcs_map >> (2 * nss)) & 0x3) {
case IEEE80211_VHT_MCS_SUPPORT_0_7: return BIT(8) - 1;
case IEEE80211_VHT_MCS_SUPPORT_0_8: return BIT(9) - 1;
case IEEE80211_VHT_MCS_SUPPORT_0_9: return BIT(10) - 1;
}
return 0;
}
static u32
ath10k_mac_max_ht_nss(const u8 ht_mcs_mask[IEEE80211_HT_MCS_MASK_LEN])
{
int nss;
for (nss = IEEE80211_HT_MCS_MASK_LEN - 1; nss >= 0; nss--)
if (ht_mcs_mask[nss])
return nss + 1;
return 1;
}
static u32
ath10k_mac_max_vht_nss(const u16 vht_mcs_mask[NL80211_VHT_NSS_MAX])
{
int nss;
for (nss = NL80211_VHT_NSS_MAX - 1; nss >= 0; nss--)
if (vht_mcs_mask[nss])
return nss + 1;
return 1;
}
int ath10k_mac_ext_resource_config(struct ath10k *ar, u32 val)
{
enum wmi_host_platform_type platform_type;
int ret;
if (test_bit(WMI_SERVICE_TX_MODE_DYNAMIC, ar->wmi.svc_map))
platform_type = WMI_HOST_PLATFORM_LOW_PERF;
else
platform_type = WMI_HOST_PLATFORM_HIGH_PERF;
ret = ath10k_wmi_ext_resource_config(ar, platform_type, val);
if (ret && ret != -EOPNOTSUPP) {
ath10k_warn(ar, "failed to configure ext resource: %d\n", ret);
return ret;
}
return 0;
}
/**********/
/* Crypto */
/**********/
static int ath10k_send_key(struct ath10k_vif *arvif,
struct ieee80211_key_conf *key,
enum set_key_cmd cmd,
const u8 *macaddr, u32 flags)
{
struct ath10k *ar = arvif->ar;
struct wmi_vdev_install_key_arg arg = {
.vdev_id = arvif->vdev_id,
.key_idx = key->keyidx,
.key_len = key->keylen,
.key_data = key->key,
.key_flags = flags,
.macaddr = macaddr,
};
lockdep_assert_held(&arvif->ar->conf_mutex);
switch (key->cipher) {
case WLAN_CIPHER_SUITE_CCMP:
arg.key_cipher = ar->wmi_key_cipher[WMI_CIPHER_AES_CCM];
key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV_MGMT;
break;
case WLAN_CIPHER_SUITE_TKIP:
arg.key_cipher = ar->wmi_key_cipher[WMI_CIPHER_TKIP];
arg.key_txmic_len = 8;
arg.key_rxmic_len = 8;
break;
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
arg.key_cipher = ar->wmi_key_cipher[WMI_CIPHER_WEP];
break;
case WLAN_CIPHER_SUITE_CCMP_256:
arg.key_cipher = ar->wmi_key_cipher[WMI_CIPHER_AES_CCM];
break;
case WLAN_CIPHER_SUITE_GCMP:
case WLAN_CIPHER_SUITE_GCMP_256:
arg.key_cipher = ar->wmi_key_cipher[WMI_CIPHER_AES_GCM];
key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV_MGMT;
break;
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
case WLAN_CIPHER_SUITE_AES_CMAC:
WARN_ON(1);
return -EINVAL;
default:
ath10k_warn(ar, "cipher %d is not supported\n", key->cipher);
return -EOPNOTSUPP;
}
if (test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags))
key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
if (cmd == DISABLE_KEY) {
arg.key_cipher = ar->wmi_key_cipher[WMI_CIPHER_NONE];
arg.key_data = NULL;
}
return ath10k_wmi_vdev_install_key(arvif->ar, &arg);
}
static int ath10k_install_key(struct ath10k_vif *arvif,
struct ieee80211_key_conf *key,
enum set_key_cmd cmd,
const u8 *macaddr, u32 flags)
{
struct ath10k *ar = arvif->ar;
int ret;
unsigned long time_left;
lockdep_assert_held(&ar->conf_mutex);
reinit_completion(&ar->install_key_done);
if (arvif->nohwcrypt)
return 1;
ret = ath10k_send_key(arvif, key, cmd, macaddr, flags);
if (ret)
return ret;
time_left = wait_for_completion_timeout(&ar->install_key_done, 3 * HZ);
if (time_left == 0)
return -ETIMEDOUT;
return 0;
}
static int ath10k_install_peer_wep_keys(struct ath10k_vif *arvif,
const u8 *addr)
{
struct ath10k *ar = arvif->ar;
struct ath10k_peer *peer;
int ret;
int i;
u32 flags;
lockdep_assert_held(&ar->conf_mutex);
if (WARN_ON(arvif->vif->type != NL80211_IFTYPE_AP &&
arvif->vif->type != NL80211_IFTYPE_ADHOC &&
arvif->vif->type != NL80211_IFTYPE_MESH_POINT))
return -EINVAL;
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find(ar, arvif->vdev_id, addr);
spin_unlock_bh(&ar->data_lock);
if (!peer)
return -ENOENT;
for (i = 0; i < ARRAY_SIZE(arvif->wep_keys); i++) {
if (arvif->wep_keys[i] == NULL)
continue;
switch (arvif->vif->type) {
case NL80211_IFTYPE_AP:
flags = WMI_KEY_PAIRWISE;
if (arvif->def_wep_key_idx == i)
flags |= WMI_KEY_TX_USAGE;
ret = ath10k_install_key(arvif, arvif->wep_keys[i],
SET_KEY, addr, flags);
if (ret < 0)
return ret;
break;
case NL80211_IFTYPE_ADHOC:
ret = ath10k_install_key(arvif, arvif->wep_keys[i],
SET_KEY, addr,
WMI_KEY_PAIRWISE);
if (ret < 0)
return ret;
ret = ath10k_install_key(arvif, arvif->wep_keys[i],
SET_KEY, addr, WMI_KEY_GROUP);
if (ret < 0)
return ret;
break;
default:
WARN_ON(1);
return -EINVAL;
}
spin_lock_bh(&ar->data_lock);
peer->keys[i] = arvif->wep_keys[i];
spin_unlock_bh(&ar->data_lock);
}
/* In some cases (notably with static WEP IBSS with multiple keys)
* multicast Tx becomes broken. Both pairwise and groupwise keys are
* installed already. Using WMI_KEY_TX_USAGE in different combinations
* didn't seem help. Using def_keyid vdev parameter seems to be
* effective so use that.
*
* FIXME: Revisit. Perhaps this can be done in a less hacky way.
*/
if (arvif->vif->type != NL80211_IFTYPE_ADHOC)
return 0;
if (arvif->def_wep_key_idx == -1)
return 0;
ret = ath10k_wmi_vdev_set_param(arvif->ar,
arvif->vdev_id,
arvif->ar->wmi.vdev_param->def_keyid,
arvif->def_wep_key_idx);
if (ret) {
ath10k_warn(ar, "failed to re-set def wpa key idxon vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
return 0;
}
static int ath10k_clear_peer_keys(struct ath10k_vif *arvif,
const u8 *addr)
{
struct ath10k *ar = arvif->ar;
struct ath10k_peer *peer;
int first_errno = 0;
int ret;
int i;
u32 flags = 0;
lockdep_assert_held(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find(ar, arvif->vdev_id, addr);
spin_unlock_bh(&ar->data_lock);
if (!peer)
return -ENOENT;
for (i = 0; i < ARRAY_SIZE(peer->keys); i++) {
if (peer->keys[i] == NULL)
continue;
/* key flags are not required to delete the key */
ret = ath10k_install_key(arvif, peer->keys[i],
DISABLE_KEY, addr, flags);
if (ret < 0 && first_errno == 0)
first_errno = ret;
if (ret < 0)
ath10k_warn(ar, "failed to remove peer wep key %d: %d\n",
i, ret);
spin_lock_bh(&ar->data_lock);
peer->keys[i] = NULL;
spin_unlock_bh(&ar->data_lock);
}
return first_errno;
}
bool ath10k_mac_is_peer_wep_key_set(struct ath10k *ar, const u8 *addr,
u8 keyidx)
{
struct ath10k_peer *peer;
int i;
lockdep_assert_held(&ar->data_lock);
/* We don't know which vdev this peer belongs to,
* since WMI doesn't give us that information.
*
* FIXME: multi-bss needs to be handled.
*/
peer = ath10k_peer_find(ar, 0, addr);
if (!peer)
return false;
for (i = 0; i < ARRAY_SIZE(peer->keys); i++) {
if (peer->keys[i] && peer->keys[i]->keyidx == keyidx)
return true;
}
return false;
}
static int ath10k_clear_vdev_key(struct ath10k_vif *arvif,
struct ieee80211_key_conf *key)
{
struct ath10k *ar = arvif->ar;
struct ath10k_peer *peer;
u8 addr[ETH_ALEN];
int first_errno = 0;
int ret;
int i;
u32 flags = 0;
lockdep_assert_held(&ar->conf_mutex);
for (;;) {
/* since ath10k_install_key we can't hold data_lock all the
* time, so we try to remove the keys incrementally
*/
spin_lock_bh(&ar->data_lock);
i = 0;
list_for_each_entry(peer, &ar->peers, list) {
for (i = 0; i < ARRAY_SIZE(peer->keys); i++) {
if (peer->keys[i] == key) {
ether_addr_copy(addr, peer->addr);
peer->keys[i] = NULL;
break;
}
}
if (i < ARRAY_SIZE(peer->keys))
break;
}
spin_unlock_bh(&ar->data_lock);
if (i == ARRAY_SIZE(peer->keys))
break;
/* key flags are not required to delete the key */
ret = ath10k_install_key(arvif, key, DISABLE_KEY, addr, flags);
if (ret < 0 && first_errno == 0)
first_errno = ret;
if (ret)
ath10k_warn(ar, "failed to remove key for %pM: %d\n",
addr, ret);
}
return first_errno;
}
static int ath10k_mac_vif_update_wep_key(struct ath10k_vif *arvif,
struct ieee80211_key_conf *key)
{
struct ath10k *ar = arvif->ar;
struct ath10k_peer *peer;
int ret;
lockdep_assert_held(&ar->conf_mutex);
list_for_each_entry(peer, &ar->peers, list) {
if (ether_addr_equal(peer->addr, arvif->vif->addr))
continue;
if (ether_addr_equal(peer->addr, arvif->bssid))
continue;
if (peer->keys[key->keyidx] == key)
continue;
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vif vdev %i update key %i needs update\n",
arvif->vdev_id, key->keyidx);
ret = ath10k_install_peer_wep_keys(arvif, peer->addr);
if (ret) {
ath10k_warn(ar, "failed to update wep keys on vdev %i for peer %pM: %d\n",
arvif->vdev_id, peer->addr, ret);
return ret;
}
}
return 0;
}
/*********************/
/* General utilities */
/*********************/
static inline enum wmi_phy_mode
chan_to_phymode(const struct cfg80211_chan_def *chandef)
{
enum wmi_phy_mode phymode = MODE_UNKNOWN;
switch (chandef->chan->band) {
case NL80211_BAND_2GHZ:
switch (chandef->width) {
case NL80211_CHAN_WIDTH_20_NOHT:
if (chandef->chan->flags & IEEE80211_CHAN_NO_OFDM)
phymode = MODE_11B;
else
phymode = MODE_11G;
break;
case NL80211_CHAN_WIDTH_20:
phymode = MODE_11NG_HT20;
break;
case NL80211_CHAN_WIDTH_40:
phymode = MODE_11NG_HT40;
break;
default:
phymode = MODE_UNKNOWN;
break;
}
break;
case NL80211_BAND_5GHZ:
switch (chandef->width) {
case NL80211_CHAN_WIDTH_20_NOHT:
phymode = MODE_11A;
break;
case NL80211_CHAN_WIDTH_20:
phymode = MODE_11NA_HT20;
break;
case NL80211_CHAN_WIDTH_40:
phymode = MODE_11NA_HT40;
break;
case NL80211_CHAN_WIDTH_80:
phymode = MODE_11AC_VHT80;
break;
case NL80211_CHAN_WIDTH_160:
phymode = MODE_11AC_VHT160;
break;
case NL80211_CHAN_WIDTH_80P80:
phymode = MODE_11AC_VHT80_80;
break;
default:
phymode = MODE_UNKNOWN;
break;
}
break;
default:
break;
}
WARN_ON(phymode == MODE_UNKNOWN);
return phymode;
}
static u8 ath10k_parse_mpdudensity(u8 mpdudensity)
{
/*
* 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
* 0 for no restriction
* 1 for 1/4 us
* 2 for 1/2 us
* 3 for 1 us
* 4 for 2 us
* 5 for 4 us
* 6 for 8 us
* 7 for 16 us
*/
switch (mpdudensity) {
case 0:
return 0;
case 1:
case 2:
case 3:
/* Our lower layer calculations limit our precision to
* 1 microsecond
*/
return 1;
case 4:
return 2;
case 5:
return 4;
case 6:
return 8;
case 7:
return 16;
default:
return 0;
}
}
int ath10k_mac_vif_chan(struct ieee80211_vif *vif,
struct cfg80211_chan_def *def)
{
struct ieee80211_chanctx_conf *conf;
rcu_read_lock();
conf = rcu_dereference(vif->bss_conf.chanctx_conf);
if (!conf) {
rcu_read_unlock();
return -ENOENT;
}
*def = conf->def;
rcu_read_unlock();
return 0;
}
static void ath10k_mac_num_chanctxs_iter(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *conf,
void *data)
{
int *num = data;
(*num)++;
}
static int ath10k_mac_num_chanctxs(struct ath10k *ar)
{
int num = 0;
ieee80211_iter_chan_contexts_atomic(ar->hw,
ath10k_mac_num_chanctxs_iter,
&num);
return num;
}
static void
ath10k_mac_get_any_chandef_iter(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *conf,
void *data)
{
struct cfg80211_chan_def **def = data;
*def = &conf->def;
}
static void ath10k_wait_for_peer_delete_done(struct ath10k *ar, u32 vdev_id,
const u8 *addr)
{
unsigned long time_left;
int ret;
if (test_bit(WMI_SERVICE_SYNC_DELETE_CMDS, ar->wmi.svc_map)) {
ret = ath10k_wait_for_peer_deleted(ar, vdev_id, addr);
if (ret) {
ath10k_warn(ar, "failed wait for peer deleted");
return;
}
time_left = wait_for_completion_timeout(&ar->peer_delete_done,
5 * HZ);
if (!time_left)
ath10k_warn(ar, "Timeout in receiving peer delete response\n");
}
}
static int ath10k_peer_create(struct ath10k *ar,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
u32 vdev_id,
const u8 *addr,
enum wmi_peer_type peer_type)
{
struct ath10k_peer *peer;
int ret;
lockdep_assert_held(&ar->conf_mutex);
/* Each vdev consumes a peer entry as well. */
if (ar->num_peers + list_count_nodes(&ar->arvifs) >= ar->max_num_peers)
return -ENOBUFS;
ret = ath10k_wmi_peer_create(ar, vdev_id, addr, peer_type);
if (ret) {
ath10k_warn(ar, "failed to create wmi peer %pM on vdev %i: %i\n",
addr, vdev_id, ret);
return ret;
}
ret = ath10k_wait_for_peer_created(ar, vdev_id, addr);
if (ret) {
ath10k_warn(ar, "failed to wait for created wmi peer %pM on vdev %i: %i\n",
addr, vdev_id, ret);
return ret;
}
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find(ar, vdev_id, addr);
if (!peer) {
spin_unlock_bh(&ar->data_lock);
ath10k_warn(ar, "failed to find peer %pM on vdev %i after creation\n",
addr, vdev_id);
ath10k_wait_for_peer_delete_done(ar, vdev_id, addr);
return -ENOENT;
}
peer->vif = vif;
peer->sta = sta;
spin_unlock_bh(&ar->data_lock);
ar->num_peers++;
return 0;
}
static int ath10k_mac_set_kickout(struct ath10k_vif *arvif)
{
struct ath10k *ar = arvif->ar;
u32 param;
int ret;
param = ar->wmi.pdev_param->sta_kickout_th;
ret = ath10k_wmi_pdev_set_param(ar, param,
ATH10K_KICKOUT_THRESHOLD);
if (ret) {
ath10k_warn(ar, "failed to set kickout threshold on vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
param = ar->wmi.vdev_param->ap_keepalive_min_idle_inactive_time_secs;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param,
ATH10K_KEEPALIVE_MIN_IDLE);
if (ret) {
ath10k_warn(ar, "failed to set keepalive minimum idle time on vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
param = ar->wmi.vdev_param->ap_keepalive_max_idle_inactive_time_secs;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param,
ATH10K_KEEPALIVE_MAX_IDLE);
if (ret) {
ath10k_warn(ar, "failed to set keepalive maximum idle time on vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
param = ar->wmi.vdev_param->ap_keepalive_max_unresponsive_time_secs;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param,
ATH10K_KEEPALIVE_MAX_UNRESPONSIVE);
if (ret) {
ath10k_warn(ar, "failed to set keepalive maximum unresponsive time on vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
return 0;
}
static int ath10k_mac_set_rts(struct ath10k_vif *arvif, u32 value)
{
struct ath10k *ar = arvif->ar;
u32 vdev_param;
vdev_param = ar->wmi.vdev_param->rts_threshold;
return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, value);
}
static int ath10k_peer_delete(struct ath10k *ar, u32 vdev_id, const u8 *addr)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_wmi_peer_delete(ar, vdev_id, addr);
if (ret)
return ret;
ret = ath10k_wait_for_peer_deleted(ar, vdev_id, addr);
if (ret)
return ret;
if (test_bit(WMI_SERVICE_SYNC_DELETE_CMDS, ar->wmi.svc_map)) {
unsigned long time_left;
time_left = wait_for_completion_timeout
(&ar->peer_delete_done, 5 * HZ);
if (!time_left) {
ath10k_warn(ar, "Timeout in receiving peer delete response\n");
return -ETIMEDOUT;
}
}
ar->num_peers--;
return 0;
}
static void ath10k_peer_map_cleanup(struct ath10k *ar, struct ath10k_peer *peer)
{
int peer_id, i;
lockdep_assert_held(&ar->conf_mutex);
for_each_set_bit(peer_id, peer->peer_ids,
ATH10K_MAX_NUM_PEER_IDS) {
ar->peer_map[peer_id] = NULL;
}
/* Double check that peer is properly un-referenced from
* the peer_map
*/
for (i = 0; i < ARRAY_SIZE(ar->peer_map); i++) {
if (ar->peer_map[i] == peer) {
ath10k_warn(ar, "removing stale peer_map entry for %pM (ptr %pK idx %d)\n",
peer->addr, peer, i);
ar->peer_map[i] = NULL;
}
}
list_del(&peer->list);
kfree(peer);
ar->num_peers--;
}
static void ath10k_peer_cleanup(struct ath10k *ar, u32 vdev_id)
{
struct ath10k_peer *peer, *tmp;
lockdep_assert_held(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
list_for_each_entry_safe(peer, tmp, &ar->peers, list) {
if (peer->vdev_id != vdev_id)
continue;
ath10k_warn(ar, "removing stale peer %pM from vdev_id %d\n",
peer->addr, vdev_id);
ath10k_peer_map_cleanup(ar, peer);
}
spin_unlock_bh(&ar->data_lock);
}
static void ath10k_peer_cleanup_all(struct ath10k *ar)
{
struct ath10k_peer *peer, *tmp;
int i;
lockdep_assert_held(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
list_for_each_entry_safe(peer, tmp, &ar->peers, list) {
list_del(&peer->list);
kfree(peer);
}
for (i = 0; i < ARRAY_SIZE(ar->peer_map); i++)
ar->peer_map[i] = NULL;
spin_unlock_bh(&ar->data_lock);
ar->num_peers = 0;
ar->num_stations = 0;
}
static int ath10k_mac_tdls_peer_update(struct ath10k *ar, u32 vdev_id,
struct ieee80211_sta *sta,
enum wmi_tdls_peer_state state)
{
int ret;
struct wmi_tdls_peer_update_cmd_arg arg = {};
struct wmi_tdls_peer_capab_arg cap = {};
struct wmi_channel_arg chan_arg = {};
lockdep_assert_held(&ar->conf_mutex);
arg.vdev_id = vdev_id;
arg.peer_state = state;
ether_addr_copy(arg.addr, sta->addr);
cap.peer_max_sp = sta->max_sp;
cap.peer_uapsd_queues = sta->uapsd_queues;
if (state == WMI_TDLS_PEER_STATE_CONNECTED &&
!sta->tdls_initiator)
cap.is_peer_responder = 1;
ret = ath10k_wmi_tdls_peer_update(ar, &arg, &cap, &chan_arg);
if (ret) {
ath10k_warn(ar, "failed to update tdls peer %pM on vdev %i: %i\n",
arg.addr, vdev_id, ret);
return ret;
}
return 0;
}
/************************/
/* Interface management */
/************************/
void ath10k_mac_vif_beacon_free(struct ath10k_vif *arvif)
{
struct ath10k *ar = arvif->ar;
lockdep_assert_held(&ar->data_lock);
if (!arvif->beacon)
return;
if (!arvif->beacon_buf)
dma_unmap_single(ar->dev, ATH10K_SKB_CB(arvif->beacon)->paddr,
arvif->beacon->len, DMA_TO_DEVICE);
if (WARN_ON(arvif->beacon_state != ATH10K_BEACON_SCHEDULED &&
arvif->beacon_state != ATH10K_BEACON_SENT))
return;
dev_kfree_skb_any(arvif->beacon);
arvif->beacon = NULL;
arvif->beacon_state = ATH10K_BEACON_SCHEDULED;
}
static void ath10k_mac_vif_beacon_cleanup(struct ath10k_vif *arvif)
{
struct ath10k *ar = arvif->ar;
lockdep_assert_held(&ar->data_lock);
ath10k_mac_vif_beacon_free(arvif);
if (arvif->beacon_buf) {
if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
kfree(arvif->beacon_buf);
else
dma_free_coherent(ar->dev, IEEE80211_MAX_FRAME_LEN,
arvif->beacon_buf,
arvif->beacon_paddr);
arvif->beacon_buf = NULL;
}
}
static inline int ath10k_vdev_setup_sync(struct ath10k *ar)
{
unsigned long time_left;
lockdep_assert_held(&ar->conf_mutex);
if (test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags))
return -ESHUTDOWN;
time_left = wait_for_completion_timeout(&ar->vdev_setup_done,
ATH10K_VDEV_SETUP_TIMEOUT_HZ);
if (time_left == 0)
return -ETIMEDOUT;
return ar->last_wmi_vdev_start_status;
}
static int ath10k_monitor_vdev_start(struct ath10k *ar, int vdev_id)
{
struct cfg80211_chan_def *chandef = NULL;
struct ieee80211_channel *channel = NULL;
struct wmi_vdev_start_request_arg arg = {};
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
ieee80211_iter_chan_contexts_atomic(ar->hw,
ath10k_mac_get_any_chandef_iter,
&chandef);
if (WARN_ON_ONCE(!chandef))
return -ENOENT;
channel = chandef->chan;
arg.vdev_id = vdev_id;
arg.channel.freq = channel->center_freq;
arg.channel.band_center_freq1 = chandef->center_freq1;
arg.channel.band_center_freq2 = chandef->center_freq2;
/* TODO setup this dynamically, what in case we
* don't have any vifs?
*/
arg.channel.mode = chan_to_phymode(chandef);
arg.channel.chan_radar =
!!(channel->flags & IEEE80211_CHAN_RADAR);
arg.channel.min_power = 0;
arg.channel.max_power = channel->max_power * 2;
arg.channel.max_reg_power = channel->max_reg_power * 2;
arg.channel.max_antenna_gain = channel->max_antenna_gain;
reinit_completion(&ar->vdev_setup_done);
reinit_completion(&ar->vdev_delete_done);
ret = ath10k_wmi_vdev_start(ar, &arg);
if (ret) {
ath10k_warn(ar, "failed to request monitor vdev %i start: %d\n",
vdev_id, ret);
return ret;
}
ret = ath10k_vdev_setup_sync(ar);
if (ret) {
ath10k_warn(ar, "failed to synchronize setup for monitor vdev %i start: %d\n",
vdev_id, ret);
return ret;
}
ret = ath10k_wmi_vdev_up(ar, vdev_id, 0, ar->mac_addr);
if (ret) {
ath10k_warn(ar, "failed to put up monitor vdev %i: %d\n",
vdev_id, ret);
goto vdev_stop;
}
ar->monitor_vdev_id = vdev_id;
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %i started\n",
ar->monitor_vdev_id);
return 0;
vdev_stop:
ret = ath10k_wmi_vdev_stop(ar, ar->monitor_vdev_id);
if (ret)
ath10k_warn(ar, "failed to stop monitor vdev %i after start failure: %d\n",
ar->monitor_vdev_id, ret);
return ret;
}
static int ath10k_monitor_vdev_stop(struct ath10k *ar)
{
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_wmi_vdev_down(ar, ar->monitor_vdev_id);
if (ret)
ath10k_warn(ar, "failed to put down monitor vdev %i: %d\n",
ar->monitor_vdev_id, ret);
reinit_completion(&ar->vdev_setup_done);
reinit_completion(&ar->vdev_delete_done);
ret = ath10k_wmi_vdev_stop(ar, ar->monitor_vdev_id);
if (ret)
ath10k_warn(ar, "failed to request monitor vdev %i stop: %d\n",
ar->monitor_vdev_id, ret);
ret = ath10k_vdev_setup_sync(ar);
if (ret)
ath10k_warn(ar, "failed to synchronize monitor vdev %i stop: %d\n",
ar->monitor_vdev_id, ret);
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %i stopped\n",
ar->monitor_vdev_id);
return ret;
}
static int ath10k_monitor_vdev_create(struct ath10k *ar)
{
int bit, ret = 0;
lockdep_assert_held(&ar->conf_mutex);
if (ar->free_vdev_map == 0) {
ath10k_warn(ar, "failed to find free vdev id for monitor vdev\n");
return -ENOMEM;
}
bit = __ffs64(ar->free_vdev_map);
ar->monitor_vdev_id = bit;
ret = ath10k_wmi_vdev_create(ar, ar->monitor_vdev_id,
WMI_VDEV_TYPE_MONITOR,
0, ar->mac_addr);
if (ret) {
ath10k_warn(ar, "failed to request monitor vdev %i creation: %d\n",
ar->monitor_vdev_id, ret);
return ret;
}
ar->free_vdev_map &= ~(1LL << ar->monitor_vdev_id);
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %d created\n",
ar->monitor_vdev_id);
return 0;
}
static int ath10k_monitor_vdev_delete(struct ath10k *ar)
{
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_wmi_vdev_delete(ar, ar->monitor_vdev_id);
if (ret) {
ath10k_warn(ar, "failed to request wmi monitor vdev %i removal: %d\n",
ar->monitor_vdev_id, ret);
return ret;
}
ar->free_vdev_map |= 1LL << ar->monitor_vdev_id;
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %d deleted\n",
ar->monitor_vdev_id);
return ret;
}
static int ath10k_monitor_start(struct ath10k *ar)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_monitor_vdev_create(ar);
if (ret) {
ath10k_warn(ar, "failed to create monitor vdev: %d\n", ret);
return ret;
}
ret = ath10k_monitor_vdev_start(ar, ar->monitor_vdev_id);
if (ret) {
ath10k_warn(ar, "failed to start monitor vdev: %d\n", ret);
ath10k_monitor_vdev_delete(ar);
return ret;
}
ar->monitor_started = true;
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor started\n");
return 0;
}
static int ath10k_monitor_stop(struct ath10k *ar)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_monitor_vdev_stop(ar);
if (ret) {
ath10k_warn(ar, "failed to stop monitor vdev: %d\n", ret);
return ret;
}
ret = ath10k_monitor_vdev_delete(ar);
if (ret) {
ath10k_warn(ar, "failed to delete monitor vdev: %d\n", ret);
return ret;
}
ar->monitor_started = false;
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor stopped\n");
return 0;
}
static bool ath10k_mac_monitor_vdev_is_needed(struct ath10k *ar)
{
int num_ctx;
/* At least one chanctx is required to derive a channel to start
* monitor vdev on.
*/
num_ctx = ath10k_mac_num_chanctxs(ar);
if (num_ctx == 0)
return false;
/* If there's already an existing special monitor interface then don't
* bother creating another monitor vdev.
*/
if (ar->monitor_arvif)
return false;
return ar->monitor ||
(!test_bit(ATH10K_FW_FEATURE_ALLOWS_MESH_BCAST,
ar->running_fw->fw_file.fw_features) &&
(ar->filter_flags & (FIF_OTHER_BSS | FIF_MCAST_ACTION))) ||
test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags);
}
static bool ath10k_mac_monitor_vdev_is_allowed(struct ath10k *ar)
{
int num_ctx;
num_ctx = ath10k_mac_num_chanctxs(ar);
/* FIXME: Current interface combinations and cfg80211/mac80211 code
* shouldn't allow this but make sure to prevent handling the following
* case anyway since multi-channel DFS hasn't been tested at all.
*/
if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags) && num_ctx > 1)
return false;
return true;
}
static int ath10k_monitor_recalc(struct ath10k *ar)
{
bool needed;
bool allowed;
int ret;
lockdep_assert_held(&ar->conf_mutex);
needed = ath10k_mac_monitor_vdev_is_needed(ar);
allowed = ath10k_mac_monitor_vdev_is_allowed(ar);
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac monitor recalc started? %d needed? %d allowed? %d\n",
ar->monitor_started, needed, allowed);
if (WARN_ON(needed && !allowed)) {
if (ar->monitor_started) {
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor stopping disallowed monitor\n");
ret = ath10k_monitor_stop(ar);
if (ret)
ath10k_warn(ar, "failed to stop disallowed monitor: %d\n",
ret);
/* not serious */
}
return -EPERM;
}
if (needed == ar->monitor_started)
return 0;
if (needed)
return ath10k_monitor_start(ar);
else
return ath10k_monitor_stop(ar);
}
static bool ath10k_mac_can_set_cts_prot(struct ath10k_vif *arvif)
{
struct ath10k *ar = arvif->ar;
lockdep_assert_held(&ar->conf_mutex);
if (!arvif->is_started) {
ath10k_dbg(ar, ATH10K_DBG_MAC, "defer cts setup, vdev is not ready yet\n");
return false;
}
return true;
}
static int ath10k_mac_set_cts_prot(struct ath10k_vif *arvif)
{
struct ath10k *ar = arvif->ar;
u32 vdev_param;
lockdep_assert_held(&ar->conf_mutex);
vdev_param = ar->wmi.vdev_param->protection_mode;
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d cts_protection %d\n",
arvif->vdev_id, arvif->use_cts_prot);
return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
arvif->use_cts_prot ? 1 : 0);
}
static int ath10k_recalc_rtscts_prot(struct ath10k_vif *arvif)
{
struct ath10k *ar = arvif->ar;
u32 vdev_param, rts_cts = 0;
lockdep_assert_held(&ar->conf_mutex);
vdev_param = ar->wmi.vdev_param->enable_rtscts;
rts_cts |= SM(WMI_RTSCTS_ENABLED, WMI_RTSCTS_SET);
if (arvif->num_legacy_stations > 0)
rts_cts |= SM(WMI_RTSCTS_ACROSS_SW_RETRIES,
WMI_RTSCTS_PROFILE);
else
rts_cts |= SM(WMI_RTSCTS_FOR_SECOND_RATESERIES,
WMI_RTSCTS_PROFILE);
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d recalc rts/cts prot %d\n",
arvif->vdev_id, rts_cts);
return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
rts_cts);
}
static int ath10k_start_cac(struct ath10k *ar)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
set_bit(ATH10K_CAC_RUNNING, &ar->dev_flags);
ret = ath10k_monitor_recalc(ar);
if (ret) {
ath10k_warn(ar, "failed to start monitor (cac): %d\n", ret);
clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags);
return ret;
}
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac cac start monitor vdev %d\n",
ar->monitor_vdev_id);
return 0;
}
static int ath10k_stop_cac(struct ath10k *ar)
{
lockdep_assert_held(&ar->conf_mutex);
/* CAC is not running - do nothing */
if (!test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags))
return 0;
clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags);
ath10k_monitor_stop(ar);
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac cac finished\n");
return 0;
}
static void ath10k_mac_has_radar_iter(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *conf,
void *data)
{
bool *ret = data;
if (!*ret && conf->radar_enabled)
*ret = true;
}
static bool ath10k_mac_has_radar_enabled(struct ath10k *ar)
{
bool has_radar = false;
ieee80211_iter_chan_contexts_atomic(ar->hw,
ath10k_mac_has_radar_iter,
&has_radar);
return has_radar;
}
static void ath10k_recalc_radar_detection(struct ath10k *ar)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
ath10k_stop_cac(ar);
if (!ath10k_mac_has_radar_enabled(ar))
return;
if (ar->num_started_vdevs > 0)
return;
ret = ath10k_start_cac(ar);
if (ret) {
/*
* Not possible to start CAC on current channel so starting
* radiation is not allowed, make this channel DFS_UNAVAILABLE
* by indicating that radar was detected.
*/
ath10k_warn(ar, "failed to start CAC: %d\n", ret);
ieee80211_radar_detected(ar->hw, NULL);
}
}
static int ath10k_vdev_stop(struct ath10k_vif *arvif)
{
struct ath10k *ar = arvif->ar;
int ret;
lockdep_assert_held(&ar->conf_mutex);
reinit_completion(&ar->vdev_setup_done);
reinit_completion(&ar->vdev_delete_done);
ret = ath10k_wmi_vdev_stop(ar, arvif->vdev_id);
if (ret) {
ath10k_warn(ar, "failed to stop WMI vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
ret = ath10k_vdev_setup_sync(ar);
if (ret) {
ath10k_warn(ar, "failed to synchronize setup for vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
WARN_ON(ar->num_started_vdevs == 0);
if (ar->num_started_vdevs != 0) {
ar->num_started_vdevs--;
ath10k_recalc_radar_detection(ar);
}
return ret;
}
static int ath10k_vdev_start_restart(struct ath10k_vif *arvif,
const struct cfg80211_chan_def *chandef,
bool restart)
{
struct ath10k *ar = arvif->ar;
struct wmi_vdev_start_request_arg arg = {};
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
reinit_completion(&ar->vdev_setup_done);
reinit_completion(&ar->vdev_delete_done);
arg.vdev_id = arvif->vdev_id;
arg.dtim_period = arvif->dtim_period;
arg.bcn_intval = arvif->beacon_interval;
arg.channel.freq = chandef->chan->center_freq;
arg.channel.band_center_freq1 = chandef->center_freq1;
arg.channel.band_center_freq2 = chandef->center_freq2;
arg.channel.mode = chan_to_phymode(chandef);
arg.channel.min_power = 0;
arg.channel.max_power = chandef->chan->max_power * 2;
arg.channel.max_reg_power = chandef->chan->max_reg_power * 2;
arg.channel.max_antenna_gain = chandef->chan->max_antenna_gain;
if (arvif->vdev_type == WMI_VDEV_TYPE_AP) {
arg.ssid = arvif->u.ap.ssid;
arg.ssid_len = arvif->u.ap.ssid_len;
arg.hidden_ssid = arvif->u.ap.hidden_ssid;
/* For now allow DFS for AP mode */
arg.channel.chan_radar =
!!(chandef->chan->flags & IEEE80211_CHAN_RADAR);
} else if (arvif->vdev_type == WMI_VDEV_TYPE_IBSS) {
arg.ssid = arvif->vif->cfg.ssid;
arg.ssid_len = arvif->vif->cfg.ssid_len;
}
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac vdev %d start center_freq %d phymode %s\n",
arg.vdev_id, arg.channel.freq,
ath10k_wmi_phymode_str(arg.channel.mode));
if (restart)
ret = ath10k_wmi_vdev_restart(ar, &arg);
else
ret = ath10k_wmi_vdev_start(ar, &arg);
if (ret) {
ath10k_warn(ar, "failed to start WMI vdev %i: %d\n",
arg.vdev_id, ret);
return ret;
}
ret = ath10k_vdev_setup_sync(ar);
if (ret) {
ath10k_warn(ar,
"failed to synchronize setup for vdev %i restart %d: %d\n",
arg.vdev_id, restart, ret);
return ret;
}
ar->num_started_vdevs++;
ath10k_recalc_radar_detection(ar);
return ret;
}
static int ath10k_vdev_start(struct ath10k_vif *arvif,
const struct cfg80211_chan_def *def)
{
return ath10k_vdev_start_restart(arvif, def, false);
}
static int ath10k_vdev_restart(struct ath10k_vif *arvif,
const struct cfg80211_chan_def *def)
{
return ath10k_vdev_start_restart(arvif, def, true);
}
static int ath10k_mac_setup_bcn_p2p_ie(struct ath10k_vif *arvif,
struct sk_buff *bcn)
{
struct ath10k *ar = arvif->ar;
struct ieee80211_mgmt *mgmt;
const u8 *p2p_ie;
int ret;
if (arvif->vif->type != NL80211_IFTYPE_AP || !arvif->vif->p2p)
return 0;
mgmt = (void *)bcn->data;
p2p_ie = cfg80211_find_vendor_ie(WLAN_OUI_WFA, WLAN_OUI_TYPE_WFA_P2P,
mgmt->u.beacon.variable,
bcn->len - (mgmt->u.beacon.variable -
bcn->data));
if (!p2p_ie)
return -ENOENT;
ret = ath10k_wmi_p2p_go_bcn_ie(ar, arvif->vdev_id, p2p_ie);
if (ret) {
ath10k_warn(ar, "failed to submit p2p go bcn ie for vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
return 0;
}
static int ath10k_mac_remove_vendor_ie(struct sk_buff *skb, unsigned int oui,
u8 oui_type, size_t ie_offset)
{
size_t len;
const u8 *next;
const u8 *end;
u8 *ie;
if (WARN_ON(skb->len < ie_offset))
return -EINVAL;
ie = (u8 *)cfg80211_find_vendor_ie(oui, oui_type,
skb->data + ie_offset,
skb->len - ie_offset);
if (!ie)
return -ENOENT;
len = ie[1] + 2;
end = skb->data + skb->len;
next = ie + len;
if (WARN_ON(next > end))
return -EINVAL;
memmove(ie, next, end - next);
skb_trim(skb, skb->len - len);
return 0;
}
static int ath10k_mac_setup_bcn_tmpl(struct ath10k_vif *arvif)
{
struct ath10k *ar = arvif->ar;
struct ieee80211_hw *hw = ar->hw;
struct ieee80211_vif *vif = arvif->vif;
struct ieee80211_mutable_offsets offs = {};
struct sk_buff *bcn;
int ret;
if (!test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map))
return 0;
if (arvif->vdev_type != WMI_VDEV_TYPE_AP &&
arvif->vdev_type != WMI_VDEV_TYPE_IBSS)
return 0;
bcn = ieee80211_beacon_get_template(hw, vif, &offs, 0);
if (!bcn) {
ath10k_warn(ar, "failed to get beacon template from mac80211\n");
return -EPERM;
}
ret = ath10k_mac_setup_bcn_p2p_ie(arvif, bcn);
if (ret) {
ath10k_warn(ar, "failed to setup p2p go bcn ie: %d\n", ret);
kfree_skb(bcn);
return ret;
}
/* P2P IE is inserted by firmware automatically (as configured above)
* so remove it from the base beacon template to avoid duplicate P2P
* IEs in beacon frames.
