blob: 91e3393f7b5f40c5f60a5b5972ba7622ae616383 [file] [log] [blame]
// SPDX-License-Identifier: BSD-3-Clause-Clear
/*
* Copyright (c) 2018-2021 The Linux Foundation. All rights reserved.
* Copyright (c) 2021-2024 Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <linux/ieee80211.h>
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <crypto/hash.h>
#include "core.h"
#include "debug.h"
#include "hal_desc.h"
#include "hw.h"
#include "dp_rx.h"
#include "hal_rx.h"
#include "dp_tx.h"
#include "peer.h"
#include "dp_mon.h"
#include "debugfs_htt_stats.h"
#define ATH12K_DP_RX_FRAGMENT_TIMEOUT_MS (2 * HZ)
static enum hal_encrypt_type ath12k_dp_rx_h_enctype(struct ath12k_base *ab,
struct hal_rx_desc *desc)
{
if (!ab->hal_rx_ops->rx_desc_encrypt_valid(desc))
return HAL_ENCRYPT_TYPE_OPEN;
return ab->hal_rx_ops->rx_desc_get_encrypt_type(desc);
}
u8 ath12k_dp_rx_h_decap_type(struct ath12k_base *ab,
struct hal_rx_desc *desc)
{
return ab->hal_rx_ops->rx_desc_get_decap_type(desc);
}
static u8 ath12k_dp_rx_h_mesh_ctl_present(struct ath12k_base *ab,
struct hal_rx_desc *desc)
{
return ab->hal_rx_ops->rx_desc_get_mesh_ctl(desc);
}
static bool ath12k_dp_rx_h_seq_ctrl_valid(struct ath12k_base *ab,
struct hal_rx_desc *desc)
{
return ab->hal_rx_ops->rx_desc_get_mpdu_seq_ctl_vld(desc);
}
static bool ath12k_dp_rx_h_fc_valid(struct ath12k_base *ab,
struct hal_rx_desc *desc)
{
return ab->hal_rx_ops->rx_desc_get_mpdu_fc_valid(desc);
}
static bool ath12k_dp_rx_h_more_frags(struct ath12k_base *ab,
struct sk_buff *skb)
{
struct ieee80211_hdr *hdr;
hdr = (struct ieee80211_hdr *)(skb->data + ab->hal.hal_desc_sz);
return ieee80211_has_morefrags(hdr->frame_control);
}
static u16 ath12k_dp_rx_h_frag_no(struct ath12k_base *ab,
struct sk_buff *skb)
{
struct ieee80211_hdr *hdr;
hdr = (struct ieee80211_hdr *)(skb->data + ab->hal.hal_desc_sz);
return le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
}
static u16 ath12k_dp_rx_h_seq_no(struct ath12k_base *ab,
struct hal_rx_desc *desc)
{
return ab->hal_rx_ops->rx_desc_get_mpdu_start_seq_no(desc);
}
static bool ath12k_dp_rx_h_msdu_done(struct ath12k_base *ab,
struct hal_rx_desc *desc)
{
return ab->hal_rx_ops->dp_rx_h_msdu_done(desc);
}
static bool ath12k_dp_rx_h_l4_cksum_fail(struct ath12k_base *ab,
struct hal_rx_desc *desc)
{
return ab->hal_rx_ops->dp_rx_h_l4_cksum_fail(desc);
}
static bool ath12k_dp_rx_h_ip_cksum_fail(struct ath12k_base *ab,
struct hal_rx_desc *desc)
{
return ab->hal_rx_ops->dp_rx_h_ip_cksum_fail(desc);
}
static bool ath12k_dp_rx_h_is_decrypted(struct ath12k_base *ab,
struct hal_rx_desc *desc)
{
return ab->hal_rx_ops->dp_rx_h_is_decrypted(desc);
}
u32 ath12k_dp_rx_h_mpdu_err(struct ath12k_base *ab,
struct hal_rx_desc *desc)
{
return ab->hal_rx_ops->dp_rx_h_mpdu_err(desc);
}
static u16 ath12k_dp_rx_h_msdu_len(struct ath12k_base *ab,
struct hal_rx_desc *desc)
{
return ab->hal_rx_ops->rx_desc_get_msdu_len(desc);
}
static u8 ath12k_dp_rx_h_sgi(struct ath12k_base *ab,
struct hal_rx_desc *desc)
{
return ab->hal_rx_ops->rx_desc_get_msdu_sgi(desc);
}
static u8 ath12k_dp_rx_h_rate_mcs(struct ath12k_base *ab,
struct hal_rx_desc *desc)
{
return ab->hal_rx_ops->rx_desc_get_msdu_rate_mcs(desc);
}
static u8 ath12k_dp_rx_h_rx_bw(struct ath12k_base *ab,
struct hal_rx_desc *desc)
{
return ab->hal_rx_ops->rx_desc_get_msdu_rx_bw(desc);
}
static u32 ath12k_dp_rx_h_freq(struct ath12k_base *ab,
struct hal_rx_desc *desc)
{
return ab->hal_rx_ops->rx_desc_get_msdu_freq(desc);
}
static u8 ath12k_dp_rx_h_pkt_type(struct ath12k_base *ab,
struct hal_rx_desc *desc)
{
return ab->hal_rx_ops->rx_desc_get_msdu_pkt_type(desc);
}
static u8 ath12k_dp_rx_h_nss(struct ath12k_base *ab,
struct hal_rx_desc *desc)
{
return hweight8(ab->hal_rx_ops->rx_desc_get_msdu_nss(desc));
}
static u8 ath12k_dp_rx_h_tid(struct ath12k_base *ab,
struct hal_rx_desc *desc)
{
return ab->hal_rx_ops->rx_desc_get_mpdu_tid(desc);
}
static u16 ath12k_dp_rx_h_peer_id(struct ath12k_base *ab,
struct hal_rx_desc *desc)
{
return ab->hal_rx_ops->rx_desc_get_mpdu_peer_id(desc);
}
u8 ath12k_dp_rx_h_l3pad(struct ath12k_base *ab,
struct hal_rx_desc *desc)
{
return ab->hal_rx_ops->rx_desc_get_l3_pad_bytes(desc);
}
static bool ath12k_dp_rx_h_first_msdu(struct ath12k_base *ab,
struct hal_rx_desc *desc)
{
return ab->hal_rx_ops->rx_desc_get_first_msdu(desc);
}
static bool ath12k_dp_rx_h_last_msdu(struct ath12k_base *ab,
struct hal_rx_desc *desc)
{
return ab->hal_rx_ops->rx_desc_get_last_msdu(desc);
}
static void ath12k_dp_rx_desc_end_tlv_copy(struct ath12k_base *ab,
struct hal_rx_desc *fdesc,
struct hal_rx_desc *ldesc)
{
ab->hal_rx_ops->rx_desc_copy_end_tlv(fdesc, ldesc);
}
static void ath12k_dp_rxdesc_set_msdu_len(struct ath12k_base *ab,
struct hal_rx_desc *desc,
u16 len)
{
ab->hal_rx_ops->rx_desc_set_msdu_len(desc, len);
}
static bool ath12k_dp_rx_h_is_da_mcbc(struct ath12k_base *ab,
struct hal_rx_desc *desc)
{
return (ath12k_dp_rx_h_first_msdu(ab, desc) &&
ab->hal_rx_ops->rx_desc_is_da_mcbc(desc));
}
static bool ath12k_dp_rxdesc_mac_addr2_valid(struct ath12k_base *ab,
struct hal_rx_desc *desc)
{
return ab->hal_rx_ops->rx_desc_mac_addr2_valid(desc);
}
static u8 *ath12k_dp_rxdesc_get_mpdu_start_addr2(struct ath12k_base *ab,
struct hal_rx_desc *desc)
{
return ab->hal_rx_ops->rx_desc_mpdu_start_addr2(desc);
}
static void ath12k_dp_rx_desc_get_dot11_hdr(struct ath12k_base *ab,
struct hal_rx_desc *desc,
struct ieee80211_hdr *hdr)
{
ab->hal_rx_ops->rx_desc_get_dot11_hdr(desc, hdr);
}
static void ath12k_dp_rx_desc_get_crypto_header(struct ath12k_base *ab,
struct hal_rx_desc *desc,
u8 *crypto_hdr,
enum hal_encrypt_type enctype)
{
ab->hal_rx_ops->rx_desc_get_crypto_header(desc, crypto_hdr, enctype);
}
static u16 ath12k_dp_rxdesc_get_mpdu_frame_ctrl(struct ath12k_base *ab,
struct hal_rx_desc *desc)
{
return ab->hal_rx_ops->rx_desc_get_mpdu_frame_ctl(desc);
}
static inline u8 ath12k_dp_rx_get_msdu_src_link(struct ath12k_base *ab,
struct hal_rx_desc *desc)
{
return ab->hal_rx_ops->rx_desc_get_msdu_src_link_id(desc);
}
static void ath12k_dp_clean_up_skb_list(struct sk_buff_head *skb_list)
{
struct sk_buff *skb;
while ((skb = __skb_dequeue(skb_list)))
dev_kfree_skb_any(skb);
}
static size_t ath12k_dp_list_cut_nodes(struct list_head *list,
struct list_head *head,
size_t count)
{
struct list_head *cur;
struct ath12k_rx_desc_info *rx_desc;
size_t nodes = 0;
if (!count) {
INIT_LIST_HEAD(list);
goto out;
}
list_for_each(cur, head) {
if (!count)
break;
rx_desc = list_entry(cur, struct ath12k_rx_desc_info, list);
rx_desc->in_use = true;
count--;
nodes++;
}
list_cut_before(list, head, cur);
out:
return nodes;
}
static void ath12k_dp_rx_enqueue_free(struct ath12k_dp *dp,
struct list_head *used_list)
{
struct ath12k_rx_desc_info *rx_desc, *safe;
/* Reset the use flag */
list_for_each_entry_safe(rx_desc, safe, used_list, list)
rx_desc->in_use = false;
spin_lock_bh(&dp->rx_desc_lock);
list_splice_tail(used_list, &dp->rx_desc_free_list);
spin_unlock_bh(&dp->rx_desc_lock);
}
/* Returns number of Rx buffers replenished */
int ath12k_dp_rx_bufs_replenish(struct ath12k_base *ab,
struct dp_rxdma_ring *rx_ring,
struct list_head *used_list,
int req_entries)
{
struct ath12k_buffer_addr *desc;
struct hal_srng *srng;
struct sk_buff *skb;
int num_free;
int num_remain;
u32 cookie;
dma_addr_t paddr;
struct ath12k_dp *dp = &ab->dp;
struct ath12k_rx_desc_info *rx_desc;
enum hal_rx_buf_return_buf_manager mgr = ab->hw_params->hal_params->rx_buf_rbm;
req_entries = min(req_entries, rx_ring->bufs_max);
srng = &ab->hal.srng_list[rx_ring->refill_buf_ring.ring_id];
spin_lock_bh(&srng->lock);
ath12k_hal_srng_access_begin(ab, srng);
num_free = ath12k_hal_srng_src_num_free(ab, srng, true);
if (!req_entries && (num_free > (rx_ring->bufs_max * 3) / 4))
req_entries = num_free;
req_entries = min(num_free, req_entries);
num_remain = req_entries;
if (!num_remain)
goto out;
/* Get the descriptor from free list */
if (list_empty(used_list)) {
spin_lock_bh(&dp->rx_desc_lock);
req_entries = ath12k_dp_list_cut_nodes(used_list,
&dp->rx_desc_free_list,
num_remain);
spin_unlock_bh(&dp->rx_desc_lock);
num_remain = req_entries;
}
while (num_remain > 0) {
skb = dev_alloc_skb(DP_RX_BUFFER_SIZE +
DP_RX_BUFFER_ALIGN_SIZE);
if (!skb)
break;
if (!IS_ALIGNED((unsigned long)skb->data,
DP_RX_BUFFER_ALIGN_SIZE)) {
skb_pull(skb,
PTR_ALIGN(skb->data, DP_RX_BUFFER_ALIGN_SIZE) -
skb->data);
}
paddr = dma_map_single(ab->dev, skb->data,
skb->len + skb_tailroom(skb),
DMA_FROM_DEVICE);
if (dma_mapping_error(ab->dev, paddr))
goto fail_free_skb;
rx_desc = list_first_entry_or_null(used_list,
struct ath12k_rx_desc_info,
list);
if (!rx_desc)
goto fail_dma_unmap;
rx_desc->skb = skb;
cookie = rx_desc->cookie;
desc = ath12k_hal_srng_src_get_next_entry(ab, srng);
if (!desc)
goto fail_dma_unmap;
list_del(&rx_desc->list);
ATH12K_SKB_RXCB(skb)->paddr = paddr;
num_remain--;
ath12k_hal_rx_buf_addr_info_set(desc, paddr, cookie, mgr);
}
goto out;
fail_dma_unmap:
dma_unmap_single(ab->dev, paddr, skb->len + skb_tailroom(skb),
DMA_FROM_DEVICE);
fail_free_skb:
dev_kfree_skb_any(skb);
out:
ath12k_hal_srng_access_end(ab, srng);
if (!list_empty(used_list))
ath12k_dp_rx_enqueue_free(dp, used_list);
spin_unlock_bh(&srng->lock);
return req_entries - num_remain;
}
static int ath12k_dp_rxdma_mon_buf_ring_free(struct ath12k_base *ab,
struct dp_rxdma_mon_ring *rx_ring)
{
struct sk_buff *skb;
int buf_id;
spin_lock_bh(&rx_ring->idr_lock);
idr_for_each_entry(&rx_ring->bufs_idr, skb, buf_id) {
idr_remove(&rx_ring->bufs_idr, buf_id);
/* TODO: Understand where internal driver does this dma_unmap
* of rxdma_buffer.