*/
ath10k_mac_remove_vendor_ie(bcn, WLAN_OUI_WFA, WLAN_OUI_TYPE_WFA_P2P,
offsetof(struct ieee80211_mgmt,
u.beacon.variable));
ret = ath10k_wmi_bcn_tmpl(ar, arvif->vdev_id, offs.tim_offset, bcn, 0,
0, NULL, 0);
kfree_skb(bcn);
if (ret) {
ath10k_warn(ar, "failed to submit beacon template command: %d\n",
ret);
return ret;
}
return 0;
}
static int ath10k_mac_setup_prb_tmpl(struct ath10k_vif *arvif)
{
struct ath10k *ar = arvif->ar;
struct ieee80211_hw *hw = ar->hw;
struct ieee80211_vif *vif = arvif->vif;
struct sk_buff *prb;
int ret;
if (!test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map))
return 0;
if (arvif->vdev_type != WMI_VDEV_TYPE_AP)
return 0;
/* For mesh, probe response and beacon share the same template */
if (ieee80211_vif_is_mesh(vif))
return 0;
prb = ieee80211_proberesp_get(hw, vif);
if (!prb) {
ath10k_warn(ar, "failed to get probe resp template from mac80211\n");
return -EPERM;
}
ret = ath10k_wmi_prb_tmpl(ar, arvif->vdev_id, prb);
kfree_skb(prb);
if (ret) {
ath10k_warn(ar, "failed to submit probe resp template command: %d\n",
ret);
return ret;
}
return 0;
}
static int ath10k_mac_vif_fix_hidden_ssid(struct ath10k_vif *arvif)
{
struct ath10k *ar = arvif->ar;
struct cfg80211_chan_def def;
int ret;
/* When originally vdev is started during assign_vif_chanctx() some
* information is missing, notably SSID. Firmware revisions with beacon
* offloading require the SSID to be provided during vdev (re)start to
* handle hidden SSID properly.
*
* Vdev restart must be done after vdev has been both started and
* upped. Otherwise some firmware revisions (at least 10.2) fail to
* deliver vdev restart response event causing timeouts during vdev
* syncing in ath10k.
*
* Note: The vdev down/up and template reinstallation could be skipped
* since only wmi-tlv firmware are known to have beacon offload and
* wmi-tlv doesn't seem to misbehave like 10.2 wrt vdev restart
* response delivery. It's probably more robust to keep it as is.
*/
if (!test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map))
return 0;
if (WARN_ON(!arvif->is_started))
return -EINVAL;
if (WARN_ON(!arvif->is_up))
return -EINVAL;
if (WARN_ON(ath10k_mac_vif_chan(arvif->vif, &def)))
return -EINVAL;
ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id);
if (ret) {
ath10k_warn(ar, "failed to bring down ap vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
/* Vdev down reset beacon & presp templates. Reinstall them. Otherwise
* firmware will crash upon vdev up.
*/
ret = ath10k_mac_setup_bcn_tmpl(arvif);
if (ret) {
ath10k_warn(ar, "failed to update beacon template: %d\n", ret);
return ret;
}
ret = ath10k_mac_setup_prb_tmpl(arvif);
if (ret) {
ath10k_warn(ar, "failed to update presp template: %d\n", ret);
return ret;
}
ret = ath10k_vdev_restart(arvif, &def);
if (ret) {
ath10k_warn(ar, "failed to restart ap vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
ret = ath10k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid,
arvif->bssid);
if (ret) {
ath10k_warn(ar, "failed to bring up ap vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
return 0;
}
static void ath10k_control_beaconing(struct ath10k_vif *arvif,
struct ieee80211_bss_conf *info)
{
struct ath10k *ar = arvif->ar;
int ret = 0;
lockdep_assert_held(&arvif->ar->conf_mutex);
if (!info->enable_beacon) {
ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id);
if (ret)
ath10k_warn(ar, "failed to down vdev_id %i: %d\n",
arvif->vdev_id, ret);
arvif->is_up = false;
spin_lock_bh(&arvif->ar->data_lock);
ath10k_mac_vif_beacon_free(arvif);
spin_unlock_bh(&arvif->ar->data_lock);
return;
}
arvif->tx_seq_no = 0x1000;
arvif->aid = 0;
ether_addr_copy(arvif->bssid, info->bssid);
ret = ath10k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid,
arvif->bssid);
if (ret) {
ath10k_warn(ar, "failed to bring up vdev %d: %i\n",
arvif->vdev_id, ret);
return;
}
arvif->is_up = true;
ret = ath10k_mac_vif_fix_hidden_ssid(arvif);
if (ret) {
ath10k_warn(ar, "failed to fix hidden ssid for vdev %i, expect trouble: %d\n",
arvif->vdev_id, ret);
return;
}
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d up\n", arvif->vdev_id);
}
static void ath10k_control_ibss(struct ath10k_vif *arvif,
struct ieee80211_vif *vif)
{
struct ath10k *ar = arvif->ar;
u32 vdev_param;
int ret = 0;
lockdep_assert_held(&arvif->ar->conf_mutex);
if (!vif->cfg.ibss_joined) {
if (is_zero_ether_addr(arvif->bssid))
return;
eth_zero_addr(arvif->bssid);
return;
}
vdev_param = arvif->ar->wmi.vdev_param->atim_window;
ret = ath10k_wmi_vdev_set_param(arvif->ar, arvif->vdev_id, vdev_param,
ATH10K_DEFAULT_ATIM);
if (ret)
ath10k_warn(ar, "failed to set IBSS ATIM for vdev %d: %d\n",
arvif->vdev_id, ret);
}
static int ath10k_mac_vif_recalc_ps_wake_threshold(struct ath10k_vif *arvif)
{
struct ath10k *ar = arvif->ar;
u32 param;
u32 value;
int ret;
lockdep_assert_held(&arvif->ar->conf_mutex);
if (arvif->u.sta.uapsd)
value = WMI_STA_PS_TX_WAKE_THRESHOLD_NEVER;
else
value = WMI_STA_PS_TX_WAKE_THRESHOLD_ALWAYS;
param = WMI_STA_PS_PARAM_TX_WAKE_THRESHOLD;
ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param, value);
if (ret) {
ath10k_warn(ar, "failed to submit ps wake threshold %u on vdev %i: %d\n",
value, arvif->vdev_id, ret);
return ret;
}
return 0;
}
static int ath10k_mac_vif_recalc_ps_poll_count(struct ath10k_vif *arvif)
{
struct ath10k *ar = arvif->ar;
u32 param;
u32 value;
int ret;
lockdep_assert_held(&arvif->ar->conf_mutex);
if (arvif->u.sta.uapsd)
value = WMI_STA_PS_PSPOLL_COUNT_UAPSD;
else
value = WMI_STA_PS_PSPOLL_COUNT_NO_MAX;
param = WMI_STA_PS_PARAM_PSPOLL_COUNT;
ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
param, value);
if (ret) {
ath10k_warn(ar, "failed to submit ps poll count %u on vdev %i: %d\n",
value, arvif->vdev_id, ret);
return ret;
}
return 0;
}
static int ath10k_mac_num_vifs_started(struct ath10k *ar)
{
struct ath10k_vif *arvif;
int num = 0;
lockdep_assert_held(&ar->conf_mutex);
list_for_each_entry(arvif, &ar->arvifs, list)
if (arvif->is_started)
num++;
return num;
}
static int ath10k_mac_vif_setup_ps(struct ath10k_vif *arvif)
{
struct ath10k *ar = arvif->ar;
struct ieee80211_vif *vif = arvif->vif;
struct ieee80211_conf *conf = &ar->hw->conf;
enum wmi_sta_powersave_param param;
enum wmi_sta_ps_mode psmode;
int ret;
int ps_timeout;
bool enable_ps;
lockdep_assert_held(&arvif->ar->conf_mutex);
if (arvif->vif->type != NL80211_IFTYPE_STATION)
return 0;
enable_ps = arvif->ps;
if (enable_ps && ath10k_mac_num_vifs_started(ar) > 1 &&
!test_bit(ATH10K_FW_FEATURE_MULTI_VIF_PS_SUPPORT,
ar->running_fw->fw_file.fw_features)) {
ath10k_warn(ar, "refusing to enable ps on vdev %i: not supported by fw\n",
arvif->vdev_id);
enable_ps = false;
}
if (!arvif->is_started) {
/* mac80211 can update vif powersave state while disconnected.
* Firmware doesn't behave nicely and consumes more power than
* necessary if PS is disabled on a non-started vdev. Hence
* force-enable PS for non-running vdevs.
*/
psmode = WMI_STA_PS_MODE_ENABLED;
} else if (enable_ps) {
psmode = WMI_STA_PS_MODE_ENABLED;
param = WMI_STA_PS_PARAM_INACTIVITY_TIME;
ps_timeout = conf->dynamic_ps_timeout;
if (ps_timeout == 0) {
/* Firmware doesn't like 0 */
ps_timeout = ieee80211_tu_to_usec(
vif->bss_conf.beacon_int) / 1000;
}
ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param,
ps_timeout);
if (ret) {
ath10k_warn(ar, "failed to set inactivity time for vdev %d: %i\n",
arvif->vdev_id, ret);
return ret;
}
} else {
psmode = WMI_STA_PS_MODE_DISABLED;
}
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d psmode %s\n",
arvif->vdev_id, psmode ? "enable" : "disable");
ret = ath10k_wmi_set_psmode(ar, arvif->vdev_id, psmode);
if (ret) {
ath10k_warn(ar, "failed to set PS Mode %d for vdev %d: %d\n",
psmode, arvif->vdev_id, ret);
return ret;
}
return 0;
}
static int ath10k_mac_vif_disable_keepalive(struct ath10k_vif *arvif)
{
struct ath10k *ar = arvif->ar;
struct wmi_sta_keepalive_arg arg = {};
int ret;
lockdep_assert_held(&arvif->ar->conf_mutex);
if (arvif->vdev_type != WMI_VDEV_TYPE_STA)
return 0;
if (!test_bit(WMI_SERVICE_STA_KEEP_ALIVE, ar->wmi.svc_map))
return 0;
/* Some firmware revisions have a bug and ignore the `enabled` field.
* Instead use the interval to disable the keepalive.
*/
arg.vdev_id = arvif->vdev_id;
arg.enabled = 1;
arg.method = WMI_STA_KEEPALIVE_METHOD_NULL_FRAME;
arg.interval = WMI_STA_KEEPALIVE_INTERVAL_DISABLE;
ret = ath10k_wmi_sta_keepalive(ar, &arg);
if (ret) {
ath10k_warn(ar, "failed to submit keepalive on vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
return 0;
}
static void ath10k_mac_vif_ap_csa_count_down(struct ath10k_vif *arvif)
{
struct ath10k *ar = arvif->ar;
struct ieee80211_vif *vif = arvif->vif;
int ret;
lockdep_assert_held(&arvif->ar->conf_mutex);
if (WARN_ON(!test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map)))
return;
if (arvif->vdev_type != WMI_VDEV_TYPE_AP)
return;
if (!vif->bss_conf.csa_active)
return;
if (!arvif->is_up)
return;
if (!ieee80211_beacon_cntdwn_is_complete(vif, 0)) {
ieee80211_beacon_update_cntdwn(vif, 0);
ret = ath10k_mac_setup_bcn_tmpl(arvif);
if (ret)
ath10k_warn(ar, "failed to update bcn tmpl during csa: %d\n",
ret);
ret = ath10k_mac_setup_prb_tmpl(arvif);
if (ret)
ath10k_warn(ar, "failed to update prb tmpl during csa: %d\n",
ret);
} else {
ieee80211_csa_finish(vif, 0);
}
}
static void ath10k_mac_vif_ap_csa_work(struct work_struct *work)
{
struct ath10k_vif *arvif = container_of(work, struct ath10k_vif,
ap_csa_work);
struct ath10k *ar = arvif->ar;
mutex_lock(&ar->conf_mutex);
ath10k_mac_vif_ap_csa_count_down(arvif);
mutex_unlock(&ar->conf_mutex);
}
static void ath10k_mac_handle_beacon_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct sk_buff *skb = data;
struct ieee80211_mgmt *mgmt = (void *)skb->data;
struct ath10k_vif *arvif = (void *)vif->drv_priv;
if (vif->type != NL80211_IFTYPE_STATION)
return;
if (!ether_addr_equal(mgmt->bssid, vif->bss_conf.bssid))
return;
cancel_delayed_work(&arvif->connection_loss_work);
}
void ath10k_mac_handle_beacon(struct ath10k *ar, struct sk_buff *skb)
{
ieee80211_iterate_active_interfaces_atomic(ar->hw,
ATH10K_ITER_NORMAL_FLAGS,
ath10k_mac_handle_beacon_iter,
skb);
}
static void ath10k_mac_handle_beacon_miss_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
u32 *vdev_id = data;
struct ath10k_vif *arvif = (void *)vif->drv_priv;
struct ath10k *ar = arvif->ar;
struct ieee80211_hw *hw = ar->hw;
if (arvif->vdev_id != *vdev_id)
return;
if (!arvif->is_up)
return;
ieee80211_beacon_loss(vif);
/* Firmware doesn't report beacon loss events repeatedly. If AP probe
* (done by mac80211) succeeds but beacons do not resume then it
* doesn't make sense to continue operation. Queue connection loss work
* which can be cancelled when beacon is received.
*/
ieee80211_queue_delayed_work(hw, &arvif->connection_loss_work,
ATH10K_CONNECTION_LOSS_HZ);
}
void ath10k_mac_handle_beacon_miss(struct ath10k *ar, u32 vdev_id)
{
ieee80211_iterate_active_interfaces_atomic(ar->hw,
ATH10K_ITER_NORMAL_FLAGS,
ath10k_mac_handle_beacon_miss_iter,
&vdev_id);
}
static void ath10k_mac_vif_sta_connection_loss_work(struct work_struct *work)
{
struct ath10k_vif *arvif = container_of(work, struct ath10k_vif,
connection_loss_work.work);
struct ieee80211_vif *vif = arvif->vif;
if (!arvif->is_up)
return;
ieee80211_connection_loss(vif);
}
/**********************/
/* Station management */
/**********************/
static u32 ath10k_peer_assoc_h_listen_intval(struct ath10k *ar,
struct ieee80211_vif *vif)
{
/* Some firmware revisions have unstable STA powersave when listen
* interval is set too high (e.g. 5). The symptoms are firmware doesn't
* generate NullFunc frames properly even if buffered frames have been
* indicated in Beacon TIM. Firmware would seldom wake up to pull
* buffered frames. Often pinging the device from AP would simply fail.
*
* As a workaround set it to 1.
*/
if (vif->type == NL80211_IFTYPE_STATION)
return 1;
return ar->hw->conf.listen_interval;
}
static void ath10k_peer_assoc_h_basic(struct ath10k *ar,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct wmi_peer_assoc_complete_arg *arg)
{
struct ath10k_vif *arvif = (void *)vif->drv_priv;
u32 aid;
lockdep_assert_held(&ar->conf_mutex);
if (vif->type == NL80211_IFTYPE_STATION)
aid = vif->cfg.aid;
else
aid = sta->aid;
ether_addr_copy(arg->addr, sta->addr);
arg->vdev_id = arvif->vdev_id;
arg->peer_aid = aid;
arg->peer_flags |= arvif->ar->wmi.peer_flags->auth;
arg->peer_listen_intval = ath10k_peer_assoc_h_listen_intval(ar, vif);
arg->peer_num_spatial_streams = 1;
arg->peer_caps = vif->bss_conf.assoc_capability;
}
static void ath10k_peer_assoc_h_crypto(struct ath10k *ar,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct wmi_peer_assoc_complete_arg *arg)
{
struct ieee80211_bss_conf *info = &vif->bss_conf;
struct cfg80211_chan_def def;
struct cfg80211_bss *bss;
const u8 *rsnie = NULL;
const u8 *wpaie = NULL;
lockdep_assert_held(&ar->conf_mutex);
if (WARN_ON(ath10k_mac_vif_chan(vif, &def)))
return;
bss = cfg80211_get_bss(ar->hw->wiphy, def.chan, info->bssid,
vif->cfg.ssid_len ? vif->cfg.ssid : NULL,
vif->cfg.ssid_len,
IEEE80211_BSS_TYPE_ANY, IEEE80211_PRIVACY_ANY);
if (bss) {
const struct cfg80211_bss_ies *ies;
rcu_read_lock();
rsnie = ieee80211_bss_get_ie(bss, WLAN_EID_RSN);
ies = rcu_dereference(bss->ies);
wpaie = cfg80211_find_vendor_ie(WLAN_OUI_MICROSOFT,
WLAN_OUI_TYPE_MICROSOFT_WPA,
ies->data,
ies->len);
rcu_read_unlock();
cfg80211_put_bss(ar->hw->wiphy, bss);
}
/* FIXME: base on RSN IE/WPA IE is a correct idea? */
if (rsnie || wpaie) {
ath10k_dbg(ar, ATH10K_DBG_WMI, "%s: rsn ie found\n", __func__);
arg->peer_flags |= ar->wmi.peer_flags->need_ptk_4_way;
}
if (wpaie) {
ath10k_dbg(ar, ATH10K_DBG_WMI, "%s: wpa ie found\n", __func__);
arg->peer_flags |= ar->wmi.peer_flags->need_gtk_2_way;
}
if (sta->mfp &&
test_bit(ATH10K_FW_FEATURE_MFP_SUPPORT,
ar->running_fw->fw_file.fw_features)) {
arg->peer_flags |= ar->wmi.peer_flags->pmf;
}
}
static void ath10k_peer_assoc_h_rates(struct ath10k *ar,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct wmi_peer_assoc_complete_arg *arg)
{
struct ath10k_vif *arvif = (void *)vif->drv_priv;
struct wmi_rate_set_arg *rateset = &arg->peer_legacy_rates;
struct cfg80211_chan_def def;
const struct ieee80211_supported_band *sband;
const struct ieee80211_rate *rates;
enum nl80211_band band;
u32 ratemask;
u8 rate;
int i;
lockdep_assert_held(&ar->conf_mutex);
if (WARN_ON(ath10k_mac_vif_chan(vif, &def)))
return;
band = def.chan->band;
sband = ar->hw->wiphy->bands[band];
ratemask = sta->deflink.supp_rates[band];
ratemask &= arvif->bitrate_mask.control[band].legacy;
rates = sband->bitrates;
rateset->num_rates = 0;
for (i = 0; i < 32; i++, ratemask >>= 1, rates++) {
if (!(ratemask & 1))
continue;
rate = ath10k_mac_bitrate_to_rate(rates->bitrate);
rateset->rates[rateset->num_rates] = rate;
rateset->num_rates++;
}
}
static bool
ath10k_peer_assoc_h_ht_masked(const u8 ht_mcs_mask[IEEE80211_HT_MCS_MASK_LEN])
{
int nss;
for (nss = 0; nss < IEEE80211_HT_MCS_MASK_LEN; nss++)
if (ht_mcs_mask[nss])
return false;
return true;
}
static bool
ath10k_peer_assoc_h_vht_masked(const u16 vht_mcs_mask[NL80211_VHT_NSS_MAX])
{
int nss;
for (nss = 0; nss < NL80211_VHT_NSS_MAX; nss++)
if (vht_mcs_mask[nss])
return false;
return true;
}
static void ath10k_peer_assoc_h_ht(struct ath10k *ar,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct wmi_peer_assoc_complete_arg *arg)
{
const struct ieee80211_sta_ht_cap *ht_cap = &sta->deflink.ht_cap;
struct ath10k_vif *arvif = (void *)vif->drv_priv;
struct cfg80211_chan_def def;
enum nl80211_band band;
const u8 *ht_mcs_mask;
const u16 *vht_mcs_mask;
int i, n;
u8 max_nss;
u32 stbc;
lockdep_assert_held(&ar->conf_mutex);
if (WARN_ON(ath10k_mac_vif_chan(vif, &def)))
return;
if (!ht_cap->ht_supported)
return;
band = def.chan->band;
ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs;
vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs;
if (ath10k_peer_assoc_h_ht_masked(ht_mcs_mask) &&
ath10k_peer_assoc_h_vht_masked(vht_mcs_mask))
return;
arg->peer_flags |= ar->wmi.peer_flags->ht;
arg->peer_max_mpdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
ht_cap->ampdu_factor)) - 1;
arg->peer_mpdu_density =
ath10k_parse_mpdudensity(ht_cap->ampdu_density);
arg->peer_ht_caps = ht_cap->cap;
arg->peer_rate_caps |= WMI_RC_HT_FLAG;
if (ht_cap->cap & IEEE80211_HT_CAP_LDPC_CODING)
arg->peer_flags |= ar->wmi.peer_flags->ldbc;
if (sta->deflink.bandwidth >= IEEE80211_STA_RX_BW_40) {
arg->peer_flags |= ar->wmi.peer_flags->bw40;
arg->peer_rate_caps |= WMI_RC_CW40_FLAG;
}
if (arvif->bitrate_mask.control[band].gi != NL80211_TXRATE_FORCE_LGI) {
if (ht_cap->cap & IEEE80211_HT_CAP_SGI_20)
arg->peer_rate_caps |= WMI_RC_SGI_FLAG;
if (ht_cap->cap & IEEE80211_HT_CAP_SGI_40)
arg->peer_rate_caps |= WMI_RC_SGI_FLAG;
}
if (ht_cap->cap & IEEE80211_HT_CAP_TX_STBC) {
arg->peer_rate_caps |= WMI_RC_TX_STBC_FLAG;
arg->peer_flags |= ar->wmi.peer_flags->stbc;
}
if (ht_cap->cap & IEEE80211_HT_CAP_RX_STBC) {
stbc = ht_cap->cap & IEEE80211_HT_CAP_RX_STBC;
stbc = stbc >> IEEE80211_HT_CAP_RX_STBC_SHIFT;
stbc = stbc << WMI_RC_RX_STBC_FLAG_S;
arg->peer_rate_caps |= stbc;
arg->peer_flags |= ar->wmi.peer_flags->stbc;
}
if (ht_cap->mcs.rx_mask[1] && ht_cap->mcs.rx_mask[2])
arg->peer_rate_caps |= WMI_RC_TS_FLAG;
else if (ht_cap->mcs.rx_mask[1])
arg->peer_rate_caps |= WMI_RC_DS_FLAG;
for (i = 0, n = 0, max_nss = 0; i < IEEE80211_HT_MCS_MASK_LEN * 8; i++)
if ((ht_cap->mcs.rx_mask[i / 8] & BIT(i % 8)) &&
(ht_mcs_mask[i / 8] & BIT(i % 8))) {
max_nss = (i / 8) + 1;
arg->peer_ht_rates.rates[n++] = i;
}
/*
* This is a workaround for HT-enabled STAs which break the spec
* and have no HT capabilities RX mask (no HT RX MCS map).
*
* As per spec, in section 20.3.5 Modulation and coding scheme (MCS),
* MCS 0 through 7 are mandatory in 20MHz with 800 ns GI at all STAs.
*
* Firmware asserts if such situation occurs.
*/
if (n == 0) {
arg->peer_ht_rates.num_rates = 8;
for (i = 0; i < arg->peer_ht_rates.num_rates; i++)
arg->peer_ht_rates.rates[i] = i;
} else {
arg->peer_ht_rates.num_rates = n;
arg->peer_num_spatial_streams = min(sta->deflink.rx_nss,
max_nss);
}
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac ht peer %pM mcs cnt %d nss %d\n",
arg->addr,
arg->peer_ht_rates.num_rates,
arg->peer_num_spatial_streams);
}
static int ath10k_peer_assoc_qos_ap(struct ath10k *ar,
struct ath10k_vif *arvif,
struct ieee80211_sta *sta)
{
u32 uapsd = 0;
u32 max_sp = 0;
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
if (sta->wme && sta->uapsd_queues) {
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac uapsd_queues 0x%x max_sp %d\n",
sta->uapsd_queues, sta->max_sp);
if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO)
uapsd |= WMI_AP_PS_UAPSD_AC3_DELIVERY_EN |
WMI_AP_PS_UAPSD_AC3_TRIGGER_EN;
if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VI)
uapsd |= WMI_AP_PS_UAPSD_AC2_DELIVERY_EN |
WMI_AP_PS_UAPSD_AC2_TRIGGER_EN;
if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BK)
uapsd |= WMI_AP_PS_UAPSD_AC1_DELIVERY_EN |
WMI_AP_PS_UAPSD_AC1_TRIGGER_EN;
if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BE)
uapsd |= WMI_AP_PS_UAPSD_AC0_DELIVERY_EN |
WMI_AP_PS_UAPSD_AC0_TRIGGER_EN;
if (sta->max_sp < MAX_WMI_AP_PS_PEER_PARAM_MAX_SP)
max_sp = sta->max_sp;
ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id,
sta->addr,
WMI_AP_PS_PEER_PARAM_UAPSD,
uapsd);
if (ret) {
ath10k_warn(ar, "failed to set ap ps peer param uapsd for vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id,
sta->addr,
WMI_AP_PS_PEER_PARAM_MAX_SP,
max_sp);
if (ret) {
ath10k_warn(ar, "failed to set ap ps peer param max sp for vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
/* TODO setup this based on STA listen interval and
* beacon interval. Currently we don't know
* sta->listen_interval - mac80211 patch required.
* Currently use 10 seconds
*/
ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id, sta->addr,
WMI_AP_PS_PEER_PARAM_AGEOUT_TIME,
10);
if (ret) {
ath10k_warn(ar, "failed to set ap ps peer param ageout time for vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
}
return 0;
}
static u16
ath10k_peer_assoc_h_vht_limit(u16 tx_mcs_set,
const u16 vht_mcs_limit[NL80211_VHT_NSS_MAX])
{
int idx_limit;
int nss;
u16 mcs_map;
u16 mcs;
for (nss = 0; nss < NL80211_VHT_NSS_MAX; nss++) {
mcs_map = ath10k_mac_get_max_vht_mcs_map(tx_mcs_set, nss) &
vht_mcs_limit[nss];
if (mcs_map)
idx_limit = fls(mcs_map) - 1;
else
idx_limit = -1;
switch (idx_limit) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
default:
/* see ath10k_mac_can_set_bitrate_mask() */
WARN_ON(1);
fallthrough;
case -1:
mcs = IEEE80211_VHT_MCS_NOT_SUPPORTED;
break;
case 7:
mcs = IEEE80211_VHT_MCS_SUPPORT_0_7;
break;
case 8:
mcs = IEEE80211_VHT_MCS_SUPPORT_0_8;
break;
case 9:
mcs = IEEE80211_VHT_MCS_SUPPORT_0_9;
break;
}
tx_mcs_set &= ~(0x3 << (nss * 2));
tx_mcs_set |= mcs << (nss * 2);
}
return tx_mcs_set;
}
static u32 get_160mhz_nss_from_maxrate(int rate)
{
u32 nss;
switch (rate) {
case 780:
nss = 1;
break;
case 1560:
nss = 2;
break;
case 2106:
nss = 3; /* not support MCS9 from spec*/
break;
case 3120:
nss = 4;
break;
default:
nss = 1;
}
return nss;
}
static void ath10k_peer_assoc_h_vht(struct ath10k *ar,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct wmi_peer_assoc_complete_arg *arg)
{
const struct ieee80211_sta_vht_cap *vht_cap = &sta->deflink.vht_cap;
struct ath10k_vif *arvif = (void *)vif->drv_priv;
struct ath10k_hw_params *hw = &ar->hw_params;
struct cfg80211_chan_def def;
enum nl80211_band band;
const u16 *vht_mcs_mask;
u8 ampdu_factor;
u8 max_nss, vht_mcs;
int i;
if (WARN_ON(ath10k_mac_vif_chan(vif, &def)))
return;
if (!vht_cap->vht_supported)
return;
band = def.chan->band;
vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs;
if (ath10k_peer_assoc_h_vht_masked(vht_mcs_mask))
return;
arg->peer_flags |= ar->wmi.peer_flags->vht;
if (def.chan->band == NL80211_BAND_2GHZ)
arg->peer_flags |= ar->wmi.peer_flags->vht_2g;
arg->peer_vht_caps = vht_cap->cap;
ampdu_factor = (vht_cap->cap &
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK) >>
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
/* Workaround: Some Netgear/Linksys 11ac APs set Rx A-MPDU factor to
* zero in VHT IE. Using it would result in degraded throughput.
* arg->peer_max_mpdu at this point contains HT max_mpdu so keep
* it if VHT max_mpdu is smaller.
*/
arg->peer_max_mpdu = max(arg->peer_max_mpdu,
(1U << (IEEE80211_HT_MAX_AMPDU_FACTOR +
ampdu_factor)) - 1);
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80)
arg->peer_flags |= ar->wmi.peer_flags->bw80;
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160)
arg->peer_flags |= ar->wmi.peer_flags->bw160;
/* Calculate peer NSS capability from VHT capabilities if STA
* supports VHT.
*/
for (i = 0, max_nss = 0, vht_mcs = 0; i < NL80211_VHT_NSS_MAX; i++) {
vht_mcs = __le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map) >>
(2 * i) & 3;
if ((vht_mcs != IEEE80211_VHT_MCS_NOT_SUPPORTED) &&
vht_mcs_mask[i])
max_nss = i + 1;
}
arg->peer_num_spatial_streams = min(sta->deflink.rx_nss, max_nss);
arg->peer_vht_rates.rx_max_rate =
__le16_to_cpu(vht_cap->vht_mcs.rx_highest);
arg->peer_vht_rates.rx_mcs_set =
__le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map);
arg->peer_vht_rates.tx_max_rate =
__le16_to_cpu(vht_cap->vht_mcs.tx_highest);
arg->peer_vht_rates.tx_mcs_set = ath10k_peer_assoc_h_vht_limit(
__le16_to_cpu(vht_cap->vht_mcs.tx_mcs_map), vht_mcs_mask);
/* Configure bandwidth-NSS mapping to FW
* for the chip's tx chains setting on 160Mhz bw
*/
if (arg->peer_phymode == MODE_11AC_VHT160 ||
arg->peer_phymode == MODE_11AC_VHT80_80) {
u32 rx_nss;
u32 max_rate;
max_rate = arg->peer_vht_rates.rx_max_rate;
rx_nss = get_160mhz_nss_from_maxrate(max_rate);
if (rx_nss == 0)
rx_nss = arg->peer_num_spatial_streams;
else
rx_nss = min(arg->peer_num_spatial_streams, rx_nss);
max_rate = hw->vht160_mcs_tx_highest;
rx_nss = min(rx_nss, get_160mhz_nss_from_maxrate(max_rate));
arg->peer_bw_rxnss_override =
FIELD_PREP(WMI_PEER_NSS_MAP_ENABLE, 1) |
FIELD_PREP(WMI_PEER_NSS_160MHZ_MASK, (rx_nss - 1));
if (arg->peer_phymode == MODE_11AC_VHT80_80) {
arg->peer_bw_rxnss_override |=
FIELD_PREP(WMI_PEER_NSS_80_80MHZ_MASK, (rx_nss - 1));
}
}
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac vht peer %pM max_mpdu %d flags 0x%x peer_rx_nss_override 0x%x\n",
sta->addr, arg->peer_max_mpdu,
arg->peer_flags, arg->peer_bw_rxnss_override);
}
static void ath10k_peer_assoc_h_qos(struct ath10k *ar,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct wmi_peer_assoc_complete_arg *arg)
{
struct ath10k_vif *arvif = (void *)vif->drv_priv;
switch (arvif->vdev_type) {
case WMI_VDEV_TYPE_AP:
if (sta->wme)
arg->peer_flags |= arvif->ar->wmi.peer_flags->qos;
if (sta->wme && sta->uapsd_queues) {
arg->peer_flags |= arvif->ar->wmi.peer_flags->apsd;
arg->peer_rate_caps |= WMI_RC_UAPSD_FLAG;
}
break;
case WMI_VDEV_TYPE_STA:
if (sta->wme)
arg->peer_flags |= arvif->ar->wmi.peer_flags->qos;
break;
case WMI_VDEV_TYPE_IBSS:
if (sta->wme)
arg->peer_flags |= arvif->ar->wmi.peer_flags->qos;
break;
default:
break;
}
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac peer %pM qos %d\n",
sta->addr, !!(arg->peer_flags &
arvif->ar->wmi.peer_flags->qos));
}
static bool ath10k_mac_sta_has_ofdm_only(struct ieee80211_sta *sta)
{
return sta->deflink.supp_rates[NL80211_BAND_2GHZ] >>
ATH10K_MAC_FIRST_OFDM_RATE_IDX;
}
static enum wmi_phy_mode ath10k_mac_get_phymode_vht(struct ath10k *ar,
struct ieee80211_sta *sta)
{
struct ieee80211_sta_vht_cap *vht_cap = &sta->deflink.vht_cap;
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160) {
switch (vht_cap->cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK) {
case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ:
return MODE_11AC_VHT160;
case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ:
return MODE_11AC_VHT80_80;
default:
/* not sure if this is a valid case? */
return MODE_11AC_VHT160;
}
}
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80)
return MODE_11AC_VHT80;
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40)
return MODE_11AC_VHT40;
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_20)
return MODE_11AC_VHT20;
return MODE_UNKNOWN;
}
static void ath10k_peer_assoc_h_phymode(struct ath10k *ar,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct wmi_peer_assoc_complete_arg *arg)
{
struct ath10k_vif *arvif = (void *)vif->drv_priv;
struct cfg80211_chan_def def;
enum nl80211_band band;
const u8 *ht_mcs_mask;
const u16 *vht_mcs_mask;
enum wmi_phy_mode phymode = MODE_UNKNOWN;
if (WARN_ON(ath10k_mac_vif_chan(vif, &def)))
return;
band = def.chan->band;
ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs;
vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs;
switch (band) {
case NL80211_BAND_2GHZ:
if (sta->deflink.vht_cap.vht_supported &&
!ath10k_peer_assoc_h_vht_masked(vht_mcs_mask)) {
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40)
phymode = MODE_11AC_VHT40;
else
phymode = MODE_11AC_VHT20;
} else if (sta->deflink.ht_cap.ht_supported &&
!ath10k_peer_assoc_h_ht_masked(ht_mcs_mask)) {
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40)
phymode = MODE_11NG_HT40;
else
phymode = MODE_11NG_HT20;
} else if (ath10k_mac_sta_has_ofdm_only(sta)) {
phymode = MODE_11G;
} else {
phymode = MODE_11B;
}
break;
case NL80211_BAND_5GHZ:
/*
* Check VHT first.
*/
if (sta->deflink.vht_cap.vht_supported &&
!ath10k_peer_assoc_h_vht_masked(vht_mcs_mask)) {
phymode = ath10k_mac_get_phymode_vht(ar, sta);
} else if (sta->deflink.ht_cap.ht_supported &&
!ath10k_peer_assoc_h_ht_masked(ht_mcs_mask)) {
if (sta->deflink.bandwidth >= IEEE80211_STA_RX_BW_40)
phymode = MODE_11NA_HT40;
else
phymode = MODE_11NA_HT20;
} else {
phymode = MODE_11A;
}
break;
default:
break;
}
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac peer %pM phymode %s\n",
sta->addr, ath10k_wmi_phymode_str(phymode));
arg->peer_phymode = phymode;
WARN_ON(phymode == MODE_UNKNOWN);
}
static int ath10k_peer_assoc_prepare(struct ath10k *ar,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct wmi_peer_assoc_complete_arg *arg)
{
lockdep_assert_held(&ar->conf_mutex);
memset(arg, 0, sizeof(*arg));
ath10k_peer_assoc_h_basic(ar, vif, sta, arg);
ath10k_peer_assoc_h_crypto(ar, vif, sta, arg);
ath10k_peer_assoc_h_rates(ar, vif, sta, arg);
ath10k_peer_assoc_h_ht(ar, vif, sta, arg);
ath10k_peer_assoc_h_phymode(ar, vif, sta, arg);
ath10k_peer_assoc_h_vht(ar, vif, sta, arg);
ath10k_peer_assoc_h_qos(ar, vif, sta, arg);
return 0;
}
static const u32 ath10k_smps_map[] = {
[WLAN_HT_CAP_SM_PS_STATIC] = WMI_PEER_SMPS_STATIC,
[WLAN_HT_CAP_SM_PS_DYNAMIC] = WMI_PEER_SMPS_DYNAMIC,
[WLAN_HT_CAP_SM_PS_INVALID] = WMI_PEER_SMPS_PS_NONE,
[WLAN_HT_CAP_SM_PS_DISABLED] = WMI_PEER_SMPS_PS_NONE,
};
static int ath10k_setup_peer_smps(struct ath10k *ar, struct ath10k_vif *arvif,
const u8 *addr,
const struct ieee80211_sta_ht_cap *ht_cap)
{
int smps;
if (!ht_cap->ht_supported)
return 0;
smps = ht_cap->cap & IEEE80211_HT_CAP_SM_PS;
smps >>= IEEE80211_HT_CAP_SM_PS_SHIFT;
if (smps >= ARRAY_SIZE(ath10k_smps_map))
return -EINVAL;
return ath10k_wmi_peer_set_param(ar, arvif->vdev_id, addr,
ar->wmi.peer_param->smps_state,
ath10k_smps_map[smps]);
}
static int ath10k_mac_vif_recalc_txbf(struct ath10k *ar,
struct ieee80211_vif *vif,
struct ieee80211_sta_vht_cap vht_cap)
{
struct ath10k_vif *arvif = (void *)vif->drv_priv;
int ret;
u32 param;
u32 value;
if (ath10k_wmi_get_txbf_conf_scheme(ar) != WMI_TXBF_CONF_AFTER_ASSOC)
return 0;
if (!(ar->vht_cap_info &
(IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE |
IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE)))
return 0;
param = ar->wmi.vdev_param->txbf;
value = 0;
if (WARN_ON(param == WMI_VDEV_PARAM_UNSUPPORTED))
return 0;
/* The following logic is correct. If a remote STA advertises support
* for being a beamformer then we should enable us being a beamformee.
*/
if (ar->vht_cap_info &
(IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE)) {
if (vht_cap.cap & IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE)
value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFEE;
if (vht_cap.cap & IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE)
value |= WMI_VDEV_PARAM_TXBF_MU_TX_BFEE;
}
if (ar->vht_cap_info &
(IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE |
IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE)) {
if (vht_cap.cap & IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE)
value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFER;
if (vht_cap.cap & IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE)
value |= WMI_VDEV_PARAM_TXBF_MU_TX_BFER;
}
if (value & WMI_VDEV_PARAM_TXBF_MU_TX_BFEE)
value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFEE;
if (value & WMI_VDEV_PARAM_TXBF_MU_TX_BFER)
value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFER;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param, value);
if (ret) {
ath10k_warn(ar, "failed to submit vdev param txbf 0x%x: %d\n",
value, ret);
return ret;
}
return 0;
}
static bool ath10k_mac_is_connected(struct ath10k *ar)
{
struct ath10k_vif *arvif;
list_for_each_entry(arvif, &ar->arvifs, list) {
if (arvif->is_up && arvif->vdev_type == WMI_VDEV_TYPE_STA)
return true;
}
return false;
}
static int ath10k_mac_txpower_setup(struct ath10k *ar, int txpower)
{
int ret;
u32 param;
int tx_power_2g, tx_power_5g;
bool connected;
lockdep_assert_held(&ar->conf_mutex);
/* ath10k internally uses unit of 0.5 dBm so multiply by 2 */
tx_power_2g = txpower * 2;
tx_power_5g = txpower * 2;
connected = ath10k_mac_is_connected(ar);
if (connected && ar->tx_power_2g_limit)
if (tx_power_2g > ar->tx_power_2g_limit)
tx_power_2g = ar->tx_power_2g_limit;
if (connected && ar->tx_power_5g_limit)
if (tx_power_5g > ar->tx_power_5g_limit)
tx_power_5g = ar->tx_power_5g_limit;
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac txpower 2g: %d, 5g: %d\n",
tx_power_2g, tx_power_5g);
param = ar->wmi.pdev_param->txpower_limit2g;
ret = ath10k_wmi_pdev_set_param(ar, param, tx_power_2g);
if (ret) {
ath10k_warn(ar, "failed to set 2g txpower %d: %d\n",
tx_power_2g, ret);
return ret;
}
param = ar->wmi.pdev_param->txpower_limit5g;
ret = ath10k_wmi_pdev_set_param(ar, param, tx_power_5g);
if (ret) {
ath10k_warn(ar, "failed to set 5g txpower %d: %d\n",
tx_power_5g, ret);
return ret;
}
return 0;
}
static int ath10k_mac_txpower_recalc(struct ath10k *ar)
{
struct ath10k_vif *arvif;
int ret, txpower = -1;
lockdep_assert_held(&ar->conf_mutex);
list_for_each_entry(arvif, &ar->arvifs, list) {
/* txpower not initialized yet? */
if (arvif->txpower == INT_MIN)
continue;
if (txpower == -1)
txpower = arvif->txpower;
else
txpower = min(txpower, arvif->txpower);
}
if (txpower == -1)
return 0;
ret = ath10k_mac_txpower_setup(ar, txpower);
if (ret) {
ath10k_warn(ar, "failed to setup tx power %d: %d\n",
txpower, ret);
return ret;
}
return 0;
}
static int ath10k_mac_set_sar_power(struct ath10k *ar)
{
if (!ar->hw_params.dynamic_sar_support)
return -EOPNOTSUPP;
if (!ath10k_mac_is_connected(ar))
return 0;
/* if connected, then arvif->txpower must be valid */
return ath10k_mac_txpower_recalc(ar);
}
static int ath10k_mac_set_sar_specs(struct ieee80211_hw *hw,
const struct cfg80211_sar_specs *sar)
{
const struct cfg80211_sar_sub_specs *sub_specs;
struct ath10k *ar = hw->priv;
u32 i;
int ret;
mutex_lock(&ar->conf_mutex);
if (!ar->hw_params.dynamic_sar_support) {
ret = -EOPNOTSUPP;
goto err;
}
if (!sar || sar->type != NL80211_SAR_TYPE_POWER ||
sar->num_sub_specs == 0) {
ret = -EINVAL;
goto err;
}
sub_specs = sar->sub_specs;
/* 0dbm is not a practical value for ath10k, so use 0
* as no SAR limitation on it.
*/
ar->tx_power_2g_limit = 0;
ar->tx_power_5g_limit = 0;
/* note the power is in 0.25dbm unit, while ath10k uses
* 0.5dbm unit.
*/
for (i = 0; i < sar->num_sub_specs; i++) {
if (sub_specs->freq_range_index == 0)
ar->tx_power_2g_limit = sub_specs->power / 2;
else if (sub_specs->freq_range_index == 1)
ar->tx_power_5g_limit = sub_specs->power / 2;
sub_specs++;
}
ret = ath10k_mac_set_sar_power(ar);
if (ret) {
ath10k_warn(ar, "failed to set sar power: %d", ret);
goto err;
}
err:
mutex_unlock(&ar->conf_mutex);
return ret;
}
/* can be called only in mac80211 callbacks due to `key_count` usage */
static void ath10k_bss_assoc(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *bss_conf)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = (void *)vif->drv_priv;
struct ieee80211_sta_ht_cap ht_cap;
struct ieee80211_sta_vht_cap vht_cap;
struct wmi_peer_assoc_complete_arg peer_arg;
struct ieee80211_sta *ap_sta;
int ret;
lockdep_assert_held(&ar->conf_mutex);
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %i assoc bssid %pM aid %d\n",
arvif->vdev_id, arvif->bssid, arvif->aid);
rcu_read_lock();
ap_sta = ieee80211_find_sta(vif, bss_conf->bssid);
if (!ap_sta) {
ath10k_warn(ar, "failed to find station entry for bss %pM vdev %i\n",
bss_conf->bssid, arvif->vdev_id);
rcu_read_unlock();
return;
}
/* ap_sta must be accessed only within rcu section which must be left
* before calling ath10k_setup_peer_smps() which might sleep.
*/
ht_cap = ap_sta->deflink.ht_cap;
vht_cap = ap_sta->deflink.vht_cap;
ret = ath10k_peer_assoc_prepare(ar, vif, ap_sta, &peer_arg);
if (ret) {
ath10k_warn(ar, "failed to prepare peer assoc for %pM vdev %i: %d\n",
bss_conf->bssid, arvif->vdev_id, ret);
rcu_read_unlock();
return;
}
rcu_read_unlock();
ret = ath10k_wmi_peer_assoc(ar, &peer_arg);
if (ret) {
ath10k_warn(ar, "failed to run peer assoc for %pM vdev %i: %d\n",
bss_conf->bssid, arvif->vdev_id, ret);
return;
}
ret = ath10k_setup_peer_smps(ar, arvif, bss_conf->bssid, &ht_cap);
if (ret) {
ath10k_warn(ar, "failed to setup peer SMPS for vdev %i: %d\n",
arvif->vdev_id, ret);
return;
}
ret = ath10k_mac_vif_recalc_txbf(ar, vif, vht_cap);
if (ret) {
ath10k_warn(ar, "failed to recalc txbf for vdev %i on bss %pM: %d\n",
arvif->vdev_id, bss_conf->bssid, ret);
return;
}
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac vdev %d up (associated) bssid %pM aid %d\n",
arvif->vdev_id, bss_conf->bssid, vif->cfg.aid);
WARN_ON(arvif->is_up);
arvif->aid = vif->cfg.aid;
ether_addr_copy(arvif->bssid, bss_conf->bssid);
ret = ath10k_wmi_pdev_set_param(ar,
ar->wmi.pdev_param->peer_stats_info_enable, 1);
if (ret)
ath10k_warn(ar, "failed to enable peer stats info: %d\n", ret);
ret = ath10k_wmi_vdev_up(ar, arvif->vdev_id, arvif->aid, arvif->bssid);
if (ret) {
ath10k_warn(ar, "failed to set vdev %d up: %d\n",
arvif->vdev_id, ret);
return;
}
arvif->is_up = true;
ath10k_mac_set_sar_power(ar);
/* Workaround: Some firmware revisions (tested with qca6174
* WLAN.RM.2.0-00073) have buggy powersave state machine and must be
* poked with peer param command.
*/
ret = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, arvif->bssid,
ar->wmi.peer_param->dummy_var, 1);
if (ret) {
ath10k_warn(ar, "failed to poke peer %pM param for ps workaround on vdev %i: %d\n",
arvif->bssid, arvif->vdev_id, ret);
return;
}
}
static void ath10k_bss_disassoc(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = (void *)vif->drv_priv;
struct ieee80211_sta_vht_cap vht_cap = {};
int ret;
lockdep_assert_held(&ar->conf_mutex);
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %i disassoc bssid %pM\n",
arvif->vdev_id, arvif->bssid);
ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id);
if (ret)
ath10k_warn(ar, "failed to down vdev %i: %d\n",
arvif->vdev_id, ret);
arvif->def_wep_key_idx = -1;
ret = ath10k_mac_vif_recalc_txbf(ar, vif, vht_cap);
if (ret) {
ath10k_warn(ar, "failed to recalc txbf for vdev %i: %d\n",
arvif->vdev_id, ret);
return;
}
arvif->is_up = false;
ath10k_mac_txpower_recalc(ar);
cancel_delayed_work_sync(&arvif->connection_loss_work);
}
static int ath10k_new_peer_tid_config(struct ath10k *ar,
struct ieee80211_sta *sta,
struct ath10k_vif *arvif)
{
struct wmi_per_peer_per_tid_cfg_arg arg = {};
struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
bool config_apply;
int ret, i;
for (i = 0; i < ATH10K_TID_MAX; i++) {
config_apply = false;
if (arvif->retry_long[i] || arvif->ampdu[i] ||
arvif->rate_ctrl[i] || arvif->rtscts[i]) {
config_apply = true;
arg.tid = i;
arg.vdev_id = arvif->vdev_id;
arg.retry_count = arvif->retry_long[i];
arg.aggr_control = arvif->ampdu[i];
arg.rate_ctrl = arvif->rate_ctrl[i];
arg.rcode_flags = arvif->rate_code[i];
if (arvif->rtscts[i])
arg.ext_tid_cfg_bitmap =
WMI_EXT_TID_RTS_CTS_CONFIG;
else
arg.ext_tid_cfg_bitmap = 0;
arg.rtscts_ctrl = arvif->rtscts[i];
}
if (arvif->noack[i]) {
arg.ack_policy = arvif->noack[i];
arg.rate_ctrl = WMI_TID_CONFIG_RATE_CONTROL_DEFAULT_LOWEST_RATE;
arg.aggr_control = WMI_TID_CONFIG_AGGR_CONTROL_DISABLE;
config_apply = true;
}
/* Assign default value(-1) to newly connected station.
* This is to identify station specific tid configuration not
* configured for the station.
*/
arsta->retry_long[i] = -1;
arsta->noack[i] = -1;
arsta->ampdu[i] = -1;
if (!config_apply)
continue;
ether_addr_copy(arg.peer_macaddr.addr, sta->addr);
ret = ath10k_wmi_set_per_peer_per_tid_cfg(ar, &arg);
if (ret) {
ath10k_warn(ar, "failed to set per tid retry/aggr config for sta %pM: %d\n",
sta->addr, ret);
return ret;
}
memset(&arg, 0, sizeof(arg));
}
return 0;
}
static int ath10k_station_assoc(struct ath10k *ar,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
bool reassoc)
{
struct ath10k_vif *arvif = (void *)vif->drv_priv;
struct wmi_peer_assoc_complete_arg peer_arg;
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_peer_assoc_prepare(ar, vif, sta, &peer_arg);
if (ret) {
ath10k_warn(ar, "failed to prepare WMI peer assoc for %pM vdev %i: %i\n",
sta->addr, arvif->vdev_id, ret);
return ret;
}
ret = ath10k_wmi_peer_assoc(ar, &peer_arg);
if (ret) {
ath10k_warn(ar, "failed to run peer assoc for STA %pM vdev %i: %d\n",
sta->addr, arvif->vdev_id, ret);
return ret;
}
/* Re-assoc is run only to update supported rates for given station. It
* doesn't make much sense to reconfigure the peer completely.
*/
if (!reassoc) {
ret = ath10k_setup_peer_smps(ar, arvif, sta->addr,
&sta->deflink.ht_cap);
if (ret) {
ath10k_warn(ar, "failed to setup peer SMPS for vdev %d: %d\n",
arvif->vdev_id, ret);
return ret;
}
ret = ath10k_peer_assoc_qos_ap(ar, arvif, sta);
if (ret) {
ath10k_warn(ar, "failed to set qos params for STA %pM for vdev %i: %d\n",
sta->addr, arvif->vdev_id, ret);
return ret;
}
if (!sta->wme) {
arvif->num_legacy_stations++;
ret = ath10k_recalc_rtscts_prot(arvif);
if (ret) {
ath10k_warn(ar, "failed to recalculate rts/cts prot for vdev %d: %d\n",
arvif->vdev_id, ret);
return ret;
}
}
/* Plumb cached keys only for static WEP */
if ((arvif->def_wep_key_idx != -1) && (!sta->tdls)) {
ret = ath10k_install_peer_wep_keys(arvif, sta->addr);
if (ret) {
ath10k_warn(ar, "failed to install peer wep keys for vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
}
}
if (!test_bit(WMI_SERVICE_PEER_TID_CONFIGS_SUPPORT, ar->wmi.svc_map))
return ret;
return ath10k_new_peer_tid_config(ar, sta, arvif);
}
static int ath10k_station_disassoc(struct ath10k *ar,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
struct ath10k_vif *arvif = (void *)vif->drv_priv;
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
if (!sta->wme) {
arvif->num_legacy_stations--;
ret = ath10k_recalc_rtscts_prot(arvif);
if (ret) {
ath10k_warn(ar, "failed to recalculate rts/cts prot for vdev %d: %d\n",
arvif->vdev_id, ret);
return ret;
}
}
ret = ath10k_clear_peer_keys(arvif, sta->addr);
if (ret) {
ath10k_warn(ar, "failed to clear all peer wep keys for vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
return ret;
}
/**************/
/* Regulatory */
/**************/
static int ath10k_update_channel_list(struct ath10k *ar)
{
struct ieee80211_hw *hw = ar->hw;
struct ieee80211_supported_band **bands;
enum nl80211_band band;
struct ieee80211_channel *channel;
struct wmi_scan_chan_list_arg arg = {0};
struct wmi_channel_arg *ch;
bool passive;
int len;
int ret;
int i;
lockdep_assert_held(&ar->conf_mutex);
bands = hw->wiphy->bands;
for (band = 0; band < NUM_NL80211_BANDS; band++) {
if (!bands[band])
continue;
for (i = 0; i < bands[band]->n_channels; i++) {
if (bands[band]->channels[i].flags &
IEEE80211_CHAN_DISABLED)
continue;
arg.n_channels++;
}
}
len = sizeof(struct wmi_channel_arg) * arg.n_channels;
arg.channels = kzalloc(len, GFP_KERNEL);
if (!arg.channels)
return -ENOMEM;
ch = arg.channels;
for (band = 0; band < NUM_NL80211_BANDS; band++) {
if (!bands[band])
continue;
for (i = 0; i < bands[band]->n_channels; i++) {
channel = &bands[band]->channels[i];
if (channel->flags & IEEE80211_CHAN_DISABLED)
continue;
ch->allow_ht = true;
/* FIXME: when should we really allow VHT? */
ch->allow_vht = true;
ch->allow_ibss =
!(channel->flags & IEEE80211_CHAN_NO_IR);
ch->ht40plus =
!(channel->flags & IEEE80211_CHAN_NO_HT40PLUS);
ch->chan_radar =
!!(channel->flags & IEEE80211_CHAN_RADAR);
passive = channel->flags & IEEE80211_CHAN_NO_IR;
ch->passive = passive;
/* the firmware is ignoring the "radar" flag of the
* channel and is scanning actively using Probe Requests
* on "Radar detection"/DFS channels which are not
* marked as "available"
*/
ch->passive |= ch->chan_radar;
ch->freq = channel->center_freq;
ch->band_center_freq1 = channel->center_freq;
ch->min_power = 0;
ch->max_power = channel->max_power * 2;
ch->max_reg_power = channel->max_reg_power * 2;
ch->max_antenna_gain = channel->max_antenna_gain;
ch->reg_class_id = 0; /* FIXME */
/* FIXME: why use only legacy modes, why not any
* HT/VHT modes? Would that even make any
* difference?
*/
if (channel->band == NL80211_BAND_2GHZ)
ch->mode = MODE_11G;
else
ch->mode = MODE_11A;
if (WARN_ON_ONCE(ch->mode == MODE_UNKNOWN))
continue;
ath10k_dbg(ar, ATH10K_DBG_WMI,
"mac channel [%zd/%d] freq %d maxpower %d regpower %d antenna %d mode %d\n",
ch - arg.channels, arg.n_channels,
ch->freq, ch->max_power, ch->max_reg_power,
ch->max_antenna_gain, ch->mode);
ch++;
}
}
ret = ath10k_wmi_scan_chan_list(ar, &arg);
kfree(arg.channels);
return ret;
}
static enum wmi_dfs_region
ath10k_mac_get_dfs_region(enum nl80211_dfs_regions dfs_region)
{
switch (dfs_region) {
case NL80211_DFS_UNSET:
return WMI_UNINIT_DFS_DOMAIN;
case NL80211_DFS_FCC:
return WMI_FCC_DFS_DOMAIN;
case NL80211_DFS_ETSI:
return WMI_ETSI_DFS_DOMAIN;
case NL80211_DFS_JP:
return WMI_MKK4_DFS_DOMAIN;
}
return WMI_UNINIT_DFS_DOMAIN;
}
static void ath10k_regd_update(struct ath10k *ar)
{
struct reg_dmn_pair_mapping *regpair;
int ret;
enum wmi_dfs_region wmi_dfs_reg;
enum nl80211_dfs_regions nl_dfs_reg;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_update_channel_list(ar);
if (ret)
ath10k_warn(ar, "failed to update channel list: %d\n", ret);
regpair = ar->ath_common.regulatory.regpair;
if (IS_ENABLED(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) {
nl_dfs_reg = ar->dfs_detector->region;
wmi_dfs_reg = ath10k_mac_get_dfs_region(nl_dfs_reg);
} else {
wmi_dfs_reg = WMI_UNINIT_DFS_DOMAIN;
}
/* Target allows setting up per-band regdomain but ath_common provides
* a combined one only
*/
ret = ath10k_wmi_pdev_set_regdomain(ar,
regpair->reg_domain,
regpair->reg_domain, /* 2ghz */
regpair->reg_domain, /* 5ghz */
regpair->reg_2ghz_ctl,
regpair->reg_5ghz_ctl,
wmi_dfs_reg);
if (ret)
ath10k_warn(ar, "failed to set pdev regdomain: %d\n", ret);
}
static void ath10k_mac_update_channel_list(struct ath10k *ar,
struct ieee80211_supported_band *band)
{
int i;
if (ar->low_5ghz_chan && ar->high_5ghz_chan) {
for (i = 0; i < band->n_channels; i++) {
if (band->channels[i].center_freq < ar->low_5ghz_chan ||
band->channels[i].center_freq > ar->high_5ghz_chan)
band->channels[i].flags |=
IEEE80211_CHAN_DISABLED;
}
}
}
static void ath10k_reg_notifier(struct wiphy *wiphy,
struct regulatory_request *request)
{
struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
struct ath10k *ar = hw->priv;
bool result;
ath_reg_notifier_apply(wiphy, request, &ar->ath_common.regulatory);
if (IS_ENABLED(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) {
ath10k_dbg(ar, ATH10K_DBG_REGULATORY, "dfs region 0x%x\n",
request->dfs_region);
result = ar->dfs_detector->set_dfs_domain(ar->dfs_detector,
request->dfs_region);
if (!result)
ath10k_warn(ar, "DFS region 0x%X not supported, will trigger radar for every pulse\n",
request->dfs_region);
}
mutex_lock(&ar->conf_mutex);
if (ar->state == ATH10K_STATE_ON)
ath10k_regd_update(ar);
mutex_unlock(&ar->conf_mutex);
if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY)
ath10k_mac_update_channel_list(ar,
ar->hw->wiphy->bands[NL80211_BAND_5GHZ]);
}
static void ath10k_stop_radar_confirmation(struct ath10k *ar)
{
spin_lock_bh(&ar->data_lock);
ar->radar_conf_state = ATH10K_RADAR_CONFIRMATION_STOPPED;
spin_unlock_bh(&ar->data_lock);
cancel_work_sync(&ar->radar_confirmation_work);
}
/***************/
/* TX handlers */
/***************/
enum ath10k_mac_tx_path {
ATH10K_MAC_TX_HTT,
ATH10K_MAC_TX_HTT_MGMT,
ATH10K_MAC_TX_WMI_MGMT,
ATH10K_MAC_TX_UNKNOWN,
};
void ath10k_mac_tx_lock(struct ath10k *ar, int reason)
{
lockdep_assert_held(&ar->htt.tx_lock);
WARN_ON(reason >= ATH10K_TX_PAUSE_MAX);
ar->tx_paused |= BIT(reason);
ieee80211_stop_queues(ar->hw);
}
static void ath10k_mac_tx_unlock_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct ath10k *ar = data;
struct ath10k_vif *arvif = (void *)vif->drv_priv;
if (arvif->tx_paused)
return;
ieee80211_wake_queue(ar->hw, arvif->vdev_id);
}
void ath10k_mac_tx_unlock(struct ath10k *ar, int reason)
{
lockdep_assert_held(&ar->htt.tx_lock);
WARN_ON(reason >= ATH10K_TX_PAUSE_MAX);
ar->tx_paused &= ~BIT(reason);
if (ar->tx_paused)
return;
ieee80211_iterate_active_interfaces_atomic(ar->hw,
ATH10K_ITER_RESUME_FLAGS,
ath10k_mac_tx_unlock_iter,
ar);
ieee80211_wake_queue(ar->hw, ar->hw->offchannel_tx_hw_queue);
}
void ath10k_mac_vif_tx_lock(struct ath10k_vif *arvif, int reason)
{
struct ath10k *ar = arvif->ar;
lockdep_assert_held(&ar->htt.tx_lock);
WARN_ON(reason >= BITS_PER_LONG);
arvif->tx_paused |= BIT(reason);
ieee80211_stop_queue(ar->hw, arvif->vdev_id);
}
void ath10k_mac_vif_tx_unlock(struct ath10k_vif *arvif, int reason)
{
struct ath10k *ar = arvif->ar;
lockdep_assert_held(&ar->htt.tx_lock);
WARN_ON(reason >= BITS_PER_LONG);
arvif->tx_paused &= ~BIT(reason);
if (ar->tx_paused)
return;
if (arvif->tx_paused)
return;
ieee80211_wake_queue(ar->hw, arvif->vdev_id);
}
static void ath10k_mac_vif_handle_tx_pause(struct ath10k_vif *arvif,
enum wmi_tlv_tx_pause_id pause_id,
enum wmi_tlv_tx_pause_action action)
{
struct ath10k *ar = arvif->ar;
lockdep_assert_held(&ar->htt.tx_lock);
switch (action) {
case WMI_TLV_TX_PAUSE_ACTION_STOP:
ath10k_mac_vif_tx_lock(arvif, pause_id);
break;
case WMI_TLV_TX_PAUSE_ACTION_WAKE:
ath10k_mac_vif_tx_unlock(arvif, pause_id);
break;
default:
ath10k_dbg(ar, ATH10K_DBG_BOOT,
"received unknown tx pause action %d on vdev %i, ignoring\n",
action, arvif->vdev_id);
break;
}
}
struct ath10k_mac_tx_pause {
u32 vdev_id;
enum wmi_tlv_tx_pause_id pause_id;
enum wmi_tlv_tx_pause_action action;
};
static void ath10k_mac_handle_tx_pause_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct ath10k_vif *arvif = (void *)vif->drv_priv;
struct ath10k_mac_tx_pause *arg = data;
if (arvif->vdev_id != arg->vdev_id)
return;
ath10k_mac_vif_handle_tx_pause(arvif, arg->pause_id, arg->action);
}
void ath10k_mac_handle_tx_pause_vdev(struct ath10k *ar, u32 vdev_id,
enum wmi_tlv_tx_pause_id pause_id,
enum wmi_tlv_tx_pause_action action)
{
struct ath10k_mac_tx_pause arg = {
.vdev_id = vdev_id,
.pause_id = pause_id,
.action = action,
};
spin_lock_bh(&ar->htt.tx_lock);
ieee80211_iterate_active_interfaces_atomic(ar->hw,
ATH10K_ITER_RESUME_FLAGS,
ath10k_mac_handle_tx_pause_iter,
&arg);
spin_unlock_bh(&ar->htt.tx_lock);
}
static enum ath10k_hw_txrx_mode
ath10k_mac_tx_h_get_txmode(struct ath10k *ar,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct sk_buff *skb)
{
const struct ieee80211_hdr *hdr = (void *)skb->data;
const struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(skb);
__le16 fc = hdr->frame_control;
if (IEEE80211_SKB_CB(skb)->flags & IEEE80211_TX_CTL_HW_80211_ENCAP)
return ATH10K_HW_TXRX_ETHERNET;
if (!vif || vif->type == NL80211_IFTYPE_MONITOR)
return ATH10K_HW_TXRX_RAW;
if (ieee80211_is_mgmt(fc))
return ATH10K_HW_TXRX_MGMT;
/* Workaround:
*
* NullFunc frames are mostly used to ping if a client or AP are still
* reachable and responsive. This implies tx status reports must be
* accurate - otherwise either mac80211 or userspace (e.g. hostapd) can
* come to a conclusion that the other end disappeared and tear down
* BSS connection or it can never disconnect from BSS/client (which is
* the case).
*
* Firmware with HTT older than 3.0 delivers incorrect tx status for
* NullFunc frames to driver. However there's a HTT Mgmt Tx command
* which seems to deliver correct tx reports for NullFunc frames. The
* downside of using it is it ignores client powersave state so it can
* end up disconnecting sleeping clients in AP mode. It should fix STA
* mode though because AP don't sleep.
*/
if (ar->htt.target_version_major < 3 &&
(ieee80211_is_nullfunc(fc) || ieee80211_is_qos_nullfunc(fc)) &&
!test_bit(ATH10K_FW_FEATURE_HAS_WMI_MGMT_TX,
ar->running_fw->fw_file.fw_features))
return ATH10K_HW_TXRX_MGMT;
/* Workaround:
*
* Some wmi-tlv firmwares for qca6174 have broken Tx key selection for
* NativeWifi txmode - it selects AP key instead of peer key. It seems
* to work with Ethernet txmode so use it.
*
* FIXME: Check if raw mode works with TDLS.
*/
if (ieee80211_is_data_present(fc) && sta && sta->tdls)
return ATH10K_HW_TXRX_ETHERNET;
if (test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags) ||
skb_cb->flags & ATH10K_SKB_F_RAW_TX)
return ATH10K_HW_TXRX_RAW;
return ATH10K_HW_TXRX_NATIVE_WIFI;
}
static bool ath10k_tx_h_use_hwcrypto(struct ieee80211_vif *vif,
struct sk_buff *skb)
{
const struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
const struct ieee80211_hdr *hdr = (void *)skb->data;
const u32 mask = IEEE80211_TX_INTFL_DONT_ENCRYPT |
IEEE80211_TX_CTL_INJECTED;
if (!ieee80211_has_protected(hdr->frame_control))
return false;
if ((info->flags & mask) == mask)
return false;
if (vif)
return !((struct ath10k_vif *)vif->drv_priv)->nohwcrypt;
return true;
}
/* HTT Tx uses Native Wifi tx mode which expects 802.11 frames without QoS
* Control in the header.
*/
static void ath10k_tx_h_nwifi(struct ieee80211_hw *hw, struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (void *)skb->data;
struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
u8 *qos_ctl;
if (!ieee80211_is_data_qos(hdr->frame_control))
return;
qos_ctl = ieee80211_get_qos_ctl(hdr);
memmove(skb->data + IEEE80211_QOS_CTL_LEN,
skb->data, (void *)qos_ctl - (void *)skb->data);
skb_pull(skb, IEEE80211_QOS_CTL_LEN);
/* Some firmware revisions don't handle sending QoS NullFunc well.
* These frames are mainly used for CQM purposes so it doesn't really
* matter whether QoS NullFunc or NullFunc are sent.
*/
hdr = (void *)skb->data;
if (ieee80211_is_qos_nullfunc(hdr->frame_control))
cb->flags &= ~ATH10K_SKB_F_QOS;
hdr->frame_control &= ~__cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
}
static void ath10k_tx_h_8023(struct sk_buff *skb)
{
struct ieee80211_hdr *hdr;
struct rfc1042_hdr *rfc1042;
struct ethhdr *eth;
size_t hdrlen;
u8 da[ETH_ALEN];
u8 sa[ETH_ALEN];
__be16 type;
hdr = (void *)skb->data;
hdrlen = ieee80211_hdrlen(hdr->frame_control);
rfc1042 = (void *)skb->data + hdrlen;
ether_addr_copy(da, ieee80211_get_DA(hdr));
ether_addr_copy(sa, ieee80211_get_SA(hdr));
type = rfc1042->snap_type;
skb_pull(skb, hdrlen + sizeof(*rfc1042));
skb_push(skb, sizeof(*eth));
eth = (void *)skb->data;
ether_addr_copy(eth->h_dest, da);
ether_addr_copy(eth->h_source, sa);
eth->h_proto = type;
}
static void ath10k_tx_h_add_p2p_noa_ie(struct ath10k *ar,
struct ieee80211_vif *vif,
struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct ath10k_vif *arvif = (void *)vif->drv_priv;
/* This is case only for P2P_GO */
if (vif->type != NL80211_IFTYPE_AP || !vif->p2p)
return;
if (unlikely(ieee80211_is_probe_resp(hdr->frame_control))) {
spin_lock_bh(&ar->data_lock);
if (arvif->u.ap.noa_data)
if (!pskb_expand_head(skb, 0, arvif->u.ap.noa_len,
GFP_ATOMIC))
skb_put_data(skb, arvif->u.ap.noa_data,
arvif->u.ap.noa_len);
spin_unlock_bh(&ar->data_lock);
}
}
static void ath10k_mac_tx_h_fill_cb(struct ath10k *ar,
struct ieee80211_vif *vif,
struct ieee80211_txq *txq,
struct ieee80211_sta *sta,
struct sk_buff *skb, u16 airtime)
{
struct ieee80211_hdr *hdr = (void *)skb->data;
struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
const struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
bool is_data = ieee80211_is_data(hdr->frame_control) ||
ieee80211_is_data_qos(hdr->frame_control);
struct ath10k_vif *arvif = (void *)vif->drv_priv;
struct ath10k_sta *arsta;
u8 tid, *qos_ctl;
bool noack = false;
cb->flags = 0;
if (info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP) {
cb->flags |= ATH10K_SKB_F_QOS; /* Assume data frames are QoS */
goto finish_cb_fill;
}
if (!ath10k_tx_h_use_hwcrypto(vif, skb))
cb->flags |= ATH10K_SKB_F_NO_HWCRYPT;
if (ieee80211_is_mgmt(hdr->frame_control))
cb->flags |= ATH10K_SKB_F_MGMT;
if (ieee80211_is_data_qos(hdr->frame_control)) {
cb->flags |= ATH10K_SKB_F_QOS;
qos_ctl = ieee80211_get_qos_ctl(hdr);
tid = (*qos_ctl) & IEEE80211_QOS_CTL_TID_MASK;
if (arvif->noack[tid] == WMI_PEER_TID_CONFIG_NOACK)
noack = true;
if (sta) {
arsta = (struct ath10k_sta *)sta->drv_priv;
if (arsta->noack[tid] == WMI_PEER_TID_CONFIG_NOACK)
noack = true;
if (arsta->noack[tid] == WMI_PEER_TID_CONFIG_ACK)
noack = false;
}
if (noack)
cb->flags |= ATH10K_SKB_F_NOACK_TID;
}
/* Data frames encrypted in software will be posted to firmware
* with tx encap mode set to RAW. Ex: Multicast traffic generated
* for a specific VLAN group will always be encrypted in software.
*/
if (is_data && ieee80211_has_protected(hdr->frame_control) &&
!info->control.hw_key) {
cb->flags |= ATH10K_SKB_F_NO_HWCRYPT;
cb->flags |= ATH10K_SKB_F_RAW_TX;
}
finish_cb_fill:
cb->vif = vif;
cb->txq = txq;
cb->airtime_est = airtime;
if (sta) {
arsta = (struct ath10k_sta *)sta->drv_priv;
spin_lock_bh(&ar->data_lock);
cb->ucast_cipher = arsta->ucast_cipher;
spin_unlock_bh(&ar->data_lock);
}
}
bool ath10k_mac_tx_frm_has_freq(struct ath10k *ar)
{
/* FIXME: Not really sure since when the behaviour changed. At some
* point new firmware stopped requiring creation of peer entries for
* offchannel tx (and actually creating them causes issues with wmi-htc
* tx credit replenishment and reliability). Assuming it's at least 3.4
* because that's when the `freq` was introduced to TX_FRM HTT command.
*/
return (ar->htt.target_version_major >= 3 &&
ar->htt.target_version_minor >= 4 &&
ar->running_fw->fw_file.htt_op_version == ATH10K_FW_HTT_OP_VERSION_TLV);
}
static int ath10k_mac_tx_wmi_mgmt(struct ath10k *ar, struct sk_buff *skb)
{
struct sk_buff_head *q = &ar->wmi_mgmt_tx_queue;
if (skb_queue_len_lockless(q) >= ATH10K_MAX_NUM_MGMT_PENDING) {
ath10k_warn(ar, "wmi mgmt tx queue is full\n");
return -ENOSPC;
}
skb_queue_tail(q, skb);
ieee80211_queue_work(ar->hw, &ar->wmi_mgmt_tx_work);
return 0;
}
static enum ath10k_mac_tx_path
ath10k_mac_tx_h_get_txpath(struct ath10k *ar,
struct sk_buff *skb,
enum ath10k_hw_txrx_mode txmode)
{
switch (txmode) {
case ATH10K_HW_TXRX_RAW:
case ATH10K_HW_TXRX_NATIVE_WIFI:
case ATH10K_HW_TXRX_ETHERNET:
return ATH10K_MAC_TX_HTT;
case ATH10K_HW_TXRX_MGMT:
if (test_bit(ATH10K_FW_FEATURE_HAS_WMI_MGMT_TX,
ar->running_fw->fw_file.fw_features) ||
test_bit(WMI_SERVICE_MGMT_TX_WMI,
ar->wmi.svc_map))
return ATH10K_MAC_TX_WMI_MGMT;
else if (ar->htt.target_version_major >= 3)
return ATH10K_MAC_TX_HTT;
else
return ATH10K_MAC_TX_HTT_MGMT;
}
return ATH10K_MAC_TX_UNKNOWN;
}
static int ath10k_mac_tx_submit(struct ath10k *ar,
enum ath10k_hw_txrx_mode txmode,
enum ath10k_mac_tx_path txpath,
struct sk_buff *skb)
{
struct ath10k_htt *htt = &ar->htt;
int ret = -EINVAL;
switch (txpath) {
case ATH10K_MAC_TX_HTT:
ret = ath10k_htt_tx(htt, txmode, skb);
break;
case ATH10K_MAC_TX_HTT_MGMT:
ret = ath10k_htt_mgmt_tx(htt, skb);
break;
case ATH10K_MAC_TX_WMI_MGMT:
ret = ath10k_mac_tx_wmi_mgmt(ar, skb);
break;
case ATH10K_MAC_TX_UNKNOWN:
WARN_ON_ONCE(1);
ret = -EINVAL;
break;
}
if (ret) {
ath10k_warn(ar, "failed to transmit packet, dropping: %d\n",
ret);
ieee80211_free_txskb(ar->hw, skb);
}
return ret;
}
/* This function consumes the sk_buff regardless of return value as far as
* caller is concerned so no freeing is necessary afterwards.
*/
static int ath10k_mac_tx(struct ath10k *ar,
struct ieee80211_vif *vif,
enum ath10k_hw_txrx_mode txmode,
enum ath10k_mac_tx_path txpath,
struct sk_buff *skb, bool noque_offchan)
{
struct ieee80211_hw *hw = ar->hw;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
const struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(skb);
int ret;
/* We should disable CCK RATE due to P2P */
if (info->flags & IEEE80211_TX_CTL_NO_CCK_RATE)
ath10k_dbg(ar, ATH10K_DBG_MAC, "IEEE80211_TX_CTL_NO_CCK_RATE\n");
switch (txmode) {
case ATH10K_HW_TXRX_MGMT:
case ATH10K_HW_TXRX_NATIVE_WIFI:
ath10k_tx_h_nwifi(hw, skb);
ath10k_tx_h_add_p2p_noa_ie(ar, vif, skb);
ath10k_tx_h_seq_no(vif, skb);
break;
case ATH10K_HW_TXRX_ETHERNET:
/* Convert 802.11->802.3 header only if the frame was earlier
* encapsulated to 802.11 by mac80211. Otherwise pass it as is.
*/
if (!(info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP))
ath10k_tx_h_8023(skb);
break;
case ATH10K_HW_TXRX_RAW:
if (!test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags) &&
!(skb_cb->flags & ATH10K_SKB_F_RAW_TX)) {
WARN_ON_ONCE(1);
ieee80211_free_txskb(hw, skb);
return -EOPNOTSUPP;
}
}
if (!noque_offchan && info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) {
if (!ath10k_mac_tx_frm_has_freq(ar)) {
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac queued offchannel skb %pK len %d\n",
skb, skb->len);
skb_queue_tail(&ar->offchan_tx_queue, skb);
ieee80211_queue_work(hw, &ar->offchan_tx_work);
return 0;
}
}
ret = ath10k_mac_tx_submit(ar, txmode, txpath, skb);
if (ret) {
ath10k_warn(ar, "failed to submit frame: %d\n", ret);
return ret;
}
return 0;
}
void ath10k_offchan_tx_purge(struct ath10k *ar)
{
struct sk_buff *skb;
for (;;) {
skb = skb_dequeue(&ar->offchan_tx_queue);
if (!skb)
break;
ieee80211_free_txskb(ar->hw, skb);
}
}
void ath10k_offchan_tx_work(struct work_struct *work)
{
struct ath10k *ar = container_of(work, struct ath10k, offchan_tx_work);
struct ath10k_peer *peer;
struct ath10k_vif *arvif;
enum ath10k_hw_txrx_mode txmode;
enum ath10k_mac_tx_path txpath;
struct ieee80211_hdr *hdr;
struct ieee80211_vif *vif;
struct ieee80211_sta *sta;
struct sk_buff *skb;
const u8 *peer_addr;
int vdev_id;
int ret;
unsigned long time_left;
bool tmp_peer_created = false;
/* FW requirement: We must create a peer before FW will send out
* an offchannel frame. Otherwise the frame will be stuck and
* never transmitted. We delete the peer upon tx completion.
* It is unlikely that a peer for offchannel tx will already be
* present. However it may be in some rare cases so account for that.
* Otherwise we might remove a legitimate peer and break stuff.
*/
for (;;) {
skb = skb_dequeue(&ar->offchan_tx_queue);
if (!skb)
break;
mutex_lock(&ar->conf_mutex);
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac offchannel skb %pK len %d\n",
skb, skb->len);
hdr = (struct ieee80211_hdr *)skb->data;
peer_addr = ieee80211_get_DA(hdr);
spin_lock_bh(&ar->data_lock);
vdev_id = ar->scan.vdev_id;
peer = ath10k_peer_find(ar, vdev_id, peer_addr);
spin_unlock_bh(&ar->data_lock);
if (peer) {
ath10k_warn(ar, "peer %pM on vdev %d already present\n",
peer_addr, vdev_id);
} else {
ret = ath10k_peer_create(ar, NULL, NULL, vdev_id,
peer_addr,
WMI_PEER_TYPE_DEFAULT);
if (ret)
ath10k_warn(ar, "failed to create peer %pM on vdev %d: %d\n",
peer_addr, vdev_id, ret);
tmp_peer_created = (ret == 0);
}
spin_lock_bh(&ar->data_lock);
reinit_completion(&ar->offchan_tx_completed);
ar->offchan_tx_skb = skb;
spin_unlock_bh(&ar->data_lock);
/* It's safe to access vif and sta - conf_mutex guarantees that
* sta_state() and remove_interface() are locked exclusively
* out wrt to this offchannel worker.
*/
arvif = ath10k_get_arvif(ar, vdev_id);
if (arvif) {
vif = arvif->vif;
sta = ieee80211_find_sta(vif, peer_addr);
} else {
vif = NULL;
sta = NULL;
}
txmode = ath10k_mac_tx_h_get_txmode(ar, vif, sta, skb);
txpath = ath10k_mac_tx_h_get_txpath(ar, skb, txmode);
ret = ath10k_mac_tx(ar, vif, txmode, txpath, skb, true);
if (ret) {
ath10k_warn(ar, "failed to transmit offchannel frame: %d\n",
ret);
/* not serious */
}
time_left =
wait_for_completion_timeout(&ar->offchan_tx_completed, 3 * HZ);
if (time_left == 0)
ath10k_warn(ar, "timed out waiting for offchannel skb %pK, len: %d\n",
skb, skb->len);
if (!peer && tmp_peer_created) {
ret = ath10k_peer_delete(ar, vdev_id, peer_addr);
if (ret)
ath10k_warn(ar, "failed to delete peer %pM on vdev %d: %d\n",
peer_addr, vdev_id, ret);
}
mutex_unlock(&ar->conf_mutex);
}
}
void ath10k_mgmt_over_wmi_tx_purge(struct ath10k *ar)
{
struct sk_buff *skb;
for (;;) {
skb = skb_dequeue(&ar->wmi_mgmt_tx_queue);
if (!skb)
break;
ieee80211_free_txskb(ar->hw, skb);
}
}
void ath10k_mgmt_over_wmi_tx_work(struct work_struct *work)
{
struct ath10k *ar = container_of(work, struct ath10k, wmi_mgmt_tx_work);
struct sk_buff *skb;
dma_addr_t paddr;
int ret;
for (;;) {
skb = skb_dequeue(&ar->wmi_mgmt_tx_queue);
if (!skb)
break;
if (test_bit(ATH10K_FW_FEATURE_MGMT_TX_BY_REF,
ar->running_fw->fw_file.fw_features)) {
paddr = dma_map_single(ar->dev, skb->data,
skb->len, DMA_TO_DEVICE);
if (dma_mapping_error(ar->dev, paddr)) {
ieee80211_free_txskb(ar->hw, skb);
continue;
}
ret = ath10k_wmi_mgmt_tx_send(ar, skb, paddr);
if (ret) {
ath10k_warn(ar, "failed to transmit management frame by ref via WMI: %d\n",
ret);
/* remove this msdu from idr tracking */
ath10k_wmi_cleanup_mgmt_tx_send(ar, skb);
dma_unmap_single(ar->dev, paddr, skb->len,
DMA_TO_DEVICE);
ieee80211_free_txskb(ar->hw, skb);
}
} else {
ret = ath10k_wmi_mgmt_tx(ar, skb);
if (ret) {
ath10k_warn(ar, "failed to transmit management frame via WMI: %d\n",
ret);
ieee80211_free_txskb(ar->hw, skb);
}
}
}
}
static void ath10k_mac_txq_init(struct ieee80211_txq *txq)
{
struct ath10k_txq *artxq;
if (!txq)
return;
artxq = (void *)txq->drv_priv;
INIT_LIST_HEAD(&artxq->list);
}
static void ath10k_mac_txq_unref(struct ath10k *ar, struct ieee80211_txq *txq)
{
struct ath10k_skb_cb *cb;
struct sk_buff *msdu;
int msdu_id;
if (!txq)
return;
spin_lock_bh(&ar->htt.tx_lock);
idr_for_each_entry(&ar->htt.pending_tx, msdu, msdu_id) {
cb = ATH10K_SKB_CB(msdu);
if (cb->txq == txq)
cb->txq = NULL;
}
spin_unlock_bh(&ar->htt.tx_lock);
}
struct ieee80211_txq *ath10k_mac_txq_lookup(struct ath10k *ar,
u16 peer_id,
u8 tid)
{
struct ath10k_peer *peer;
lockdep_assert_held(&ar->data_lock);
peer = ar->peer_map[peer_id];
if (!peer)
return NULL;
if (peer->removed)
return NULL;
if (peer->sta)
return peer->sta->txq[tid];
else if (peer->vif)
return peer->vif->txq;
else
return NULL;
}
static bool ath10k_mac_tx_can_push(struct ieee80211_hw *hw,
struct ieee80211_txq *txq)
{
struct ath10k *ar = hw->priv;
struct ath10k_txq *artxq = (void *)txq->drv_priv;
/* No need to get locks */
if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH)
return true;
if (ar->htt.num_pending_tx < ar->htt.tx_q_state.num_push_allowed)
return true;
if (artxq->num_fw_queued < artxq->num_push_allowed)
return true;
return false;
}
/* Return estimated airtime in microsecond, which is calculated using last
* reported TX rate. This is just a rough estimation because host driver has no
* knowledge of the actual transmit rate, retries or aggregation. If actual
* airtime can be reported by firmware, then delta between estimated and actual
* airtime can be adjusted from deficit.