*/
dma_unmap_single(ab->dev, ATH12K_SKB_RXCB(skb)->paddr,
skb->len + skb_tailroom(skb), DMA_FROM_DEVICE);
dev_kfree_skb_any(skb);
}
idr_destroy(&rx_ring->bufs_idr);
spin_unlock_bh(&rx_ring->idr_lock);
return 0;
}
static int ath12k_dp_rxdma_buf_free(struct ath12k_base *ab)
{
struct ath12k_dp *dp = &ab->dp;
ath12k_dp_rxdma_mon_buf_ring_free(ab, &dp->rxdma_mon_buf_ring);
return 0;
}
static int ath12k_dp_rxdma_mon_ring_buf_setup(struct ath12k_base *ab,
struct dp_rxdma_mon_ring *rx_ring,
u32 ringtype)
{
int num_entries;
num_entries = rx_ring->refill_buf_ring.size /
ath12k_hal_srng_get_entrysize(ab, ringtype);
rx_ring->bufs_max = num_entries;
ath12k_dp_mon_buf_replenish(ab, rx_ring, num_entries);
return 0;
}
static int ath12k_dp_rxdma_ring_buf_setup(struct ath12k_base *ab,
struct dp_rxdma_ring *rx_ring)
{
LIST_HEAD(list);
rx_ring->bufs_max = rx_ring->refill_buf_ring.size /
ath12k_hal_srng_get_entrysize(ab, HAL_RXDMA_BUF);
ath12k_dp_rx_bufs_replenish(ab, rx_ring, &list, 0);
return 0;
}
static int ath12k_dp_rxdma_buf_setup(struct ath12k_base *ab)
{
struct ath12k_dp *dp = &ab->dp;
int ret;
ret = ath12k_dp_rxdma_ring_buf_setup(ab, &dp->rx_refill_buf_ring);
if (ret) {
ath12k_warn(ab,
"failed to setup HAL_RXDMA_BUF\n");
return ret;
}
if (ab->hw_params->rxdma1_enable) {
ret = ath12k_dp_rxdma_mon_ring_buf_setup(ab,
&dp->rxdma_mon_buf_ring,
HAL_RXDMA_MONITOR_BUF);
if (ret) {
ath12k_warn(ab,
"failed to setup HAL_RXDMA_MONITOR_BUF\n");
return ret;
}
}
return 0;
}
static void ath12k_dp_rx_pdev_srng_free(struct ath12k *ar)
{
struct ath12k_pdev_dp *dp = &ar->dp;
struct ath12k_base *ab = ar->ab;
int i;
for (i = 0; i < ab->hw_params->num_rxdma_per_pdev; i++)
ath12k_dp_srng_cleanup(ab, &dp->rxdma_mon_dst_ring[i]);
}
void ath12k_dp_rx_pdev_reo_cleanup(struct ath12k_base *ab)
{
struct ath12k_dp *dp = &ab->dp;
int i;
for (i = 0; i < DP_REO_DST_RING_MAX; i++)
ath12k_dp_srng_cleanup(ab, &dp->reo_dst_ring[i]);
}
int ath12k_dp_rx_pdev_reo_setup(struct ath12k_base *ab)
{
struct ath12k_dp *dp = &ab->dp;
int ret;
int i;
for (i = 0; i < DP_REO_DST_RING_MAX; i++) {
ret = ath12k_dp_srng_setup(ab, &dp->reo_dst_ring[i],
HAL_REO_DST, i, 0,
DP_REO_DST_RING_SIZE);
if (ret) {
ath12k_warn(ab, "failed to setup reo_dst_ring\n");
goto err_reo_cleanup;
}
}
return 0;
err_reo_cleanup:
ath12k_dp_rx_pdev_reo_cleanup(ab);
return ret;
}
static int ath12k_dp_rx_pdev_srng_alloc(struct ath12k *ar)
{
struct ath12k_pdev_dp *dp = &ar->dp;
struct ath12k_base *ab = ar->ab;
int i;
int ret;
u32 mac_id = dp->mac_id;
for (i = 0; i < ab->hw_params->num_rxdma_per_pdev; i++) {
ret = ath12k_dp_srng_setup(ar->ab,
&dp->rxdma_mon_dst_ring[i],
HAL_RXDMA_MONITOR_DST,
0, mac_id + i,
DP_RXDMA_MONITOR_DST_RING_SIZE);
if (ret) {
ath12k_warn(ar->ab,
"failed to setup HAL_RXDMA_MONITOR_DST\n");
return ret;
}
}
return 0;
}
void ath12k_dp_rx_reo_cmd_list_cleanup(struct ath12k_base *ab)
{
struct ath12k_dp *dp = &ab->dp;
struct ath12k_dp_rx_reo_cmd *cmd, *tmp;
struct ath12k_dp_rx_reo_cache_flush_elem *cmd_cache, *tmp_cache;
spin_lock_bh(&dp->reo_cmd_lock);
list_for_each_entry_safe(cmd, tmp, &dp->reo_cmd_list, list) {
list_del(&cmd->list);
dma_unmap_single(ab->dev, cmd->data.paddr,
cmd->data.size, DMA_BIDIRECTIONAL);
kfree(cmd->data.vaddr);
kfree(cmd);
}
list_for_each_entry_safe(cmd_cache, tmp_cache,
&dp->reo_cmd_cache_flush_list, list) {
list_del(&cmd_cache->list);
dp->reo_cmd_cache_flush_count--;
dma_unmap_single(ab->dev, cmd_cache->data.paddr,
cmd_cache->data.size, DMA_BIDIRECTIONAL);
kfree(cmd_cache->data.vaddr);
kfree(cmd_cache);
}
spin_unlock_bh(&dp->reo_cmd_lock);
}
static void ath12k_dp_reo_cmd_free(struct ath12k_dp *dp, void *ctx,
enum hal_reo_cmd_status status)
{
struct ath12k_dp_rx_tid *rx_tid = ctx;
if (status != HAL_REO_CMD_SUCCESS)
ath12k_warn(dp->ab, "failed to flush rx tid hw desc, tid %d status %d\n",
rx_tid->tid, status);
dma_unmap_single(dp->ab->dev, rx_tid->paddr, rx_tid->size,
DMA_BIDIRECTIONAL);
kfree(rx_tid->vaddr);
rx_tid->vaddr = NULL;
}
static int ath12k_dp_reo_cmd_send(struct ath12k_base *ab, struct ath12k_dp_rx_tid *rx_tid,
enum hal_reo_cmd_type type,
struct ath12k_hal_reo_cmd *cmd,
void (*cb)(struct ath12k_dp *dp, void *ctx,
enum hal_reo_cmd_status status))
{
struct ath12k_dp *dp = &ab->dp;
struct ath12k_dp_rx_reo_cmd *dp_cmd;
struct hal_srng *cmd_ring;
int cmd_num;
cmd_ring = &ab->hal.srng_list[dp->reo_cmd_ring.ring_id];
cmd_num = ath12k_hal_reo_cmd_send(ab, cmd_ring, type, cmd);
/* cmd_num should start from 1, during failure return the error code */
if (cmd_num < 0)
return cmd_num;
/* reo cmd ring descriptors has cmd_num starting from 1 */
if (cmd_num == 0)
return -EINVAL;
if (!cb)
return 0;
/* Can this be optimized so that we keep the pending command list only
* for tid delete command to free up the resource on the command status
* indication?
*/
dp_cmd = kzalloc(sizeof(*dp_cmd), GFP_ATOMIC);
if (!dp_cmd)
return -ENOMEM;
memcpy(&dp_cmd->data, rx_tid, sizeof(*rx_tid));
dp_cmd->cmd_num = cmd_num;
dp_cmd->handler = cb;
spin_lock_bh(&dp->reo_cmd_lock);
list_add_tail(&dp_cmd->list, &dp->reo_cmd_list);
spin_unlock_bh(&dp->reo_cmd_lock);
return 0;
}
static void ath12k_dp_reo_cache_flush(struct ath12k_base *ab,
struct ath12k_dp_rx_tid *rx_tid)
{
struct ath12k_hal_reo_cmd cmd = {0};
unsigned long tot_desc_sz, desc_sz;
int ret;
tot_desc_sz = rx_tid->size;
desc_sz = ath12k_hal_reo_qdesc_size(0, HAL_DESC_REO_NON_QOS_TID);
while (tot_desc_sz > desc_sz) {
tot_desc_sz -= desc_sz;
cmd.addr_lo = lower_32_bits(rx_tid->paddr + tot_desc_sz);
cmd.addr_hi = upper_32_bits(rx_tid->paddr);
ret = ath12k_dp_reo_cmd_send(ab, rx_tid,
HAL_REO_CMD_FLUSH_CACHE, &cmd,
NULL);
if (ret)
ath12k_warn(ab,
"failed to send HAL_REO_CMD_FLUSH_CACHE, tid %d (%d)\n",
rx_tid->tid, ret);
}
memset(&cmd, 0, sizeof(cmd));
cmd.addr_lo = lower_32_bits(rx_tid->paddr);
cmd.addr_hi = upper_32_bits(rx_tid->paddr);
cmd.flag = HAL_REO_CMD_FLG_NEED_STATUS;
ret = ath12k_dp_reo_cmd_send(ab, rx_tid,
HAL_REO_CMD_FLUSH_CACHE,
&cmd, ath12k_dp_reo_cmd_free);
if (ret) {
ath12k_err(ab, "failed to send HAL_REO_CMD_FLUSH_CACHE cmd, tid %d (%d)\n",
rx_tid->tid, ret);
dma_unmap_single(ab->dev, rx_tid->paddr, rx_tid->size,
DMA_BIDIRECTIONAL);
kfree(rx_tid->vaddr);
rx_tid->vaddr = NULL;
}
}
static void ath12k_dp_rx_tid_del_func(struct ath12k_dp *dp, void *ctx,
enum hal_reo_cmd_status status)
{
struct ath12k_base *ab = dp->ab;
struct ath12k_dp_rx_tid *rx_tid = ctx;
struct ath12k_dp_rx_reo_cache_flush_elem *elem, *tmp;
if (status == HAL_REO_CMD_DRAIN) {
goto free_desc;
} else if (status != HAL_REO_CMD_SUCCESS) {
/* Shouldn't happen! Cleanup in case of other failure? */
ath12k_warn(ab, "failed to delete rx tid %d hw descriptor %d\n",
rx_tid->tid, status);
return;
}
elem = kzalloc(sizeof(*elem), GFP_ATOMIC);
if (!elem)
goto free_desc;
elem->ts = jiffies;
memcpy(&elem->data, rx_tid, sizeof(*rx_tid));
spin_lock_bh(&dp->reo_cmd_lock);
list_add_tail(&elem->list, &dp->reo_cmd_cache_flush_list);
dp->reo_cmd_cache_flush_count++;
/* Flush and invalidate aged REO desc from HW cache */
list_for_each_entry_safe(elem, tmp, &dp->reo_cmd_cache_flush_list,
list) {
if (dp->reo_cmd_cache_flush_count > ATH12K_DP_RX_REO_DESC_FREE_THRES ||
time_after(jiffies, elem->ts +
msecs_to_jiffies(ATH12K_DP_RX_REO_DESC_FREE_TIMEOUT_MS))) {
list_del(&elem->list);
dp->reo_cmd_cache_flush_count--;
/* Unlock the reo_cmd_lock before using ath12k_dp_reo_cmd_send()
* within ath12k_dp_reo_cache_flush. The reo_cmd_cache_flush_list
* is used in only two contexts, one is in this function called
* from napi and the other in ath12k_dp_free during core destroy.
* Before dp_free, the irqs would be disabled and would wait to
* synchronize. Hence there wouldn’t be any race against add or
* delete to this list. Hence unlock-lock is safe here.
*/
spin_unlock_bh(&dp->reo_cmd_lock);
ath12k_dp_reo_cache_flush(ab, &elem->data);
kfree(elem);
spin_lock_bh(&dp->reo_cmd_lock);
}
}
spin_unlock_bh(&dp->reo_cmd_lock);
return;
free_desc:
dma_unmap_single(ab->dev, rx_tid->paddr, rx_tid->size,
DMA_BIDIRECTIONAL);
kfree(rx_tid->vaddr);
rx_tid->vaddr = NULL;
}
static void ath12k_peer_rx_tid_qref_setup(struct ath12k_base *ab, u16 peer_id, u16 tid,
dma_addr_t paddr)
{
struct ath12k_reo_queue_ref *qref;
struct ath12k_dp *dp = &ab->dp;
if (!ab->hw_params->reoq_lut_support)
return;
/* TODO: based on ML peer or not, select the LUT. below assumes non
* ML peer
*/
qref = (struct ath12k_reo_queue_ref *)dp->reoq_lut.vaddr +
(peer_id * (IEEE80211_NUM_TIDS + 1) + tid);
qref->info0 = u32_encode_bits(lower_32_bits(paddr),
BUFFER_ADDR_INFO0_ADDR);
qref->info1 = u32_encode_bits(upper_32_bits(paddr),
BUFFER_ADDR_INFO1_ADDR) |
u32_encode_bits(tid, DP_REO_QREF_NUM);
}
static void ath12k_peer_rx_tid_qref_reset(struct ath12k_base *ab, u16 peer_id, u16 tid)
{
struct ath12k_reo_queue_ref *qref;
struct ath12k_dp *dp = &ab->dp;
if (!ab->hw_params->reoq_lut_support)
return;
/* TODO: based on ML peer or not, select the LUT. below assumes non
* ML peer
*/
qref = (struct ath12k_reo_queue_ref *)dp->reoq_lut.vaddr +
(peer_id * (IEEE80211_NUM_TIDS + 1) + tid);
qref->info0 = u32_encode_bits(0, BUFFER_ADDR_INFO0_ADDR);
qref->info1 = u32_encode_bits(0, BUFFER_ADDR_INFO1_ADDR) |
u32_encode_bits(tid, DP_REO_QREF_NUM);
}
void ath12k_dp_rx_peer_tid_delete(struct ath12k *ar,
struct ath12k_peer *peer, u8 tid)
{
struct ath12k_hal_reo_cmd cmd = {0};
struct ath12k_dp_rx_tid *rx_tid = &peer->rx_tid[tid];
int ret;
if (!rx_tid->active)
return;
cmd.flag = HAL_REO_CMD_FLG_NEED_STATUS;
cmd.addr_lo = lower_32_bits(rx_tid->paddr);
cmd.addr_hi = upper_32_bits(rx_tid->paddr);
cmd.upd0 = HAL_REO_CMD_UPD0_VLD;
ret = ath12k_dp_reo_cmd_send(ar->ab, rx_tid,
HAL_REO_CMD_UPDATE_RX_QUEUE, &cmd,
ath12k_dp_rx_tid_del_func);
if (ret) {
ath12k_err(ar->ab, "failed to send HAL_REO_CMD_UPDATE_RX_QUEUE cmd, tid %d (%d)\n",
tid, ret);
dma_unmap_single(ar->ab->dev, rx_tid->paddr, rx_tid->size,
DMA_BIDIRECTIONAL);
kfree(rx_tid->vaddr);
rx_tid->vaddr = NULL;
}
ath12k_peer_rx_tid_qref_reset(ar->ab, peer->peer_id, tid);
rx_tid->active = false;
}
/* TODO: it's strange (and ugly) that struct hal_reo_dest_ring is converted
* to struct hal_wbm_release_ring, I couldn't figure out the logic behind
* that.
*/
static int ath12k_dp_rx_link_desc_return(struct ath12k_base *ab,
struct hal_reo_dest_ring *ring,
enum hal_wbm_rel_bm_act action)
{
struct hal_wbm_release_ring *link_desc = (struct hal_wbm_release_ring *)ring;
struct hal_wbm_release_ring *desc;
struct ath12k_dp *dp = &ab->dp;
struct hal_srng *srng;
int ret = 0;
srng = &ab->hal.srng_list[dp->wbm_desc_rel_ring.ring_id];
spin_lock_bh(&srng->lock);
ath12k_hal_srng_access_begin(ab, srng);
desc = ath12k_hal_srng_src_get_next_entry(ab, srng);
if (!desc) {
ret = -ENOBUFS;
goto exit;
}
ath12k_hal_rx_msdu_link_desc_set(ab, desc, link_desc, action);
exit:
ath12k_hal_srng_access_end(ab, srng);
spin_unlock_bh(&srng->lock);
return ret;
}
static void ath12k_dp_rx_frags_cleanup(struct ath12k_dp_rx_tid *rx_tid,
bool rel_link_desc)
{
struct ath12k_base *ab = rx_tid->ab;
lockdep_assert_held(&ab->base_lock);
if (rx_tid->dst_ring_desc) {
if (rel_link_desc)
ath12k_dp_rx_link_desc_return(ab, rx_tid->dst_ring_desc,
HAL_WBM_REL_BM_ACT_PUT_IN_IDLE);
kfree(rx_tid->dst_ring_desc);
rx_tid->dst_ring_desc = NULL;
}
rx_tid->cur_sn = 0;
rx_tid->last_frag_no = 0;
rx_tid->rx_frag_bitmap = 0;
__skb_queue_purge(&rx_tid->rx_frags);
}
void ath12k_dp_rx_peer_tid_cleanup(struct ath12k *ar, struct ath12k_peer *peer)
{
struct ath12k_dp_rx_tid *rx_tid;
int i;
lockdep_assert_held(&ar->ab->base_lock);
for (i = 0; i <= IEEE80211_NUM_TIDS; i++) {
rx_tid = &peer->rx_tid[i];
ath12k_dp_rx_peer_tid_delete(ar, peer, i);
ath12k_dp_rx_frags_cleanup(rx_tid, true);
spin_unlock_bh(&ar->ab->base_lock);
del_timer_sync(&rx_tid->frag_timer);
spin_lock_bh(&ar->ab->base_lock);
}
}
static int ath12k_peer_rx_tid_reo_update(struct ath12k *ar,
struct ath12k_peer *peer,
struct ath12k_dp_rx_tid *rx_tid,
u32 ba_win_sz, u16 ssn,
bool update_ssn)
{
struct ath12k_hal_reo_cmd cmd = {0};
int ret;
cmd.addr_lo = lower_32_bits(rx_tid->paddr);
cmd.addr_hi = upper_32_bits(rx_tid->paddr);
cmd.flag = HAL_REO_CMD_FLG_NEED_STATUS;
cmd.upd0 = HAL_REO_CMD_UPD0_BA_WINDOW_SIZE;
cmd.ba_window_size = ba_win_sz;
if (update_ssn) {
cmd.upd0 |= HAL_REO_CMD_UPD0_SSN;
cmd.upd2 = u32_encode_bits(ssn, HAL_REO_CMD_UPD2_SSN);
}
ret = ath12k_dp_reo_cmd_send(ar->ab, rx_tid,
HAL_REO_CMD_UPDATE_RX_QUEUE, &cmd,
NULL);
if (ret) {
ath12k_warn(ar->ab, "failed to update rx tid queue, tid %d (%d)\n",
rx_tid->tid, ret);
return ret;
}
rx_tid->ba_win_sz = ba_win_sz;
return 0;
}
int ath12k_dp_rx_peer_tid_setup(struct ath12k *ar, const u8 *peer_mac, int vdev_id,
u8 tid, u32 ba_win_sz, u16 ssn,
enum hal_pn_type pn_type)
{
struct ath12k_base *ab = ar->ab;
struct ath12k_dp *dp = &ab->dp;
struct hal_rx_reo_queue *addr_aligned;
struct ath12k_peer *peer;
struct ath12k_dp_rx_tid *rx_tid;
u32 hw_desc_sz;
void *vaddr;
dma_addr_t paddr;
int ret;
spin_lock_bh(&ab->base_lock);
peer = ath12k_peer_find(ab, vdev_id, peer_mac);
if (!peer) {
spin_unlock_bh(&ab->base_lock);
ath12k_warn(ab, "failed to find the peer to set up rx tid\n");
return -ENOENT;
}
if (ab->hw_params->reoq_lut_support && !dp->reoq_lut.vaddr) {
spin_unlock_bh(&ab->base_lock);
ath12k_warn(ab, "reo qref table is not setup\n");
return -EINVAL;
}
if (peer->peer_id > DP_MAX_PEER_ID || tid > IEEE80211_NUM_TIDS) {
ath12k_warn(ab, "peer id of peer %d or tid %d doesn't allow reoq setup\n",
peer->peer_id, tid);
spin_unlock_bh(&ab->base_lock);
return -EINVAL;
}
rx_tid = &peer->rx_tid[tid];
/* Update the tid queue if it is already setup */
if (rx_tid->active) {
paddr = rx_tid->paddr;
ret = ath12k_peer_rx_tid_reo_update(ar, peer, rx_tid,
ba_win_sz, ssn, true);
spin_unlock_bh(&ab->base_lock);
if (ret) {
ath12k_warn(ab, "failed to update reo for rx tid %d\n", tid);
return ret;
}
if (!ab->hw_params->reoq_lut_support) {
ret = ath12k_wmi_peer_rx_reorder_queue_setup(ar, vdev_id,
peer_mac,
paddr, tid, 1,
ba_win_sz);
if (ret) {
ath12k_warn(ab, "failed to setup peer rx reorder queuefor tid %d: %d\n",
tid, ret);
return ret;
}
}
return 0;
}
rx_tid->tid = tid;
rx_tid->ba_win_sz = ba_win_sz;
/* TODO: Optimize the memory allocation for qos tid based on
* the actual BA window size in REO tid update path.
*/
if (tid == HAL_DESC_REO_NON_QOS_TID)
hw_desc_sz = ath12k_hal_reo_qdesc_size(ba_win_sz, tid);
else
hw_desc_sz = ath12k_hal_reo_qdesc_size(DP_BA_WIN_SZ_MAX, tid);
vaddr = kzalloc(hw_desc_sz + HAL_LINK_DESC_ALIGN - 1, GFP_ATOMIC);
if (!vaddr) {
spin_unlock_bh(&ab->base_lock);
return -ENOMEM;
}
addr_aligned = PTR_ALIGN(vaddr, HAL_LINK_DESC_ALIGN);
ath12k_hal_reo_qdesc_setup(addr_aligned, tid, ba_win_sz,
ssn, pn_type);
paddr = dma_map_single(ab->dev, addr_aligned, hw_desc_sz,
DMA_BIDIRECTIONAL);
ret = dma_mapping_error(ab->dev, paddr);
if (ret) {
spin_unlock_bh(&ab->base_lock);
goto err_mem_free;
}
rx_tid->vaddr = vaddr;
rx_tid->paddr = paddr;
rx_tid->size = hw_desc_sz;
rx_tid->active = true;
if (ab->hw_params->reoq_lut_support) {
/* Update the REO queue LUT at the corresponding peer id
* and tid with qaddr.