*/
#define IEEE80211_ATF_OVERHEAD 100 /* IFS + some slot time */
#define IEEE80211_ATF_OVERHEAD_IFS 16 /* IFS only */
static u16 ath10k_mac_update_airtime(struct ath10k *ar,
struct ieee80211_txq *txq,
struct sk_buff *skb)
{
struct ath10k_sta *arsta;
u32 pktlen;
u16 airtime = 0;
if (!txq || !txq->sta)
return airtime;
if (test_bit(WMI_SERVICE_REPORT_AIRTIME, ar->wmi.svc_map))
return airtime;
spin_lock_bh(&ar->data_lock);
arsta = (struct ath10k_sta *)txq->sta->drv_priv;
pktlen = skb->len + 38; /* Assume MAC header 30, SNAP 8 for most case */
if (arsta->last_tx_bitrate) {
/* airtime in us, last_tx_bitrate in 100kbps */
airtime = (pktlen * 8 * (1000 / 100))
/ arsta->last_tx_bitrate;
/* overhead for media access time and IFS */
airtime += IEEE80211_ATF_OVERHEAD_IFS;
} else {
/* This is mostly for throttle excessive BC/MC frames, and the
* airtime/rate doesn't need be exact. Airtime of BC/MC frames
* in 2G get some discount, which helps prevent very low rate
* frames from being blocked for too long.
*/
airtime = (pktlen * 8 * (1000 / 100)) / 60; /* 6M */
airtime += IEEE80211_ATF_OVERHEAD;
}
spin_unlock_bh(&ar->data_lock);
return airtime;
}
int ath10k_mac_tx_push_txq(struct ieee80211_hw *hw,
struct ieee80211_txq *txq)
{
struct ath10k *ar = hw->priv;
struct ath10k_htt *htt = &ar->htt;
struct ath10k_txq *artxq = (void *)txq->drv_priv;
struct ieee80211_vif *vif = txq->vif;
struct ieee80211_sta *sta = txq->sta;
enum ath10k_hw_txrx_mode txmode;
enum ath10k_mac_tx_path txpath;
struct sk_buff *skb;
struct ieee80211_hdr *hdr;
size_t skb_len;
bool is_mgmt, is_presp;
int ret;
u16 airtime;
spin_lock_bh(&ar->htt.tx_lock);
ret = ath10k_htt_tx_inc_pending(htt);
spin_unlock_bh(&ar->htt.tx_lock);
if (ret)
return ret;
skb = ieee80211_tx_dequeue_ni(hw, txq);
if (!skb) {
spin_lock_bh(&ar->htt.tx_lock);
ath10k_htt_tx_dec_pending(htt);
spin_unlock_bh(&ar->htt.tx_lock);
return -ENOENT;
}
airtime = ath10k_mac_update_airtime(ar, txq, skb);
ath10k_mac_tx_h_fill_cb(ar, vif, txq, sta, skb, airtime);
skb_len = skb->len;
txmode = ath10k_mac_tx_h_get_txmode(ar, vif, sta, skb);
txpath = ath10k_mac_tx_h_get_txpath(ar, skb, txmode);
is_mgmt = (txpath == ATH10K_MAC_TX_HTT_MGMT);
if (is_mgmt) {
hdr = (struct ieee80211_hdr *)skb->data;
is_presp = ieee80211_is_probe_resp(hdr->frame_control);
spin_lock_bh(&ar->htt.tx_lock);
ret = ath10k_htt_tx_mgmt_inc_pending(htt, is_mgmt, is_presp);
if (ret) {
ath10k_htt_tx_dec_pending(htt);
spin_unlock_bh(&ar->htt.tx_lock);
return ret;
}
spin_unlock_bh(&ar->htt.tx_lock);
}
ret = ath10k_mac_tx(ar, vif, txmode, txpath, skb, false);
if (unlikely(ret)) {
ath10k_warn(ar, "failed to push frame: %d\n", ret);
spin_lock_bh(&ar->htt.tx_lock);
ath10k_htt_tx_dec_pending(htt);
if (is_mgmt)
ath10k_htt_tx_mgmt_dec_pending(htt);
spin_unlock_bh(&ar->htt.tx_lock);
return ret;
}
spin_lock_bh(&ar->htt.tx_lock);
artxq->num_fw_queued++;
spin_unlock_bh(&ar->htt.tx_lock);
return skb_len;
}
static int ath10k_mac_schedule_txq(struct ieee80211_hw *hw, u32 ac)
{
struct ieee80211_txq *txq;
int ret = 0;
ieee80211_txq_schedule_start(hw, ac);
while ((txq = ieee80211_next_txq(hw, ac))) {
while (ath10k_mac_tx_can_push(hw, txq)) {
ret = ath10k_mac_tx_push_txq(hw, txq);
if (ret < 0)
break;
}
ieee80211_return_txq(hw, txq, false);
ath10k_htt_tx_txq_update(hw, txq);
if (ret == -EBUSY)
break;
}
ieee80211_txq_schedule_end(hw, ac);
return ret;
}
void ath10k_mac_tx_push_pending(struct ath10k *ar)
{
struct ieee80211_hw *hw = ar->hw;
u32 ac;
if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH)
return;
if (ar->htt.num_pending_tx >= (ar->htt.max_num_pending_tx / 2))
return;
rcu_read_lock();
for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
if (ath10k_mac_schedule_txq(hw, ac) == -EBUSY)
break;
}
rcu_read_unlock();
}
EXPORT_SYMBOL(ath10k_mac_tx_push_pending);
/************/
/* Scanning */
/************/
void __ath10k_scan_finish(struct ath10k *ar)
{
lockdep_assert_held(&ar->data_lock);
switch (ar->scan.state) {
case ATH10K_SCAN_IDLE:
break;
case ATH10K_SCAN_RUNNING:
case ATH10K_SCAN_ABORTING:
if (ar->scan.is_roc && ar->scan.roc_notify)
ieee80211_remain_on_channel_expired(ar->hw);
fallthrough;
case ATH10K_SCAN_STARTING:
if (!ar->scan.is_roc) {
struct cfg80211_scan_info info = {
.aborted = ((ar->scan.state ==
ATH10K_SCAN_ABORTING) ||
(ar->scan.state ==
ATH10K_SCAN_STARTING)),
};
ieee80211_scan_completed(ar->hw, &info);
}
ar->scan.state = ATH10K_SCAN_IDLE;
ar->scan_channel = NULL;
ar->scan.roc_freq = 0;
ath10k_offchan_tx_purge(ar);
cancel_delayed_work(&ar->scan.timeout);
complete(&ar->scan.completed);
break;
}
}
void ath10k_scan_finish(struct ath10k *ar)
{
spin_lock_bh(&ar->data_lock);
__ath10k_scan_finish(ar);
spin_unlock_bh(&ar->data_lock);
}
static int ath10k_scan_stop(struct ath10k *ar)
{
struct wmi_stop_scan_arg arg = {
.req_id = 1, /* FIXME */
.req_type = WMI_SCAN_STOP_ONE,
.u.scan_id = ATH10K_SCAN_ID,
};
int ret;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_wmi_stop_scan(ar, &arg);
if (ret) {
ath10k_warn(ar, "failed to stop wmi scan: %d\n", ret);
goto out;
}
ret = wait_for_completion_timeout(&ar->scan.completed, 3 * HZ);
if (ret == 0) {
ath10k_warn(ar, "failed to receive scan abortion completion: timed out\n");
ret = -ETIMEDOUT;
} else if (ret > 0) {
ret = 0;
}
out:
/* Scan state should be updated upon scan completion but in case
* firmware fails to deliver the event (for whatever reason) it is
* desired to clean up scan state anyway. Firmware may have just
* dropped the scan completion event delivery due to transport pipe
* being overflown with data and/or it can recover on its own before
* next scan request is submitted.
*/
spin_lock_bh(&ar->data_lock);
if (ar->scan.state != ATH10K_SCAN_IDLE)
__ath10k_scan_finish(ar);
spin_unlock_bh(&ar->data_lock);
return ret;
}
static void ath10k_scan_abort(struct ath10k *ar)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
switch (ar->scan.state) {
case ATH10K_SCAN_IDLE:
/* This can happen if timeout worker kicked in and called
* abortion while scan completion was being processed.
*/
break;
case ATH10K_SCAN_STARTING:
case ATH10K_SCAN_ABORTING:
ath10k_warn(ar, "refusing scan abortion due to invalid scan state: %s (%d)\n",
ath10k_scan_state_str(ar->scan.state),
ar->scan.state);
break;
case ATH10K_SCAN_RUNNING:
ar->scan.state = ATH10K_SCAN_ABORTING;
spin_unlock_bh(&ar->data_lock);
ret = ath10k_scan_stop(ar);
if (ret)
ath10k_warn(ar, "failed to abort scan: %d\n", ret);
spin_lock_bh(&ar->data_lock);
break;
}
spin_unlock_bh(&ar->data_lock);
}
void ath10k_scan_timeout_work(struct work_struct *work)
{
struct ath10k *ar = container_of(work, struct ath10k,
scan.timeout.work);
mutex_lock(&ar->conf_mutex);
ath10k_scan_abort(ar);
mutex_unlock(&ar->conf_mutex);
}
static int ath10k_start_scan(struct ath10k *ar,
const struct wmi_start_scan_arg *arg)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_wmi_start_scan(ar, arg);
if (ret)
return ret;
ret = wait_for_completion_timeout(&ar->scan.started, 1 * HZ);
if (ret == 0) {
ret = ath10k_scan_stop(ar);
if (ret)
ath10k_warn(ar, "failed to stop scan: %d\n", ret);
return -ETIMEDOUT;
}
/* If we failed to start the scan, return error code at
* this point. This is probably due to some issue in the
* firmware, but no need to wedge the driver due to that...
*/
spin_lock_bh(&ar->data_lock);
if (ar->scan.state == ATH10K_SCAN_IDLE) {
spin_unlock_bh(&ar->data_lock);
return -EINVAL;
}
spin_unlock_bh(&ar->data_lock);
return 0;
}
/**********************/
/* mac80211 callbacks */
/**********************/
static void ath10k_mac_op_tx(struct ieee80211_hw *hw,
struct ieee80211_tx_control *control,
struct sk_buff *skb)
{
struct ath10k *ar = hw->priv;
struct ath10k_htt *htt = &ar->htt;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_vif *vif = info->control.vif;
struct ieee80211_sta *sta = control->sta;
struct ieee80211_txq *txq = NULL;
enum ath10k_hw_txrx_mode txmode;
enum ath10k_mac_tx_path txpath;
bool is_htt;
bool is_mgmt;
int ret;
u16 airtime;
airtime = ath10k_mac_update_airtime(ar, txq, skb);
ath10k_mac_tx_h_fill_cb(ar, vif, txq, sta, skb, airtime);
txmode = ath10k_mac_tx_h_get_txmode(ar, vif, sta, skb);
txpath = ath10k_mac_tx_h_get_txpath(ar, skb, txmode);
is_htt = (txpath == ATH10K_MAC_TX_HTT ||
txpath == ATH10K_MAC_TX_HTT_MGMT);
is_mgmt = (txpath == ATH10K_MAC_TX_HTT_MGMT);
if (is_htt) {
bool is_presp = false;
spin_lock_bh(&ar->htt.tx_lock);
if (!(info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP)) {
struct ieee80211_hdr *hdr = (void *)skb->data;
is_presp = ieee80211_is_probe_resp(hdr->frame_control);
}
ret = ath10k_htt_tx_inc_pending(htt);
if (ret) {
ath10k_warn(ar, "failed to increase tx pending count: %d, dropping\n",
ret);
spin_unlock_bh(&ar->htt.tx_lock);
ieee80211_free_txskb(ar->hw, skb);
return;
}
ret = ath10k_htt_tx_mgmt_inc_pending(htt, is_mgmt, is_presp);
if (ret) {
ath10k_dbg(ar, ATH10K_DBG_MAC, "failed to increase tx mgmt pending count: %d, dropping\n",
ret);
ath10k_htt_tx_dec_pending(htt);
spin_unlock_bh(&ar->htt.tx_lock);
ieee80211_free_txskb(ar->hw, skb);
return;
}
spin_unlock_bh(&ar->htt.tx_lock);
}
ret = ath10k_mac_tx(ar, vif, txmode, txpath, skb, false);
if (ret) {
ath10k_warn(ar, "failed to transmit frame: %d\n", ret);
if (is_htt) {
spin_lock_bh(&ar->htt.tx_lock);
ath10k_htt_tx_dec_pending(htt);
if (is_mgmt)
ath10k_htt_tx_mgmt_dec_pending(htt);
spin_unlock_bh(&ar->htt.tx_lock);
}
return;
}
}
static void ath10k_mac_op_wake_tx_queue(struct ieee80211_hw *hw,
struct ieee80211_txq *txq)
{
struct ath10k *ar = hw->priv;
int ret;
u8 ac = txq->ac;
ath10k_htt_tx_txq_update(hw, txq);
if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH)
return;
spin_lock_bh(&ar->queue_lock[ac]);
ieee80211_txq_schedule_start(hw, ac);
txq = ieee80211_next_txq(hw, ac);
if (!txq)
goto out;
while (ath10k_mac_tx_can_push(hw, txq)) {
ret = ath10k_mac_tx_push_txq(hw, txq);
if (ret < 0)
break;
}
ieee80211_return_txq(hw, txq, false);
ath10k_htt_tx_txq_update(hw, txq);
out:
ieee80211_txq_schedule_end(hw, ac);
spin_unlock_bh(&ar->queue_lock[ac]);
}
/* Must not be called with conf_mutex held as workers can use that also. */
void ath10k_drain_tx(struct ath10k *ar)
{
lockdep_assert_not_held(&ar->conf_mutex);
/* make sure rcu-protected mac80211 tx path itself is drained */
synchronize_net();
ath10k_offchan_tx_purge(ar);
ath10k_mgmt_over_wmi_tx_purge(ar);
cancel_work_sync(&ar->offchan_tx_work);
cancel_work_sync(&ar->wmi_mgmt_tx_work);
}
void ath10k_halt(struct ath10k *ar)
{
struct ath10k_vif *arvif;
lockdep_assert_held(&ar->conf_mutex);
clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags);
ar->filter_flags = 0;
ar->monitor = false;
ar->monitor_arvif = NULL;
if (ar->monitor_started)
ath10k_monitor_stop(ar);
ar->monitor_started = false;
ar->tx_paused = 0;
ath10k_scan_finish(ar);
ath10k_peer_cleanup_all(ar);
ath10k_stop_radar_confirmation(ar);
ath10k_core_stop(ar);
ath10k_hif_power_down(ar);
spin_lock_bh(&ar->data_lock);
list_for_each_entry(arvif, &ar->arvifs, list)
ath10k_mac_vif_beacon_cleanup(arvif);
spin_unlock_bh(&ar->data_lock);
}
static int ath10k_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant)
{
struct ath10k *ar = hw->priv;
mutex_lock(&ar->conf_mutex);
*tx_ant = ar->cfg_tx_chainmask;
*rx_ant = ar->cfg_rx_chainmask;
mutex_unlock(&ar->conf_mutex);
return 0;
}
static bool ath10k_check_chain_mask(struct ath10k *ar, u32 cm, const char *dbg)
{
/* It is not clear that allowing gaps in chainmask
* is helpful. Probably it will not do what user
* is hoping for, so warn in that case.
*/
if (cm == 15 || cm == 7 || cm == 3 || cm == 1 || cm == 0)
return true;
ath10k_warn(ar, "mac %s antenna chainmask is invalid: 0x%x. Suggested values: 15, 7, 3, 1 or 0.\n",
dbg, cm);
return false;
}
static int ath10k_mac_get_vht_cap_bf_sts(struct ath10k *ar)
{
int nsts = ar->vht_cap_info;
nsts &= IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK;
nsts >>= IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT;
/* If firmware does not deliver to host number of space-time
* streams supported, assume it support up to 4 BF STS and return
* the value for VHT CAP: nsts-1)
*/
if (nsts == 0)
return 3;
return nsts;
}
static int ath10k_mac_get_vht_cap_bf_sound_dim(struct ath10k *ar)
{
int sound_dim = ar->vht_cap_info;
sound_dim &= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK;
sound_dim >>= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT;
/* If the sounding dimension is not advertised by the firmware,
* let's use a default value of 1
*/
if (sound_dim == 0)
return 1;
return sound_dim;
}
static struct ieee80211_sta_vht_cap ath10k_create_vht_cap(struct ath10k *ar)
{
struct ieee80211_sta_vht_cap vht_cap = {0};
struct ath10k_hw_params *hw = &ar->hw_params;
u16 mcs_map;
u32 val;
int i;
vht_cap.vht_supported = 1;
vht_cap.cap = ar->vht_cap_info;
if (ar->vht_cap_info & (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE)) {
val = ath10k_mac_get_vht_cap_bf_sts(ar);
val <<= IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT;
val &= IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK;
vht_cap.cap |= val;
}
if (ar->vht_cap_info & (IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE |
IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE)) {
val = ath10k_mac_get_vht_cap_bf_sound_dim(ar);
val <<= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT;
val &= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK;
vht_cap.cap |= val;
}
mcs_map = 0;
for (i = 0; i < 8; i++) {
if ((i < ar->num_rf_chains) && (ar->cfg_tx_chainmask & BIT(i)))
mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << (i * 2);
else
mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << (i * 2);
}
if (ar->cfg_tx_chainmask <= 1)
vht_cap.cap &= ~IEEE80211_VHT_CAP_TXSTBC;
vht_cap.vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
vht_cap.vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
/* If we are supporting 160Mhz or 80+80, then the NIC may be able to do
* a restricted NSS for 160 or 80+80 vs what it can do for 80Mhz. Give
* user-space a clue if that is the case.
*/
if ((vht_cap.cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK) &&
(hw->vht160_mcs_rx_highest != 0 ||
hw->vht160_mcs_tx_highest != 0)) {
vht_cap.vht_mcs.rx_highest = cpu_to_le16(hw->vht160_mcs_rx_highest);
vht_cap.vht_mcs.tx_highest = cpu_to_le16(hw->vht160_mcs_tx_highest);
}
return vht_cap;
}
static struct ieee80211_sta_ht_cap ath10k_get_ht_cap(struct ath10k *ar)
{
int i;
struct ieee80211_sta_ht_cap ht_cap = {0};
if (!(ar->ht_cap_info & WMI_HT_CAP_ENABLED))
return ht_cap;
ht_cap.ht_supported = 1;
ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
ht_cap.cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40;
ht_cap.cap |= IEEE80211_HT_CAP_DSSSCCK40;
ht_cap.cap |=
WLAN_HT_CAP_SM_PS_DISABLED << IEEE80211_HT_CAP_SM_PS_SHIFT;
if (ar->ht_cap_info & WMI_HT_CAP_HT20_SGI)
ht_cap.cap |= IEEE80211_HT_CAP_SGI_20;
if (ar->ht_cap_info & WMI_HT_CAP_HT40_SGI)
ht_cap.cap |= IEEE80211_HT_CAP_SGI_40;
if (ar->ht_cap_info & WMI_HT_CAP_DYNAMIC_SMPS) {
u32 smps;
smps = WLAN_HT_CAP_SM_PS_DYNAMIC;
smps <<= IEEE80211_HT_CAP_SM_PS_SHIFT;
ht_cap.cap |= smps;
}
if (ar->ht_cap_info & WMI_HT_CAP_TX_STBC && (ar->cfg_tx_chainmask > 1))
ht_cap.cap |= IEEE80211_HT_CAP_TX_STBC;
if (ar->ht_cap_info & WMI_HT_CAP_RX_STBC) {
u32 stbc;
stbc = ar->ht_cap_info;
stbc &= WMI_HT_CAP_RX_STBC;
stbc >>= WMI_HT_CAP_RX_STBC_MASK_SHIFT;
stbc <<= IEEE80211_HT_CAP_RX_STBC_SHIFT;
stbc &= IEEE80211_HT_CAP_RX_STBC;
ht_cap.cap |= stbc;
}
if (ar->ht_cap_info & WMI_HT_CAP_LDPC || (ar->ht_cap_info &
WMI_HT_CAP_RX_LDPC && (ar->ht_cap_info & WMI_HT_CAP_TX_LDPC)))
ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING;
if (ar->ht_cap_info & WMI_HT_CAP_L_SIG_TXOP_PROT)
ht_cap.cap |= IEEE80211_HT_CAP_LSIG_TXOP_PROT;
/* max AMSDU is implicitly taken from vht_cap_info */
if (ar->vht_cap_info & WMI_VHT_CAP_MAX_MPDU_LEN_MASK)
ht_cap.cap |= IEEE80211_HT_CAP_MAX_AMSDU;
for (i = 0; i < ar->num_rf_chains; i++) {
if (ar->cfg_rx_chainmask & BIT(i))
ht_cap.mcs.rx_mask[i] = 0xFF;
}
ht_cap.mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
return ht_cap;
}
static void ath10k_mac_setup_ht_vht_cap(struct ath10k *ar)
{
struct ieee80211_supported_band *band;
struct ieee80211_sta_vht_cap vht_cap;
struct ieee80211_sta_ht_cap ht_cap;
ht_cap = ath10k_get_ht_cap(ar);
vht_cap = ath10k_create_vht_cap(ar);
if (ar->phy_capability & WHAL_WLAN_11G_CAPABILITY) {
band = &ar->mac.sbands[NL80211_BAND_2GHZ];
band->ht_cap = ht_cap;
}
if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY) {
band = &ar->mac.sbands[NL80211_BAND_5GHZ];
band->ht_cap = ht_cap;
band->vht_cap = vht_cap;
}
}
static int __ath10k_set_antenna(struct ath10k *ar, u32 tx_ant, u32 rx_ant)
{
int ret;
bool is_valid_tx_chain_mask, is_valid_rx_chain_mask;
lockdep_assert_held(&ar->conf_mutex);
is_valid_tx_chain_mask = ath10k_check_chain_mask(ar, tx_ant, "tx");
is_valid_rx_chain_mask = ath10k_check_chain_mask(ar, rx_ant, "rx");
if (!is_valid_tx_chain_mask || !is_valid_rx_chain_mask)
return -EINVAL;
ar->cfg_tx_chainmask = tx_ant;
ar->cfg_rx_chainmask = rx_ant;
if ((ar->state != ATH10K_STATE_ON) &&
(ar->state != ATH10K_STATE_RESTARTED))
return 0;
ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->tx_chain_mask,
tx_ant);
if (ret) {
ath10k_warn(ar, "failed to set tx-chainmask: %d, req 0x%x\n",
ret, tx_ant);
return ret;
}
ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->rx_chain_mask,
rx_ant);
if (ret) {
ath10k_warn(ar, "failed to set rx-chainmask: %d, req 0x%x\n",
ret, rx_ant);
return ret;
}
/* Reload HT/VHT capability */
ath10k_mac_setup_ht_vht_cap(ar);
return 0;
}
static int ath10k_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant)
{
struct ath10k *ar = hw->priv;
int ret;
mutex_lock(&ar->conf_mutex);
ret = __ath10k_set_antenna(ar, tx_ant, rx_ant);
mutex_unlock(&ar->conf_mutex);
return ret;
}
static int __ath10k_fetch_bb_timing_dt(struct ath10k *ar,
struct wmi_bb_timing_cfg_arg *bb_timing)
{
struct device_node *node;
const char *fem_name;
int ret;
node = ar->dev->of_node;
if (!node)
return -ENOENT;
ret = of_property_read_string_index(node, "ext-fem-name", 0, &fem_name);
if (ret)
return -ENOENT;
/*
* If external Front End module used in hardware, then default base band timing
* parameter cannot be used since they were fine tuned for reference hardware,
* so choosing different value suitable for that external FEM.
*/
if (!strcmp("microsemi-lx5586", fem_name)) {
bb_timing->bb_tx_timing = 0x00;
bb_timing->bb_xpa_timing = 0x0101;
} else {
return -ENOENT;
}
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot bb_tx_timing 0x%x bb_xpa_timing 0x%x\n",
bb_timing->bb_tx_timing, bb_timing->bb_xpa_timing);
return 0;
}
static int ath10k_mac_rfkill_config(struct ath10k *ar)
{
u32 param;
int ret;
if (ar->hw_values->rfkill_pin == 0) {
ath10k_warn(ar, "ath10k does not support hardware rfkill with this device\n");
return -EOPNOTSUPP;
}
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac rfkill_pin %d rfkill_cfg %d rfkill_on_level %d",
ar->hw_values->rfkill_pin, ar->hw_values->rfkill_cfg,
ar->hw_values->rfkill_on_level);
param = FIELD_PREP(WMI_TLV_RFKILL_CFG_RADIO_LEVEL,
ar->hw_values->rfkill_on_level) |
FIELD_PREP(WMI_TLV_RFKILL_CFG_GPIO_PIN_NUM,
ar->hw_values->rfkill_pin) |
FIELD_PREP(WMI_TLV_RFKILL_CFG_PIN_AS_GPIO,
ar->hw_values->rfkill_cfg);
ret = ath10k_wmi_pdev_set_param(ar,
ar->wmi.pdev_param->rfkill_config,
param);
if (ret) {
ath10k_warn(ar,
"failed to set rfkill config 0x%x: %d\n",
param, ret);
return ret;
}
return 0;
}
int ath10k_mac_rfkill_enable_radio(struct ath10k *ar, bool enable)
{
enum wmi_tlv_rfkill_enable_radio param;
int ret;
if (enable)
param = WMI_TLV_RFKILL_ENABLE_RADIO_ON;
else
param = WMI_TLV_RFKILL_ENABLE_RADIO_OFF;
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac rfkill enable %d", param);
ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->rfkill_enable,
param);
if (ret) {
ath10k_warn(ar, "failed to set rfkill enable param %d: %d\n",
param, ret);
return ret;
}
return 0;
}
static int ath10k_start(struct ieee80211_hw *hw)
{
struct ath10k *ar = hw->priv;
u32 param;
int ret = 0;
struct wmi_bb_timing_cfg_arg bb_timing = {0};
/*
* This makes sense only when restarting hw. It is harmless to call
* unconditionally. This is necessary to make sure no HTT/WMI tx
* commands will be submitted while restarting.
*/
ath10k_drain_tx(ar);
mutex_lock(&ar->conf_mutex);
switch (ar->state) {
case ATH10K_STATE_OFF:
ar->state = ATH10K_STATE_ON;
break;
case ATH10K_STATE_RESTARTING:
ar->state = ATH10K_STATE_RESTARTED;
break;
case ATH10K_STATE_ON:
case ATH10K_STATE_RESTARTED:
case ATH10K_STATE_WEDGED:
WARN_ON(1);
ret = -EINVAL;
goto err;
case ATH10K_STATE_UTF:
ret = -EBUSY;
goto err;
}
spin_lock_bh(&ar->data_lock);
if (ar->hw_rfkill_on) {
ar->hw_rfkill_on = false;
spin_unlock_bh(&ar->data_lock);
goto err;
}
spin_unlock_bh(&ar->data_lock);
ret = ath10k_hif_power_up(ar, ATH10K_FIRMWARE_MODE_NORMAL);
if (ret) {
ath10k_err(ar, "Could not init hif: %d\n", ret);
goto err_off;
}
ret = ath10k_core_start(ar, ATH10K_FIRMWARE_MODE_NORMAL,
&ar->normal_mode_fw);
if (ret) {
ath10k_err(ar, "Could not init core: %d\n", ret);
goto err_power_down;
}
if (ar->sys_cap_info & WMI_TLV_SYS_CAP_INFO_RFKILL) {
ret = ath10k_mac_rfkill_config(ar);
if (ret && ret != -EOPNOTSUPP) {
ath10k_warn(ar, "failed to configure rfkill: %d", ret);
goto err_core_stop;
}
}
param = ar->wmi.pdev_param->pmf_qos;
ret = ath10k_wmi_pdev_set_param(ar, param, 1);
if (ret) {
ath10k_warn(ar, "failed to enable PMF QOS: %d\n", ret);
goto err_core_stop;
}
param = ar->wmi.pdev_param->dynamic_bw;
ret = ath10k_wmi_pdev_set_param(ar, param, 1);
if (ret) {
ath10k_warn(ar, "failed to enable dynamic BW: %d\n", ret);
goto err_core_stop;
}
if (test_bit(WMI_SERVICE_SPOOF_MAC_SUPPORT, ar->wmi.svc_map)) {
ret = ath10k_wmi_scan_prob_req_oui(ar, ar->mac_addr);
if (ret) {
ath10k_err(ar, "failed to set prob req oui: %i\n", ret);
goto err_core_stop;
}
}
if (test_bit(WMI_SERVICE_ADAPTIVE_OCS, ar->wmi.svc_map)) {
ret = ath10k_wmi_adaptive_qcs(ar, true);
if (ret) {
ath10k_warn(ar, "failed to enable adaptive qcs: %d\n",
ret);
goto err_core_stop;
}
}
if (test_bit(WMI_SERVICE_BURST, ar->wmi.svc_map)) {
param = ar->wmi.pdev_param->burst_enable;
ret = ath10k_wmi_pdev_set_param(ar, param, 0);
if (ret) {
ath10k_warn(ar, "failed to disable burst: %d\n", ret);
goto err_core_stop;
}
}
param = ar->wmi.pdev_param->idle_ps_config;
ret = ath10k_wmi_pdev_set_param(ar, param, 1);
if (ret && ret != -EOPNOTSUPP) {
ath10k_warn(ar, "failed to enable idle_ps_config: %d\n", ret);
goto err_core_stop;
}
__ath10k_set_antenna(ar, ar->cfg_tx_chainmask, ar->cfg_rx_chainmask);
/*
* By default FW set ARP frames ac to voice (6). In that case ARP
* exchange is not working properly for UAPSD enabled AP. ARP requests
* which arrives with access category 0 are processed by network stack
* and send back with access category 0, but FW changes access category
* to 6. Set ARP frames access category to best effort (0) solves
* this problem.
*/
param = ar->wmi.pdev_param->arp_ac_override;
ret = ath10k_wmi_pdev_set_param(ar, param, 0);
if (ret) {
ath10k_warn(ar, "failed to set arp ac override parameter: %d\n",
ret);
goto err_core_stop;
}
if (test_bit(ATH10K_FW_FEATURE_SUPPORTS_ADAPTIVE_CCA,
ar->running_fw->fw_file.fw_features)) {
ret = ath10k_wmi_pdev_enable_adaptive_cca(ar, 1,
WMI_CCA_DETECT_LEVEL_AUTO,
WMI_CCA_DETECT_MARGIN_AUTO);
if (ret) {
ath10k_warn(ar, "failed to enable adaptive cca: %d\n",
ret);
goto err_core_stop;
}
}
param = ar->wmi.pdev_param->ani_enable;
ret = ath10k_wmi_pdev_set_param(ar, param, 1);
if (ret) {
ath10k_warn(ar, "failed to enable ani by default: %d\n",
ret);
goto err_core_stop;
}
ar->ani_enabled = true;
if (ath10k_peer_stats_enabled(ar)) {
param = ar->wmi.pdev_param->peer_stats_update_period;
ret = ath10k_wmi_pdev_set_param(ar, param,
PEER_DEFAULT_STATS_UPDATE_PERIOD);
if (ret) {
ath10k_warn(ar,
"failed to set peer stats period : %d\n",
ret);
goto err_core_stop;
}
}
param = ar->wmi.pdev_param->enable_btcoex;
if (test_bit(WMI_SERVICE_COEX_GPIO, ar->wmi.svc_map) &&
test_bit(ATH10K_FW_FEATURE_BTCOEX_PARAM,
ar->running_fw->fw_file.fw_features) &&
ar->coex_support) {
ret = ath10k_wmi_pdev_set_param(ar, param, 0);
if (ret) {
ath10k_warn(ar,
"failed to set btcoex param: %d\n", ret);
goto err_core_stop;
}
clear_bit(ATH10K_FLAG_BTCOEX, &ar->dev_flags);
}
if (test_bit(WMI_SERVICE_BB_TIMING_CONFIG_SUPPORT, ar->wmi.svc_map)) {
ret = __ath10k_fetch_bb_timing_dt(ar, &bb_timing);
if (!ret) {
ret = ath10k_wmi_pdev_bb_timing(ar, &bb_timing);
if (ret) {
ath10k_warn(ar,
"failed to set bb timings: %d\n",
ret);
goto err_core_stop;
}
}
}
ar->num_started_vdevs = 0;
ath10k_regd_update(ar);
ath10k_spectral_start(ar);
ath10k_thermal_set_throttling(ar);
ar->radar_conf_state = ATH10K_RADAR_CONFIRMATION_IDLE;
mutex_unlock(&ar->conf_mutex);
return 0;
err_core_stop:
ath10k_core_stop(ar);
err_power_down:
ath10k_hif_power_down(ar);
err_off:
ar->state = ATH10K_STATE_OFF;
err:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static void ath10k_stop(struct ieee80211_hw *hw, bool suspend)
{
struct ath10k *ar = hw->priv;
u32 opt;
ath10k_drain_tx(ar);
mutex_lock(&ar->conf_mutex);
if (ar->state != ATH10K_STATE_OFF) {
if (!ar->hw_rfkill_on) {
/* If the current driver state is RESTARTING but not yet
* fully RESTARTED because of incoming suspend event,
* then ath10k_halt() is already called via
* ath10k_core_restart() and should not be called here.
*/
if (ar->state != ATH10K_STATE_RESTARTING) {
ath10k_halt(ar);
} else {
/* Suspending here, because when in RESTARTING
* state, ath10k_core_stop() skips
* ath10k_wait_for_suspend().
*/
opt = WMI_PDEV_SUSPEND_AND_DISABLE_INTR;
ath10k_wait_for_suspend(ar, opt);
}
}
ar->state = ATH10K_STATE_OFF;
}
mutex_unlock(&ar->conf_mutex);
cancel_work_sync(&ar->set_coverage_class_work);
cancel_delayed_work_sync(&ar->scan.timeout);
cancel_work_sync(&ar->restart_work);
}
static int ath10k_config_ps(struct ath10k *ar)
{
struct ath10k_vif *arvif;
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
list_for_each_entry(arvif, &ar->arvifs, list) {
ret = ath10k_mac_vif_setup_ps(arvif);
if (ret) {
ath10k_warn(ar, "failed to setup powersave: %d\n", ret);
break;
}
}
return ret;
}
static int ath10k_config(struct ieee80211_hw *hw, u32 changed)
{
struct ath10k *ar = hw->priv;
struct ieee80211_conf *conf = &hw->conf;
int ret = 0;
mutex_lock(&ar->conf_mutex);
if (changed & IEEE80211_CONF_CHANGE_PS)
ath10k_config_ps(ar);
if (changed & IEEE80211_CONF_CHANGE_MONITOR) {
ar->monitor = conf->flags & IEEE80211_CONF_MONITOR;
ret = ath10k_monitor_recalc(ar);
if (ret)
ath10k_warn(ar, "failed to recalc monitor: %d\n", ret);
}
mutex_unlock(&ar->conf_mutex);
return ret;
}
static u32 get_nss_from_chainmask(u16 chain_mask)
{
if ((chain_mask & 0xf) == 0xf)
return 4;
else if ((chain_mask & 0x7) == 0x7)
return 3;
else if ((chain_mask & 0x3) == 0x3)
return 2;
return 1;
}
static int ath10k_mac_set_txbf_conf(struct ath10k_vif *arvif)
{
u32 value = 0;
struct ath10k *ar = arvif->ar;
int nsts;
int sound_dim;
if (ath10k_wmi_get_txbf_conf_scheme(ar) != WMI_TXBF_CONF_BEFORE_ASSOC)
return 0;
nsts = ath10k_mac_get_vht_cap_bf_sts(ar);
if (ar->vht_cap_info & (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE))
value |= SM(nsts, WMI_TXBF_STS_CAP_OFFSET);
sound_dim = ath10k_mac_get_vht_cap_bf_sound_dim(ar);
if (ar->vht_cap_info & (IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE |
IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE))
value |= SM(sound_dim, WMI_BF_SOUND_DIM_OFFSET);
if (!value)
return 0;
if (ar->vht_cap_info & IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE)
value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFER;
if (ar->vht_cap_info & IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE)
value |= (WMI_VDEV_PARAM_TXBF_MU_TX_BFER |
WMI_VDEV_PARAM_TXBF_SU_TX_BFER);
if (ar->vht_cap_info & IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE)
value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFEE;
if (ar->vht_cap_info & IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE)
value |= (WMI_VDEV_PARAM_TXBF_MU_TX_BFEE |
WMI_VDEV_PARAM_TXBF_SU_TX_BFEE);
return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id,
ar->wmi.vdev_param->txbf, value);
}
static void ath10k_update_vif_offload(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ath10k_vif *arvif = (void *)vif->drv_priv;
struct ath10k *ar = hw->priv;
u32 vdev_param;
int ret;
if (ath10k_frame_mode != ATH10K_HW_TXRX_ETHERNET ||
ar->wmi.vdev_param->tx_encap_type == WMI_VDEV_PARAM_UNSUPPORTED ||
(vif->type != NL80211_IFTYPE_STATION &&
vif->type != NL80211_IFTYPE_AP))
vif->offload_flags &= ~IEEE80211_OFFLOAD_ENCAP_ENABLED;
vdev_param = ar->wmi.vdev_param->tx_encap_type;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
ATH10K_HW_TXRX_NATIVE_WIFI);
/* 10.X firmware does not support this VDEV parameter. Do not warn */
if (ret && ret != -EOPNOTSUPP) {
ath10k_warn(ar, "failed to set vdev %i TX encapsulation: %d\n",
arvif->vdev_id, ret);
}
}
/*
* TODO:
* Figure out how to handle WMI_VDEV_SUBTYPE_P2P_DEVICE,
* because we will send mgmt frames without CCK. This requirement
* for P2P_FIND/GO_NEG should be handled by checking CCK flag
* in the TX packet.