*/
ath12k_peer_rx_tid_qref_setup(ab, peer->peer_id, tid, paddr);
spin_unlock_bh(&ab->base_lock);
} else {
spin_unlock_bh(&ab->base_lock);
ret = ath12k_wmi_peer_rx_reorder_queue_setup(ar, vdev_id, peer_mac,
paddr, tid, 1, ba_win_sz);
}
return ret;
err_mem_free:
kfree(vaddr);
return ret;
}
int ath12k_dp_rx_ampdu_start(struct ath12k *ar,
struct ieee80211_ampdu_params *params)
{
struct ath12k_base *ab = ar->ab;
struct ath12k_sta *arsta = ath12k_sta_to_arsta(params->sta);
int vdev_id = arsta->arvif->vdev_id;
int ret;
ret = ath12k_dp_rx_peer_tid_setup(ar, params->sta->addr, vdev_id,
params->tid, params->buf_size,
params->ssn, arsta->pn_type);
if (ret)
ath12k_warn(ab, "failed to setup rx tid %d\n", ret);
return ret;
}
int ath12k_dp_rx_ampdu_stop(struct ath12k *ar,
struct ieee80211_ampdu_params *params)
{
struct ath12k_base *ab = ar->ab;
struct ath12k_peer *peer;
struct ath12k_sta *arsta = ath12k_sta_to_arsta(params->sta);
int vdev_id = arsta->arvif->vdev_id;
bool active;
int ret;
spin_lock_bh(&ab->base_lock);
peer = ath12k_peer_find(ab, vdev_id, params->sta->addr);
if (!peer) {
spin_unlock_bh(&ab->base_lock);
ath12k_warn(ab, "failed to find the peer to stop rx aggregation\n");
return -ENOENT;
}
active = peer->rx_tid[params->tid].active;
if (!active) {
spin_unlock_bh(&ab->base_lock);
return 0;
}
ret = ath12k_peer_rx_tid_reo_update(ar, peer, peer->rx_tid, 1, 0, false);
spin_unlock_bh(&ab->base_lock);
if (ret) {
ath12k_warn(ab, "failed to update reo for rx tid %d: %d\n",
params->tid, ret);
return ret;
}
return ret;
}
int ath12k_dp_rx_peer_pn_replay_config(struct ath12k_vif *arvif,
const u8 *peer_addr,
enum set_key_cmd key_cmd,
struct ieee80211_key_conf *key)
{
struct ath12k *ar = arvif->ar;
struct ath12k_base *ab = ar->ab;
struct ath12k_hal_reo_cmd cmd = {0};
struct ath12k_peer *peer;
struct ath12k_dp_rx_tid *rx_tid;
u8 tid;
int ret = 0;
/* NOTE: Enable PN/TSC replay check offload only for unicast frames.
* We use mac80211 PN/TSC replay check functionality for bcast/mcast
* for now.
*/
if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE))
return 0;
cmd.flag = HAL_REO_CMD_FLG_NEED_STATUS;
cmd.upd0 = HAL_REO_CMD_UPD0_PN |
HAL_REO_CMD_UPD0_PN_SIZE |
HAL_REO_CMD_UPD0_PN_VALID |
HAL_REO_CMD_UPD0_PN_CHECK |
HAL_REO_CMD_UPD0_SVLD;
switch (key->cipher) {
case WLAN_CIPHER_SUITE_TKIP:
case WLAN_CIPHER_SUITE_CCMP:
case WLAN_CIPHER_SUITE_CCMP_256:
case WLAN_CIPHER_SUITE_GCMP:
case WLAN_CIPHER_SUITE_GCMP_256:
if (key_cmd == SET_KEY) {
cmd.upd1 |= HAL_REO_CMD_UPD1_PN_CHECK;
cmd.pn_size = 48;
}
break;
default:
break;
}
spin_lock_bh(&ab->base_lock);
peer = ath12k_peer_find(ab, arvif->vdev_id, peer_addr);
if (!peer) {
spin_unlock_bh(&ab->base_lock);
ath12k_warn(ab, "failed to find the peer %pM to configure pn replay detection\n",
peer_addr);
return -ENOENT;
}
for (tid = 0; tid <= IEEE80211_NUM_TIDS; tid++) {
rx_tid = &peer->rx_tid[tid];
if (!rx_tid->active)
continue;
cmd.addr_lo = lower_32_bits(rx_tid->paddr);
cmd.addr_hi = upper_32_bits(rx_tid->paddr);
ret = ath12k_dp_reo_cmd_send(ab, rx_tid,
HAL_REO_CMD_UPDATE_RX_QUEUE,
&cmd, NULL);
if (ret) {
ath12k_warn(ab, "failed to configure rx tid %d queue of peer %pM for pn replay detection %d\n",
tid, peer_addr, ret);
break;
}
}
spin_unlock_bh(&ab->base_lock);
return ret;
}
static int ath12k_get_ppdu_user_index(struct htt_ppdu_stats *ppdu_stats,
u16 peer_id)
{
int i;
for (i = 0; i < HTT_PPDU_STATS_MAX_USERS - 1; i++) {
if (ppdu_stats->user_stats[i].is_valid_peer_id) {
if (peer_id == ppdu_stats->user_stats[i].peer_id)
return i;
} else {
return i;
}
}
return -EINVAL;
}
static int ath12k_htt_tlv_ppdu_stats_parse(struct ath12k_base *ab,
u16 tag, u16 len, const void *ptr,
void *data)
{
const struct htt_ppdu_stats_usr_cmpltn_ack_ba_status *ba_status;
const struct htt_ppdu_stats_usr_cmpltn_cmn *cmplt_cmn;
const struct htt_ppdu_stats_user_rate *user_rate;
struct htt_ppdu_stats_info *ppdu_info;
struct htt_ppdu_user_stats *user_stats;
int cur_user;
u16 peer_id;
ppdu_info = data;
switch (tag) {
case HTT_PPDU_STATS_TAG_COMMON:
if (len < sizeof(struct htt_ppdu_stats_common)) {
ath12k_warn(ab, "Invalid len %d for the tag 0x%x\n",
len, tag);
return -EINVAL;
}
memcpy(&ppdu_info->ppdu_stats.common, ptr,
sizeof(struct htt_ppdu_stats_common));
break;
case HTT_PPDU_STATS_TAG_USR_RATE:
if (len < sizeof(struct htt_ppdu_stats_user_rate)) {
ath12k_warn(ab, "Invalid len %d for the tag 0x%x\n",
len, tag);
return -EINVAL;
}
user_rate = ptr;
peer_id = le16_to_cpu(user_rate->sw_peer_id);
cur_user = ath12k_get_ppdu_user_index(&ppdu_info->ppdu_stats,
peer_id);
if (cur_user < 0)
return -EINVAL;
user_stats = &ppdu_info->ppdu_stats.user_stats[cur_user];
user_stats->peer_id = peer_id;
user_stats->is_valid_peer_id = true;
memcpy(&user_stats->rate, ptr,
sizeof(struct htt_ppdu_stats_user_rate));
user_stats->tlv_flags |= BIT(tag);
break;
case HTT_PPDU_STATS_TAG_USR_COMPLTN_COMMON:
if (len < sizeof(struct htt_ppdu_stats_usr_cmpltn_cmn)) {
ath12k_warn(ab, "Invalid len %d for the tag 0x%x\n",
len, tag);
return -EINVAL;
}
cmplt_cmn = ptr;
peer_id = le16_to_cpu(cmplt_cmn->sw_peer_id);
cur_user = ath12k_get_ppdu_user_index(&ppdu_info->ppdu_stats,
peer_id);
if (cur_user < 0)
return -EINVAL;
user_stats = &ppdu_info->ppdu_stats.user_stats[cur_user];
user_stats->peer_id = peer_id;
user_stats->is_valid_peer_id = true;
memcpy(&user_stats->cmpltn_cmn, ptr,
sizeof(struct htt_ppdu_stats_usr_cmpltn_cmn));
user_stats->tlv_flags |= BIT(tag);
break;
case HTT_PPDU_STATS_TAG_USR_COMPLTN_ACK_BA_STATUS:
if (len <
sizeof(struct htt_ppdu_stats_usr_cmpltn_ack_ba_status)) {
ath12k_warn(ab, "Invalid len %d for the tag 0x%x\n",
len, tag);
return -EINVAL;
}
ba_status = ptr;
peer_id = le16_to_cpu(ba_status->sw_peer_id);
cur_user = ath12k_get_ppdu_user_index(&ppdu_info->ppdu_stats,
peer_id);
if (cur_user < 0)
return -EINVAL;
user_stats = &ppdu_info->ppdu_stats.user_stats[cur_user];
user_stats->peer_id = peer_id;
user_stats->is_valid_peer_id = true;
memcpy(&user_stats->ack_ba, ptr,
sizeof(struct htt_ppdu_stats_usr_cmpltn_ack_ba_status));
user_stats->tlv_flags |= BIT(tag);
break;
}
return 0;
}
int ath12k_dp_htt_tlv_iter(struct ath12k_base *ab, const void *ptr, size_t len,
int (*iter)(struct ath12k_base *ar, u16 tag, u16 len,
const void *ptr, void *data),
void *data)
{
const struct htt_tlv *tlv;
const void *begin = ptr;
u16 tlv_tag, tlv_len;
int ret = -EINVAL;
while (len > 0) {
if (len < sizeof(*tlv)) {
ath12k_err(ab, "htt tlv parse failure at byte %zd (%zu bytes left, %zu expected)\n",
ptr - begin, len, sizeof(*tlv));
return -EINVAL;
}
tlv = (struct htt_tlv *)ptr;
tlv_tag = le32_get_bits(tlv->header, HTT_TLV_TAG);
tlv_len = le32_get_bits(tlv->header, HTT_TLV_LEN);
ptr += sizeof(*tlv);
len -= sizeof(*tlv);
if (tlv_len > len) {
ath12k_err(ab, "htt tlv parse failure of tag %u at byte %zd (%zu bytes left, %u expected)\n",
tlv_tag, ptr - begin, len, tlv_len);
return -EINVAL;
}
ret = iter(ab, tlv_tag, tlv_len, ptr, data);
if (ret == -ENOMEM)
return ret;
ptr += tlv_len;
len -= tlv_len;
}
return 0;
}
static void
ath12k_update_per_peer_tx_stats(struct ath12k *ar,
struct htt_ppdu_stats *ppdu_stats, u8 user)
{
struct ath12k_base *ab = ar->ab;
struct ath12k_peer *peer;
struct ieee80211_sta *sta;
struct ath12k_sta *arsta;
struct htt_ppdu_stats_user_rate *user_rate;
struct ath12k_per_peer_tx_stats *peer_stats = &ar->peer_tx_stats;
struct htt_ppdu_user_stats *usr_stats = &ppdu_stats->user_stats[user];
struct htt_ppdu_stats_common *common = &ppdu_stats->common;
int ret;
u8 flags, mcs, nss, bw, sgi, dcm, rate_idx = 0;
u32 v, succ_bytes = 0;
u16 tones, rate = 0, succ_pkts = 0;
u32 tx_duration = 0;
u8 tid = HTT_PPDU_STATS_NON_QOS_TID;
bool is_ampdu = false;
if (!(usr_stats->tlv_flags & BIT(HTT_PPDU_STATS_TAG_USR_RATE)))
return;
if (usr_stats->tlv_flags & BIT(HTT_PPDU_STATS_TAG_USR_COMPLTN_COMMON))
is_ampdu =
HTT_USR_CMPLTN_IS_AMPDU(usr_stats->cmpltn_cmn.flags);
if (usr_stats->tlv_flags &
BIT(HTT_PPDU_STATS_TAG_USR_COMPLTN_ACK_BA_STATUS)) {
succ_bytes = le32_to_cpu(usr_stats->ack_ba.success_bytes);
succ_pkts = le32_get_bits(usr_stats->ack_ba.info,
HTT_PPDU_STATS_ACK_BA_INFO_NUM_MSDU_M);
tid = le32_get_bits(usr_stats->ack_ba.info,
HTT_PPDU_STATS_ACK_BA_INFO_TID_NUM);
}
if (common->fes_duration_us)
tx_duration = le32_to_cpu(common->fes_duration_us);
user_rate = &usr_stats->rate;
flags = HTT_USR_RATE_PREAMBLE(user_rate->rate_flags);
bw = HTT_USR_RATE_BW(user_rate->rate_flags) - 2;
nss = HTT_USR_RATE_NSS(user_rate->rate_flags) + 1;
mcs = HTT_USR_RATE_MCS(user_rate->rate_flags);
sgi = HTT_USR_RATE_GI(user_rate->rate_flags);
dcm = HTT_USR_RATE_DCM(user_rate->rate_flags);
/* Note: If host configured fixed rates and in some other special
* cases, the broadcast/management frames are sent in different rates.
* Firmware rate's control to be skipped for this?
*/
if (flags == WMI_RATE_PREAMBLE_HE && mcs > ATH12K_HE_MCS_MAX) {
ath12k_warn(ab, "Invalid HE mcs %d peer stats", mcs);
return;
}
if (flags == WMI_RATE_PREAMBLE_VHT && mcs > ATH12K_VHT_MCS_MAX) {
ath12k_warn(ab, "Invalid VHT mcs %d peer stats", mcs);
return;
}
if (flags == WMI_RATE_PREAMBLE_HT && (mcs > ATH12K_HT_MCS_MAX || nss < 1)) {
ath12k_warn(ab, "Invalid HT mcs %d nss %d peer stats",
mcs, nss);
return;
}
if (flags == WMI_RATE_PREAMBLE_CCK || flags == WMI_RATE_PREAMBLE_OFDM) {
ret = ath12k_mac_hw_ratecode_to_legacy_rate(mcs,
flags,
&rate_idx,
&rate);
if (ret < 0)
return;
}
rcu_read_lock();
spin_lock_bh(&ab->base_lock);
peer = ath12k_peer_find_by_id(ab, usr_stats->peer_id);
if (!peer || !peer->sta) {
spin_unlock_bh(&ab->base_lock);
rcu_read_unlock();
return;
}
sta = peer->sta;
arsta = ath12k_sta_to_arsta(sta);
memset(&arsta->txrate, 0, sizeof(arsta->txrate));
switch (flags) {
case WMI_RATE_PREAMBLE_OFDM:
arsta->txrate.legacy = rate;
break;
case WMI_RATE_PREAMBLE_CCK:
arsta->txrate.legacy = rate;
break;
case WMI_RATE_PREAMBLE_HT:
arsta->txrate.mcs = mcs + 8 * (nss - 1);
arsta->txrate.flags = RATE_INFO_FLAGS_MCS;
if (sgi)
arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
break;
case WMI_RATE_PREAMBLE_VHT:
arsta->txrate.mcs = mcs;
arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS;
if (sgi)
arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
break;
case WMI_RATE_PREAMBLE_HE:
arsta->txrate.mcs = mcs;
arsta->txrate.flags = RATE_INFO_FLAGS_HE_MCS;
arsta->txrate.he_dcm = dcm;
arsta->txrate.he_gi = ath12k_he_gi_to_nl80211_he_gi(sgi);
tones = le16_to_cpu(user_rate->ru_end) -
le16_to_cpu(user_rate->ru_start) + 1;
v = ath12k_he_ru_tones_to_nl80211_he_ru_alloc(tones);
arsta->txrate.he_ru_alloc = v;
break;
}
arsta->txrate.nss = nss;
arsta->txrate.bw = ath12k_mac_bw_to_mac80211_bw(bw);
arsta->tx_duration += tx_duration;
memcpy(&arsta->last_txrate, &arsta->txrate, sizeof(struct rate_info));
/* PPDU stats reported for mgmt packet doesn't have valid tx bytes.
* So skip peer stats update for mgmt packets.
*/
if (tid < HTT_PPDU_STATS_NON_QOS_TID) {
memset(peer_stats, 0, sizeof(*peer_stats));
peer_stats->succ_pkts = succ_pkts;
peer_stats->succ_bytes = succ_bytes;
peer_stats->is_ampdu = is_ampdu;
peer_stats->duration = tx_duration;
peer_stats->ba_fails =
HTT_USR_CMPLTN_LONG_RETRY(usr_stats->cmpltn_cmn.flags) +
HTT_USR_CMPLTN_SHORT_RETRY(usr_stats->cmpltn_cmn.flags);
}
spin_unlock_bh(&ab->base_lock);
rcu_read_unlock();
}
static void ath12k_htt_update_ppdu_stats(struct ath12k *ar,
struct htt_ppdu_stats *ppdu_stats)
{
u8 user;
for (user = 0; user < HTT_PPDU_STATS_MAX_USERS - 1; user++)
ath12k_update_per_peer_tx_stats(ar, ppdu_stats, user);
}
static
struct htt_ppdu_stats_info *ath12k_dp_htt_get_ppdu_desc(struct ath12k *ar,
u32 ppdu_id)
{
struct htt_ppdu_stats_info *ppdu_info;
lockdep_assert_held(&ar->data_lock);
if (!list_empty(&ar->ppdu_stats_info)) {
list_for_each_entry(ppdu_info, &ar->ppdu_stats_info, list) {
if (ppdu_info->ppdu_id == ppdu_id)
return ppdu_info;
}
if (ar->ppdu_stat_list_depth > HTT_PPDU_DESC_MAX_DEPTH) {
ppdu_info = list_first_entry(&ar->ppdu_stats_info,
typeof(*ppdu_info), list);
list_del(&ppdu_info->list);
ar->ppdu_stat_list_depth--;
ath12k_htt_update_ppdu_stats(ar, &ppdu_info->ppdu_stats);
kfree(ppdu_info);
}
}
ppdu_info = kzalloc(sizeof(*ppdu_info), GFP_ATOMIC);
if (!ppdu_info)
return NULL;
list_add_tail(&ppdu_info->list, &ar->ppdu_stats_info);
ar->ppdu_stat_list_depth++;
return ppdu_info;
}
static void ath12k_copy_to_delay_stats(struct ath12k_peer *peer,
struct htt_ppdu_user_stats *usr_stats)
{
peer->ppdu_stats_delayba.sw_peer_id = le16_to_cpu(usr_stats->rate.sw_peer_id);
peer->ppdu_stats_delayba.info0 = le32_to_cpu(usr_stats->rate.info0);
peer->ppdu_stats_delayba.ru_end = le16_to_cpu(usr_stats->rate.ru_end);
peer->ppdu_stats_delayba.ru_start = le16_to_cpu(usr_stats->rate.ru_start);
peer->ppdu_stats_delayba.info1 = le32_to_cpu(usr_stats->rate.info1);
peer->ppdu_stats_delayba.rate_flags = le32_to_cpu(usr_stats->rate.rate_flags);
peer->ppdu_stats_delayba.resp_rate_flags =
le32_to_cpu(usr_stats->rate.resp_rate_flags);
peer->delayba_flag = true;
}
static void ath12k_copy_to_bar(struct ath12k_peer *peer,
struct htt_ppdu_user_stats *usr_stats)
{
usr_stats->rate.sw_peer_id = cpu_to_le16(peer->ppdu_stats_delayba.sw_peer_id);
usr_stats->rate.info0 = cpu_to_le32(peer->ppdu_stats_delayba.info0);
usr_stats->rate.ru_end = cpu_to_le16(peer->ppdu_stats_delayba.ru_end);
usr_stats->rate.ru_start = cpu_to_le16(peer->ppdu_stats_delayba.ru_start);
usr_stats->rate.info1 = cpu_to_le32(peer->ppdu_stats_delayba.info1);
usr_stats->rate.rate_flags = cpu_to_le32(peer->ppdu_stats_delayba.rate_flags);
usr_stats->rate.resp_rate_flags =
cpu_to_le32(peer->ppdu_stats_delayba.resp_rate_flags);
peer->delayba_flag = false;
}
static int ath12k_htt_pull_ppdu_stats(struct ath12k_base *ab,
struct sk_buff *skb)
{
struct ath12k_htt_ppdu_stats_msg *msg;
struct htt_ppdu_stats_info *ppdu_info;
struct ath12k_peer *peer = NULL;
struct htt_ppdu_user_stats *usr_stats = NULL;
u32 peer_id = 0;
struct ath12k *ar;
int ret, i;
u8 pdev_id;
u32 ppdu_id, len;
msg = (struct ath12k_htt_ppdu_stats_msg *)skb->data;
len = le32_get_bits(msg->info, HTT_T2H_PPDU_STATS_INFO_PAYLOAD_SIZE);
if (len > (skb->len - struct_size(msg, data, 0))) {
ath12k_warn(ab,
"HTT PPDU STATS event has unexpected payload size %u, should be smaller than %u\n",
len, skb->len);
return -EINVAL;
}
pdev_id = le32_get_bits(msg->info, HTT_T2H_PPDU_STATS_INFO_PDEV_ID);
ppdu_id = le32_to_cpu(msg->ppdu_id);
rcu_read_lock();
ar = ath12k_mac_get_ar_by_pdev_id(ab, pdev_id);
if (!ar) {
ret = -EINVAL;
goto exit;
}
spin_lock_bh(&ar->data_lock);
ppdu_info = ath12k_dp_htt_get_ppdu_desc(ar, ppdu_id);
if (!ppdu_info) {
spin_unlock_bh(&ar->data_lock);
ret = -EINVAL;
goto exit;
}
ppdu_info->ppdu_id = ppdu_id;
ret = ath12k_dp_htt_tlv_iter(ab, msg->data, len,
ath12k_htt_tlv_ppdu_stats_parse,
(void *)ppdu_info);
if (ret) {
spin_unlock_bh(&ar->data_lock);
ath12k_warn(ab, "Failed to parse tlv %d\n", ret);
goto exit;
}
if (ppdu_info->ppdu_stats.common.num_users >= HTT_PPDU_STATS_MAX_USERS) {
spin_unlock_bh(&ar->data_lock);
ath12k_warn(ab,
"HTT PPDU STATS event has unexpected num_users %u, should be smaller than %u\n",
ppdu_info->ppdu_stats.common.num_users,
HTT_PPDU_STATS_MAX_USERS);
ret = -EINVAL;
goto exit;
}
/* back up data rate tlv for all peers */
if (ppdu_info->frame_type == HTT_STATS_PPDU_FTYPE_DATA &&
(ppdu_info->tlv_bitmap & (1 << HTT_PPDU_STATS_TAG_USR_COMMON)) &&
ppdu_info->delay_ba) {
for (i = 0; i < ppdu_info->ppdu_stats.common.num_users; i++) {
peer_id = ppdu_info->ppdu_stats.user_stats[i].peer_id;
spin_lock_bh(&ab->base_lock);
peer = ath12k_peer_find_by_id(ab, peer_id);
if (!peer) {
spin_unlock_bh(&ab->base_lock);
continue;
}
usr_stats = &ppdu_info->ppdu_stats.user_stats[i];
if (usr_stats->delay_ba)
ath12k_copy_to_delay_stats(peer, usr_stats);
spin_unlock_bh(&ab->base_lock);
}
}
/* restore all peers' data rate tlv to mu-bar tlv */
if (ppdu_info->frame_type == HTT_STATS_PPDU_FTYPE_BAR &&
(ppdu_info->tlv_bitmap & (1 << HTT_PPDU_STATS_TAG_USR_COMMON))) {
for (i = 0; i < ppdu_info->bar_num_users; i++) {
peer_id = ppdu_info->ppdu_stats.user_stats[i].peer_id;
spin_lock_bh(&ab->base_lock);
peer = ath12k_peer_find_by_id(ab, peer_id);
if (!peer) {
spin_unlock_bh(&ab->base_lock);
continue;
}