*/
static int ath10k_add_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = (void *)vif->drv_priv;
struct ath10k_peer *peer;
enum wmi_sta_powersave_param param;
int ret = 0;
u32 value;
int bit;
int i;
u32 vdev_param;
vif->driver_flags |= IEEE80211_VIF_SUPPORTS_UAPSD;
mutex_lock(&ar->conf_mutex);
memset(arvif, 0, sizeof(*arvif));
ath10k_mac_txq_init(vif->txq);
arvif->ar = ar;
arvif->vif = vif;
INIT_LIST_HEAD(&arvif->list);
INIT_WORK(&arvif->ap_csa_work, ath10k_mac_vif_ap_csa_work);
INIT_DELAYED_WORK(&arvif->connection_loss_work,
ath10k_mac_vif_sta_connection_loss_work);
for (i = 0; i < ARRAY_SIZE(arvif->bitrate_mask.control); i++) {
arvif->bitrate_mask.control[i].legacy = 0xffffffff;
memset(arvif->bitrate_mask.control[i].ht_mcs, 0xff,
sizeof(arvif->bitrate_mask.control[i].ht_mcs));
memset(arvif->bitrate_mask.control[i].vht_mcs, 0xff,
sizeof(arvif->bitrate_mask.control[i].vht_mcs));
}
if (ar->num_peers >= ar->max_num_peers) {
ath10k_warn(ar, "refusing vdev creation due to insufficient peer entry resources in firmware\n");
ret = -ENOBUFS;
goto err;
}
if (ar->free_vdev_map == 0) {
ath10k_warn(ar, "Free vdev map is empty, no more interfaces allowed.\n");
ret = -EBUSY;
goto err;
}
bit = __ffs64(ar->free_vdev_map);
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac create vdev %i map %llx\n",
bit, ar->free_vdev_map);
arvif->vdev_id = bit;
arvif->vdev_subtype =
ath10k_wmi_get_vdev_subtype(ar, WMI_VDEV_SUBTYPE_NONE);
switch (vif->type) {
case NL80211_IFTYPE_P2P_DEVICE:
arvif->vdev_type = WMI_VDEV_TYPE_STA;
arvif->vdev_subtype = ath10k_wmi_get_vdev_subtype
(ar, WMI_VDEV_SUBTYPE_P2P_DEVICE);
break;
case NL80211_IFTYPE_UNSPECIFIED:
case NL80211_IFTYPE_STATION:
arvif->vdev_type = WMI_VDEV_TYPE_STA;
if (vif->p2p)
arvif->vdev_subtype = ath10k_wmi_get_vdev_subtype
(ar, WMI_VDEV_SUBTYPE_P2P_CLIENT);
break;
case NL80211_IFTYPE_ADHOC:
arvif->vdev_type = WMI_VDEV_TYPE_IBSS;
break;
case NL80211_IFTYPE_MESH_POINT:
if (test_bit(WMI_SERVICE_MESH_11S, ar->wmi.svc_map)) {
arvif->vdev_subtype = ath10k_wmi_get_vdev_subtype
(ar, WMI_VDEV_SUBTYPE_MESH_11S);
} else if (!test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) {
ret = -EINVAL;
ath10k_warn(ar, "must load driver with rawmode=1 to add mesh interfaces\n");
goto err;
}
arvif->vdev_type = WMI_VDEV_TYPE_AP;
break;
case NL80211_IFTYPE_AP:
arvif->vdev_type = WMI_VDEV_TYPE_AP;
if (vif->p2p)
arvif->vdev_subtype = ath10k_wmi_get_vdev_subtype
(ar, WMI_VDEV_SUBTYPE_P2P_GO);
break;
case NL80211_IFTYPE_MONITOR:
arvif->vdev_type = WMI_VDEV_TYPE_MONITOR;
break;
default:
WARN_ON(1);
break;
}
/* Using vdev_id as queue number will make it very easy to do per-vif
* tx queue locking. This shouldn't wrap due to interface combinations
* but do a modulo for correctness sake and prevent using offchannel tx
* queues for regular vif tx.
*/
vif->cab_queue = arvif->vdev_id % (IEEE80211_MAX_QUEUES - 1);
for (i = 0; i < ARRAY_SIZE(vif->hw_queue); i++)
vif->hw_queue[i] = arvif->vdev_id % (IEEE80211_MAX_QUEUES - 1);
/* Some firmware revisions don't wait for beacon tx completion before
* sending another SWBA event. This could lead to hardware using old
* (freed) beacon data in some cases, e.g. tx credit starvation
* combined with missed TBTT. This is very rare.
*
* On non-IOMMU-enabled hosts this could be a possible security issue
* because hw could beacon some random data on the air. On
* IOMMU-enabled hosts DMAR faults would occur in most cases and target
* device would crash.
*
* Since there are no beacon tx completions (implicit nor explicit)
* propagated to host the only workaround for this is to allocate a
* DMA-coherent buffer for a lifetime of a vif and use it for all
* beacon tx commands. Worst case for this approach is some beacons may
* become corrupted, e.g. have garbled IEs or out-of-date TIM bitmap.
*/
if (vif->type == NL80211_IFTYPE_ADHOC ||
vif->type == NL80211_IFTYPE_MESH_POINT ||
vif->type == NL80211_IFTYPE_AP) {
if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) {
arvif->beacon_buf = kmalloc(IEEE80211_MAX_FRAME_LEN,
GFP_KERNEL);
/* Using a kernel pointer in place of a dma_addr_t
* token can lead to undefined behavior if that
* makes it into cache management functions. Use a
* known-invalid address token instead, which
* avoids the warning and makes it easier to catch
* bugs if it does end up getting used.
*/
arvif->beacon_paddr = DMA_MAPPING_ERROR;
} else {
arvif->beacon_buf =
dma_alloc_coherent(ar->dev,
IEEE80211_MAX_FRAME_LEN,
&arvif->beacon_paddr,
GFP_ATOMIC);
}
if (!arvif->beacon_buf) {
ret = -ENOMEM;
ath10k_warn(ar, "failed to allocate beacon buffer: %d\n",
ret);
goto err;
}
}
if (test_bit(ATH10K_FLAG_HW_CRYPTO_DISABLED, &ar->dev_flags))
arvif->nohwcrypt = true;
if (arvif->nohwcrypt &&
!test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) {
ret = -EINVAL;
ath10k_warn(ar, "cryptmode module param needed for sw crypto\n");
goto err;
}
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev create %d (add interface) type %d subtype %d bcnmode %s\n",
arvif->vdev_id, arvif->vdev_type, arvif->vdev_subtype,
arvif->beacon_buf ? "single-buf" : "per-skb");
ret = ath10k_wmi_vdev_create(ar, arvif->vdev_id, arvif->vdev_type,
arvif->vdev_subtype, vif->addr);
if (ret) {
ath10k_warn(ar, "failed to create WMI vdev %i: %d\n",
arvif->vdev_id, ret);
goto err;
}
if (test_bit(WMI_SERVICE_VDEV_DISABLE_4_ADDR_SRC_LRN_SUPPORT,
ar->wmi.svc_map)) {
vdev_param = ar->wmi.vdev_param->disable_4addr_src_lrn;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
WMI_VDEV_DISABLE_4_ADDR_SRC_LRN);
if (ret && ret != -EOPNOTSUPP) {
ath10k_warn(ar, "failed to disable 4addr src lrn vdev %i: %d\n",
arvif->vdev_id, ret);
}
}
ar->free_vdev_map &= ~(1LL << arvif->vdev_id);
spin_lock_bh(&ar->data_lock);
list_add(&arvif->list, &ar->arvifs);
spin_unlock_bh(&ar->data_lock);
/* It makes no sense to have firmware do keepalives. mac80211 already
* takes care of this with idle connection polling.
*/
ret = ath10k_mac_vif_disable_keepalive(arvif);
if (ret) {
ath10k_warn(ar, "failed to disable keepalive on vdev %i: %d\n",
arvif->vdev_id, ret);
goto err_vdev_delete;
}
arvif->def_wep_key_idx = -1;
ath10k_update_vif_offload(hw, vif);
/* Configuring number of spatial stream for monitor interface is causing
* target assert in qca9888 and qca6174.
*/
if (ar->cfg_tx_chainmask && (vif->type != NL80211_IFTYPE_MONITOR)) {
u16 nss = get_nss_from_chainmask(ar->cfg_tx_chainmask);
vdev_param = ar->wmi.vdev_param->nss;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
nss);
if (ret) {
ath10k_warn(ar, "failed to set vdev %i chainmask 0x%x, nss %i: %d\n",
arvif->vdev_id, ar->cfg_tx_chainmask, nss,
ret);
goto err_vdev_delete;
}
}
if (arvif->vdev_type == WMI_VDEV_TYPE_AP ||
arvif->vdev_type == WMI_VDEV_TYPE_IBSS) {
ret = ath10k_peer_create(ar, vif, NULL, arvif->vdev_id,
vif->addr, WMI_PEER_TYPE_DEFAULT);
if (ret) {
ath10k_warn(ar, "failed to create vdev %i peer for AP/IBSS: %d\n",
arvif->vdev_id, ret);
goto err_vdev_delete;
}
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find(ar, arvif->vdev_id, vif->addr);
if (!peer) {
ath10k_warn(ar, "failed to lookup peer %pM on vdev %i\n",
vif->addr, arvif->vdev_id);
spin_unlock_bh(&ar->data_lock);
ret = -ENOENT;
goto err_peer_delete;
}
arvif->peer_id = find_first_bit(peer->peer_ids,
ATH10K_MAX_NUM_PEER_IDS);
spin_unlock_bh(&ar->data_lock);
} else {
arvif->peer_id = HTT_INVALID_PEERID;
}
if (arvif->vdev_type == WMI_VDEV_TYPE_AP) {
ret = ath10k_mac_set_kickout(arvif);
if (ret) {
ath10k_warn(ar, "failed to set vdev %i kickout parameters: %d\n",
arvif->vdev_id, ret);
goto err_peer_delete;
}
}
if (arvif->vdev_type == WMI_VDEV_TYPE_STA) {
param = WMI_STA_PS_PARAM_RX_WAKE_POLICY;
value = WMI_STA_PS_RX_WAKE_POLICY_WAKE;
ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
param, value);
if (ret) {
ath10k_warn(ar, "failed to set vdev %i RX wake policy: %d\n",
arvif->vdev_id, ret);
goto err_peer_delete;
}
ret = ath10k_mac_vif_recalc_ps_wake_threshold(arvif);
if (ret) {
ath10k_warn(ar, "failed to recalc ps wake threshold on vdev %i: %d\n",
arvif->vdev_id, ret);
goto err_peer_delete;
}
ret = ath10k_mac_vif_recalc_ps_poll_count(arvif);
if (ret) {
ath10k_warn(ar, "failed to recalc ps poll count on vdev %i: %d\n",
arvif->vdev_id, ret);
goto err_peer_delete;
}
}
ret = ath10k_mac_set_txbf_conf(arvif);
if (ret) {
ath10k_warn(ar, "failed to set txbf for vdev %d: %d\n",
arvif->vdev_id, ret);
goto err_peer_delete;
}
ret = ath10k_mac_set_rts(arvif, ar->hw->wiphy->rts_threshold);
if (ret) {
ath10k_warn(ar, "failed to set rts threshold for vdev %d: %d\n",
arvif->vdev_id, ret);
goto err_peer_delete;
}
arvif->txpower = vif->bss_conf.txpower;
ret = ath10k_mac_txpower_recalc(ar);
if (ret) {
ath10k_warn(ar, "failed to recalc tx power: %d\n", ret);
goto err_peer_delete;
}
if (test_bit(WMI_SERVICE_RTT_RESPONDER_ROLE, ar->wmi.svc_map)) {
vdev_param = ar->wmi.vdev_param->rtt_responder_role;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
arvif->ftm_responder);
/* It is harmless to not set FTM role. Do not warn */
if (ret && ret != -EOPNOTSUPP)
ath10k_warn(ar, "failed to set vdev %i FTM Responder: %d\n",
arvif->vdev_id, ret);
}
if (vif->type == NL80211_IFTYPE_MONITOR) {
ar->monitor_arvif = arvif;
ret = ath10k_monitor_recalc(ar);
if (ret) {
ath10k_warn(ar, "failed to recalc monitor: %d\n", ret);
goto err_peer_delete;
}
}
spin_lock_bh(&ar->htt.tx_lock);
if (!ar->tx_paused)
ieee80211_wake_queue(ar->hw, arvif->vdev_id);
spin_unlock_bh(&ar->htt.tx_lock);
mutex_unlock(&ar->conf_mutex);
return 0;
err_peer_delete:
if (arvif->vdev_type == WMI_VDEV_TYPE_AP ||
arvif->vdev_type == WMI_VDEV_TYPE_IBSS) {
ath10k_wmi_peer_delete(ar, arvif->vdev_id, vif->addr);
ath10k_wait_for_peer_delete_done(ar, arvif->vdev_id,
vif->addr);
}
err_vdev_delete:
ath10k_wmi_vdev_delete(ar, arvif->vdev_id);
ar->free_vdev_map |= 1LL << arvif->vdev_id;
spin_lock_bh(&ar->data_lock);
list_del(&arvif->list);
spin_unlock_bh(&ar->data_lock);
err:
if (arvif->beacon_buf) {
if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
kfree(arvif->beacon_buf);
else
dma_free_coherent(ar->dev, IEEE80211_MAX_FRAME_LEN,
arvif->beacon_buf,
arvif->beacon_paddr);
arvif->beacon_buf = NULL;
}
mutex_unlock(&ar->conf_mutex);
return ret;
}
static void ath10k_mac_vif_tx_unlock_all(struct ath10k_vif *arvif)
{
int i;
for (i = 0; i < BITS_PER_LONG; i++)
ath10k_mac_vif_tx_unlock(arvif, i);
}
static void ath10k_remove_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = (void *)vif->drv_priv;
struct ath10k_peer *peer;
unsigned long time_left;
int ret;
int i;
cancel_work_sync(&arvif->ap_csa_work);
cancel_delayed_work_sync(&arvif->connection_loss_work);
mutex_lock(&ar->conf_mutex);
ret = ath10k_spectral_vif_stop(arvif);
if (ret)
ath10k_warn(ar, "failed to stop spectral for vdev %i: %d\n",
arvif->vdev_id, ret);
ar->free_vdev_map |= 1LL << arvif->vdev_id;
spin_lock_bh(&ar->data_lock);
list_del(&arvif->list);
spin_unlock_bh(&ar->data_lock);
if (arvif->vdev_type == WMI_VDEV_TYPE_AP ||
arvif->vdev_type == WMI_VDEV_TYPE_IBSS) {
ret = ath10k_wmi_peer_delete(arvif->ar, arvif->vdev_id,
vif->addr);
if (ret)
ath10k_warn(ar, "failed to submit AP/IBSS self-peer removal on vdev %i: %d\n",
arvif->vdev_id, ret);
ath10k_wait_for_peer_delete_done(ar, arvif->vdev_id,
vif->addr);
kfree(arvif->u.ap.noa_data);
}
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %i delete (remove interface)\n",
arvif->vdev_id);
ret = ath10k_wmi_vdev_delete(ar, arvif->vdev_id);
if (ret)
ath10k_warn(ar, "failed to delete WMI vdev %i: %d\n",
arvif->vdev_id, ret);
if (test_bit(WMI_SERVICE_SYNC_DELETE_CMDS, ar->wmi.svc_map)) {
time_left = wait_for_completion_timeout(&ar->vdev_delete_done,
ATH10K_VDEV_DELETE_TIMEOUT_HZ);
if (time_left == 0) {
ath10k_warn(ar, "Timeout in receiving vdev delete response\n");
goto out;
}
}
/* Some firmware revisions don't notify host about self-peer removal
* until after associated vdev is deleted.
*/
if (arvif->vdev_type == WMI_VDEV_TYPE_AP ||
arvif->vdev_type == WMI_VDEV_TYPE_IBSS) {
ret = ath10k_wait_for_peer_deleted(ar, arvif->vdev_id,
vif->addr);
if (ret)
ath10k_warn(ar, "failed to remove AP self-peer on vdev %i: %d\n",
arvif->vdev_id, ret);
spin_lock_bh(&ar->data_lock);
ar->num_peers--;
spin_unlock_bh(&ar->data_lock);
}
spin_lock_bh(&ar->data_lock);
for (i = 0; i < ARRAY_SIZE(ar->peer_map); i++) {
peer = ar->peer_map[i];
if (!peer)
continue;
if (peer->vif == vif) {
ath10k_warn(ar, "found vif peer %pM entry on vdev %i after it was supposedly removed\n",
vif->addr, arvif->vdev_id);
peer->vif = NULL;
}
}
/* Clean this up late, less opportunity for firmware to access
* DMA memory we have deleted.
*/
ath10k_mac_vif_beacon_cleanup(arvif);
spin_unlock_bh(&ar->data_lock);
ath10k_peer_cleanup(ar, arvif->vdev_id);
ath10k_mac_txq_unref(ar, vif->txq);
if (vif->type == NL80211_IFTYPE_MONITOR) {
ar->monitor_arvif = NULL;
ret = ath10k_monitor_recalc(ar);
if (ret)
ath10k_warn(ar, "failed to recalc monitor: %d\n", ret);
}
ret = ath10k_mac_txpower_recalc(ar);
if (ret)
ath10k_warn(ar, "failed to recalc tx power: %d\n", ret);
spin_lock_bh(&ar->htt.tx_lock);
ath10k_mac_vif_tx_unlock_all(arvif);
spin_unlock_bh(&ar->htt.tx_lock);
ath10k_mac_txq_unref(ar, vif->txq);
out:
mutex_unlock(&ar->conf_mutex);
}
/*
* FIXME: Has to be verified.
*/
#define SUPPORTED_FILTERS \
(FIF_ALLMULTI | \
FIF_CONTROL | \
FIF_PSPOLL | \
FIF_OTHER_BSS | \
FIF_BCN_PRBRESP_PROMISC | \
FIF_PROBE_REQ | \
FIF_FCSFAIL)
static void ath10k_configure_filter(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *total_flags,
u64 multicast)
{
struct ath10k *ar = hw->priv;
int ret;
unsigned int supported = SUPPORTED_FILTERS;
mutex_lock(&ar->conf_mutex);
if (ar->hw_params.mcast_frame_registration)
supported |= FIF_MCAST_ACTION;
*total_flags &= supported;
ar->filter_flags = *total_flags;
ret = ath10k_monitor_recalc(ar);
if (ret)
ath10k_warn(ar, "failed to recalc monitor: %d\n", ret);
mutex_unlock(&ar->conf_mutex);
}
static void ath10k_recalculate_mgmt_rate(struct ath10k *ar,
struct ieee80211_vif *vif,
struct cfg80211_chan_def *def)
{
struct ath10k_vif *arvif = (void *)vif->drv_priv;
const struct ieee80211_supported_band *sband;
u8 basic_rate_idx;
int hw_rate_code;
u32 vdev_param;
u16 bitrate;
int ret;
lockdep_assert_held(&ar->conf_mutex);
sband = ar->hw->wiphy->bands[def->chan->band];
basic_rate_idx = ffs(vif->bss_conf.basic_rates) - 1;
bitrate = sband->bitrates[basic_rate_idx].bitrate;
hw_rate_code = ath10k_mac_get_rate_hw_value(bitrate);
if (hw_rate_code < 0) {
ath10k_warn(ar, "bitrate not supported %d\n", bitrate);
return;
}
vdev_param = ar->wmi.vdev_param->mgmt_rate;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
hw_rate_code);
if (ret)
ath10k_warn(ar, "failed to set mgmt tx rate %d\n", ret);
}
static void ath10k_bss_info_changed(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *info,
u64 changed)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = (void *)vif->drv_priv;
struct cfg80211_chan_def def;
u32 vdev_param, pdev_param, slottime, preamble;
u16 bitrate, hw_value;
u8 rate, rateidx;
int ret = 0, mcast_rate;
enum nl80211_band band;
mutex_lock(&ar->conf_mutex);
if (changed & BSS_CHANGED_IBSS)
ath10k_control_ibss(arvif, vif);
if (changed & BSS_CHANGED_BEACON_INT) {
arvif->beacon_interval = info->beacon_int;
vdev_param = ar->wmi.vdev_param->beacon_interval;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
arvif->beacon_interval);
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac vdev %d beacon_interval %d\n",
arvif->vdev_id, arvif->beacon_interval);
if (ret)
ath10k_warn(ar, "failed to set beacon interval for vdev %d: %i\n",
arvif->vdev_id, ret);
}
if (changed & BSS_CHANGED_BEACON) {
ath10k_dbg(ar, ATH10K_DBG_MAC,
"vdev %d set beacon tx mode to staggered\n",
arvif->vdev_id);
pdev_param = ar->wmi.pdev_param->beacon_tx_mode;
ret = ath10k_wmi_pdev_set_param(ar, pdev_param,
WMI_BEACON_STAGGERED_MODE);
if (ret)
ath10k_warn(ar, "failed to set beacon mode for vdev %d: %i\n",
arvif->vdev_id, ret);
ret = ath10k_mac_setup_bcn_tmpl(arvif);
if (ret)
ath10k_warn(ar, "failed to update beacon template: %d\n",
ret);
if (ieee80211_vif_is_mesh(vif)) {
/* mesh doesn't use SSID but firmware needs it */
arvif->u.ap.ssid_len = 4;
memcpy(arvif->u.ap.ssid, "mesh", arvif->u.ap.ssid_len);
}
}
if (changed & BSS_CHANGED_AP_PROBE_RESP) {
ret = ath10k_mac_setup_prb_tmpl(arvif);
if (ret)
ath10k_warn(ar, "failed to setup probe resp template on vdev %i: %d\n",
arvif->vdev_id, ret);
}
if (changed & (BSS_CHANGED_BEACON_INFO | BSS_CHANGED_BEACON)) {
arvif->dtim_period = info->dtim_period;
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac vdev %d dtim_period %d\n",
arvif->vdev_id, arvif->dtim_period);
vdev_param = ar->wmi.vdev_param->dtim_period;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
arvif->dtim_period);
if (ret)
ath10k_warn(ar, "failed to set dtim period for vdev %d: %i\n",
arvif->vdev_id, ret);
}
if (changed & BSS_CHANGED_SSID &&
vif->type == NL80211_IFTYPE_AP) {
arvif->u.ap.ssid_len = vif->cfg.ssid_len;
if (vif->cfg.ssid_len)
memcpy(arvif->u.ap.ssid, vif->cfg.ssid,
vif->cfg.ssid_len);
arvif->u.ap.hidden_ssid = info->hidden_ssid;
}
if (changed & BSS_CHANGED_BSSID && !is_zero_ether_addr(info->bssid))
ether_addr_copy(arvif->bssid, info->bssid);
if (changed & BSS_CHANGED_FTM_RESPONDER &&
arvif->ftm_responder != info->ftm_responder &&
test_bit(WMI_SERVICE_RTT_RESPONDER_ROLE, ar->wmi.svc_map)) {
arvif->ftm_responder = info->ftm_responder;
vdev_param = ar->wmi.vdev_param->rtt_responder_role;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
arvif->ftm_responder);
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac vdev %d ftm_responder %d:ret %d\n",
arvif->vdev_id, arvif->ftm_responder, ret);
}
if (changed & BSS_CHANGED_BEACON_ENABLED)
ath10k_control_beaconing(arvif, info);
if (changed & BSS_CHANGED_ERP_CTS_PROT) {
arvif->use_cts_prot = info->use_cts_prot;
ret = ath10k_recalc_rtscts_prot(arvif);
if (ret)
ath10k_warn(ar, "failed to recalculate rts/cts prot for vdev %d: %d\n",
arvif->vdev_id, ret);
if (ath10k_mac_can_set_cts_prot(arvif)) {
ret = ath10k_mac_set_cts_prot(arvif);
if (ret)
ath10k_warn(ar, "failed to set cts protection for vdev %d: %d\n",
arvif->vdev_id, ret);
}
}
if (changed & BSS_CHANGED_ERP_SLOT) {
if (info->use_short_slot)
slottime = WMI_VDEV_SLOT_TIME_SHORT; /* 9us */
else
slottime = WMI_VDEV_SLOT_TIME_LONG; /* 20us */
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d slot_time %d\n",
arvif->vdev_id, slottime);
vdev_param = ar->wmi.vdev_param->slot_time;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
slottime);
if (ret)
ath10k_warn(ar, "failed to set erp slot for vdev %d: %i\n",
arvif->vdev_id, ret);
}
if (changed & BSS_CHANGED_ERP_PREAMBLE) {
if (info->use_short_preamble)
preamble = WMI_VDEV_PREAMBLE_SHORT;
else
preamble = WMI_VDEV_PREAMBLE_LONG;
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac vdev %d preamble %dn",
arvif->vdev_id, preamble);
vdev_param = ar->wmi.vdev_param->preamble;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
preamble);
if (ret)
ath10k_warn(ar, "failed to set preamble for vdev %d: %i\n",
arvif->vdev_id, ret);
}
if (changed & BSS_CHANGED_ASSOC) {
if (vif->cfg.assoc) {
/* Workaround: Make sure monitor vdev is not running
* when associating to prevent some firmware revisions
* (e.g. 10.1 and 10.2) from crashing.
*/
if (ar->monitor_started)
ath10k_monitor_stop(ar);
ath10k_bss_assoc(hw, vif, info);
ath10k_monitor_recalc(ar);
} else {
ath10k_bss_disassoc(hw, vif);
}
}
if (changed & BSS_CHANGED_TXPOWER) {
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev_id %i txpower %d\n",
arvif->vdev_id, info->txpower);
arvif->txpower = info->txpower;
ret = ath10k_mac_txpower_recalc(ar);
if (ret)
ath10k_warn(ar, "failed to recalc tx power: %d\n", ret);
}
if (changed & BSS_CHANGED_PS) {
arvif->ps = vif->cfg.ps;
ret = ath10k_config_ps(ar);
if (ret)
ath10k_warn(ar, "failed to setup ps on vdev %i: %d\n",
arvif->vdev_id, ret);
}
if (changed & BSS_CHANGED_MCAST_RATE &&
!ath10k_mac_vif_chan(arvif->vif, &def)) {
band = def.chan->band;
mcast_rate = vif->bss_conf.mcast_rate[band];
if (mcast_rate > 0)
rateidx = mcast_rate - 1;
else
rateidx = ffs(vif->bss_conf.basic_rates) - 1;
if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY)
rateidx += ATH10K_MAC_FIRST_OFDM_RATE_IDX;
bitrate = ath10k_wmi_legacy_rates[rateidx].bitrate;
hw_value = ath10k_wmi_legacy_rates[rateidx].hw_value;
if (ath10k_mac_bitrate_is_cck(bitrate))
preamble = WMI_RATE_PREAMBLE_CCK;
else
preamble = WMI_RATE_PREAMBLE_OFDM;
rate = ATH10K_HW_RATECODE(hw_value, 0, preamble);
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac vdev %d mcast_rate %x\n",
arvif->vdev_id, rate);
vdev_param = ar->wmi.vdev_param->mcast_data_rate;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id,
vdev_param, rate);
if (ret)
ath10k_warn(ar,
"failed to set mcast rate on vdev %i: %d\n",
arvif->vdev_id, ret);
vdev_param = ar->wmi.vdev_param->bcast_data_rate;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id,
vdev_param, rate);
if (ret)
ath10k_warn(ar,
"failed to set bcast rate on vdev %i: %d\n",
arvif->vdev_id, ret);
}
if (changed & BSS_CHANGED_BASIC_RATES &&
!ath10k_mac_vif_chan(arvif->vif, &def))
ath10k_recalculate_mgmt_rate(ar, vif, &def);
mutex_unlock(&ar->conf_mutex);
}
static void ath10k_mac_op_set_coverage_class(struct ieee80211_hw *hw, s16 value)
{
struct ath10k *ar = hw->priv;
/* This function should never be called if setting the coverage class
* is not supported on this hardware.
*/
if (!ar->hw_params.hw_ops->set_coverage_class) {
WARN_ON_ONCE(1);
return;
}
ar->hw_params.hw_ops->set_coverage_class(ar, value);
}
struct ath10k_mac_tdls_iter_data {
u32 num_tdls_stations;
struct ieee80211_vif *curr_vif;
};
static void ath10k_mac_tdls_vif_stations_count_iter(void *data,
struct ieee80211_sta *sta)
{
struct ath10k_mac_tdls_iter_data *iter_data = data;
struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
struct ieee80211_vif *sta_vif = arsta->arvif->vif;
if (sta->tdls && sta_vif == iter_data->curr_vif)
iter_data->num_tdls_stations++;
}
static int ath10k_mac_tdls_vif_stations_count(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ath10k_mac_tdls_iter_data data = {};
data.curr_vif = vif;
ieee80211_iterate_stations_atomic(hw,
ath10k_mac_tdls_vif_stations_count_iter,
&data);
return data.num_tdls_stations;
}
static int ath10k_hw_scan(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_scan_request *hw_req)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = (void *)vif->drv_priv;
struct cfg80211_scan_request *req = &hw_req->req;
struct wmi_start_scan_arg arg;
int ret = 0;
int i;
u32 scan_timeout;
mutex_lock(&ar->conf_mutex);
if (ath10k_mac_tdls_vif_stations_count(hw, vif) > 0) {
ret = -EBUSY;
goto exit;
}
spin_lock_bh(&ar->data_lock);
switch (ar->scan.state) {
case ATH10K_SCAN_IDLE:
reinit_completion(&ar->scan.started);
reinit_completion(&ar->scan.completed);
ar->scan.state = ATH10K_SCAN_STARTING;
ar->scan.is_roc = false;
ar->scan.vdev_id = arvif->vdev_id;
ret = 0;
break;
case ATH10K_SCAN_STARTING:
case ATH10K_SCAN_RUNNING:
case ATH10K_SCAN_ABORTING:
ret = -EBUSY;
break;
}
spin_unlock_bh(&ar->data_lock);
if (ret)
goto exit;
memset(&arg, 0, sizeof(arg));
ath10k_wmi_start_scan_init(ar, &arg);
arg.vdev_id = arvif->vdev_id;
arg.scan_id = ATH10K_SCAN_ID;
if (req->ie_len) {
arg.ie_len = req->ie_len;
memcpy(arg.ie, req->ie, arg.ie_len);
}
if (req->n_ssids) {
arg.n_ssids = req->n_ssids;
for (i = 0; i < arg.n_ssids; i++) {
arg.ssids[i].len = req->ssids[i].ssid_len;
arg.ssids[i].ssid = req->ssids[i].ssid;
}
} else {
arg.scan_ctrl_flags |= WMI_SCAN_FLAG_PASSIVE;
}
if (req->flags & NL80211_SCAN_FLAG_RANDOM_ADDR) {
arg.scan_ctrl_flags |= WMI_SCAN_ADD_SPOOFED_MAC_IN_PROBE_REQ;
ether_addr_copy(arg.mac_addr.addr, req->mac_addr);
ether_addr_copy(arg.mac_mask.addr, req->mac_addr_mask);
}
if (req->n_channels) {
arg.n_channels = req->n_channels;
for (i = 0; i < arg.n_channels; i++)
arg.channels[i] = req->channels[i]->center_freq;
}
/* if duration is set, default dwell times will be overwritten */
if (req->duration) {
arg.dwell_time_active = req->duration;
arg.dwell_time_passive = req->duration;
arg.burst_duration_ms = req->duration;
scan_timeout = min_t(u32, arg.max_rest_time *
(arg.n_channels - 1) + (req->duration +
ATH10K_SCAN_CHANNEL_SWITCH_WMI_EVT_OVERHEAD) *
arg.n_channels, arg.max_scan_time);
} else {
scan_timeout = arg.max_scan_time;
}
/* Add a 200ms margin to account for event/command processing */
scan_timeout += 200;
ret = ath10k_start_scan(ar, &arg);
if (ret) {
ath10k_warn(ar, "failed to start hw scan: %d\n", ret);
spin_lock_bh(&ar->data_lock);
ar->scan.state = ATH10K_SCAN_IDLE;
spin_unlock_bh(&ar->data_lock);
}
ieee80211_queue_delayed_work(ar->hw, &ar->scan.timeout,
msecs_to_jiffies(scan_timeout));
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static void ath10k_cancel_hw_scan(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ath10k *ar = hw->priv;
mutex_lock(&ar->conf_mutex);
ath10k_scan_abort(ar);
mutex_unlock(&ar->conf_mutex);
cancel_delayed_work_sync(&ar->scan.timeout);
}
static void ath10k_set_key_h_def_keyidx(struct ath10k *ar,
struct ath10k_vif *arvif,
enum set_key_cmd cmd,
struct ieee80211_key_conf *key)
{
u32 vdev_param = arvif->ar->wmi.vdev_param->def_keyid;
int ret;
/* 10.1 firmware branch requires default key index to be set to group
* key index after installing it. Otherwise FW/HW Txes corrupted
* frames with multi-vif APs. This is not required for main firmware
* branch (e.g. 636).
*
* This is also needed for 636 fw for IBSS-RSN to work more reliably.
*
* FIXME: It remains unknown if this is required for multi-vif STA
* interfaces on 10.1.
*/
if (arvif->vdev_type != WMI_VDEV_TYPE_AP &&
arvif->vdev_type != WMI_VDEV_TYPE_IBSS)
return;
if (key->cipher == WLAN_CIPHER_SUITE_WEP40)
return;
if (key->cipher == WLAN_CIPHER_SUITE_WEP104)
return;
if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE)
return;
if (cmd != SET_KEY)
return;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
key->keyidx);
if (ret)
ath10k_warn(ar, "failed to set vdev %i group key as default key: %d\n",
arvif->vdev_id, ret);
}
static int ath10k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
struct ieee80211_vif *vif, struct ieee80211_sta *sta,
struct ieee80211_key_conf *key)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = (void *)vif->drv_priv;
struct ath10k_sta *arsta;
struct ath10k_peer *peer;
const u8 *peer_addr;
bool is_wep = key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
key->cipher == WLAN_CIPHER_SUITE_WEP104;
int ret = 0;
int ret2;
u32 flags = 0;
u32 flags2;
/* this one needs to be done in software */
if (key->cipher == WLAN_CIPHER_SUITE_AES_CMAC ||
key->cipher == WLAN_CIPHER_SUITE_BIP_GMAC_128 ||
key->cipher == WLAN_CIPHER_SUITE_BIP_GMAC_256 ||
key->cipher == WLAN_CIPHER_SUITE_BIP_CMAC_256)
return 1;
if (arvif->nohwcrypt)
return 1;
if (key->keyidx > WMI_MAX_KEY_INDEX)
return -ENOSPC;
mutex_lock(&ar->conf_mutex);
if (sta) {
arsta = (struct ath10k_sta *)sta->drv_priv;
peer_addr = sta->addr;
spin_lock_bh(&ar->data_lock);
arsta->ucast_cipher = key->cipher;
spin_unlock_bh(&ar->data_lock);
} else if (arvif->vdev_type == WMI_VDEV_TYPE_STA) {
peer_addr = vif->bss_conf.bssid;
} else {
peer_addr = vif->addr;
}
key->hw_key_idx = key->keyidx;
if (is_wep) {
if (cmd == SET_KEY)
arvif->wep_keys[key->keyidx] = key;
else
arvif->wep_keys[key->keyidx] = NULL;
}
/* the peer should not disappear in mid-way (unless FW goes awry) since
* we already hold conf_mutex. we just make sure its there now.
*/
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find(ar, arvif->vdev_id, peer_addr);
spin_unlock_bh(&ar->data_lock);
if (!peer) {
if (cmd == SET_KEY) {
ath10k_warn(ar, "failed to install key for non-existent peer %pM\n",
peer_addr);
ret = -EOPNOTSUPP;
goto exit;
} else {
/* if the peer doesn't exist there is no key to disable anymore */
goto exit;
}
}
if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE)
flags |= WMI_KEY_PAIRWISE;
else
flags |= WMI_KEY_GROUP;
if (is_wep) {
if (cmd == DISABLE_KEY)
ath10k_clear_vdev_key(arvif, key);
/* When WEP keys are uploaded it's possible that there are
* stations associated already (e.g. when merging) without any
* keys. Static WEP needs an explicit per-peer key upload.
*/
if (vif->type == NL80211_IFTYPE_ADHOC &&
cmd == SET_KEY)
ath10k_mac_vif_update_wep_key(arvif, key);
/* 802.1x never sets the def_wep_key_idx so each set_key()
* call changes default tx key.
*
* Static WEP sets def_wep_key_idx via .set_default_unicast_key
* after first set_key().
*/
if (cmd == SET_KEY && arvif->def_wep_key_idx == -1)
flags |= WMI_KEY_TX_USAGE;
}
ret = ath10k_install_key(arvif, key, cmd, peer_addr, flags);
if (ret) {
WARN_ON(ret > 0);
ath10k_warn(ar, "failed to install key for vdev %i peer %pM: %d\n",
arvif->vdev_id, peer_addr, ret);
goto exit;
}
/* mac80211 sets static WEP keys as groupwise while firmware requires
* them to be installed twice as both pairwise and groupwise.
*/
if (is_wep && !sta && vif->type == NL80211_IFTYPE_STATION) {
flags2 = flags;
flags2 &= ~WMI_KEY_GROUP;
flags2 |= WMI_KEY_PAIRWISE;
ret = ath10k_install_key(arvif, key, cmd, peer_addr, flags2);
if (ret) {
WARN_ON(ret > 0);
ath10k_warn(ar, "failed to install (ucast) key for vdev %i peer %pM: %d\n",
arvif->vdev_id, peer_addr, ret);
ret2 = ath10k_install_key(arvif, key, DISABLE_KEY,
peer_addr, flags);
if (ret2) {
WARN_ON(ret2 > 0);
ath10k_warn(ar, "failed to disable (mcast) key for vdev %i peer %pM: %d\n",
arvif->vdev_id, peer_addr, ret2);
}
goto exit;
}
}
ath10k_set_key_h_def_keyidx(ar, arvif, cmd, key);
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find(ar, arvif->vdev_id, peer_addr);
if (peer && cmd == SET_KEY)
peer->keys[key->keyidx] = key;
else if (peer && cmd == DISABLE_KEY)
peer->keys[key->keyidx] = NULL;
else if (peer == NULL)
/* impossible unless FW goes crazy */
ath10k_warn(ar, "Peer %pM disappeared!\n", peer_addr);
spin_unlock_bh(&ar->data_lock);
if (sta && sta->tdls)
ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
ar->wmi.peer_param->authorize, 1);
else if (sta && cmd == SET_KEY && (key->flags & IEEE80211_KEY_FLAG_PAIRWISE))
ath10k_wmi_peer_set_param(ar, arvif->vdev_id, peer_addr,
ar->wmi.peer_param->authorize, 1);
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static void ath10k_set_default_unicast_key(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
int keyidx)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = (void *)vif->drv_priv;
int ret;
mutex_lock(&arvif->ar->conf_mutex);
if (arvif->ar->state != ATH10K_STATE_ON)
goto unlock;
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d set keyidx %d\n",
arvif->vdev_id, keyidx);
ret = ath10k_wmi_vdev_set_param(arvif->ar,
arvif->vdev_id,
arvif->ar->wmi.vdev_param->def_keyid,
keyidx);
if (ret) {
ath10k_warn(ar, "failed to update wep key index for vdev %d: %d\n",
arvif->vdev_id,
ret);
goto unlock;
}
arvif->def_wep_key_idx = keyidx;
unlock:
mutex_unlock(&arvif->ar->conf_mutex);
}
static void ath10k_sta_rc_update_wk(struct work_struct *wk)
{
struct ath10k *ar;
struct ath10k_vif *arvif;
struct ath10k_sta *arsta;
struct ieee80211_sta *sta;
struct cfg80211_chan_def def;
enum nl80211_band band;
const u8 *ht_mcs_mask;
const u16 *vht_mcs_mask;
u32 changed, bw, nss, smps;
int err;
arsta = container_of(wk, struct ath10k_sta, update_wk);
sta = container_of((void *)arsta, struct ieee80211_sta, drv_priv);
arvif = arsta->arvif;
ar = arvif->ar;
if (WARN_ON(ath10k_mac_vif_chan(arvif->vif, &def)))
return;
band = def.chan->band;
ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs;
vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs;
spin_lock_bh(&ar->data_lock);
changed = arsta->changed;
arsta->changed = 0;
bw = arsta->bw;
nss = arsta->nss;
smps = arsta->smps;
spin_unlock_bh(&ar->data_lock);
mutex_lock(&ar->conf_mutex);
nss = max_t(u32, 1, nss);
nss = min(nss, max(ath10k_mac_max_ht_nss(ht_mcs_mask),
ath10k_mac_max_vht_nss(vht_mcs_mask)));
if (changed & IEEE80211_RC_BW_CHANGED) {
enum wmi_phy_mode mode;
mode = chan_to_phymode(&def);
ath10k_dbg(ar, ATH10K_DBG_STA, "mac update sta %pM peer bw %d phymode %d\n",
sta->addr, bw, mode);
err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
ar->wmi.peer_param->phymode, mode);
if (err) {
ath10k_warn(ar, "failed to update STA %pM peer phymode %d: %d\n",
sta->addr, mode, err);
goto exit;
}
err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
ar->wmi.peer_param->chan_width, bw);
if (err)
ath10k_warn(ar, "failed to update STA %pM peer bw %d: %d\n",
sta->addr, bw, err);
}
if (changed & IEEE80211_RC_NSS_CHANGED) {
ath10k_dbg(ar, ATH10K_DBG_STA, "mac update sta %pM nss %d\n",
sta->addr, nss);
err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
ar->wmi.peer_param->nss, nss);
if (err)
ath10k_warn(ar, "failed to update STA %pM nss %d: %d\n",
sta->addr, nss, err);
}
if (changed & IEEE80211_RC_SMPS_CHANGED) {
ath10k_dbg(ar, ATH10K_DBG_STA, "mac update sta %pM smps %d\n",
sta->addr, smps);
err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
ar->wmi.peer_param->smps_state, smps);
if (err)
ath10k_warn(ar, "failed to update STA %pM smps %d: %d\n",
sta->addr, smps, err);
}
if (changed & IEEE80211_RC_SUPP_RATES_CHANGED) {
ath10k_dbg(ar, ATH10K_DBG_STA, "mac update sta %pM supp rates\n",
sta->addr);
err = ath10k_station_assoc(ar, arvif->vif, sta, true);
if (err)
ath10k_warn(ar, "failed to reassociate station: %pM\n",
sta->addr);
}
exit:
mutex_unlock(&ar->conf_mutex);
}
static int ath10k_mac_inc_num_stations(struct ath10k_vif *arvif,
struct ieee80211_sta *sta)
{
struct ath10k *ar = arvif->ar;
lockdep_assert_held(&ar->conf_mutex);
if (arvif->vdev_type == WMI_VDEV_TYPE_STA && !sta->tdls)
return 0;
if (ar->num_stations >= ar->max_num_stations)
return -ENOBUFS;
ar->num_stations++;
return 0;
}
static void ath10k_mac_dec_num_stations(struct ath10k_vif *arvif,
struct ieee80211_sta *sta)
{
struct ath10k *ar = arvif->ar;
lockdep_assert_held(&ar->conf_mutex);
if (arvif->vdev_type == WMI_VDEV_TYPE_STA && !sta->tdls)
return;
ar->num_stations--;
}
static int ath10k_sta_set_txpwr(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = (void *)vif->drv_priv;
int ret = 0;
s16 txpwr;
if (sta->deflink.txpwr.type == NL80211_TX_POWER_AUTOMATIC) {
txpwr = 0;
} else {
txpwr = sta->deflink.txpwr.power;
if (!txpwr)
return -EINVAL;
}
if (txpwr > ATH10K_TX_POWER_MAX_VAL || txpwr < ATH10K_TX_POWER_MIN_VAL)
return -EINVAL;
mutex_lock(&ar->conf_mutex);
ret = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
ar->wmi.peer_param->use_fixed_power, txpwr);
if (ret) {
ath10k_warn(ar, "failed to set tx power for station ret: %d\n",
ret);
goto out;
}
out:
mutex_unlock(&ar->conf_mutex);
return ret;
}
struct ath10k_mac_iter_tid_conf_data {
struct ieee80211_vif *curr_vif;
struct ath10k *ar;
bool reset_config;
};
static bool
ath10k_mac_bitrate_mask_has_single_rate(struct ath10k *ar,
enum nl80211_band band,
const struct cfg80211_bitrate_mask *mask,
int *vht_num_rates)
{
int num_rates = 0;
int i, tmp;
num_rates += hweight32(mask->control[band].legacy);
for (i = 0; i < ARRAY_SIZE(mask->control[band].ht_mcs); i++)
num_rates += hweight8(mask->control[band].ht_mcs[i]);
*vht_num_rates = 0;
for (i = 0; i < ARRAY_SIZE(mask->control[band].vht_mcs); i++) {
tmp = hweight16(mask->control[band].vht_mcs[i]);
num_rates += tmp;
*vht_num_rates += tmp;
}
return num_rates == 1;
}
static int
ath10k_mac_bitrate_mask_get_single_rate(struct ath10k *ar,
enum nl80211_band band,
const struct cfg80211_bitrate_mask *mask,
u8 *rate, u8 *nss, bool vht_only)
{
int rate_idx;
int i;
u16 bitrate;
u8 preamble;
u8 hw_rate;
if (vht_only)
goto next;
if (hweight32(mask->control[band].legacy) == 1) {
rate_idx = ffs(mask->control[band].legacy) - 1;
if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY)
rate_idx += ATH10K_MAC_FIRST_OFDM_RATE_IDX;
hw_rate = ath10k_wmi_legacy_rates[rate_idx].hw_value;
bitrate = ath10k_wmi_legacy_rates[rate_idx].bitrate;
if (ath10k_mac_bitrate_is_cck(bitrate))
preamble = WMI_RATE_PREAMBLE_CCK;
else
preamble = WMI_RATE_PREAMBLE_OFDM;
*nss = 1;
*rate = preamble << 6 |
(*nss - 1) << 4 |
hw_rate << 0;
return 0;
}
for (i = 0; i < ARRAY_SIZE(mask->control[band].ht_mcs); i++) {
if (hweight8(mask->control[band].ht_mcs[i]) == 1) {
*nss = i + 1;
*rate = WMI_RATE_PREAMBLE_HT << 6 |
(*nss - 1) << 4 |
(ffs(mask->control[band].ht_mcs[i]) - 1);
return 0;
}
}
next:
for (i = 0; i < ARRAY_SIZE(mask->control[band].vht_mcs); i++) {
if (hweight16(mask->control[band].vht_mcs[i]) == 1) {
*nss = i + 1;
*rate = WMI_RATE_PREAMBLE_VHT << 6 |
(*nss - 1) << 4 |
(ffs(mask->control[band].vht_mcs[i]) - 1);
return 0;
}
}
return -EINVAL;
}
static int ath10k_mac_validate_rate_mask(struct ath10k *ar,
struct ieee80211_sta *sta,
u32 rate_ctrl_flag, u8 nss)
{
struct ieee80211_sta_ht_cap *ht_cap = &sta->deflink.ht_cap;
struct ieee80211_sta_vht_cap *vht_cap = &sta->deflink.vht_cap;
if (nss > sta->deflink.rx_nss) {
ath10k_warn(ar, "Invalid nss field, configured %u limit %u\n",
nss, sta->deflink.rx_nss);
return -EINVAL;
}
if (ATH10K_HW_PREAMBLE(rate_ctrl_flag) == WMI_RATE_PREAMBLE_VHT) {
if (!vht_cap->vht_supported) {
ath10k_warn(ar, "Invalid VHT rate for sta %pM\n",
sta->addr);
return -EINVAL;
}
} else if (ATH10K_HW_PREAMBLE(rate_ctrl_flag) == WMI_RATE_PREAMBLE_HT) {
if (!ht_cap->ht_supported || vht_cap->vht_supported) {
ath10k_warn(ar, "Invalid HT rate for sta %pM\n",
sta->addr);
return -EINVAL;
}
} else {
if (ht_cap->ht_supported || vht_cap->vht_supported)
return -EINVAL;
}
return 0;
}
static int
ath10k_mac_tid_bitrate_config(struct ath10k *ar,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
u32 *rate_ctrl_flag, u8 *rate_ctrl,
enum nl80211_tx_rate_setting txrate_type,
const struct cfg80211_bitrate_mask *mask)
{
struct cfg80211_chan_def def;
enum nl80211_band band;
u8 nss, rate;
int vht_num_rates, ret;
if (WARN_ON(ath10k_mac_vif_chan(vif, &def)))
return -EINVAL;
if (txrate_type == NL80211_TX_RATE_AUTOMATIC) {
*rate_ctrl = WMI_TID_CONFIG_RATE_CONTROL_AUTO;
*rate_ctrl_flag = 0;
return 0;
}
band = def.chan->band;
if (!ath10k_mac_bitrate_mask_has_single_rate(ar, band, mask,
&vht_num_rates)) {
return -EINVAL;
}
ret = ath10k_mac_bitrate_mask_get_single_rate(ar, band, mask,
&rate, &nss, false);
if (ret) {
ath10k_warn(ar, "failed to get single rate: %d\n",
ret);
return ret;
}
*rate_ctrl_flag = rate;
if (sta && ath10k_mac_validate_rate_mask(ar, sta, *rate_ctrl_flag, nss))
return -EINVAL;
if (txrate_type == NL80211_TX_RATE_FIXED)
*rate_ctrl = WMI_TID_CONFIG_RATE_CONTROL_FIXED_RATE;
else if (txrate_type == NL80211_TX_RATE_LIMITED &&
(test_bit(WMI_SERVICE_EXT_PEER_TID_CONFIGS_SUPPORT,
ar->wmi.svc_map)))
*rate_ctrl = WMI_PEER_TID_CONFIG_RATE_UPPER_CAP;
else
return -EOPNOTSUPP;
return 0;
}
static int ath10k_mac_set_tid_config(struct ath10k *ar, struct ieee80211_sta *sta,
struct ieee80211_vif *vif, u32 changed,
struct wmi_per_peer_per_tid_cfg_arg *arg)
{
struct ath10k_vif *arvif = (void *)vif->drv_priv;
struct ath10k_sta *arsta;
int ret;
if (sta) {
if (!sta->wme)
return -EOPNOTSUPP;
arsta = (struct ath10k_sta *)sta->drv_priv;
if (changed & BIT(NL80211_TID_CONFIG_ATTR_NOACK)) {
if ((arsta->retry_long[arg->tid] > 0 ||
arsta->rate_code[arg->tid] > 0 ||
arsta->ampdu[arg->tid] ==
WMI_TID_CONFIG_AGGR_CONTROL_ENABLE) &&
arg->ack_policy == WMI_PEER_TID_CONFIG_NOACK) {
changed &= ~BIT(NL80211_TID_CONFIG_ATTR_NOACK);
arg->ack_policy = 0;
arg->aggr_control = 0;
arg->rate_ctrl = 0;
arg->rcode_flags = 0;
}
}
if (changed & BIT(NL80211_TID_CONFIG_ATTR_AMPDU_CTRL)) {
if (arsta->noack[arg->tid] == WMI_PEER_TID_CONFIG_NOACK ||
arvif->noack[arg->tid] == WMI_PEER_TID_CONFIG_NOACK) {
arg->aggr_control = 0;
changed &= ~BIT(NL80211_TID_CONFIG_ATTR_RETRY_LONG);
}
}
if (changed & (BIT(NL80211_TID_CONFIG_ATTR_TX_RATE) |
BIT(NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE))) {
if (arsta->noack[arg->tid] == WMI_PEER_TID_CONFIG_NOACK ||
arvif->noack[arg->tid] == WMI_PEER_TID_CONFIG_NOACK) {
arg->rate_ctrl = 0;
arg->rcode_flags = 0;
}
}
ether_addr_copy(arg->peer_macaddr.addr, sta->addr);
ret = ath10k_wmi_set_per_peer_per_tid_cfg(ar, arg);
if (ret)
return ret;
/* Store the configured parameters in success case */
if (changed & BIT(NL80211_TID_CONFIG_ATTR_NOACK)) {
arsta->noack[arg->tid] = arg->ack_policy;
arg->ack_policy = 0;
arg->aggr_control = 0;
arg->rate_ctrl = 0;
arg->rcode_flags = 0;
}
if (changed & BIT(NL80211_TID_CONFIG_ATTR_RETRY_LONG)) {
arsta->retry_long[arg->tid] = arg->retry_count;
arg->retry_count = 0;
}
if (changed & BIT(NL80211_TID_CONFIG_ATTR_AMPDU_CTRL)) {
arsta->ampdu[arg->tid] = arg->aggr_control;
arg->aggr_control = 0;
}
if (changed & (BIT(NL80211_TID_CONFIG_ATTR_TX_RATE) |
BIT(NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE))) {
arsta->rate_ctrl[arg->tid] = arg->rate_ctrl;
arg->rate_ctrl = 0;
arg->rcode_flags = 0;
}
if (changed & BIT(NL80211_TID_CONFIG_ATTR_RTSCTS_CTRL)) {
arsta->rtscts[arg->tid] = arg->rtscts_ctrl;
arg->ext_tid_cfg_bitmap = 0;
}
} else {
if (changed & BIT(NL80211_TID_CONFIG_ATTR_NOACK)) {
if ((arvif->retry_long[arg->tid] ||
arvif->rate_code[arg->tid] ||
arvif->ampdu[arg->tid] ==
WMI_TID_CONFIG_AGGR_CONTROL_ENABLE) &&
arg->ack_policy == WMI_PEER_TID_CONFIG_NOACK) {
changed &= ~BIT(NL80211_TID_CONFIG_ATTR_NOACK);
} else {
arvif->noack[arg->tid] = arg->ack_policy;
arvif->ampdu[arg->tid] = arg->aggr_control;
arvif->rate_ctrl[arg->tid] = arg->rate_ctrl;
}
}
if (changed & BIT(NL80211_TID_CONFIG_ATTR_RETRY_LONG)) {
if (arvif->noack[arg->tid] == WMI_PEER_TID_CONFIG_NOACK)
changed &= ~BIT(NL80211_TID_CONFIG_ATTR_RETRY_LONG);
else
arvif->retry_long[arg->tid] = arg->retry_count;
}
if (changed & BIT(NL80211_TID_CONFIG_ATTR_AMPDU_CTRL)) {
if (arvif->noack[arg->tid] == WMI_PEER_TID_CONFIG_NOACK)
changed &= ~BIT(NL80211_TID_CONFIG_ATTR_AMPDU_CTRL);
else
arvif->ampdu[arg->tid] = arg->aggr_control;
}
if (changed & (BIT(NL80211_TID_CONFIG_ATTR_TX_RATE) |
BIT(NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE))) {
if (arvif->noack[arg->tid] == WMI_PEER_TID_CONFIG_NOACK) {
changed &= ~(BIT(NL80211_TID_CONFIG_ATTR_TX_RATE) |
BIT(NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE));
} else {
arvif->rate_ctrl[arg->tid] = arg->rate_ctrl;
arvif->rate_code[arg->tid] = arg->rcode_flags;
}
}
if (changed & BIT(NL80211_TID_CONFIG_ATTR_RTSCTS_CTRL)) {
arvif->rtscts[arg->tid] = arg->rtscts_ctrl;
arg->ext_tid_cfg_bitmap = 0;
}
if (changed)
arvif->tid_conf_changed[arg->tid] |= changed;
}
return 0;
}
static int
ath10k_mac_parse_tid_config(struct ath10k *ar,
struct ieee80211_sta *sta,
struct ieee80211_vif *vif,
struct cfg80211_tid_cfg *tid_conf,
struct wmi_per_peer_per_tid_cfg_arg *arg)
{
u32 changed = tid_conf->mask;
int ret = 0, i = 0;
if (!changed)
return -EINVAL;
while (i < ATH10K_TID_MAX) {
if (!(tid_conf->tids & BIT(i))) {
i++;
continue;
}
arg->tid = i;
if (changed & BIT(NL80211_TID_CONFIG_ATTR_NOACK)) {
if (tid_conf->noack == NL80211_TID_CONFIG_ENABLE) {
arg->ack_policy = WMI_PEER_TID_CONFIG_NOACK;
arg->rate_ctrl =
WMI_TID_CONFIG_RATE_CONTROL_DEFAULT_LOWEST_RATE;
arg->aggr_control =
WMI_TID_CONFIG_AGGR_CONTROL_DISABLE;
} else {
arg->ack_policy =
WMI_PEER_TID_CONFIG_ACK;
arg->rate_ctrl =
WMI_TID_CONFIG_RATE_CONTROL_AUTO;
arg->aggr_control =
WMI_TID_CONFIG_AGGR_CONTROL_ENABLE;
}
}
if (changed & BIT(NL80211_TID_CONFIG_ATTR_RETRY_LONG))
arg->retry_count = tid_conf->retry_long;
if (changed & BIT(NL80211_TID_CONFIG_ATTR_AMPDU_CTRL)) {
if (tid_conf->noack == NL80211_TID_CONFIG_ENABLE)
arg->aggr_control = WMI_TID_CONFIG_AGGR_CONTROL_ENABLE;
else
arg->aggr_control = WMI_TID_CONFIG_AGGR_CONTROL_DISABLE;
}
if (changed & (BIT(NL80211_TID_CONFIG_ATTR_TX_RATE) |
BIT(NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE))) {
ret = ath10k_mac_tid_bitrate_config(ar, vif, sta,
&arg->rcode_flags,
&arg->rate_ctrl,
tid_conf->txrate_type,
&tid_conf->txrate_mask);
if (ret) {
ath10k_warn(ar, "failed to configure bitrate mask %d\n",
ret);
arg->rcode_flags = 0;
arg->rate_ctrl = 0;
}
}
if (changed & BIT(NL80211_TID_CONFIG_ATTR_RTSCTS_CTRL)) {
if (tid_conf->rtscts)
arg->rtscts_ctrl = tid_conf->rtscts;
arg->ext_tid_cfg_bitmap = WMI_EXT_TID_RTS_CTS_CONFIG;
}
ret = ath10k_mac_set_tid_config(ar, sta, vif, changed, arg);
if (ret)
return ret;
i++;
}
return ret;
}
static int ath10k_mac_reset_tid_config(struct ath10k *ar,
struct ieee80211_sta *sta,
struct ath10k_vif *arvif,
u8 tids)
{
struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
struct wmi_per_peer_per_tid_cfg_arg arg;
int ret = 0, i = 0;
arg.vdev_id = arvif->vdev_id;
while (i < ATH10K_TID_MAX) {
if (!(tids & BIT(i))) {
i++;
continue;
}
arg.tid = i;
arg.ack_policy = WMI_PEER_TID_CONFIG_ACK;
arg.retry_count = ATH10K_MAX_RETRY_COUNT;
arg.rate_ctrl = WMI_TID_CONFIG_RATE_CONTROL_AUTO;
arg.aggr_control = WMI_TID_CONFIG_AGGR_CONTROL_ENABLE;
arg.rtscts_ctrl = WMI_TID_CONFIG_RTSCTS_CONTROL_ENABLE;
arg.ext_tid_cfg_bitmap = WMI_EXT_TID_RTS_CTS_CONFIG;
ether_addr_copy(arg.peer_macaddr.addr, sta->addr);
ret = ath10k_wmi_set_per_peer_per_tid_cfg(ar, &arg);
if (ret)
return ret;
if (!arvif->tids_rst) {
arsta->retry_long[i] = -1;
arsta->noack[i] = -1;
arsta->ampdu[i] = -1;
arsta->rate_code[i] = -1;
arsta->rate_ctrl[i] = 0;
arsta->rtscts[i] = -1;
} else {
arvif->retry_long[i] = 0;
arvif->noack[i] = 0;
arvif->ampdu[i] = 0;
arvif->rate_code[i] = 0;
arvif->rate_ctrl[i] = 0;
arvif->rtscts[i] = 0;
}
i++;
}
return ret;
}
static void ath10k_sta_tid_cfg_wk(struct work_struct *wk)
{
struct wmi_per_peer_per_tid_cfg_arg arg = {};
struct ieee80211_sta *sta;
struct ath10k_sta *arsta;
struct ath10k_vif *arvif;
struct ath10k *ar;
bool config_apply;
int ret, i;
u32 changed;
u8 nss;
arsta = container_of(wk, struct ath10k_sta, tid_config_wk);
sta = container_of((void *)arsta, struct ieee80211_sta, drv_priv);
arvif = arsta->arvif;
ar = arvif->ar;
mutex_lock(&ar->conf_mutex);
if (arvif->tids_rst) {
ret = ath10k_mac_reset_tid_config(ar, sta, arvif,
arvif->tids_rst);
goto exit;
}
ether_addr_copy(arg.peer_macaddr.addr, sta->addr);
for (i = 0; i < ATH10K_TID_MAX; i++) {
config_apply = false;
changed = arvif->tid_conf_changed[i];
if (changed & BIT(NL80211_TID_CONFIG_ATTR_NOACK)) {
if (arsta->noack[i] != -1) {
arg.ack_policy = 0;
} else {
config_apply = true;
arg.ack_policy = arvif->noack[i];
arg.aggr_control = arvif->ampdu[i];
arg.rate_ctrl = arvif->rate_ctrl[i];
}
}
if (changed & BIT(NL80211_TID_CONFIG_ATTR_RETRY_LONG)) {
if (arsta->retry_long[i] != -1 ||
arsta->noack[i] == WMI_PEER_TID_CONFIG_NOACK ||
arvif->noack[i] == WMI_PEER_TID_CONFIG_NOACK) {
arg.retry_count = 0;
} else {
arg.retry_count = arvif->retry_long[i];
config_apply = true;
}
}
if (changed & BIT(NL80211_TID_CONFIG_ATTR_AMPDU_CTRL)) {
if (arsta->ampdu[i] != -1 ||
arsta->noack[i] == WMI_PEER_TID_CONFIG_NOACK ||
arvif->noack[i] == WMI_PEER_TID_CONFIG_NOACK) {
arg.aggr_control = 0;
} else {
arg.aggr_control = arvif->ampdu[i];
config_apply = true;
}
}
if (changed & (BIT(NL80211_TID_CONFIG_ATTR_TX_RATE) |
BIT(NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE))) {
nss = ATH10K_HW_NSS(arvif->rate_code[i]);
ret = ath10k_mac_validate_rate_mask(ar, sta,
arvif->rate_code[i],
nss);
if (ret &&
arvif->rate_ctrl[i] > WMI_TID_CONFIG_RATE_CONTROL_AUTO) {
arg.rate_ctrl = 0;
arg.rcode_flags = 0;
}
if (arsta->rate_ctrl[i] >
WMI_TID_CONFIG_RATE_CONTROL_AUTO ||
arsta->noack[i] == WMI_PEER_TID_CONFIG_NOACK ||
arvif->noack[i] == WMI_PEER_TID_CONFIG_NOACK) {
arg.rate_ctrl = 0;
arg.rcode_flags = 0;
} else {
arg.rate_ctrl = arvif->rate_ctrl[i];
arg.rcode_flags = arvif->rate_code[i];
config_apply = true;
}
}
if (changed & BIT(NL80211_TID_CONFIG_ATTR_RTSCTS_CTRL)) {
if (arsta->rtscts[i]) {
arg.rtscts_ctrl = 0;
arg.ext_tid_cfg_bitmap = 0;
} else {
arg.rtscts_ctrl = arvif->rtscts[i] - 1;
arg.ext_tid_cfg_bitmap =
WMI_EXT_TID_RTS_CTS_CONFIG;
config_apply = true;
}
}
arg.tid = i;
if (config_apply) {
ret = ath10k_wmi_set_per_peer_per_tid_cfg(ar, &arg);
if (ret)
ath10k_warn(ar, "failed to set per tid config for sta %pM: %d\n",
sta->addr, ret);
}
arg.ack_policy = 0;
arg.retry_count = 0;
arg.aggr_control = 0;
arg.rate_ctrl = 0;
arg.rcode_flags = 0;
}
exit:
mutex_unlock(&ar->conf_mutex);
}
static void ath10k_mac_vif_stations_tid_conf(void *data,
struct ieee80211_sta *sta)
{
struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
struct ath10k_mac_iter_tid_conf_data *iter_data = data;
struct ieee80211_vif *sta_vif = arsta->arvif->vif;
if (sta_vif != iter_data->curr_vif || !sta->wme)
return;
ieee80211_queue_work(iter_data->ar->hw, &arsta->tid_config_wk);
}
static int ath10k_sta_state(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
enum ieee80211_sta_state old_state,
enum ieee80211_sta_state new_state)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = (void *)vif->drv_priv;
struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
struct ath10k_peer *peer;
int ret = 0;
int i;
if (old_state == IEEE80211_STA_NOTEXIST &&
new_state == IEEE80211_STA_NONE) {
memset(arsta, 0, sizeof(*arsta));
arsta->arvif = arvif;
arsta->peer_ps_state = WMI_PEER_PS_STATE_DISABLED;
INIT_WORK(&arsta->update_wk, ath10k_sta_rc_update_wk);
INIT_WORK(&arsta->tid_config_wk, ath10k_sta_tid_cfg_wk);
for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
ath10k_mac_txq_init(sta->txq[i]);
}
/* cancel must be done outside the mutex to avoid deadlock */
if ((old_state == IEEE80211_STA_NONE &&
new_state == IEEE80211_STA_NOTEXIST)) {
cancel_work_sync(&arsta->update_wk);
cancel_work_sync(&arsta->tid_config_wk);
}
mutex_lock(&ar->conf_mutex);
if (old_state == IEEE80211_STA_NOTEXIST &&
new_state == IEEE80211_STA_NONE) {
/*
* New station addition.
*/
enum wmi_peer_type peer_type = WMI_PEER_TYPE_DEFAULT;
u32 num_tdls_stations;
ath10k_dbg(ar, ATH10K_DBG_STA,
"mac vdev %d peer create %pM (new sta) sta %d / %d peer %d / %d\n",
arvif->vdev_id, sta->addr,
ar->num_stations + 1, ar->max_num_stations,
ar->num_peers + 1, ar->max_num_peers);
num_tdls_stations = ath10k_mac_tdls_vif_stations_count(hw, vif);
if (sta->tdls) {
if (num_tdls_stations >= ar->max_num_tdls_vdevs) {
ath10k_warn(ar, "vdev %i exceeded maximum number of tdls vdevs %i\n",
arvif->vdev_id,
ar->max_num_tdls_vdevs);
ret = -ELNRNG;
goto exit;
}
peer_type = WMI_PEER_TYPE_TDLS;
}
ret = ath10k_mac_inc_num_stations(arvif, sta);
if (ret) {
ath10k_warn(ar, "refusing to associate station: too many connected already (%d)\n",
ar->max_num_stations);
goto exit;
}
if (ath10k_debug_is_extd_tx_stats_enabled(ar)) {
arsta->tx_stats = kzalloc(sizeof(*arsta->tx_stats),
GFP_KERNEL);
if (!arsta->tx_stats) {
ath10k_mac_dec_num_stations(arvif, sta);
ret = -ENOMEM;
goto exit;
}
}
ret = ath10k_peer_create(ar, vif, sta, arvif->vdev_id,
sta->addr, peer_type);
if (ret) {
ath10k_warn(ar, "failed to add peer %pM for vdev %d when adding a new sta: %i\n",
sta->addr, arvif->vdev_id, ret);
ath10k_mac_dec_num_stations(arvif, sta);
kfree(arsta->tx_stats);
goto exit;
}
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find(ar, arvif->vdev_id, sta->addr);
if (!peer) {
ath10k_warn(ar, "failed to lookup peer %pM on vdev %i\n",
vif->addr, arvif->vdev_id);
spin_unlock_bh(&ar->data_lock);
ath10k_peer_delete(ar, arvif->vdev_id, sta->addr);
ath10k_mac_dec_num_stations(arvif, sta);
kfree(arsta->tx_stats);
ret = -ENOENT;
goto exit;
}
arsta->peer_id = find_first_bit(peer->peer_ids,
ATH10K_MAX_NUM_PEER_IDS);
spin_unlock_bh(&ar->data_lock);
if (!sta->tdls)
goto exit;
ret = ath10k_wmi_update_fw_tdls_state(ar, arvif->vdev_id,
WMI_TDLS_ENABLE_ACTIVE);
if (ret) {
ath10k_warn(ar, "failed to update fw tdls state on vdev %i: %i\n",
arvif->vdev_id, ret);
ath10k_peer_delete(ar, arvif->vdev_id,
sta->addr);
ath10k_mac_dec_num_stations(arvif, sta);
kfree(arsta->tx_stats);
goto exit;
}
ret = ath10k_mac_tdls_peer_update(ar, arvif->vdev_id, sta,
WMI_TDLS_PEER_STATE_PEERING);
if (ret) {
ath10k_warn(ar,
"failed to update tdls peer %pM for vdev %d when adding a new sta: %i\n",
sta->addr, arvif->vdev_id, ret);
ath10k_peer_delete(ar, arvif->vdev_id, sta->addr);
ath10k_mac_dec_num_stations(arvif, sta);
kfree(arsta->tx_stats);
if (num_tdls_stations != 0)
goto exit;
ath10k_wmi_update_fw_tdls_state(ar, arvif->vdev_id,
WMI_TDLS_DISABLE);
}
} else if ((old_state == IEEE80211_STA_NONE &&
new_state == IEEE80211_STA_NOTEXIST)) {
/*
* Existing station deletion.
*/
ath10k_dbg(ar, ATH10K_DBG_STA,
"mac vdev %d peer delete %pM sta %pK (sta gone)\n",
arvif->vdev_id, sta->addr, sta);
if (sta->tdls) {
ret = ath10k_mac_tdls_peer_update(ar, arvif->vdev_id,
sta,
WMI_TDLS_PEER_STATE_TEARDOWN);
if (ret)
ath10k_warn(ar, "failed to update tdls peer state for %pM state %d: %i\n",
sta->addr,
WMI_TDLS_PEER_STATE_TEARDOWN, ret);
}
ret = ath10k_peer_delete(ar, arvif->vdev_id, sta->addr);
if (ret)
ath10k_warn(ar, "failed to delete peer %pM for vdev %d: %i\n",
sta->addr, arvif->vdev_id, ret);
ath10k_mac_dec_num_stations(arvif, sta);
spin_lock_bh(&ar->data_lock);
for (i = 0; i < ARRAY_SIZE(ar->peer_map); i++) {
peer = ar->peer_map[i];
if (!peer)
continue;
if (peer->sta == sta) {
ath10k_warn(ar, "found sta peer %pM (ptr %pK id %d) entry on vdev %i after it was supposedly removed\n",
sta->addr, peer, i, arvif->vdev_id);
peer->sta = NULL;
/* Clean up the peer object as well since we
* must have failed to do this above.
*/
ath10k_peer_map_cleanup(ar, peer);
}
}
spin_unlock_bh(&ar->data_lock);
if (ath10k_debug_is_extd_tx_stats_enabled(ar)) {
kfree(arsta->tx_stats);
arsta->tx_stats = NULL;
}
for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
ath10k_mac_txq_unref(ar, sta->txq[i]);
if (!sta->tdls)
goto exit;
if (ath10k_mac_tdls_vif_stations_count(hw, vif))
goto exit;
/* This was the last tdls peer in current vif */
ret = ath10k_wmi_update_fw_tdls_state(ar, arvif->vdev_id,
WMI_TDLS_DISABLE);
if (ret) {
ath10k_warn(ar, "failed to update fw tdls state on vdev %i: %i\n",
arvif->vdev_id, ret);
}
} else if (old_state == IEEE80211_STA_AUTH &&
new_state == IEEE80211_STA_ASSOC &&
(vif->type == NL80211_IFTYPE_AP ||
vif->type == NL80211_IFTYPE_MESH_POINT ||
vif->type == NL80211_IFTYPE_ADHOC)) {
/*
* New association.
*/
ath10k_dbg(ar, ATH10K_DBG_STA, "mac sta %pM associated\n",
sta->addr);
ret = ath10k_station_assoc(ar, vif, sta, false);
if (ret)
ath10k_warn(ar, "failed to associate station %pM for vdev %i: %i\n",
sta->addr, arvif->vdev_id, ret);
} else if (old_state == IEEE80211_STA_ASSOC &&
new_state == IEEE80211_STA_AUTHORIZED &&
sta->tdls) {
/*
* Tdls station authorized.
*/
ath10k_dbg(ar, ATH10K_DBG_STA, "mac tdls sta %pM authorized\n",
sta->addr);
ret = ath10k_station_assoc(ar, vif, sta, false);
if (ret) {
ath10k_warn(ar, "failed to associate tdls station %pM for vdev %i: %i\n",
sta->addr, arvif->vdev_id, ret);
goto exit;
}
ret = ath10k_mac_tdls_peer_update(ar, arvif->vdev_id, sta,
WMI_TDLS_PEER_STATE_CONNECTED);
if (ret)
ath10k_warn(ar, "failed to update tdls peer %pM for vdev %i: %i\n",
sta->addr, arvif->vdev_id, ret);
} else if (old_state == IEEE80211_STA_ASSOC &&
new_state == IEEE80211_STA_AUTH &&
(vif->type == NL80211_IFTYPE_AP ||
vif->type == NL80211_IFTYPE_MESH_POINT ||
vif->type == NL80211_IFTYPE_ADHOC)) {
/*
* Disassociation.
*/
ath10k_dbg(ar, ATH10K_DBG_STA, "mac sta %pM disassociated\n",
sta->addr);
ret = ath10k_station_disassoc(ar, vif, sta);
if (ret)
ath10k_warn(ar, "failed to disassociate station: %pM vdev %i: %i\n",
sta->addr, arvif->vdev_id, ret);
}
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static int ath10k_conf_tx_uapsd(struct ath10k *ar, struct ieee80211_vif *vif,
u16 ac, bool enable)
{
struct ath10k_vif *arvif = (void *)vif->drv_priv;
struct wmi_sta_uapsd_auto_trig_arg arg = {};
u32 prio = 0, acc = 0;
u32 value = 0;
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
if (arvif->vdev_type != WMI_VDEV_TYPE_STA)
return 0;
switch (ac) {
case IEEE80211_AC_VO:
value = WMI_STA_PS_UAPSD_AC3_DELIVERY_EN |
WMI_STA_PS_UAPSD_AC3_TRIGGER_EN;
prio = 7;
acc = 3;
break;
case IEEE80211_AC_VI:
value = WMI_STA_PS_UAPSD_AC2_DELIVERY_EN |
WMI_STA_PS_UAPSD_AC2_TRIGGER_EN;
prio = 5;
acc = 2;
break;
case IEEE80211_AC_BE:
value = WMI_STA_PS_UAPSD_AC1_DELIVERY_EN |
WMI_STA_PS_UAPSD_AC1_TRIGGER_EN;
prio = 2;
acc = 1;
break;
case IEEE80211_AC_BK:
value = WMI_STA_PS_UAPSD_AC0_DELIVERY_EN |
WMI_STA_PS_UAPSD_AC0_TRIGGER_EN;
prio = 0;
acc = 0;
break;
}
if (enable)
arvif->u.sta.uapsd |= value;
else
arvif->u.sta.uapsd &= ~value;
ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
WMI_STA_PS_PARAM_UAPSD,
arvif->u.sta.uapsd);
if (ret) {
ath10k_warn(ar, "failed to set uapsd params: %d\n", ret);
goto exit;
}
if (arvif->u.sta.uapsd)
value = WMI_STA_PS_RX_WAKE_POLICY_POLL_UAPSD;
else
value = WMI_STA_PS_RX_WAKE_POLICY_WAKE;
ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
WMI_STA_PS_PARAM_RX_WAKE_POLICY,
value);
if (ret)
ath10k_warn(ar, "failed to set rx wake param: %d\n", ret);
ret = ath10k_mac_vif_recalc_ps_wake_threshold(arvif);
if (ret) {
ath10k_warn(ar, "failed to recalc ps wake threshold on vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
ret = ath10k_mac_vif_recalc_ps_poll_count(arvif);
if (ret) {
ath10k_warn(ar, "failed to recalc ps poll count on vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
if (test_bit(WMI_SERVICE_STA_UAPSD_BASIC_AUTO_TRIG, ar->wmi.svc_map) ||
test_bit(WMI_SERVICE_STA_UAPSD_VAR_AUTO_TRIG, ar->wmi.svc_map)) {
/* Only userspace can make an educated decision when to send
* trigger frame. The following effectively disables u-UAPSD
* autotrigger in firmware (which is enabled by default
* provided the autotrigger service is available).
*/
arg.wmm_ac = acc;
arg.user_priority = prio;
arg.service_interval = 0;
arg.suspend_interval = WMI_STA_UAPSD_MAX_INTERVAL_MSEC;
arg.delay_interval = WMI_STA_UAPSD_MAX_INTERVAL_MSEC;
ret = ath10k_wmi_vdev_sta_uapsd(ar, arvif->vdev_id,
arvif->bssid, &arg, 1);
if (ret) {
ath10k_warn(ar, "failed to set uapsd auto trigger %d\n",
ret);
return ret;
}
}
exit:
return ret;
}
static int ath10k_conf_tx(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
unsigned int link_id, u16 ac,
const struct ieee80211_tx_queue_params *params)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = (void *)vif->drv_priv;
struct wmi_wmm_params_arg *p = NULL;
int ret;
mutex_lock(&ar->conf_mutex);
switch (ac) {
case IEEE80211_AC_VO:
p = &arvif->wmm_params.ac_vo;
break;
case IEEE80211_AC_VI:
p = &arvif->wmm_params.ac_vi;
break;
case IEEE80211_AC_BE:
p = &arvif->wmm_params.ac_be;
break;
case IEEE80211_AC_BK:
p = &arvif->wmm_params.ac_bk;
break;
}
if (WARN_ON(!p)) {
ret = -EINVAL;
goto exit;
}
p->cwmin = params->cw_min;
p->cwmax = params->cw_max;
p->aifs = params->aifs;
/*
* The channel time duration programmed in the HW is in absolute
* microseconds, while mac80211 gives the txop in units of
* 32 microseconds.
*/
p->txop = params->txop * 32;
if (ar->wmi.ops->gen_vdev_wmm_conf) {
ret = ath10k_wmi_vdev_wmm_conf(ar, arvif->vdev_id,
&arvif->wmm_params);
if (ret) {
ath10k_warn(ar, "failed to set vdev wmm params on vdev %i: %d\n",
arvif->vdev_id, ret);
goto exit;
}
} else {
/* This won't work well with multi-interface cases but it's
* better than nothing.
*/
ret = ath10k_wmi_pdev_set_wmm_params(ar, &arvif->wmm_params);
if (ret) {
ath10k_warn(ar, "failed to set wmm params: %d\n", ret);
goto exit;
}
}
ret = ath10k_conf_tx_uapsd(ar, vif, ac, params->uapsd);
if (ret)
ath10k_warn(ar, "failed to set sta uapsd: %d\n", ret);
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static int ath10k_remain_on_channel(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_channel *chan,
int duration,
enum ieee80211_roc_type type)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = (void *)vif->drv_priv;
struct wmi_start_scan_arg arg;
int ret = 0;
u32 scan_time_msec;
mutex_lock(&ar->conf_mutex);
if (ath10k_mac_tdls_vif_stations_count(hw, vif) > 0) {
ret = -EBUSY;
goto exit;
}
spin_lock_bh(&ar->data_lock);
switch (ar->scan.state) {
case ATH10K_SCAN_IDLE:
reinit_completion(&ar->scan.started);
reinit_completion(&ar->scan.completed);
reinit_completion(&ar->scan.on_channel);
ar->scan.state = ATH10K_SCAN_STARTING;
ar->scan.is_roc = true;
ar->scan.vdev_id = arvif->vdev_id;
ar->scan.roc_freq = chan->center_freq;
ar->scan.roc_notify = true;
ret = 0;
break;
case ATH10K_SCAN_STARTING:
case ATH10K_SCAN_RUNNING:
case ATH10K_SCAN_ABORTING:
ret = -EBUSY;
break;
}
spin_unlock_bh(&ar->data_lock);
if (ret)
goto exit;
scan_time_msec = ar->hw->wiphy->max_remain_on_channel_duration * 2;
memset(&arg, 0, sizeof(arg));
ath10k_wmi_start_scan_init(ar, &arg);
arg.vdev_id = arvif->vdev_id;
arg.scan_id = ATH10K_SCAN_ID;
arg.n_channels = 1;
arg.channels[0] = chan->center_freq;
arg.dwell_time_active = scan_time_msec;
arg.dwell_time_passive = scan_time_msec;
arg.max_scan_time = scan_time_msec;
arg.scan_ctrl_flags |= WMI_SCAN_FLAG_PASSIVE;
arg.scan_ctrl_flags |= WMI_SCAN_FILTER_PROBE_REQ;
arg.burst_duration_ms = duration;
ret = ath10k_start_scan(ar, &arg);
if (ret) {
ath10k_warn(ar, "failed to start roc scan: %d\n", ret);
spin_lock_bh(&ar->data_lock);
ar->scan.state = ATH10K_SCAN_IDLE;
spin_unlock_bh(&ar->data_lock);
goto exit;
}
ret = wait_for_completion_timeout(&ar->scan.on_channel, 3 * HZ);
if (ret == 0) {
ath10k_warn(ar, "failed to switch to channel for roc scan\n");
ret = ath10k_scan_stop(ar);
if (ret)
ath10k_warn(ar, "failed to stop scan: %d\n", ret);
ret = -ETIMEDOUT;
goto exit;
}
ieee80211_queue_delayed_work(ar->hw, &ar->scan.timeout,
msecs_to_jiffies(duration));
ret = 0;
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static int ath10k_cancel_remain_on_channel(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ath10k *ar = hw->priv;
mutex_lock(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
ar->scan.roc_notify = false;
spin_unlock_bh(&ar->data_lock);
ath10k_scan_abort(ar);
mutex_unlock(&ar->conf_mutex);
cancel_delayed_work_sync(&ar->scan.timeout);
return 0;
}
/*
* Both RTS and Fragmentation threshold are interface-specific
* in ath10k, but device-specific in mac80211.