usr_stats = &ppdu_info->ppdu_stats.user_stats[i];
if (peer->delayba_flag)
ath12k_copy_to_bar(peer, usr_stats);
spin_unlock_bh(&ab->base_lock);
}
}
spin_unlock_bh(&ar->data_lock);
exit:
rcu_read_unlock();
return ret;
}
static void ath12k_htt_mlo_offset_event_handler(struct ath12k_base *ab,
struct sk_buff *skb)
{
struct ath12k_htt_mlo_offset_msg *msg;
struct ath12k_pdev *pdev;
struct ath12k *ar;
u8 pdev_id;
msg = (struct ath12k_htt_mlo_offset_msg *)skb->data;
pdev_id = u32_get_bits(__le32_to_cpu(msg->info),
HTT_T2H_MLO_OFFSET_INFO_PDEV_ID);
rcu_read_lock();
ar = ath12k_mac_get_ar_by_pdev_id(ab, pdev_id);
if (!ar) {
ath12k_warn(ab, "invalid pdev id %d on htt mlo offset\n", pdev_id);
goto exit;
}
spin_lock_bh(&ar->data_lock);
pdev = ar->pdev;
pdev->timestamp.info = __le32_to_cpu(msg->info);
pdev->timestamp.sync_timestamp_lo_us = __le32_to_cpu(msg->sync_timestamp_lo_us);
pdev->timestamp.sync_timestamp_hi_us = __le32_to_cpu(msg->sync_timestamp_hi_us);
pdev->timestamp.mlo_offset_lo = __le32_to_cpu(msg->mlo_offset_lo);
pdev->timestamp.mlo_offset_hi = __le32_to_cpu(msg->mlo_offset_hi);
pdev->timestamp.mlo_offset_clks = __le32_to_cpu(msg->mlo_offset_clks);
pdev->timestamp.mlo_comp_clks = __le32_to_cpu(msg->mlo_comp_clks);
pdev->timestamp.mlo_comp_timer = __le32_to_cpu(msg->mlo_comp_timer);
spin_unlock_bh(&ar->data_lock);
exit:
rcu_read_unlock();
}
void ath12k_dp_htt_htc_t2h_msg_handler(struct ath12k_base *ab,
struct sk_buff *skb)
{
struct ath12k_dp *dp = &ab->dp;
struct htt_resp_msg *resp = (struct htt_resp_msg *)skb->data;
enum htt_t2h_msg_type type;
u16 peer_id;
u8 vdev_id;
u8 mac_addr[ETH_ALEN];
u16 peer_mac_h16;
u16 ast_hash = 0;
u16 hw_peer_id;
type = le32_get_bits(resp->version_msg.version, HTT_T2H_MSG_TYPE);
ath12k_dbg(ab, ATH12K_DBG_DP_HTT, "dp_htt rx msg type :0x%0x\n", type);
switch (type) {
case HTT_T2H_MSG_TYPE_VERSION_CONF:
dp->htt_tgt_ver_major = le32_get_bits(resp->version_msg.version,
HTT_T2H_VERSION_CONF_MAJOR);
dp->htt_tgt_ver_minor = le32_get_bits(resp->version_msg.version,
HTT_T2H_VERSION_CONF_MINOR);
complete(&dp->htt_tgt_version_received);
break;
/* TODO: remove unused peer map versions after testing */
case HTT_T2H_MSG_TYPE_PEER_MAP:
vdev_id = le32_get_bits(resp->peer_map_ev.info,
HTT_T2H_PEER_MAP_INFO_VDEV_ID);
peer_id = le32_get_bits(resp->peer_map_ev.info,
HTT_T2H_PEER_MAP_INFO_PEER_ID);
peer_mac_h16 = le32_get_bits(resp->peer_map_ev.info1,
HTT_T2H_PEER_MAP_INFO1_MAC_ADDR_H16);
ath12k_dp_get_mac_addr(le32_to_cpu(resp->peer_map_ev.mac_addr_l32),
peer_mac_h16, mac_addr);
ath12k_peer_map_event(ab, vdev_id, peer_id, mac_addr, 0, 0);
break;
case HTT_T2H_MSG_TYPE_PEER_MAP2:
vdev_id = le32_get_bits(resp->peer_map_ev.info,
HTT_T2H_PEER_MAP_INFO_VDEV_ID);
peer_id = le32_get_bits(resp->peer_map_ev.info,
HTT_T2H_PEER_MAP_INFO_PEER_ID);
peer_mac_h16 = le32_get_bits(resp->peer_map_ev.info1,
HTT_T2H_PEER_MAP_INFO1_MAC_ADDR_H16);
ath12k_dp_get_mac_addr(le32_to_cpu(resp->peer_map_ev.mac_addr_l32),
peer_mac_h16, mac_addr);
ast_hash = le32_get_bits(resp->peer_map_ev.info2,
HTT_T2H_PEER_MAP_INFO2_AST_HASH_VAL);
hw_peer_id = le32_get_bits(resp->peer_map_ev.info1,
HTT_T2H_PEER_MAP_INFO1_HW_PEER_ID);
ath12k_peer_map_event(ab, vdev_id, peer_id, mac_addr, ast_hash,
hw_peer_id);
break;
case HTT_T2H_MSG_TYPE_PEER_MAP3:
vdev_id = le32_get_bits(resp->peer_map_ev.info,
HTT_T2H_PEER_MAP_INFO_VDEV_ID);
peer_id = le32_get_bits(resp->peer_map_ev.info,
HTT_T2H_PEER_MAP_INFO_PEER_ID);
peer_mac_h16 = le32_get_bits(resp->peer_map_ev.info1,
HTT_T2H_PEER_MAP_INFO1_MAC_ADDR_H16);
ath12k_dp_get_mac_addr(le32_to_cpu(resp->peer_map_ev.mac_addr_l32),
peer_mac_h16, mac_addr);
ath12k_peer_map_event(ab, vdev_id, peer_id, mac_addr, ast_hash,
peer_id);
break;
case HTT_T2H_MSG_TYPE_PEER_UNMAP:
case HTT_T2H_MSG_TYPE_PEER_UNMAP2:
peer_id = le32_get_bits(resp->peer_unmap_ev.info,
HTT_T2H_PEER_UNMAP_INFO_PEER_ID);
ath12k_peer_unmap_event(ab, peer_id);
break;
case HTT_T2H_MSG_TYPE_PPDU_STATS_IND:
ath12k_htt_pull_ppdu_stats(ab, skb);
break;
case HTT_T2H_MSG_TYPE_EXT_STATS_CONF:
ath12k_debugfs_htt_ext_stats_handler(ab, skb);
break;
case HTT_T2H_MSG_TYPE_MLO_TIMESTAMP_OFFSET_IND:
ath12k_htt_mlo_offset_event_handler(ab, skb);
break;
default:
ath12k_dbg(ab, ATH12K_DBG_DP_HTT, "dp_htt event %d not handled\n",
type);
break;
}
dev_kfree_skb_any(skb);
}
static int ath12k_dp_rx_msdu_coalesce(struct ath12k *ar,
struct sk_buff_head *msdu_list,
struct sk_buff *first, struct sk_buff *last,
u8 l3pad_bytes, int msdu_len)
{
struct ath12k_base *ab = ar->ab;
struct sk_buff *skb;
struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(first);
int buf_first_hdr_len, buf_first_len;
struct hal_rx_desc *ldesc;
int space_extra, rem_len, buf_len;
u32 hal_rx_desc_sz = ar->ab->hal.hal_desc_sz;
/* As the msdu is spread across multiple rx buffers,
* find the offset to the start of msdu for computing
* the length of the msdu in the first buffer.
*/
buf_first_hdr_len = hal_rx_desc_sz + l3pad_bytes;
buf_first_len = DP_RX_BUFFER_SIZE - buf_first_hdr_len;
if (WARN_ON_ONCE(msdu_len <= buf_first_len)) {
skb_put(first, buf_first_hdr_len + msdu_len);
skb_pull(first, buf_first_hdr_len);
return 0;
}
ldesc = (struct hal_rx_desc *)last->data;
rxcb->is_first_msdu = ath12k_dp_rx_h_first_msdu(ab, ldesc);
rxcb->is_last_msdu = ath12k_dp_rx_h_last_msdu(ab, ldesc);
/* MSDU spans over multiple buffers because the length of the MSDU
* exceeds DP_RX_BUFFER_SIZE - HAL_RX_DESC_SIZE. So assume the data
* in the first buf is of length DP_RX_BUFFER_SIZE - HAL_RX_DESC_SIZE.
*/
skb_put(first, DP_RX_BUFFER_SIZE);
skb_pull(first, buf_first_hdr_len);
/* When an MSDU spread over multiple buffers MSDU_END
* tlvs are valid only in the last buffer. Copy those tlvs.
*/
ath12k_dp_rx_desc_end_tlv_copy(ab, rxcb->rx_desc, ldesc);
space_extra = msdu_len - (buf_first_len + skb_tailroom(first));
if (space_extra > 0 &&
(pskb_expand_head(first, 0, space_extra, GFP_ATOMIC) < 0)) {
/* Free up all buffers of the MSDU */
while ((skb = __skb_dequeue(msdu_list)) != NULL) {
rxcb = ATH12K_SKB_RXCB(skb);
if (!rxcb->is_continuation) {
dev_kfree_skb_any(skb);
break;
}
dev_kfree_skb_any(skb);
}
return -ENOMEM;
}
rem_len = msdu_len - buf_first_len;
while ((skb = __skb_dequeue(msdu_list)) != NULL && rem_len > 0) {
rxcb = ATH12K_SKB_RXCB(skb);
if (rxcb->is_continuation)
buf_len = DP_RX_BUFFER_SIZE - hal_rx_desc_sz;
else
buf_len = rem_len;
if (buf_len > (DP_RX_BUFFER_SIZE - hal_rx_desc_sz)) {
WARN_ON_ONCE(1);
dev_kfree_skb_any(skb);
return -EINVAL;
}
skb_put(skb, buf_len + hal_rx_desc_sz);
skb_pull(skb, hal_rx_desc_sz);
skb_copy_from_linear_data(skb, skb_put(first, buf_len),
buf_len);
dev_kfree_skb_any(skb);
rem_len -= buf_len;
if (!rxcb->is_continuation)
break;
}
return 0;
}
static struct sk_buff *ath12k_dp_rx_get_msdu_last_buf(struct sk_buff_head *msdu_list,
struct sk_buff *first)
{
struct sk_buff *skb;
struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(first);
if (!rxcb->is_continuation)
return first;
skb_queue_walk(msdu_list, skb) {
rxcb = ATH12K_SKB_RXCB(skb);
if (!rxcb->is_continuation)
return skb;
}
return NULL;
}
static void ath12k_dp_rx_h_csum_offload(struct ath12k *ar, struct sk_buff *msdu)
{
struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu);
struct ath12k_base *ab = ar->ab;
bool ip_csum_fail, l4_csum_fail;
ip_csum_fail = ath12k_dp_rx_h_ip_cksum_fail(ab, rxcb->rx_desc);
l4_csum_fail = ath12k_dp_rx_h_l4_cksum_fail(ab, rxcb->rx_desc);
msdu->ip_summed = (ip_csum_fail || l4_csum_fail) ?