*/
static int ath10k_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif;
int ret = 0;
mutex_lock(&ar->conf_mutex);
list_for_each_entry(arvif, &ar->arvifs, list) {
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d rts threshold %d\n",
arvif->vdev_id, value);
ret = ath10k_mac_set_rts(arvif, value);
if (ret) {
ath10k_warn(ar, "failed to set rts threshold for vdev %d: %d\n",
arvif->vdev_id, ret);
break;
}
}
mutex_unlock(&ar->conf_mutex);
return ret;
}
static int ath10k_mac_op_set_frag_threshold(struct ieee80211_hw *hw, u32 value)
{
/* Even though there's a WMI enum for fragmentation threshold no known
* firmware actually implements it. Moreover it is not possible to rely
* frame fragmentation to mac80211 because firmware clears the "more
* fragments" bit in frame control making it impossible for remote
* devices to reassemble frames.
*
* Hence implement a dummy callback just to say fragmentation isn't
* supported. This effectively prevents mac80211 from doing frame
* fragmentation in software.
*/
return -EOPNOTSUPP;
}
void ath10k_mac_wait_tx_complete(struct ath10k *ar)
{
bool skip;
long time_left;
/* mac80211 doesn't care if we really xmit queued frames or not
* we'll collect those frames either way if we stop/delete vdevs
*/
if (ar->state == ATH10K_STATE_WEDGED)
return;
time_left = wait_event_timeout(ar->htt.empty_tx_wq, ({
bool empty;
spin_lock_bh(&ar->htt.tx_lock);
empty = (ar->htt.num_pending_tx == 0);
spin_unlock_bh(&ar->htt.tx_lock);
skip = (ar->state == ATH10K_STATE_WEDGED) ||
test_bit(ATH10K_FLAG_CRASH_FLUSH,
&ar->dev_flags);
(empty || skip);
}), ATH10K_FLUSH_TIMEOUT_HZ);
if (time_left == 0 || skip)
ath10k_warn(ar, "failed to flush transmit queue (skip %i ar-state %i): %ld\n",
skip, ar->state, time_left);
}
static void ath10k_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
u32 queues, bool drop)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif;
u32 bitmap;
if (drop) {
if (vif && vif->type == NL80211_IFTYPE_STATION) {
bitmap = ~(1 << WMI_MGMT_TID);
list_for_each_entry(arvif, &ar->arvifs, list) {
if (arvif->vdev_type == WMI_VDEV_TYPE_STA)
ath10k_wmi_peer_flush(ar, arvif->vdev_id,
arvif->bssid, bitmap);
}
ath10k_htt_flush_tx(&ar->htt);
}
return;
}
mutex_lock(&ar->conf_mutex);
ath10k_mac_wait_tx_complete(ar);
mutex_unlock(&ar->conf_mutex);
}
/* TODO: Implement this function properly
* For now it is needed to reply to Probe Requests in IBSS mode.
* Probably we need this information from FW.
*/
static int ath10k_tx_last_beacon(struct ieee80211_hw *hw)
{
return 1;
}
static void ath10k_reconfig_complete(struct ieee80211_hw *hw,
enum ieee80211_reconfig_type reconfig_type)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif;
if (reconfig_type != IEEE80211_RECONFIG_TYPE_RESTART)
return;
mutex_lock(&ar->conf_mutex);
/* If device failed to restart it will be in a different state, e.g.
* ATH10K_STATE_WEDGED
*/
if (ar->state == ATH10K_STATE_RESTARTED) {
ath10k_info(ar, "device successfully recovered\n");
ar->state = ATH10K_STATE_ON;
ieee80211_wake_queues(ar->hw);
clear_bit(ATH10K_FLAG_RESTARTING, &ar->dev_flags);
if (ar->hw_params.hw_restart_disconnect) {
list_for_each_entry(arvif, &ar->arvifs, list) {
if (arvif->is_up && arvif->vdev_type == WMI_VDEV_TYPE_STA)
ieee80211_hw_restart_disconnect(arvif->vif);
}
}
}
mutex_unlock(&ar->conf_mutex);
}
static void
ath10k_mac_update_bss_chan_survey(struct ath10k *ar,
struct ieee80211_channel *channel)
{
int ret;
enum wmi_bss_survey_req_type type = WMI_BSS_SURVEY_REQ_TYPE_READ;
lockdep_assert_held(&ar->conf_mutex);
if (!test_bit(WMI_SERVICE_BSS_CHANNEL_INFO_64, ar->wmi.svc_map) ||
(ar->rx_channel != channel))
return;
if (ar->scan.state != ATH10K_SCAN_IDLE) {
ath10k_dbg(ar, ATH10K_DBG_MAC, "ignoring bss chan info request while scanning..\n");
return;
}
reinit_completion(&ar->bss_survey_done);
ret = ath10k_wmi_pdev_bss_chan_info_request(ar, type);
if (ret) {
ath10k_warn(ar, "failed to send pdev bss chan info request\n");
return;
}
ret = wait_for_completion_timeout(&ar->bss_survey_done, 3 * HZ);
if (!ret) {
ath10k_warn(ar, "bss channel survey timed out\n");
return;
}
}
static int ath10k_get_survey(struct ieee80211_hw *hw, int idx,
struct survey_info *survey)
{
struct ath10k *ar = hw->priv;
struct ieee80211_supported_band *sband;
struct survey_info *ar_survey = &ar->survey[idx];
int ret = 0;
mutex_lock(&ar->conf_mutex);
sband = hw->wiphy->bands[NL80211_BAND_2GHZ];
if (sband && idx >= sband->n_channels) {
idx -= sband->n_channels;
sband = NULL;
}
if (!sband)
sband = hw->wiphy->bands[NL80211_BAND_5GHZ];
if (!sband || idx >= sband->n_channels) {
ret = -ENOENT;
goto exit;
}
ath10k_mac_update_bss_chan_survey(ar, &sband->channels[idx]);
spin_lock_bh(&ar->data_lock);
memcpy(survey, ar_survey, sizeof(*survey));
spin_unlock_bh(&ar->data_lock);
survey->channel = &sband->channels[idx];
if (ar->rx_channel == survey->channel)
survey->filled |= SURVEY_INFO_IN_USE;
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static bool
ath10k_mac_bitrate_mask_get_single_nss(struct ath10k *ar,
enum nl80211_band band,
const struct cfg80211_bitrate_mask *mask,
int *nss)
{
struct ieee80211_supported_band *sband = &ar->mac.sbands[band];
u16 vht_mcs_map = le16_to_cpu(sband->vht_cap.vht_mcs.tx_mcs_map);
u8 ht_nss_mask = 0;
u8 vht_nss_mask = 0;
int i;
if (mask->control[band].legacy)
return false;
for (i = 0; i < ARRAY_SIZE(mask->control[band].ht_mcs); i++) {
if (mask->control[band].ht_mcs[i] == 0)
continue;
else if (mask->control[band].ht_mcs[i] ==
sband->ht_cap.mcs.rx_mask[i])
ht_nss_mask |= BIT(i);
else
return false;
}
for (i = 0; i < ARRAY_SIZE(mask->control[band].vht_mcs); i++) {
if (mask->control[band].vht_mcs[i] == 0)
continue;
else if (mask->control[band].vht_mcs[i] ==
ath10k_mac_get_max_vht_mcs_map(vht_mcs_map, i))
vht_nss_mask |= BIT(i);
else
return false;
}
if (ht_nss_mask != vht_nss_mask)
return false;
if (ht_nss_mask == 0)
return false;
if (BIT(fls(ht_nss_mask)) - 1 != ht_nss_mask)
return false;
*nss = fls(ht_nss_mask);
return true;
}
static int ath10k_mac_set_fixed_rate_params(struct ath10k_vif *arvif,
u8 rate, u8 nss, u8 sgi, u8 ldpc)
{
struct ath10k *ar = arvif->ar;
u32 vdev_param;
int ret;
lockdep_assert_held(&ar->conf_mutex);
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac set fixed rate params vdev %i rate 0x%02x nss %u sgi %u\n",
arvif->vdev_id, rate, nss, sgi);
vdev_param = ar->wmi.vdev_param->fixed_rate;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, rate);
if (ret) {
ath10k_warn(ar, "failed to set fixed rate param 0x%02x: %d\n",
rate, ret);
return ret;
}
vdev_param = ar->wmi.vdev_param->nss;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, nss);
if (ret) {
ath10k_warn(ar, "failed to set nss param %d: %d\n", nss, ret);
return ret;
}
vdev_param = ar->wmi.vdev_param->sgi;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, sgi);
if (ret) {
ath10k_warn(ar, "failed to set sgi param %d: %d\n", sgi, ret);
return ret;
}
vdev_param = ar->wmi.vdev_param->ldpc;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, ldpc);
if (ret) {
ath10k_warn(ar, "failed to set ldpc param %d: %d\n", ldpc, ret);
return ret;
}
return 0;
}
static bool
ath10k_mac_can_set_bitrate_mask(struct ath10k *ar,
enum nl80211_band band,
const struct cfg80211_bitrate_mask *mask,
bool allow_pfr)
{
int i;
u16 vht_mcs;
/* Due to firmware limitation in WMI_PEER_ASSOC_CMDID it is impossible
* to express all VHT MCS rate masks. Effectively only the following
* ranges can be used: none, 0-7, 0-8 and 0-9.
*/
for (i = 0; i < NL80211_VHT_NSS_MAX; i++) {
vht_mcs = mask->control[band].vht_mcs[i];
switch (vht_mcs) {
case 0:
case BIT(8) - 1:
case BIT(9) - 1:
case BIT(10) - 1:
break;
default:
if (!allow_pfr)
ath10k_warn(ar, "refusing bitrate mask with missing 0-7 VHT MCS rates\n");
return false;
}
}
return true;
}
static bool ath10k_mac_set_vht_bitrate_mask_fixup(struct ath10k *ar,
struct ath10k_vif *arvif,
struct ieee80211_sta *sta)
{
int err;
u8 rate = arvif->vht_pfr;
/* skip non vht and multiple rate peers */
if (!sta->deflink.vht_cap.vht_supported || arvif->vht_num_rates != 1)
return false;
err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
WMI_PEER_PARAM_FIXED_RATE, rate);
if (err)
ath10k_warn(ar, "failed to enable STA %pM peer fixed rate: %d\n",
sta->addr, err);
return true;
}
static void ath10k_mac_set_bitrate_mask_iter(void *data,
struct ieee80211_sta *sta)
{
struct ath10k_vif *arvif = data;
struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
struct ath10k *ar = arvif->ar;
if (arsta->arvif != arvif)
return;
if (ath10k_mac_set_vht_bitrate_mask_fixup(ar, arvif, sta))
return;
spin_lock_bh(&ar->data_lock);
arsta->changed |= IEEE80211_RC_SUPP_RATES_CHANGED;
spin_unlock_bh(&ar->data_lock);
ieee80211_queue_work(ar->hw, &arsta->update_wk);
}
static void ath10k_mac_clr_bitrate_mask_iter(void *data,
struct ieee80211_sta *sta)
{
struct ath10k_vif *arvif = data;
struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
struct ath10k *ar = arvif->ar;
int err;
/* clear vht peers only */
if (arsta->arvif != arvif || !sta->deflink.vht_cap.vht_supported)
return;
err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
WMI_PEER_PARAM_FIXED_RATE,
WMI_FIXED_RATE_NONE);
if (err)
ath10k_warn(ar, "failed to clear STA %pM peer fixed rate: %d\n",
sta->addr, err);
}
static int ath10k_mac_op_set_bitrate_mask(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
const struct cfg80211_bitrate_mask *mask)
{
struct ath10k_vif *arvif = (void *)vif->drv_priv;
struct cfg80211_chan_def def;
struct ath10k *ar = arvif->ar;
enum nl80211_band band;
const u8 *ht_mcs_mask;
const u16 *vht_mcs_mask;
u8 rate;
u8 nss;
u8 sgi;
u8 ldpc;
int single_nss;
int ret;
int vht_num_rates, allow_pfr;
u8 vht_pfr;
bool update_bitrate_mask = true;
if (ath10k_mac_vif_chan(vif, &def))
return -EPERM;
band = def.chan->band;
ht_mcs_mask = mask->control[band].ht_mcs;
vht_mcs_mask = mask->control[band].vht_mcs;
ldpc = !!(ar->ht_cap_info & WMI_HT_CAP_LDPC);
sgi = mask->control[band].gi;
if (sgi == NL80211_TXRATE_FORCE_LGI)
return -EINVAL;
allow_pfr = test_bit(ATH10K_FW_FEATURE_PEER_FIXED_RATE,
ar->normal_mode_fw.fw_file.fw_features);
if (allow_pfr) {
mutex_lock(&ar->conf_mutex);
ieee80211_iterate_stations_atomic(ar->hw,
ath10k_mac_clr_bitrate_mask_iter,
arvif);
mutex_unlock(&ar->conf_mutex);
}
if (ath10k_mac_bitrate_mask_has_single_rate(ar, band, mask,
&vht_num_rates)) {
ret = ath10k_mac_bitrate_mask_get_single_rate(ar, band, mask,
&rate, &nss,
false);
if (ret) {
ath10k_warn(ar, "failed to get single rate for vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
} else if (ath10k_mac_bitrate_mask_get_single_nss(ar, band, mask,
&single_nss)) {
rate = WMI_FIXED_RATE_NONE;
nss = single_nss;
} else {
rate = WMI_FIXED_RATE_NONE;
nss = min(ar->num_rf_chains,
max(ath10k_mac_max_ht_nss(ht_mcs_mask),
ath10k_mac_max_vht_nss(vht_mcs_mask)));
if (!ath10k_mac_can_set_bitrate_mask(ar, band, mask,
allow_pfr)) {
u8 vht_nss;
if (!allow_pfr || vht_num_rates != 1)
return -EINVAL;
/* Reach here, firmware supports peer fixed rate and has
* single vht rate, and don't update vif birate_mask, as
* the rate only for specific peer.
*/
ath10k_mac_bitrate_mask_get_single_rate(ar, band, mask,
&vht_pfr,
&vht_nss,
true);
update_bitrate_mask = false;
} else {
vht_pfr = 0;
}
mutex_lock(&ar->conf_mutex);
if (update_bitrate_mask)
arvif->bitrate_mask = *mask;
arvif->vht_num_rates = vht_num_rates;
arvif->vht_pfr = vht_pfr;
ieee80211_iterate_stations_atomic(ar->hw,
ath10k_mac_set_bitrate_mask_iter,
arvif);
mutex_unlock(&ar->conf_mutex);
}
mutex_lock(&ar->conf_mutex);
ret = ath10k_mac_set_fixed_rate_params(arvif, rate, nss, sgi, ldpc);
if (ret) {
ath10k_warn(ar, "failed to set fixed rate params on vdev %i: %d\n",
arvif->vdev_id, ret);
goto exit;
}
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static void ath10k_sta_rc_update(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
u32 changed)
{
struct ath10k *ar = hw->priv;
struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
struct ath10k_vif *arvif = (void *)vif->drv_priv;
struct ath10k_peer *peer;
u32 bw, smps;
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find(ar, arvif->vdev_id, sta->addr);
if (!peer) {
spin_unlock_bh(&ar->data_lock);
ath10k_warn(ar, "mac sta rc update failed to find peer %pM on vdev %i\n",
sta->addr, arvif->vdev_id);
return;
}
ath10k_dbg(ar, ATH10K_DBG_STA,
"mac sta rc update for %pM changed %08x bw %d nss %d smps %d\n",
sta->addr, changed, sta->deflink.bandwidth,
sta->deflink.rx_nss,
sta->deflink.smps_mode);
if (changed & IEEE80211_RC_BW_CHANGED) {
bw = WMI_PEER_CHWIDTH_20MHZ;
switch (sta->deflink.bandwidth) {
case IEEE80211_STA_RX_BW_20:
bw = WMI_PEER_CHWIDTH_20MHZ;
break;
case IEEE80211_STA_RX_BW_40:
bw = WMI_PEER_CHWIDTH_40MHZ;
break;
case IEEE80211_STA_RX_BW_80:
bw = WMI_PEER_CHWIDTH_80MHZ;
break;
case IEEE80211_STA_RX_BW_160:
bw = WMI_PEER_CHWIDTH_160MHZ;
break;
default:
ath10k_warn(ar, "Invalid bandwidth %d in rc update for %pM\n",
sta->deflink.bandwidth, sta->addr);
bw = WMI_PEER_CHWIDTH_20MHZ;
break;
}
arsta->bw = bw;
}
if (changed & IEEE80211_RC_NSS_CHANGED)
arsta->nss = sta->deflink.rx_nss;
if (changed & IEEE80211_RC_SMPS_CHANGED) {
smps = WMI_PEER_SMPS_PS_NONE;
switch (sta->deflink.smps_mode) {
case IEEE80211_SMPS_AUTOMATIC:
case IEEE80211_SMPS_OFF:
smps = WMI_PEER_SMPS_PS_NONE;
break;
case IEEE80211_SMPS_STATIC:
smps = WMI_PEER_SMPS_STATIC;
break;
case IEEE80211_SMPS_DYNAMIC:
smps = WMI_PEER_SMPS_DYNAMIC;
break;
case IEEE80211_SMPS_NUM_MODES:
ath10k_warn(ar, "Invalid smps %d in sta rc update for %pM\n",
sta->deflink.smps_mode, sta->addr);
smps = WMI_PEER_SMPS_PS_NONE;
break;
}
arsta->smps = smps;
}
arsta->changed |= changed;
spin_unlock_bh(&ar->data_lock);
ieee80211_queue_work(hw, &arsta->update_wk);
}
static void ath10k_offset_tsf(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, s64 tsf_offset)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = (void *)vif->drv_priv;
u32 offset, vdev_param;
int ret;
if (tsf_offset < 0) {
vdev_param = ar->wmi.vdev_param->dec_tsf;
offset = -tsf_offset;
} else {
vdev_param = ar->wmi.vdev_param->inc_tsf;
offset = tsf_offset;
}
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id,
vdev_param, offset);
if (ret && ret != -EOPNOTSUPP)
ath10k_warn(ar, "failed to set tsf offset %d cmd %d: %d\n",
offset, vdev_param, ret);
}
static int ath10k_ampdu_action(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_ampdu_params *params)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = (void *)vif->drv_priv;
struct ieee80211_sta *sta = params->sta;
enum ieee80211_ampdu_mlme_action action = params->action;
u16 tid = params->tid;
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac ampdu vdev_id %i sta %pM tid %u action %d\n",
arvif->vdev_id, sta->addr, tid, action);
switch (action) {
case IEEE80211_AMPDU_RX_START:
case IEEE80211_AMPDU_RX_STOP:
/* HTT AddBa/DelBa events trigger mac80211 Rx BA session
* creation/removal. Do we need to verify this?
*/
return 0;
case IEEE80211_AMPDU_TX_START:
case IEEE80211_AMPDU_TX_STOP_CONT:
case IEEE80211_AMPDU_TX_STOP_FLUSH:
case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
case IEEE80211_AMPDU_TX_OPERATIONAL:
/* Firmware offloads Tx aggregation entirely so deny mac80211
* Tx aggregation requests.
*/
return -EOPNOTSUPP;
}
return -EINVAL;
}
static void
ath10k_mac_update_rx_channel(struct ath10k *ar,
struct ieee80211_chanctx_conf *ctx,
struct ieee80211_vif_chanctx_switch *vifs,
int n_vifs)
{
struct cfg80211_chan_def *def = NULL;
/* Both locks are required because ar->rx_channel is modified. This
* allows readers to hold either lock.
*/
lockdep_assert_held(&ar->conf_mutex);
lockdep_assert_held(&ar->data_lock);
WARN_ON(ctx && vifs);
WARN_ON(vifs && !n_vifs);
/* FIXME: Sort of an optimization and a workaround. Peers and vifs are
* on a linked list now. Doing a lookup peer -> vif -> chanctx for each
* ppdu on Rx may reduce performance on low-end systems. It should be
* possible to make tables/hashmaps to speed the lookup up (be vary of
* cpu data cache lines though regarding sizes) but to keep the initial
* implementation simple and less intrusive fallback to the slow lookup
* only for multi-channel cases. Single-channel cases will remain to
* use the old channel derival and thus performance should not be
* affected much.
*/
rcu_read_lock();
if (!ctx && ath10k_mac_num_chanctxs(ar) == 1) {
ieee80211_iter_chan_contexts_atomic(ar->hw,
ath10k_mac_get_any_chandef_iter,
&def);
if (vifs)
def = &vifs[0].new_ctx->def;
ar->rx_channel = def->chan;
} else if ((ctx && ath10k_mac_num_chanctxs(ar) == 0) ||
(ctx && (ar->state == ATH10K_STATE_RESTARTED))) {
/* During driver restart due to firmware assert, since mac80211
* already has valid channel context for given radio, channel
* context iteration return num_chanctx > 0. So fix rx_channel
* when restart is in progress.
*/
ar->rx_channel = ctx->def.chan;
} else {
ar->rx_channel = NULL;
}
rcu_read_unlock();
}
static void
ath10k_mac_update_vif_chan(struct ath10k *ar,
struct ieee80211_vif_chanctx_switch *vifs,
int n_vifs)
{
struct ath10k_vif *arvif;
int ret;
int i;
lockdep_assert_held(&ar->conf_mutex);
/* First stop monitor interface. Some FW versions crash if there's a
* lone monitor interface.
*/
if (ar->monitor_started)
ath10k_monitor_stop(ar);
for (i = 0; i < n_vifs; i++) {
arvif = (void *)vifs[i].vif->drv_priv;
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac chanctx switch vdev_id %i freq %u->%u width %d->%d\n",
arvif->vdev_id,
vifs[i].old_ctx->def.chan->center_freq,
vifs[i].new_ctx->def.chan->center_freq,
vifs[i].old_ctx->def.width,
vifs[i].new_ctx->def.width);
if (WARN_ON(!arvif->is_started))
continue;
if (WARN_ON(!arvif->is_up))
continue;
ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id);
if (ret) {
ath10k_warn(ar, "failed to down vdev %d: %d\n",
arvif->vdev_id, ret);
continue;
}
}
/* All relevant vdevs are downed and associated channel resources
* should be available for the channel switch now.
*/
spin_lock_bh(&ar->data_lock);
ath10k_mac_update_rx_channel(ar, NULL, vifs, n_vifs);
spin_unlock_bh(&ar->data_lock);
for (i = 0; i < n_vifs; i++) {
arvif = (void *)vifs[i].vif->drv_priv;
if (WARN_ON(!arvif->is_started))
continue;
if (WARN_ON(!arvif->is_up))
continue;
ret = ath10k_mac_setup_bcn_tmpl(arvif);
if (ret)
ath10k_warn(ar, "failed to update bcn tmpl during csa: %d\n",
ret);
ret = ath10k_mac_setup_prb_tmpl(arvif);
if (ret)
ath10k_warn(ar, "failed to update prb tmpl during csa: %d\n",
ret);
ret = ath10k_vdev_restart(arvif, &vifs[i].new_ctx->def);
if (ret) {
ath10k_warn(ar, "failed to restart vdev %d: %d\n",
arvif->vdev_id, ret);
continue;
}
ret = ath10k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid,
arvif->bssid);
if (ret) {
ath10k_warn(ar, "failed to bring vdev up %d: %d\n",
arvif->vdev_id, ret);
continue;
}
}
ath10k_monitor_recalc(ar);
}
static int
ath10k_mac_op_add_chanctx(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *ctx)
{
struct ath10k *ar = hw->priv;
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac chanctx add freq %u width %d ptr %pK\n",
ctx->def.chan->center_freq, ctx->def.width, ctx);
mutex_lock(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
ath10k_mac_update_rx_channel(ar, ctx, NULL, 0);
spin_unlock_bh(&ar->data_lock);
ath10k_recalc_radar_detection(ar);
ath10k_monitor_recalc(ar);
mutex_unlock(&ar->conf_mutex);
return 0;
}
static void
ath10k_mac_op_remove_chanctx(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *ctx)
{
struct ath10k *ar = hw->priv;
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac chanctx remove freq %u width %d ptr %pK\n",
ctx->def.chan->center_freq, ctx->def.width, ctx);
mutex_lock(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
ath10k_mac_update_rx_channel(ar, NULL, NULL, 0);
spin_unlock_bh(&ar->data_lock);
ath10k_recalc_radar_detection(ar);
ath10k_monitor_recalc(ar);
mutex_unlock(&ar->conf_mutex);
}
struct ath10k_mac_change_chanctx_arg {
struct ieee80211_chanctx_conf *ctx;
struct ieee80211_vif_chanctx_switch *vifs;
int n_vifs;
int next_vif;
};
static void
ath10k_mac_change_chanctx_cnt_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct ath10k_mac_change_chanctx_arg *arg = data;
if (rcu_access_pointer(vif->bss_conf.chanctx_conf) != arg->ctx)
return;
arg->n_vifs++;
}
static void
ath10k_mac_change_chanctx_fill_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct ath10k_mac_change_chanctx_arg *arg = data;
struct ieee80211_chanctx_conf *ctx;
ctx = rcu_access_pointer(vif->bss_conf.chanctx_conf);
if (ctx != arg->ctx)
return;
if (WARN_ON(arg->next_vif == arg->n_vifs))
return;
arg->vifs[arg->next_vif].vif = vif;
arg->vifs[arg->next_vif].old_ctx = ctx;
arg->vifs[arg->next_vif].new_ctx = ctx;
arg->next_vif++;
}
static void
ath10k_mac_op_change_chanctx(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *ctx,
u32 changed)
{
struct ath10k *ar = hw->priv;
struct ath10k_mac_change_chanctx_arg arg = { .ctx = ctx };
mutex_lock(&ar->conf_mutex);
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac chanctx change freq %u width %d ptr %pK changed %x\n",
ctx->def.chan->center_freq, ctx->def.width, ctx, changed);
/* This shouldn't really happen because channel switching should use
* switch_vif_chanctx().
*/
if (WARN_ON(changed & IEEE80211_CHANCTX_CHANGE_CHANNEL))
goto unlock;
if (changed & IEEE80211_CHANCTX_CHANGE_WIDTH) {
ieee80211_iterate_active_interfaces_atomic(
hw,
ATH10K_ITER_NORMAL_FLAGS,
ath10k_mac_change_chanctx_cnt_iter,
&arg);
if (arg.n_vifs == 0)
goto radar;
arg.vifs = kcalloc(arg.n_vifs, sizeof(arg.vifs[0]),
GFP_KERNEL);
if (!arg.vifs)
goto radar;
ieee80211_iterate_active_interfaces_atomic(
hw,
ATH10K_ITER_NORMAL_FLAGS,
ath10k_mac_change_chanctx_fill_iter,
&arg);
ath10k_mac_update_vif_chan(ar, arg.vifs, arg.n_vifs);
kfree(arg.vifs);
}
radar:
ath10k_recalc_radar_detection(ar);
/* FIXME: How to configure Rx chains properly? */
/* No other actions are actually necessary. Firmware maintains channel
* definitions per vdev internally and there's no host-side channel
* context abstraction to configure, e.g. channel width.