CHECKSUM_NONE : CHECKSUM_UNNECESSARY;
}
static int ath12k_dp_rx_crypto_mic_len(struct ath12k *ar,
enum hal_encrypt_type enctype)
{
switch (enctype) {
case HAL_ENCRYPT_TYPE_OPEN:
case HAL_ENCRYPT_TYPE_TKIP_NO_MIC:
case HAL_ENCRYPT_TYPE_TKIP_MIC:
return 0;
case HAL_ENCRYPT_TYPE_CCMP_128:
return IEEE80211_CCMP_MIC_LEN;
case HAL_ENCRYPT_TYPE_CCMP_256:
return IEEE80211_CCMP_256_MIC_LEN;
case HAL_ENCRYPT_TYPE_GCMP_128:
case HAL_ENCRYPT_TYPE_AES_GCMP_256:
return IEEE80211_GCMP_MIC_LEN;
case HAL_ENCRYPT_TYPE_WEP_40:
case HAL_ENCRYPT_TYPE_WEP_104:
case HAL_ENCRYPT_TYPE_WEP_128:
case HAL_ENCRYPT_TYPE_WAPI_GCM_SM4:
case HAL_ENCRYPT_TYPE_WAPI:
break;
}
ath12k_warn(ar->ab, "unsupported encryption type %d for mic len\n", enctype);
return 0;
}
static int ath12k_dp_rx_crypto_param_len(struct ath12k *ar,
enum hal_encrypt_type enctype)
{
switch (enctype) {
case HAL_ENCRYPT_TYPE_OPEN:
return 0;
case HAL_ENCRYPT_TYPE_TKIP_NO_MIC:
case HAL_ENCRYPT_TYPE_TKIP_MIC:
return IEEE80211_TKIP_IV_LEN;
case HAL_ENCRYPT_TYPE_CCMP_128:
return IEEE80211_CCMP_HDR_LEN;
case HAL_ENCRYPT_TYPE_CCMP_256:
return IEEE80211_CCMP_256_HDR_LEN;
case HAL_ENCRYPT_TYPE_GCMP_128:
case HAL_ENCRYPT_TYPE_AES_GCMP_256:
return IEEE80211_GCMP_HDR_LEN;
case HAL_ENCRYPT_TYPE_WEP_40:
case HAL_ENCRYPT_TYPE_WEP_104:
case HAL_ENCRYPT_TYPE_WEP_128:
case HAL_ENCRYPT_TYPE_WAPI_GCM_SM4:
case HAL_ENCRYPT_TYPE_WAPI:
break;
}
ath12k_warn(ar->ab, "unsupported encryption type %d\n", enctype);
return 0;
}
static int ath12k_dp_rx_crypto_icv_len(struct ath12k *ar,
enum hal_encrypt_type enctype)
{
switch (enctype) {
case HAL_ENCRYPT_TYPE_OPEN:
case HAL_ENCRYPT_TYPE_CCMP_128:
case HAL_ENCRYPT_TYPE_CCMP_256:
case HAL_ENCRYPT_TYPE_GCMP_128:
case HAL_ENCRYPT_TYPE_AES_GCMP_256:
return 0;
case HAL_ENCRYPT_TYPE_TKIP_NO_MIC:
case HAL_ENCRYPT_TYPE_TKIP_MIC:
return IEEE80211_TKIP_ICV_LEN;
case HAL_ENCRYPT_TYPE_WEP_40:
case HAL_ENCRYPT_TYPE_WEP_104:
case HAL_ENCRYPT_TYPE_WEP_128:
case HAL_ENCRYPT_TYPE_WAPI_GCM_SM4:
case HAL_ENCRYPT_TYPE_WAPI:
break;
}
ath12k_warn(ar->ab, "unsupported encryption type %d\n", enctype);
return 0;
}
static void ath12k_dp_rx_h_undecap_nwifi(struct ath12k *ar,
struct sk_buff *msdu,
enum hal_encrypt_type enctype,
struct ieee80211_rx_status *status)
{
struct ath12k_base *ab = ar->ab;
struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu);
u8 decap_hdr[DP_MAX_NWIFI_HDR_LEN];
struct ieee80211_hdr *hdr;
size_t hdr_len;
u8 *crypto_hdr;
u16 qos_ctl;
/* pull decapped header */
hdr = (struct ieee80211_hdr *)msdu->data;
hdr_len = ieee80211_hdrlen(hdr->frame_control);
skb_pull(msdu, hdr_len);
/* Rebuild qos header */
hdr->frame_control |= __cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
/* Reset the order bit as the HT_Control header is stripped */
hdr->frame_control &= ~(__cpu_to_le16(IEEE80211_FCTL_ORDER));
qos_ctl = rxcb->tid;
if (ath12k_dp_rx_h_mesh_ctl_present(ab, rxcb->rx_desc))
qos_ctl |= IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT;
/* TODO: Add other QoS ctl fields when required */
/* copy decap header before overwriting for reuse below */
memcpy(decap_hdr, hdr, hdr_len);
/* Rebuild crypto header for mac80211 use */
if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
crypto_hdr = skb_push(msdu, ath12k_dp_rx_crypto_param_len(ar, enctype));
ath12k_dp_rx_desc_get_crypto_header(ar->ab,
rxcb->rx_desc, crypto_hdr,
enctype);
}
memcpy(skb_push(msdu,
IEEE80211_QOS_CTL_LEN), &qos_ctl,
IEEE80211_QOS_CTL_LEN);
memcpy(skb_push(msdu, hdr_len), decap_hdr, hdr_len);
}
static void ath12k_dp_rx_h_undecap_raw(struct ath12k *ar, struct sk_buff *msdu,
enum hal_encrypt_type enctype,
struct ieee80211_rx_status *status,
bool decrypted)
{
struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu);
struct ieee80211_hdr *hdr;
size_t hdr_len;
size_t crypto_len;
if (!rxcb->is_first_msdu ||
!(rxcb->is_first_msdu && rxcb->is_last_msdu)) {
WARN_ON_ONCE(1);
return;
}
skb_trim(msdu, msdu->len - FCS_LEN);
if (!decrypted)
return;
hdr = (void *)msdu->data;
/* Tail */
if (status->flag & RX_FLAG_IV_STRIPPED) {
skb_trim(msdu, msdu->len -
ath12k_dp_rx_crypto_mic_len(ar, enctype));
skb_trim(msdu, msdu->len -
ath12k_dp_rx_crypto_icv_len(ar, enctype));
} else {
/* MIC */
if (status->flag & RX_FLAG_MIC_STRIPPED)
skb_trim(msdu, msdu->len -
ath12k_dp_rx_crypto_mic_len(ar, enctype));
/* ICV */
if (status->flag & RX_FLAG_ICV_STRIPPED)
skb_trim(msdu, msdu->len -
ath12k_dp_rx_crypto_icv_len(ar, enctype));
}
/* MMIC */
if ((status->flag & RX_FLAG_MMIC_STRIPPED) &&
!ieee80211_has_morefrags(hdr->frame_control) &&
enctype == HAL_ENCRYPT_TYPE_TKIP_MIC)
skb_trim(msdu, msdu->len - IEEE80211_CCMP_MIC_LEN);
/* Head */
if (status->flag & RX_FLAG_IV_STRIPPED) {
hdr_len = ieee80211_hdrlen(hdr->frame_control);
crypto_len = ath12k_dp_rx_crypto_param_len(ar, enctype);
memmove(msdu->data + crypto_len, msdu->data, hdr_len);
skb_pull(msdu, crypto_len);
}
}
static void ath12k_get_dot11_hdr_from_rx_desc(struct ath12k *ar,
struct sk_buff *msdu,
struct ath12k_skb_rxcb *rxcb,
struct ieee80211_rx_status *status,
enum hal_encrypt_type enctype)
{
struct hal_rx_desc *rx_desc = rxcb->rx_desc;
struct ath12k_base *ab = ar->ab;
size_t hdr_len, crypto_len;
struct ieee80211_hdr *hdr;
u16 qos_ctl;
__le16 fc;
u8 *crypto_hdr;
if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
crypto_len = ath12k_dp_rx_crypto_param_len(ar, enctype);
crypto_hdr = skb_push(msdu, crypto_len);
ath12k_dp_rx_desc_get_crypto_header(ab, rx_desc, crypto_hdr, enctype);
}
fc = cpu_to_le16(ath12k_dp_rxdesc_get_mpdu_frame_ctrl(ab, rx_desc));
hdr_len = ieee80211_hdrlen(fc);
skb_push(msdu, hdr_len);
hdr = (struct ieee80211_hdr *)msdu->data;
hdr->frame_control = fc;
/* Get wifi header from rx_desc */
ath12k_dp_rx_desc_get_dot11_hdr(ab, rx_desc, hdr);
if (rxcb->is_mcbc)
status->flag &= ~RX_FLAG_PN_VALIDATED;
/* Add QOS header */
if (ieee80211_is_data_qos(hdr->frame_control)) {
qos_ctl = rxcb->tid;
if (ath12k_dp_rx_h_mesh_ctl_present(ab, rx_desc))
qos_ctl |= IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT;
/* TODO: Add other QoS ctl fields when required */
memcpy(msdu->data + (hdr_len - IEEE80211_QOS_CTL_LEN),
&qos_ctl, IEEE80211_QOS_CTL_LEN);
}
}
static void ath12k_dp_rx_h_undecap_eth(struct ath12k *ar,
struct sk_buff *msdu,
enum hal_encrypt_type enctype,
struct ieee80211_rx_status *status)
{
struct ieee80211_hdr *hdr;
struct ethhdr *eth;
u8 da[ETH_ALEN];
u8 sa[ETH_ALEN];
struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu);
struct ath12k_dp_rx_rfc1042_hdr rfc = {0xaa, 0xaa, 0x03, {0x00, 0x00, 0x00}};
eth = (struct ethhdr *)msdu->data;
ether_addr_copy(da, eth->h_dest);
ether_addr_copy(sa, eth->h_source);
rfc.snap_type = eth->h_proto;
skb_pull(msdu, sizeof(*eth));
memcpy(skb_push(msdu, sizeof(rfc)), &rfc,
sizeof(rfc));
ath12k_get_dot11_hdr_from_rx_desc(ar, msdu, rxcb, status, enctype);
/* original 802.11 header has a different DA and in
* case of 4addr it may also have different SA
*/
hdr = (struct ieee80211_hdr *)msdu->data;
ether_addr_copy(ieee80211_get_DA(hdr), da);
ether_addr_copy(ieee80211_get_SA(hdr), sa);
}
static void ath12k_dp_rx_h_undecap(struct ath12k *ar, struct sk_buff *msdu,
struct hal_rx_desc *rx_desc,
enum hal_encrypt_type enctype,
struct ieee80211_rx_status *status,
bool decrypted)
{
struct ath12k_base *ab = ar->ab;
u8 decap;
struct ethhdr *ehdr;
decap = ath12k_dp_rx_h_decap_type(ab, rx_desc);
switch (decap) {
case DP_RX_DECAP_TYPE_NATIVE_WIFI:
ath12k_dp_rx_h_undecap_nwifi(ar, msdu, enctype, status);
break;
case DP_RX_DECAP_TYPE_RAW:
ath12k_dp_rx_h_undecap_raw(ar, msdu, enctype, status,
decrypted);
break;
case DP_RX_DECAP_TYPE_ETHERNET2_DIX:
ehdr = (struct ethhdr *)msdu->data;
/* mac80211 allows fast path only for authorized STA */
if (ehdr->h_proto == cpu_to_be16(ETH_P_PAE)) {
ATH12K_SKB_RXCB(msdu)->is_eapol = true;
ath12k_dp_rx_h_undecap_eth(ar, msdu, enctype, status);
break;
}
/* PN for mcast packets will be validated in mac80211;
* remove eth header and add 802.11 header.