*/
unlock:
mutex_unlock(&ar->conf_mutex);
}
static int
ath10k_mac_op_assign_vif_chanctx(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *link_conf,
struct ieee80211_chanctx_conf *ctx)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = (void *)vif->drv_priv;
int ret;
mutex_lock(&ar->conf_mutex);
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac chanctx assign ptr %pK vdev_id %i\n",
ctx, arvif->vdev_id);
if (WARN_ON(arvif->is_started)) {
mutex_unlock(&ar->conf_mutex);
return -EBUSY;
}
ret = ath10k_vdev_start(arvif, &ctx->def);
if (ret) {
ath10k_warn(ar, "failed to start vdev %i addr %pM on freq %d: %d\n",
arvif->vdev_id, vif->addr,
ctx->def.chan->center_freq, ret);
goto err;
}
arvif->is_started = true;
ret = ath10k_mac_vif_setup_ps(arvif);
if (ret) {
ath10k_warn(ar, "failed to update vdev %i ps: %d\n",
arvif->vdev_id, ret);
goto err_stop;
}
if (vif->type == NL80211_IFTYPE_MONITOR) {
ret = ath10k_wmi_vdev_up(ar, arvif->vdev_id, 0, vif->addr);
if (ret) {
ath10k_warn(ar, "failed to up monitor vdev %i: %d\n",
arvif->vdev_id, ret);
goto err_stop;
}
arvif->is_up = true;
}
if (ath10k_mac_can_set_cts_prot(arvif)) {
ret = ath10k_mac_set_cts_prot(arvif);
if (ret)
ath10k_warn(ar, "failed to set cts protection for vdev %d: %d\n",
arvif->vdev_id, ret);
}
if (ath10k_peer_stats_enabled(ar) &&
ar->hw_params.tx_stats_over_pktlog) {
ar->pktlog_filter |= ATH10K_PKTLOG_PEER_STATS;
ret = ath10k_wmi_pdev_pktlog_enable(ar,
ar->pktlog_filter);
if (ret) {
ath10k_warn(ar, "failed to enable pktlog %d\n", ret);
goto err_stop;
}
}
mutex_unlock(&ar->conf_mutex);
return 0;
err_stop:
ath10k_vdev_stop(arvif);
arvif->is_started = false;
ath10k_mac_vif_setup_ps(arvif);
err:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static void
ath10k_mac_op_unassign_vif_chanctx(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *link_conf,
struct ieee80211_chanctx_conf *ctx)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = (void *)vif->drv_priv;
int ret;
mutex_lock(&ar->conf_mutex);
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac chanctx unassign ptr %pK vdev_id %i\n",
ctx, arvif->vdev_id);
WARN_ON(!arvif->is_started);
if (vif->type == NL80211_IFTYPE_MONITOR) {
WARN_ON(!arvif->is_up);
ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id);
if (ret)
ath10k_warn(ar, "failed to down monitor vdev %i: %d\n",
arvif->vdev_id, ret);
arvif->is_up = false;
}
ret = ath10k_vdev_stop(arvif);
if (ret)
ath10k_warn(ar, "failed to stop vdev %i: %d\n",
arvif->vdev_id, ret);
arvif->is_started = false;
mutex_unlock(&ar->conf_mutex);
}
static int
ath10k_mac_op_switch_vif_chanctx(struct ieee80211_hw *hw,
struct ieee80211_vif_chanctx_switch *vifs,
int n_vifs,
enum ieee80211_chanctx_switch_mode mode)
{
struct ath10k *ar = hw->priv;
mutex_lock(&ar->conf_mutex);
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac chanctx switch n_vifs %d mode %d\n",
n_vifs, mode);
ath10k_mac_update_vif_chan(ar, vifs, n_vifs);
mutex_unlock(&ar->conf_mutex);
return 0;
}
static void ath10k_mac_op_sta_pre_rcu_remove(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
struct ath10k *ar;
struct ath10k_peer *peer;
ar = hw->priv;
list_for_each_entry(peer, &ar->peers, list)
if (peer->sta == sta)
peer->removed = true;
}
/* HT MCS parameters with Nss = 1 */
static const struct ath10k_index_ht_data_rate_type supported_ht_mcs_rate_nss1[] = {
/* MCS L20 L40 S20 S40 */
{0, { 65, 135, 72, 150} },
{1, { 130, 270, 144, 300} },
{2, { 195, 405, 217, 450} },
{3, { 260, 540, 289, 600} },
{4, { 390, 810, 433, 900} },
{5, { 520, 1080, 578, 1200} },
{6, { 585, 1215, 650, 1350} },
{7, { 650, 1350, 722, 1500} }
};
/* HT MCS parameters with Nss = 2 */
static const struct ath10k_index_ht_data_rate_type supported_ht_mcs_rate_nss2[] = {
/* MCS L20 L40 S20 S40 */
{0, {130, 270, 144, 300} },
{1, {260, 540, 289, 600} },
{2, {390, 810, 433, 900} },
{3, {520, 1080, 578, 1200} },
{4, {780, 1620, 867, 1800} },
{5, {1040, 2160, 1156, 2400} },
{6, {1170, 2430, 1300, 2700} },
{7, {1300, 2700, 1444, 3000} }
};
/* MCS parameters with Nss = 1 */
static const struct ath10k_index_vht_data_rate_type supported_vht_mcs_rate_nss1[] = {
/* MCS L80 S80 L40 S40 L20 S20 */
{0, {293, 325}, {135, 150}, {65, 72} },
{1, {585, 650}, {270, 300}, {130, 144} },
{2, {878, 975}, {405, 450}, {195, 217} },
{3, {1170, 1300}, {540, 600}, {260, 289} },
{4, {1755, 1950}, {810, 900}, {390, 433} },
{5, {2340, 2600}, {1080, 1200}, {520, 578} },
{6, {2633, 2925}, {1215, 1350}, {585, 650} },
{7, {2925, 3250}, {1350, 1500}, {650, 722} },
{8, {3510, 3900}, {1620, 1800}, {780, 867} },
{9, {3900, 4333}, {1800, 2000}, {780, 867} }
};
/*MCS parameters with Nss = 2 */
static const struct ath10k_index_vht_data_rate_type supported_vht_mcs_rate_nss2[] = {
/* MCS L80 S80 L40 S40 L20 S20 */
{0, {585, 650}, {270, 300}, {130, 144} },
{1, {1170, 1300}, {540, 600}, {260, 289} },
{2, {1755, 1950}, {810, 900}, {390, 433} },
{3, {2340, 2600}, {1080, 1200}, {520, 578} },
{4, {3510, 3900}, {1620, 1800}, {780, 867} },
{5, {4680, 5200}, {2160, 2400}, {1040, 1156} },
{6, {5265, 5850}, {2430, 2700}, {1170, 1300} },
{7, {5850, 6500}, {2700, 3000}, {1300, 1444} },
{8, {7020, 7800}, {3240, 3600}, {1560, 1733} },
{9, {7800, 8667}, {3600, 4000}, {1560, 1733} }
};
static void ath10k_mac_get_rate_flags_ht(struct ath10k *ar, u32 rate, u8 nss, u8 mcs,
u8 *flags, u8 *bw)
{
struct ath10k_index_ht_data_rate_type *mcs_rate;
u8 index;
size_t len_nss1 = ARRAY_SIZE(supported_ht_mcs_rate_nss1);
size_t len_nss2 = ARRAY_SIZE(supported_ht_mcs_rate_nss2);
if (mcs >= (len_nss1 + len_nss2)) {
ath10k_warn(ar, "not supported mcs %d in current rate table", mcs);
return;
}
mcs_rate = (struct ath10k_index_ht_data_rate_type *)
((nss == 1) ? &supported_ht_mcs_rate_nss1 :
&supported_ht_mcs_rate_nss2);
if (mcs >= len_nss1)
index = mcs - len_nss1;
else
index = mcs;
if (rate == mcs_rate[index].supported_rate[0]) {
*bw = RATE_INFO_BW_20;
} else if (rate == mcs_rate[index].supported_rate[1]) {
*bw |= RATE_INFO_BW_40;
} else if (rate == mcs_rate[index].supported_rate[2]) {
*bw |= RATE_INFO_BW_20;
*flags |= RATE_INFO_FLAGS_SHORT_GI;
} else if (rate == mcs_rate[index].supported_rate[3]) {
*bw |= RATE_INFO_BW_40;
*flags |= RATE_INFO_FLAGS_SHORT_GI;
} else {
ath10k_warn(ar, "invalid ht params rate %d 100kbps nss %d mcs %d",
rate, nss, mcs);
}
}
static void ath10k_mac_get_rate_flags_vht(struct ath10k *ar, u32 rate, u8 nss, u8 mcs,
u8 *flags, u8 *bw)
{
struct ath10k_index_vht_data_rate_type *mcs_rate;
mcs_rate = (struct ath10k_index_vht_data_rate_type *)
((nss == 1) ? &supported_vht_mcs_rate_nss1 :
&supported_vht_mcs_rate_nss2);
if (rate == mcs_rate[mcs].supported_VHT80_rate[0]) {
*bw = RATE_INFO_BW_80;
} else if (rate == mcs_rate[mcs].supported_VHT80_rate[1]) {
*bw = RATE_INFO_BW_80;
*flags |= RATE_INFO_FLAGS_SHORT_GI;
} else if (rate == mcs_rate[mcs].supported_VHT40_rate[0]) {
*bw = RATE_INFO_BW_40;
} else if (rate == mcs_rate[mcs].supported_VHT40_rate[1]) {
*bw = RATE_INFO_BW_40;
*flags |= RATE_INFO_FLAGS_SHORT_GI;
} else if (rate == mcs_rate[mcs].supported_VHT20_rate[0]) {
*bw = RATE_INFO_BW_20;
} else if (rate == mcs_rate[mcs].supported_VHT20_rate[1]) {
*bw = RATE_INFO_BW_20;
*flags |= RATE_INFO_FLAGS_SHORT_GI;
} else {
ath10k_warn(ar, "invalid vht params rate %d 100kbps nss %d mcs %d",
rate, nss, mcs);
}
}
static void ath10k_mac_get_rate_flags(struct ath10k *ar, u32 rate,
enum ath10k_phy_mode mode, u8 nss, u8 mcs,
u8 *flags, u8 *bw)
{
if (mode == ATH10K_PHY_MODE_HT) {
*flags = RATE_INFO_FLAGS_MCS;
ath10k_mac_get_rate_flags_ht(ar, rate, nss, mcs, flags, bw);
} else if (mode == ATH10K_PHY_MODE_VHT) {
*flags = RATE_INFO_FLAGS_VHT_MCS;
ath10k_mac_get_rate_flags_vht(ar, rate, nss, mcs, flags, bw);
}
}
static void ath10k_mac_parse_bitrate(struct ath10k *ar, u32 rate_code,
u32 bitrate_kbps, struct rate_info *rate)
{
enum ath10k_phy_mode mode = ATH10K_PHY_MODE_LEGACY;
enum wmi_rate_preamble preamble = WMI_TLV_GET_HW_RC_PREAM_V1(rate_code);
u8 nss = WMI_TLV_GET_HW_RC_NSS_V1(rate_code) + 1;
u8 mcs = WMI_TLV_GET_HW_RC_RATE_V1(rate_code);
u8 flags = 0, bw = 0;
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac parse rate code 0x%x bitrate %d kbps\n",
rate_code, bitrate_kbps);
if (preamble == WMI_RATE_PREAMBLE_HT)
mode = ATH10K_PHY_MODE_HT;
else if (preamble == WMI_RATE_PREAMBLE_VHT)
mode = ATH10K_PHY_MODE_VHT;
ath10k_mac_get_rate_flags(ar, bitrate_kbps / 100, mode, nss, mcs, &flags, &bw);
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac parse bitrate preamble %d mode %d nss %d mcs %d flags %x bw %d\n",
preamble, mode, nss, mcs, flags, bw);
rate->flags = flags;
rate->bw = bw;
rate->legacy = bitrate_kbps / 100;
rate->nss = nss;
rate->mcs = mcs;
}
static void ath10k_mac_sta_get_peer_stats_info(struct ath10k *ar,
struct ieee80211_sta *sta,
struct station_info *sinfo)
{
struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
struct ath10k_peer *peer;
unsigned long time_left;
int ret;
if (!(ar->hw_params.supports_peer_stats_info &&
arsta->arvif->vdev_type == WMI_VDEV_TYPE_STA))
return;
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find(ar, arsta->arvif->vdev_id, sta->addr);
spin_unlock_bh(&ar->data_lock);
if (!peer)
return;
reinit_completion(&ar->peer_stats_info_complete);
ret = ath10k_wmi_request_peer_stats_info(ar,
arsta->arvif->vdev_id,
WMI_REQUEST_ONE_PEER_STATS_INFO,
arsta->arvif->bssid,
0);
if (ret && ret != -EOPNOTSUPP) {
ath10k_warn(ar, "could not request peer stats info: %d\n", ret);
return;
}
time_left = wait_for_completion_timeout(&ar->peer_stats_info_complete, 3 * HZ);
if (time_left == 0) {
ath10k_warn(ar, "timed out waiting peer stats info\n");
return;
}
if (arsta->rx_rate_code != 0 && arsta->rx_bitrate_kbps != 0) {
ath10k_mac_parse_bitrate(ar, arsta->rx_rate_code,
arsta->rx_bitrate_kbps,
&sinfo->rxrate);
sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE);
arsta->rx_rate_code = 0;
arsta->rx_bitrate_kbps = 0;
}
if (arsta->tx_rate_code != 0 && arsta->tx_bitrate_kbps != 0) {
ath10k_mac_parse_bitrate(ar, arsta->tx_rate_code,
arsta->tx_bitrate_kbps,
&sinfo->txrate);
sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE);
arsta->tx_rate_code = 0;
arsta->tx_bitrate_kbps = 0;
}
}
static void ath10k_sta_statistics(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct station_info *sinfo)
{
struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
struct ath10k *ar = arsta->arvif->ar;
if (!ath10k_peer_stats_enabled(ar))
return;
mutex_lock(&ar->conf_mutex);
ath10k_debug_fw_stats_request(ar);
mutex_unlock(&ar->conf_mutex);
sinfo->rx_duration = arsta->rx_duration;
sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION);
if (arsta->txrate.legacy || arsta->txrate.nss) {
if (arsta->txrate.legacy) {
sinfo->txrate.legacy = arsta->txrate.legacy;
} else {
sinfo->txrate.mcs = arsta->txrate.mcs;
sinfo->txrate.nss = arsta->txrate.nss;
sinfo->txrate.bw = arsta->txrate.bw;
}
sinfo->txrate.flags = arsta->txrate.flags;
sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE);
}
if (ar->htt.disable_tx_comp) {
sinfo->tx_failed = arsta->tx_failed;
sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED);
}
sinfo->tx_retries = arsta->tx_retries;
sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES);
ath10k_mac_sta_get_peer_stats_info(ar, sta, sinfo);
}
static int ath10k_mac_op_set_tid_config(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct cfg80211_tid_config *tid_config)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = (void *)vif->drv_priv;
struct ath10k_mac_iter_tid_conf_data data = {};
struct wmi_per_peer_per_tid_cfg_arg arg = {};
int ret, i;
mutex_lock(&ar->conf_mutex);
arg.vdev_id = arvif->vdev_id;
arvif->tids_rst = 0;
memset(arvif->tid_conf_changed, 0, sizeof(arvif->tid_conf_changed));
for (i = 0; i < tid_config->n_tid_conf; i++) {
ret = ath10k_mac_parse_tid_config(ar, sta, vif,
&tid_config->tid_conf[i],
&arg);
if (ret)
goto exit;
}
ret = 0;
if (sta)
goto exit;
arvif->tids_rst = 0;
data.curr_vif = vif;
data.ar = ar;
ieee80211_iterate_stations_atomic(hw, ath10k_mac_vif_stations_tid_conf,
&data);
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static int ath10k_mac_op_reset_tid_config(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
u8 tids)
{
struct ath10k_vif *arvif = (void *)vif->drv_priv;
struct ath10k_mac_iter_tid_conf_data data = {};
struct ath10k *ar = hw->priv;
int ret = 0;
mutex_lock(&ar->conf_mutex);
if (sta) {
arvif->tids_rst = 0;
ret = ath10k_mac_reset_tid_config(ar, sta, arvif, tids);
goto exit;
}
arvif->tids_rst = tids;
data.curr_vif = vif;
data.ar = ar;
ieee80211_iterate_stations_atomic(hw, ath10k_mac_vif_stations_tid_conf,
&data);
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static const struct ieee80211_ops ath10k_ops = {
.tx = ath10k_mac_op_tx,
.wake_tx_queue = ath10k_mac_op_wake_tx_queue,
.start = ath10k_start,
.stop = ath10k_stop,
.config = ath10k_config,
.add_interface = ath10k_add_interface,
.update_vif_offload = ath10k_update_vif_offload,
.remove_interface = ath10k_remove_interface,
.configure_filter = ath10k_configure_filter,
.bss_info_changed = ath10k_bss_info_changed,
.set_coverage_class = ath10k_mac_op_set_coverage_class,
.hw_scan = ath10k_hw_scan,
.cancel_hw_scan = ath10k_cancel_hw_scan,
.set_key = ath10k_set_key,
.set_default_unicast_key = ath10k_set_default_unicast_key,
.sta_state = ath10k_sta_state,
.sta_set_txpwr = ath10k_sta_set_txpwr,
.conf_tx = ath10k_conf_tx,
.remain_on_channel = ath10k_remain_on_channel,
.cancel_remain_on_channel = ath10k_cancel_remain_on_channel,
.set_rts_threshold = ath10k_set_rts_threshold,
.set_frag_threshold = ath10k_mac_op_set_frag_threshold,
.flush = ath10k_flush,
.tx_last_beacon = ath10k_tx_last_beacon,
.set_antenna = ath10k_set_antenna,
.get_antenna = ath10k_get_antenna,
.reconfig_complete = ath10k_reconfig_complete,
.get_survey = ath10k_get_survey,
.set_bitrate_mask = ath10k_mac_op_set_bitrate_mask,
.sta_rc_update = ath10k_sta_rc_update,
.offset_tsf = ath10k_offset_tsf,
.ampdu_action = ath10k_ampdu_action,
.get_et_sset_count = ath10k_debug_get_et_sset_count,
.get_et_stats = ath10k_debug_get_et_stats,
.get_et_strings = ath10k_debug_get_et_strings,
.add_chanctx = ath10k_mac_op_add_chanctx,
.remove_chanctx = ath10k_mac_op_remove_chanctx,
.change_chanctx = ath10k_mac_op_change_chanctx,
.assign_vif_chanctx = ath10k_mac_op_assign_vif_chanctx,
.unassign_vif_chanctx = ath10k_mac_op_unassign_vif_chanctx,
.switch_vif_chanctx = ath10k_mac_op_switch_vif_chanctx,
.sta_pre_rcu_remove = ath10k_mac_op_sta_pre_rcu_remove,
.sta_statistics = ath10k_sta_statistics,
.set_tid_config = ath10k_mac_op_set_tid_config,
.reset_tid_config = ath10k_mac_op_reset_tid_config,
CFG80211_TESTMODE_CMD(ath10k_tm_cmd)
#ifdef CONFIG_PM
.suspend = ath10k_wow_op_suspend,
.resume = ath10k_wow_op_resume,
.set_wakeup = ath10k_wow_op_set_wakeup,
#endif
#ifdef CONFIG_MAC80211_DEBUGFS
.sta_add_debugfs = ath10k_sta_add_debugfs,
#endif
.set_sar_specs = ath10k_mac_set_sar_specs,
};
#define CHAN2G(_channel, _freq, _flags) { \
.band = NL80211_BAND_2GHZ, \
.hw_value = (_channel), \
.center_freq = (_freq), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
#define CHAN5G(_channel, _freq, _flags) { \
.band = NL80211_BAND_5GHZ, \
.hw_value = (_channel), \
.center_freq = (_freq), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
static const struct ieee80211_channel ath10k_2ghz_channels[] = {
CHAN2G(1, 2412, 0),
CHAN2G(2, 2417, 0),
CHAN2G(3, 2422, 0),
CHAN2G(4, 2427, 0),
CHAN2G(5, 2432, 0),
CHAN2G(6, 2437, 0),
CHAN2G(7, 2442, 0),
CHAN2G(8, 2447, 0),
CHAN2G(9, 2452, 0),
CHAN2G(10, 2457, 0),
CHAN2G(11, 2462, 0),
CHAN2G(12, 2467, 0),
CHAN2G(13, 2472, 0),
CHAN2G(14, 2484, 0),
};
static const struct ieee80211_channel ath10k_5ghz_channels[] = {
CHAN5G(36, 5180, 0),
CHAN5G(40, 5200, 0),
CHAN5G(44, 5220, 0),
CHAN5G(48, 5240, 0),
CHAN5G(52, 5260, 0),
CHAN5G(56, 5280, 0),
CHAN5G(60, 5300, 0),
CHAN5G(64, 5320, 0),
CHAN5G(100, 5500, 0),
CHAN5G(104, 5520, 0),
CHAN5G(108, 5540, 0),
CHAN5G(112, 5560, 0),
CHAN5G(116, 5580, 0),
CHAN5G(120, 5600, 0),
CHAN5G(124, 5620, 0),
CHAN5G(128, 5640, 0),
CHAN5G(132, 5660, 0),
CHAN5G(136, 5680, 0),
CHAN5G(140, 5700, 0),
CHAN5G(144, 5720, 0),
CHAN5G(149, 5745, 0),
CHAN5G(153, 5765, 0),
CHAN5G(157, 5785, 0),
CHAN5G(161, 5805, 0),
CHAN5G(165, 5825, 0),
CHAN5G(169, 5845, 0),
CHAN5G(173, 5865, 0),
/* If you add more, you may need to change ATH10K_MAX_5G_CHAN */
/* And you will definitely need to change ATH10K_NUM_CHANS in core.h */
};
struct ath10k *ath10k_mac_create(size_t priv_size)
{
struct ieee80211_hw *hw;
struct ieee80211_ops *ops;
struct ath10k *ar;
ops = kmemdup(&ath10k_ops, sizeof(ath10k_ops), GFP_KERNEL);
if (!ops)
return NULL;
hw = ieee80211_alloc_hw(sizeof(struct ath10k) + priv_size, ops);
if (!hw) {
kfree(ops);
return NULL;
}
ar = hw->priv;
ar->hw = hw;
ar->ops = ops;
return ar;
}
void ath10k_mac_destroy(struct ath10k *ar)
{
struct ieee80211_ops *ops = ar->ops;
ieee80211_free_hw(ar->hw);
kfree(ops);
}
static const struct ieee80211_iface_limit ath10k_if_limits[] = {
{
.max = 8,
.types = BIT(NL80211_IFTYPE_STATION)
| BIT(NL80211_IFTYPE_P2P_CLIENT)
},
{
.max = 3,
.types = BIT(NL80211_IFTYPE_P2P_GO)
},
{
.max = 1,
.types = BIT(NL80211_IFTYPE_P2P_DEVICE)
},
{
.max = 7,
.types = BIT(NL80211_IFTYPE_AP)
#ifdef CONFIG_MAC80211_MESH
| BIT(NL80211_IFTYPE_MESH_POINT)
#endif
},
};
static const struct ieee80211_iface_limit ath10k_10x_if_limits[] = {
{
.max = 8,
.types = BIT(NL80211_IFTYPE_AP)
#ifdef CONFIG_MAC80211_MESH
| BIT(NL80211_IFTYPE_MESH_POINT)
#endif
},
{
.max = 1,
.types = BIT(NL80211_IFTYPE_STATION)
},
};
static const struct ieee80211_iface_combination ath10k_if_comb[] = {
{
.limits = ath10k_if_limits,
.n_limits = ARRAY_SIZE(ath10k_if_limits),
.max_interfaces = 8,
.num_different_channels = 1,
.beacon_int_infra_match = true,
},
};
static const struct ieee80211_iface_combination ath10k_10x_if_comb[] = {
{
.limits = ath10k_10x_if_limits,
.n_limits = ARRAY_SIZE(ath10k_10x_if_limits),
.max_interfaces = 8,
.num_different_channels = 1,
.beacon_int_infra_match = true,
.beacon_int_min_gcd = 1,
#ifdef CONFIG_ATH10K_DFS_CERTIFIED
.radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
BIT(NL80211_CHAN_WIDTH_20) |
BIT(NL80211_CHAN_WIDTH_40) |
BIT(NL80211_CHAN_WIDTH_80),
#endif
},
};
static const struct ieee80211_iface_limit ath10k_tlv_if_limit[] = {
{
.max = 2,
.types = BIT(NL80211_IFTYPE_STATION),
},
{
.max = 2,
.types = BIT(NL80211_IFTYPE_AP) |
#ifdef CONFIG_MAC80211_MESH
BIT(NL80211_IFTYPE_MESH_POINT) |
#endif
BIT(NL80211_IFTYPE_P2P_CLIENT) |
BIT(NL80211_IFTYPE_P2P_GO),
},
{
.max = 1,
.types = BIT(NL80211_IFTYPE_P2P_DEVICE),
},
};
static const struct ieee80211_iface_limit ath10k_tlv_qcs_if_limit[] = {
{
.max = 2,
.types = BIT(NL80211_IFTYPE_STATION),
},
{
.max = 2,
.types = BIT(NL80211_IFTYPE_P2P_CLIENT),
},
{
.max = 1,
.types = BIT(NL80211_IFTYPE_AP) |
#ifdef CONFIG_MAC80211_MESH
BIT(NL80211_IFTYPE_MESH_POINT) |
#endif
BIT(NL80211_IFTYPE_P2P_GO),
},
{
.max = 1,
.types = BIT(NL80211_IFTYPE_P2P_DEVICE),
},
};
static const struct ieee80211_iface_limit ath10k_tlv_if_limit_ibss[] = {
{
.max = 1,
.types = BIT(NL80211_IFTYPE_STATION),
},
{
.max = 1,
.types = BIT(NL80211_IFTYPE_ADHOC),
},
};
/* FIXME: This is not thoroughly tested. These combinations may over- or
* underestimate hw/fw capabilities.
*/
static struct ieee80211_iface_combination ath10k_tlv_if_comb[] = {
{
.limits = ath10k_tlv_if_limit,
.num_different_channels = 1,
.max_interfaces = 4,
.n_limits = ARRAY_SIZE(ath10k_tlv_if_limit),
},
{
.limits = ath10k_tlv_if_limit_ibss,
.num_different_channels = 1,
.max_interfaces = 2,
.n_limits = ARRAY_SIZE(ath10k_tlv_if_limit_ibss),
},
};
static struct ieee80211_iface_combination ath10k_tlv_qcs_if_comb[] = {
{
.limits = ath10k_tlv_if_limit,
.num_different_channels = 1,
.max_interfaces = 4,
.n_limits = ARRAY_SIZE(ath10k_tlv_if_limit),
},
{
.limits = ath10k_tlv_qcs_if_limit,
.num_different_channels = 2,
.max_interfaces = 4,
.n_limits = ARRAY_SIZE(ath10k_tlv_qcs_if_limit),
},
{
.limits = ath10k_tlv_if_limit_ibss,
.num_different_channels = 1,
.max_interfaces = 2,
.n_limits = ARRAY_SIZE(ath10k_tlv_if_limit_ibss),
},
};
static const struct ieee80211_iface_limit ath10k_10_4_if_limits[] = {
{
.max = 1,
.types = BIT(NL80211_IFTYPE_STATION),
},
{
.max = 16,
.types = BIT(NL80211_IFTYPE_AP)
#ifdef CONFIG_MAC80211_MESH
| BIT(NL80211_IFTYPE_MESH_POINT)
#endif
},
};
static const struct ieee80211_iface_combination ath10k_10_4_if_comb[] = {
{
.limits = ath10k_10_4_if_limits,
.n_limits = ARRAY_SIZE(ath10k_10_4_if_limits),
.max_interfaces = 16,
.num_different_channels = 1,
.beacon_int_infra_match = true,
.beacon_int_min_gcd = 1,
#ifdef CONFIG_ATH10K_DFS_CERTIFIED
.radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
BIT(NL80211_CHAN_WIDTH_20) |
BIT(NL80211_CHAN_WIDTH_40) |
BIT(NL80211_CHAN_WIDTH_80) |
BIT(NL80211_CHAN_WIDTH_80P80) |
BIT(NL80211_CHAN_WIDTH_160),
#endif
},
};
static const struct
ieee80211_iface_combination ath10k_10_4_bcn_int_if_comb[] = {
{
.limits = ath10k_10_4_if_limits,
.n_limits = ARRAY_SIZE(ath10k_10_4_if_limits),
.max_interfaces = 16,
.num_different_channels = 1,
.beacon_int_infra_match = true,
.beacon_int_min_gcd = 100,
#ifdef CONFIG_ATH10K_DFS_CERTIFIED
.radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
BIT(NL80211_CHAN_WIDTH_20) |
BIT(NL80211_CHAN_WIDTH_40) |
BIT(NL80211_CHAN_WIDTH_80) |
BIT(NL80211_CHAN_WIDTH_80P80) |
BIT(NL80211_CHAN_WIDTH_160),
#endif
},
};
static void ath10k_get_arvif_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct ath10k_vif_iter *arvif_iter = data;
struct ath10k_vif *arvif = (void *)vif->drv_priv;
if (arvif->vdev_id == arvif_iter->vdev_id)
arvif_iter->arvif = arvif;
}
struct ath10k_vif *ath10k_get_arvif(struct ath10k *ar, u32 vdev_id)
{
struct ath10k_vif_iter arvif_iter;
memset(&arvif_iter, 0, sizeof(struct ath10k_vif_iter));
arvif_iter.vdev_id = vdev_id;
ieee80211_iterate_active_interfaces_atomic(ar->hw,
ATH10K_ITER_RESUME_FLAGS,
ath10k_get_arvif_iter,
&arvif_iter);
if (!arvif_iter.arvif) {
ath10k_warn(ar, "No VIF found for vdev %d\n", vdev_id);
return NULL;
}
return arvif_iter.arvif;
}
#define WRD_METHOD "WRDD"
#define WRDD_WIFI (0x07)
static u32 ath10k_mac_wrdd_get_mcc(struct ath10k *ar, union acpi_object *wrdd)
{
union acpi_object *mcc_pkg;
union acpi_object *domain_type;
union acpi_object *mcc_value;
u32 i;
if (wrdd->type != ACPI_TYPE_PACKAGE ||
wrdd->package.count < 2 ||
wrdd->package.elements[0].type != ACPI_TYPE_INTEGER ||
wrdd->package.elements[0].integer.value != 0) {
ath10k_warn(ar, "ignoring malformed/unsupported wrdd structure\n");
return 0;
}
for (i = 1; i < wrdd->package.count; ++i) {
mcc_pkg = &wrdd->package.elements[i];
if (mcc_pkg->type != ACPI_TYPE_PACKAGE)
continue;
if (mcc_pkg->package.count < 2)
continue;
if (mcc_pkg->package.elements[0].type != ACPI_TYPE_INTEGER ||
mcc_pkg->package.elements[1].type != ACPI_TYPE_INTEGER)
continue;
domain_type = &mcc_pkg->package.elements[0];
if (domain_type->integer.value != WRDD_WIFI)
continue;
mcc_value = &mcc_pkg->package.elements[1];
return mcc_value->integer.value;
}
return 0;
}
static int ath10k_mac_get_wrdd_regulatory(struct ath10k *ar, u16 *rd)
{
acpi_handle root_handle;
acpi_handle handle;
struct acpi_buffer wrdd = {ACPI_ALLOCATE_BUFFER, NULL};
acpi_status status;
u32 alpha2_code;
char alpha2[3];
root_handle = ACPI_HANDLE(ar->dev);
if (!root_handle)
return -EOPNOTSUPP;
status = acpi_get_handle(root_handle, (acpi_string)WRD_METHOD, &handle);
if (ACPI_FAILURE(status)) {
ath10k_dbg(ar, ATH10K_DBG_BOOT,
"failed to get wrd method %d\n", status);
return -EIO;
}
status = acpi_evaluate_object(handle, NULL, NULL, &wrdd);
if (ACPI_FAILURE(status)) {
ath10k_dbg(ar, ATH10K_DBG_BOOT,
"failed to call wrdc %d\n", status);
return -EIO;
}
alpha2_code = ath10k_mac_wrdd_get_mcc(ar, wrdd.pointer);
kfree(wrdd.pointer);
if (!alpha2_code)
return -EIO;
alpha2[0] = (alpha2_code >> 8) & 0xff;
alpha2[1] = (alpha2_code >> 0) & 0xff;
alpha2[2] = '\0';
ath10k_dbg(ar, ATH10K_DBG_BOOT,
"regulatory hint from WRDD (alpha2-code): %s\n", alpha2);
*rd = ath_regd_find_country_by_name(alpha2);
if (*rd == 0xffff)
return -EIO;
*rd |= COUNTRY_ERD_FLAG;
return 0;
}
static int ath10k_mac_init_rd(struct ath10k *ar)
{
int ret;
u16 rd;
ret = ath10k_mac_get_wrdd_regulatory(ar, &rd);
if (ret) {
ath10k_dbg(ar, ATH10K_DBG_BOOT,
"fallback to eeprom programmed regulatory settings\n");
rd = ar->hw_eeprom_rd;
}
ar->ath_common.regulatory.current_rd = rd;
return 0;
}
int ath10k_mac_register(struct ath10k *ar)
{
static const u32 cipher_suites[] = {
WLAN_CIPHER_SUITE_WEP40,
WLAN_CIPHER_SUITE_WEP104,
WLAN_CIPHER_SUITE_TKIP,
WLAN_CIPHER_SUITE_CCMP,
/* Do not add hardware supported ciphers before this line.
* Allow software encryption for all chips. Don't forget to
* update n_cipher_suites below.
*/
WLAN_CIPHER_SUITE_AES_CMAC,
WLAN_CIPHER_SUITE_BIP_CMAC_256,
WLAN_CIPHER_SUITE_BIP_GMAC_128,
WLAN_CIPHER_SUITE_BIP_GMAC_256,
/* Only QCA99x0 and QCA4019 variants support GCMP-128, GCMP-256
* and CCMP-256 in hardware.
*/
WLAN_CIPHER_SUITE_GCMP,
WLAN_CIPHER_SUITE_GCMP_256,
WLAN_CIPHER_SUITE_CCMP_256,
};
struct ieee80211_supported_band *band;
void *channels;
int ret;
if (!is_valid_ether_addr(ar->mac_addr)) {
ath10k_warn(ar, "invalid MAC address; choosing random\n");
eth_random_addr(ar->mac_addr);
}
SET_IEEE80211_PERM_ADDR(ar->hw, ar->mac_addr);
SET_IEEE80211_DEV(ar->hw, ar->dev);
BUILD_BUG_ON((ARRAY_SIZE(ath10k_2ghz_channels) +
ARRAY_SIZE(ath10k_5ghz_channels)) !=
ATH10K_NUM_CHANS);
if (ar->phy_capability & WHAL_WLAN_11G_CAPABILITY) {
channels = kmemdup(ath10k_2ghz_channels,
sizeof(ath10k_2ghz_channels),
GFP_KERNEL);
if (!channels) {
ret = -ENOMEM;
goto err_free;
}
band = &ar->mac.sbands[NL80211_BAND_2GHZ];
band->n_channels = ARRAY_SIZE(ath10k_2ghz_channels);
band->channels = channels;
if (ar->hw_params.cck_rate_map_rev2) {
band->n_bitrates = ath10k_g_rates_rev2_size;
band->bitrates = ath10k_g_rates_rev2;
} else {
band->n_bitrates = ath10k_g_rates_size;
band->bitrates = ath10k_g_rates;
}
ar->hw->wiphy->bands[NL80211_BAND_2GHZ] = band;
}
if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY) {
channels = kmemdup(ath10k_5ghz_channels,
sizeof(ath10k_5ghz_channels),
GFP_KERNEL);
if (!channels) {
ret = -ENOMEM;
goto err_free;
}
band = &ar->mac.sbands[NL80211_BAND_5GHZ];
band->n_channels = ARRAY_SIZE(ath10k_5ghz_channels);
band->channels = channels;
band->n_bitrates = ath10k_a_rates_size;
band->bitrates = ath10k_a_rates;
ar->hw->wiphy->bands[NL80211_BAND_5GHZ] = band;
}
wiphy_read_of_freq_limits(ar->hw->wiphy);
ath10k_mac_setup_ht_vht_cap(ar);
ar->hw->wiphy->interface_modes =
BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_AP) |
BIT(NL80211_IFTYPE_MESH_POINT);
ar->hw->wiphy->available_antennas_rx = ar->cfg_rx_chainmask;
ar->hw->wiphy->available_antennas_tx = ar->cfg_tx_chainmask;
if (!test_bit(ATH10K_FW_FEATURE_NO_P2P, ar->normal_mode_fw.fw_file.fw_features))
ar->hw->wiphy->interface_modes |=
BIT(NL80211_IFTYPE_P2P_DEVICE) |
BIT(NL80211_IFTYPE_P2P_CLIENT) |
BIT(NL80211_IFTYPE_P2P_GO);
ieee80211_hw_set(ar->hw, SIGNAL_DBM);
if (!test_bit(ATH10K_FW_FEATURE_NO_PS,
ar->running_fw->fw_file.fw_features)) {
ieee80211_hw_set(ar->hw, SUPPORTS_PS);
ieee80211_hw_set(ar->hw, SUPPORTS_DYNAMIC_PS);
}
ieee80211_hw_set(ar->hw, MFP_CAPABLE);
ieee80211_hw_set(ar->hw, REPORTS_TX_ACK_STATUS);
ieee80211_hw_set(ar->hw, HAS_RATE_CONTROL);
ieee80211_hw_set(ar->hw, AP_LINK_PS);
ieee80211_hw_set(ar->hw, SPECTRUM_MGMT);
ieee80211_hw_set(ar->hw, SUPPORT_FAST_XMIT);
ieee80211_hw_set(ar->hw, CONNECTION_MONITOR);
ieee80211_hw_set(ar->hw, SUPPORTS_PER_STA_GTK);
ieee80211_hw_set(ar->hw, WANT_MONITOR_VIF);
ieee80211_hw_set(ar->hw, CHANCTX_STA_CSA);
ieee80211_hw_set(ar->hw, QUEUE_CONTROL);
ieee80211_hw_set(ar->hw, SUPPORTS_TX_FRAG);
ieee80211_hw_set(ar->hw, REPORTS_LOW_ACK);
if (!test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags))
ieee80211_hw_set(ar->hw, SW_CRYPTO_CONTROL);
ar->hw->wiphy->features |= NL80211_FEATURE_STATIC_SMPS;
ar->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
if (ar->ht_cap_info & WMI_HT_CAP_DYNAMIC_SMPS)
ar->hw->wiphy->features |= NL80211_FEATURE_DYNAMIC_SMPS;
if (ar->ht_cap_info & WMI_HT_CAP_ENABLED) {
ieee80211_hw_set(ar->hw, AMPDU_AGGREGATION);
ieee80211_hw_set(ar->hw, TX_AMPDU_SETUP_IN_HW);
}
ar->hw->wiphy->max_scan_ssids = WLAN_SCAN_PARAMS_MAX_SSID;
ar->hw->wiphy->max_scan_ie_len = WLAN_SCAN_PARAMS_MAX_IE_LEN;
if (test_bit(WMI_SERVICE_NLO, ar->wmi.svc_map)) {
ar->hw->wiphy->max_sched_scan_ssids = WMI_PNO_MAX_SUPP_NETWORKS;
ar->hw->wiphy->max_match_sets = WMI_PNO_MAX_SUPP_NETWORKS;
ar->hw->wiphy->max_sched_scan_ie_len = WMI_PNO_MAX_IE_LENGTH;
ar->hw->wiphy->max_sched_scan_plans = WMI_PNO_MAX_SCHED_SCAN_PLANS;
ar->hw->wiphy->max_sched_scan_plan_interval =
WMI_PNO_MAX_SCHED_SCAN_PLAN_INT;
ar->hw->wiphy->max_sched_scan_plan_iterations =
WMI_PNO_MAX_SCHED_SCAN_PLAN_ITRNS;
ar->hw->wiphy->features |= NL80211_FEATURE_ND_RANDOM_MAC_ADDR;
}
ar->hw->vif_data_size = sizeof(struct ath10k_vif);
ar->hw->sta_data_size = sizeof(struct ath10k_sta);
ar->hw->txq_data_size = sizeof(struct ath10k_txq);
ar->hw->max_listen_interval = ATH10K_MAX_HW_LISTEN_INTERVAL;
if (test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map)) {
ar->hw->wiphy->flags |= WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD;
/* Firmware delivers WPS/P2P Probe Requests frames to driver so
* that userspace (e.g. wpa_supplicant/hostapd) can generate
* correct Probe Responses. This is more of a hack advert..
*/
ar->hw->wiphy->probe_resp_offload |=
NL80211_PROBE_RESP_OFFLOAD_SUPPORT_WPS |
NL80211_PROBE_RESP_OFFLOAD_SUPPORT_WPS2 |
NL80211_PROBE_RESP_OFFLOAD_SUPPORT_P2P;
}
if (test_bit(WMI_SERVICE_TDLS, ar->wmi.svc_map) ||
test_bit(WMI_SERVICE_TDLS_EXPLICIT_MODE_ONLY, ar->wmi.svc_map)) {
ar->hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS;
if (test_bit(WMI_SERVICE_TDLS_WIDER_BANDWIDTH, ar->wmi.svc_map))
ieee80211_hw_set(ar->hw, TDLS_WIDER_BW);
}
if (test_bit(WMI_SERVICE_TDLS_UAPSD_BUFFER_STA, ar->wmi.svc_map))
ieee80211_hw_set(ar->hw, SUPPORTS_TDLS_BUFFER_STA);
if (ath10k_frame_mode == ATH10K_HW_TXRX_ETHERNET) {
if (ar->wmi.vdev_param->tx_encap_type !=
WMI_VDEV_PARAM_UNSUPPORTED)
ieee80211_hw_set(ar->hw, SUPPORTS_TX_ENCAP_OFFLOAD);
}
ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL;
ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH;
ar->hw->wiphy->max_remain_on_channel_duration = 5000;
ar->hw->wiphy->flags |= WIPHY_FLAG_AP_UAPSD;
ar->hw->wiphy->features |= NL80211_FEATURE_AP_MODE_CHAN_WIDTH_CHANGE |
NL80211_FEATURE_AP_SCAN;
ar->hw->wiphy->max_ap_assoc_sta = ar->max_num_stations;
ret = ath10k_wow_init(ar);
if (ret) {
ath10k_warn(ar, "failed to init wow: %d\n", ret);
goto err_free;
}
wiphy_ext_feature_set(ar->hw->wiphy, NL80211_EXT_FEATURE_VHT_IBSS);
wiphy_ext_feature_set(ar->hw->wiphy,
NL80211_EXT_FEATURE_SET_SCAN_DWELL);
wiphy_ext_feature_set(ar->hw->wiphy, NL80211_EXT_FEATURE_AQL);
if (ar->hw_params.mcast_frame_registration)
wiphy_ext_feature_set(ar->hw->wiphy,
NL80211_EXT_FEATURE_MULTICAST_REGISTRATIONS);
if (test_bit(WMI_SERVICE_TX_DATA_ACK_RSSI, ar->wmi.svc_map) ||
test_bit(WMI_SERVICE_HTT_MGMT_TX_COMP_VALID_FLAGS, ar->wmi.svc_map))
wiphy_ext_feature_set(ar->hw->wiphy,
NL80211_EXT_FEATURE_ACK_SIGNAL_SUPPORT);
if (ath10k_peer_stats_enabled(ar) ||
test_bit(WMI_SERVICE_REPORT_AIRTIME, ar->wmi.svc_map))
wiphy_ext_feature_set(ar->hw->wiphy,
NL80211_EXT_FEATURE_AIRTIME_FAIRNESS);
if (test_bit(WMI_SERVICE_RTT_RESPONDER_ROLE, ar->wmi.svc_map))
wiphy_ext_feature_set(ar->hw->wiphy,
NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER);
if (test_bit(WMI_SERVICE_TX_PWR_PER_PEER, ar->wmi.svc_map))
wiphy_ext_feature_set(ar->hw->wiphy,
NL80211_EXT_FEATURE_STA_TX_PWR);
if (test_bit(WMI_SERVICE_PEER_TID_CONFIGS_SUPPORT, ar->wmi.svc_map)) {
ar->hw->wiphy->tid_config_support.vif |=
BIT(NL80211_TID_CONFIG_ATTR_NOACK) |
BIT(NL80211_TID_CONFIG_ATTR_RETRY_SHORT) |
BIT(NL80211_TID_CONFIG_ATTR_RETRY_LONG) |
BIT(NL80211_TID_CONFIG_ATTR_AMPDU_CTRL) |
BIT(NL80211_TID_CONFIG_ATTR_TX_RATE) |
BIT(NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE);
if (test_bit(WMI_SERVICE_EXT_PEER_TID_CONFIGS_SUPPORT,
ar->wmi.svc_map)) {
ar->hw->wiphy->tid_config_support.vif |=
BIT(NL80211_TID_CONFIG_ATTR_RTSCTS_CTRL);
}
ar->hw->wiphy->tid_config_support.peer =
ar->hw->wiphy->tid_config_support.vif;
ar->hw->wiphy->max_data_retry_count = ATH10K_MAX_RETRY_COUNT;
} else {
ar->ops->set_tid_config = NULL;
}
/*
* on LL hardware queues are managed entirely by the FW
* so we only advertise to mac we can do the queues thing
*/
ar->hw->queues = IEEE80211_MAX_QUEUES;
/* vdev_ids are used as hw queue numbers. Make sure offchan tx queue is
* something that vdev_ids can't reach so that we don't stop the queue
* accidentally.
*/
ar->hw->offchannel_tx_hw_queue = IEEE80211_MAX_QUEUES - 1;
switch (ar->running_fw->fw_file.wmi_op_version) {
case ATH10K_FW_WMI_OP_VERSION_MAIN:
ar->hw->wiphy->iface_combinations = ath10k_if_comb;
ar->hw->wiphy->n_iface_combinations =
ARRAY_SIZE(ath10k_if_comb);
ar->hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_ADHOC);
break;
case ATH10K_FW_WMI_OP_VERSION_TLV:
if (test_bit(WMI_SERVICE_ADAPTIVE_OCS, ar->wmi.svc_map)) {
ar->hw->wiphy->iface_combinations =
ath10k_tlv_qcs_if_comb;
ar->hw->wiphy->n_iface_combinations =
ARRAY_SIZE(ath10k_tlv_qcs_if_comb);
} else {
ar->hw->wiphy->iface_combinations = ath10k_tlv_if_comb;
ar->hw->wiphy->n_iface_combinations =
ARRAY_SIZE(ath10k_tlv_if_comb);
}
ar->hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_ADHOC);
break;
case ATH10K_FW_WMI_OP_VERSION_10_1:
case ATH10K_FW_WMI_OP_VERSION_10_2:
case ATH10K_FW_WMI_OP_VERSION_10_2_4:
ar->hw->wiphy->iface_combinations = ath10k_10x_if_comb;
ar->hw->wiphy->n_iface_combinations =
ARRAY_SIZE(ath10k_10x_if_comb);
break;
case ATH10K_FW_WMI_OP_VERSION_10_4:
ar->hw->wiphy->iface_combinations = ath10k_10_4_if_comb;
ar->hw->wiphy->n_iface_combinations =
ARRAY_SIZE(ath10k_10_4_if_comb);
if (test_bit(WMI_SERVICE_VDEV_DIFFERENT_BEACON_INTERVAL_SUPPORT,
ar->wmi.svc_map)) {
ar->hw->wiphy->iface_combinations =
ath10k_10_4_bcn_int_if_comb;
ar->hw->wiphy->n_iface_combinations =
ARRAY_SIZE(ath10k_10_4_bcn_int_if_comb);
}
break;
case ATH10K_FW_WMI_OP_VERSION_UNSET:
case ATH10K_FW_WMI_OP_VERSION_MAX:
WARN_ON(1);
ret = -EINVAL;
goto err_free;
}
if (ar->hw_params.dynamic_sar_support)
ar->hw->wiphy->sar_capa = &ath10k_sar_capa;
if (!test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags))
ar->hw->netdev_features = NETIF_F_HW_CSUM;
if (IS_ENABLED(CONFIG_ATH10K_DFS_CERTIFIED)) {
/* Init ath dfs pattern detector */
ar->ath_common.debug_mask = ATH_DBG_DFS;
ar->dfs_detector = dfs_pattern_detector_init(&ar->ath_common,
NL80211_DFS_UNSET);
if (!ar->dfs_detector)
ath10k_warn(ar, "failed to initialise DFS pattern detector\n");
}
ret = ath10k_mac_init_rd(ar);
if (ret) {
ath10k_err(ar, "failed to derive regdom: %d\n", ret);
goto err_dfs_detector_exit;
}
/* Disable set_coverage_class for chipsets that do not support it. */
if (!ar->hw_params.hw_ops->set_coverage_class)
ar->ops->set_coverage_class = NULL;
ret = ath_regd_init(&ar->ath_common.regulatory, ar->hw->wiphy,
ath10k_reg_notifier);
if (ret) {
ath10k_err(ar, "failed to initialise regulatory: %i\n", ret);
goto err_dfs_detector_exit;
}
if (test_bit(WMI_SERVICE_SPOOF_MAC_SUPPORT, ar->wmi.svc_map)) {
ar->hw->wiphy->features |=
NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
}
ar->hw->wiphy->cipher_suites = cipher_suites;
/* QCA988x and QCA6174 family chips do not support CCMP-256, GCMP-128
* and GCMP-256 ciphers in hardware. Fetch number of ciphers supported
* from chip specific hw_param table.
*/
if (!ar->hw_params.n_cipher_suites ||
ar->hw_params.n_cipher_suites > ARRAY_SIZE(cipher_suites)) {
ath10k_err(ar, "invalid hw_params.n_cipher_suites %d\n",
ar->hw_params.n_cipher_suites);
ar->hw_params.n_cipher_suites = 8;
}
ar->hw->wiphy->n_cipher_suites = ar->hw_params.n_cipher_suites;
wiphy_ext_feature_set(ar->hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
ar->hw->weight_multiplier = ATH10K_AIRTIME_WEIGHT_MULTIPLIER;
ret = ieee80211_register_hw(ar->hw);
if (ret) {
ath10k_err(ar, "failed to register ieee80211: %d\n", ret);
goto err_dfs_detector_exit;
}
if (test_bit(WMI_SERVICE_PER_PACKET_SW_ENCRYPT, ar->wmi.svc_map)) {
ar->hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_AP_VLAN);
ar->hw->wiphy->software_iftypes |= BIT(NL80211_IFTYPE_AP_VLAN);
}
if (!ath_is_world_regd(&ar->ath_common.reg_world_copy) &&
!ath_is_world_regd(&ar->ath_common.regulatory)) {
ret = regulatory_hint(ar->hw->wiphy,
ar->ath_common.regulatory.alpha2);
if (ret)
goto err_unregister;
}
return 0;
err_unregister:
ieee80211_unregister_hw(ar->hw);
err_dfs_detector_exit:
if (IS_ENABLED(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector)
ar->dfs_detector->exit(ar->dfs_detector);
err_free:
kfree(ar->mac.sbands[NL80211_BAND_2GHZ].channels);
kfree(ar->mac.sbands[NL80211_BAND_5GHZ].channels);
SET_IEEE80211_DEV(ar->hw, NULL);
return ret;
}
void ath10k_mac_unregister(struct ath10k *ar)
{
ieee80211_unregister_hw(ar->hw);
if (IS_ENABLED(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector)
ar->dfs_detector->exit(ar->dfs_detector);
kfree(ar->mac.sbands[NL80211_BAND_2GHZ].channels);
kfree(ar->mac.sbands[NL80211_BAND_5GHZ].channels);
SET_IEEE80211_DEV(ar->hw, NULL);
}