*/
if (ATH12K_SKB_RXCB(msdu)->is_mcbc && decrypted)
ath12k_dp_rx_h_undecap_eth(ar, msdu, enctype, status);
break;
case DP_RX_DECAP_TYPE_8023:
/* TODO: Handle undecap for these formats */
break;
}
}
struct ath12k_peer *
ath12k_dp_rx_h_find_peer(struct ath12k_base *ab, struct sk_buff *msdu)
{
struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu);
struct hal_rx_desc *rx_desc = rxcb->rx_desc;
struct ath12k_peer *peer = NULL;
lockdep_assert_held(&ab->base_lock);
if (rxcb->peer_id)
peer = ath12k_peer_find_by_id(ab, rxcb->peer_id);
if (peer)
return peer;
if (!rx_desc || !(ath12k_dp_rxdesc_mac_addr2_valid(ab, rx_desc)))
return NULL;
peer = ath12k_peer_find_by_addr(ab,
ath12k_dp_rxdesc_get_mpdu_start_addr2(ab,
rx_desc));
return peer;
}
static void ath12k_dp_rx_h_mpdu(struct ath12k *ar,
struct sk_buff *msdu,
struct hal_rx_desc *rx_desc,
struct ieee80211_rx_status *rx_status)
{
bool fill_crypto_hdr;
struct ath12k_base *ab = ar->ab;
struct ath12k_skb_rxcb *rxcb;
enum hal_encrypt_type enctype;
bool is_decrypted = false;
struct ieee80211_hdr *hdr;
struct ath12k_peer *peer;
u32 err_bitmap;
/* PN for multicast packets will be checked in mac80211 */
rxcb = ATH12K_SKB_RXCB(msdu);
fill_crypto_hdr = ath12k_dp_rx_h_is_da_mcbc(ar->ab, rx_desc);
rxcb->is_mcbc = fill_crypto_hdr;
if (rxcb->is_mcbc)
rxcb->peer_id = ath12k_dp_rx_h_peer_id(ar->ab, rx_desc);
spin_lock_bh(&ar->ab->base_lock);
peer = ath12k_dp_rx_h_find_peer(ar->ab, msdu);
if (peer) {
if (rxcb->is_mcbc)
enctype = peer->sec_type_grp;
else
enctype = peer->sec_type;
} else {
enctype = HAL_ENCRYPT_TYPE_OPEN;
}
spin_unlock_bh(&ar->ab->base_lock);
err_bitmap = ath12k_dp_rx_h_mpdu_err(ab, rx_desc);
if (enctype != HAL_ENCRYPT_TYPE_OPEN && !err_bitmap)
is_decrypted = ath12k_dp_rx_h_is_decrypted(ab, rx_desc);
/* Clear per-MPDU flags while leaving per-PPDU flags intact */
rx_status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
RX_FLAG_MMIC_ERROR |
RX_FLAG_DECRYPTED |
RX_FLAG_IV_STRIPPED |
RX_FLAG_MMIC_STRIPPED);
if (err_bitmap & HAL_RX_MPDU_ERR_FCS)
rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
if (err_bitmap & HAL_RX_MPDU_ERR_TKIP_MIC)
rx_status->flag |= RX_FLAG_MMIC_ERROR;
if (is_decrypted) {
rx_status->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MMIC_STRIPPED;
if (fill_crypto_hdr)
rx_status->flag |= RX_FLAG_MIC_STRIPPED |
RX_FLAG_ICV_STRIPPED;
else
rx_status->flag |= RX_FLAG_IV_STRIPPED |
RX_FLAG_PN_VALIDATED;
}
ath12k_dp_rx_h_csum_offload(ar, msdu);
ath12k_dp_rx_h_undecap(ar, msdu, rx_desc,
enctype, rx_status, is_decrypted);
if (!is_decrypted || fill_crypto_hdr)
return;
if (ath12k_dp_rx_h_decap_type(ar->ab, rx_desc) !=
DP_RX_DECAP_TYPE_ETHERNET2_DIX) {
hdr = (void *)msdu->data;
hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
}
}
static void ath12k_dp_rx_h_rate(struct ath12k *ar, struct hal_rx_desc *rx_desc,
struct ieee80211_rx_status *rx_status)
{
struct ath12k_base *ab = ar->ab;
struct ieee80211_supported_band *sband;
enum rx_msdu_start_pkt_type pkt_type;
u8 bw;
u8 rate_mcs, nss;
u8 sgi;
bool is_cck;
pkt_type = ath12k_dp_rx_h_pkt_type(ab, rx_desc);
bw = ath12k_dp_rx_h_rx_bw(ab, rx_desc);
rate_mcs = ath12k_dp_rx_h_rate_mcs(ab, rx_desc);
nss = ath12k_dp_rx_h_nss(ab, rx_desc);
sgi = ath12k_dp_rx_h_sgi(ab, rx_desc);
switch (pkt_type) {
case RX_MSDU_START_PKT_TYPE_11A:
case RX_MSDU_START_PKT_TYPE_11B:
is_cck = (pkt_type == RX_MSDU_START_PKT_TYPE_11B);
sband = &ar->mac.sbands[rx_status->band];
rx_status->rate_idx = ath12k_mac_hw_rate_to_idx(sband, rate_mcs,
is_cck);
break;
case RX_MSDU_START_PKT_TYPE_11N:
rx_status->encoding = RX_ENC_HT;
if (rate_mcs > ATH12K_HT_MCS_MAX) {
ath12k_warn(ar->ab,
"Received with invalid mcs in HT mode %d\n",
rate_mcs);
break;
}
rx_status->rate_idx = rate_mcs + (8 * (nss - 1));
if (sgi)
rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
rx_status->bw = ath12k_mac_bw_to_mac80211_bw(bw);
break;
case RX_MSDU_START_PKT_TYPE_11AC:
rx_status->encoding = RX_ENC_VHT;
rx_status->rate_idx = rate_mcs;
if (rate_mcs > ATH12K_VHT_MCS_MAX) {
ath12k_warn(ar->ab,
"Received with invalid mcs in VHT mode %d\n",
rate_mcs);
break;
}
rx_status->nss = nss;
if (sgi)
rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
rx_status->bw = ath12k_mac_bw_to_mac80211_bw(bw);
break;
case RX_MSDU_START_PKT_TYPE_11AX:
rx_status->rate_idx = rate_mcs;
if (rate_mcs > ATH12K_HE_MCS_MAX) {
ath12k_warn(ar->ab,
"Received with invalid mcs in HE mode %d\n",
rate_mcs);
break;
}
rx_status->encoding = RX_ENC_HE;
rx_status->nss = nss;
rx_status->he_gi = ath12k_he_gi_to_nl80211_he_gi(sgi);
rx_status->bw = ath12k_mac_bw_to_mac80211_bw(bw);
break;
}
}
void ath12k_dp_rx_h_ppdu(struct ath12k *ar, struct hal_rx_desc *rx_desc,
struct ieee80211_rx_status *rx_status)
{
struct ath12k_base *ab = ar->ab;
u8 channel_num;
u32 center_freq, meta_data;
struct ieee80211_channel *channel;
rx_status->freq = 0;
rx_status->rate_idx = 0;
rx_status->nss = 0;
rx_status->encoding = RX_ENC_LEGACY;
rx_status->bw = RATE_INFO_BW_20;
rx_status->enc_flags = 0;
rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL;
meta_data = ath12k_dp_rx_h_freq(ab, rx_desc);
channel_num = meta_data;
center_freq = meta_data >> 16;
if (center_freq >= ATH12K_MIN_6G_FREQ &&
center_freq <= ATH12K_MAX_6G_FREQ) {
rx_status->band = NL80211_BAND_6GHZ;
rx_status->freq = center_freq;
} else if (channel_num >= 1 && channel_num <= 14) {
rx_status->band = NL80211_BAND_2GHZ;
} else if (channel_num >= 36 && channel_num <= 173) {
rx_status->band = NL80211_BAND_5GHZ;
} else {
spin_lock_bh(&ar->data_lock);
channel = ar->rx_channel;
if (channel) {
rx_status->band = channel->band;
channel_num =
ieee80211_frequency_to_channel(channel->center_freq);
}
spin_unlock_bh(&ar->data_lock);
ath12k_dbg_dump(ar->ab, ATH12K_DBG_DATA, NULL, "rx_desc: ",
rx_desc, sizeof(*rx_desc));
}
if (rx_status->band != NL80211_BAND_6GHZ)
rx_status->freq = ieee80211_channel_to_frequency(channel_num,
rx_status->band);
ath12k_dp_rx_h_rate(ar, rx_desc, rx_status);
}
static void ath12k_dp_rx_deliver_msdu(struct ath12k *ar, struct napi_struct *napi,
struct sk_buff *msdu,
struct ieee80211_rx_status *status)
{
struct ath12k_base *ab = ar->ab;
static const struct ieee80211_radiotap_he known = {
.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN),
.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN),
};
struct ieee80211_radiotap_he *he;
struct ieee80211_rx_status *rx_status;
struct ieee80211_sta *pubsta;
struct ath12k_peer *peer;
struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu);
u8 decap = DP_RX_DECAP_TYPE_RAW;
bool is_mcbc = rxcb->is_mcbc;
bool is_eapol = rxcb->is_eapol;
if (status->encoding == RX_ENC_HE && !(status->flag & RX_FLAG_RADIOTAP_HE) &&
!(status->flag & RX_FLAG_SKIP_MONITOR)) {
he = skb_push(msdu, sizeof(known));
memcpy(he, &known, sizeof(known));
status->flag |= RX_FLAG_RADIOTAP_HE;
}
if (!(status->flag & RX_FLAG_ONLY_MONITOR))
decap = ath12k_dp_rx_h_decap_type(ab, rxcb->rx_desc);
spin_lock_bh(&ab->base_lock);
peer = ath12k_dp_rx_h_find_peer(ab, msdu);
pubsta = peer ? peer->sta : NULL;
spin_unlock_bh(&ab->base_lock);
ath12k_dbg(ab, ATH12K_DBG_DATA,
"rx skb %p len %u peer %pM %d %s sn %u %s%s%s%s%s%s%s%s%s rate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
msdu,
msdu->len,
peer ? peer->addr : NULL,
rxcb->tid,
is_mcbc ? "mcast" : "ucast",
ath12k_dp_rx_h_seq_no(ab, rxcb->rx_desc),
(status->encoding == RX_ENC_LEGACY) ? "legacy" : "",
(status->encoding == RX_ENC_HT) ? "ht" : "",
(status->encoding == RX_ENC_VHT) ? "vht" : "",
(status->encoding == RX_ENC_HE) ? "he" : "",
(status->bw == RATE_INFO_BW_40) ? "40" : "",
(status->bw == RATE_INFO_BW_80) ? "80" : "",
(status->bw == RATE_INFO_BW_160) ? "160" : "",
(status->bw == RATE_INFO_BW_320) ? "320" : "",
status->enc_flags & RX_ENC_FLAG_SHORT_GI ? "sgi " : "",
status->rate_idx,
status->nss,
status->freq,
status->band, status->flag,
!!(status->flag & RX_FLAG_FAILED_FCS_CRC),
!!(status->flag & RX_FLAG_MMIC_ERROR),
!!(status->flag & RX_FLAG_AMSDU_MORE));
ath12k_dbg_dump(ab, ATH12K_DBG_DP_RX, NULL, "dp rx msdu: ",
msdu->data, msdu->len);
rx_status = IEEE80211_SKB_RXCB(msdu);
*rx_status = *status;
/* TODO: trace rx packet */
/* PN for multicast packets are not validate in HW,
* so skip 802.3 rx path
* Also, fast_rx expects the STA to be authorized, hence
* eapol packets are sent in slow path.
*/
if (decap == DP_RX_DECAP_TYPE_ETHERNET2_DIX && !is_eapol &&
!(is_mcbc && rx_status->flag & RX_FLAG_DECRYPTED))
rx_status->flag |= RX_FLAG_8023;
ieee80211_rx_napi(ath12k_ar_to_hw(ar), pubsta, msdu, napi);
}
static int ath12k_dp_rx_process_msdu(struct ath12k *ar,
struct sk_buff *msdu,
struct sk_buff_head *msdu_list,
struct ieee80211_rx_status *rx_status)
{
struct ath12k_base *ab = ar->ab;
struct hal_rx_desc *rx_desc, *lrx_desc;
struct ath12k_skb_rxcb *rxcb;
struct sk_buff *last_buf;
u8 l3_pad_bytes;
u16 msdu_len;
int ret;
u32 hal_rx_desc_sz = ar->ab->hal.hal_desc_sz;
last_buf = ath12k_dp_rx_get_msdu_last_buf(msdu_list, msdu);
if (!last_buf) {
ath12k_warn(ab,
"No valid Rx buffer to access MSDU_END tlv\n");
ret = -EIO;
goto free_out;
}
rx_desc = (struct hal_rx_desc *)msdu->data;
lrx_desc = (struct hal_rx_desc *)last_buf->data;
if (!ath12k_dp_rx_h_msdu_done(ab, lrx_desc)) {
ath12k_warn(ab, "msdu_done bit in msdu_end is not set\n");
ret = -EIO;
goto free_out;
}
rxcb = ATH12K_SKB_RXCB(msdu);
rxcb->rx_desc = rx_desc;
msdu_len = ath12k_dp_rx_h_msdu_len(ab, lrx_desc);
l3_pad_bytes = ath12k_dp_rx_h_l3pad(ab, lrx_desc);
if (rxcb->is_frag) {
skb_pull(msdu, hal_rx_desc_sz);
} else if (!rxcb->is_continuation) {
if ((msdu_len + hal_rx_desc_sz) > DP_RX_BUFFER_SIZE) {
ret = -EINVAL;
ath12k_warn(ab, "invalid msdu len %u\n", msdu_len);
ath12k_dbg_dump(ab, ATH12K_DBG_DATA, NULL, "", rx_desc,
sizeof(*rx_desc));
goto free_out;
}
skb_put(msdu, hal_rx_desc_sz + l3_pad_bytes + msdu_len);
skb_pull(msdu, hal_rx_desc_sz + l3_pad_bytes);
} else {
ret = ath12k_dp_rx_msdu_coalesce(ar, msdu_list,
msdu, last_buf,
l3_pad_bytes, msdu_len);
if (ret) {
ath12k_warn(ab,
"failed to coalesce msdu rx buffer%d\n", ret);
goto free_out;
}
}
ath12k_dp_rx_h_ppdu(ar, rx_desc, rx_status);
ath12k_dp_rx_h_mpdu(ar, msdu, rx_desc, rx_status);
rx_status->flag |= RX_FLAG_SKIP_MONITOR | RX_FLAG_DUP_VALIDATED;
return 0;
free_out:
return ret;
}
static void ath12k_dp_rx_process_received_packets(struct ath12k_base *ab,
struct napi_struct *napi,
struct sk_buff_head *msdu_list,
int ring_id)
{
struct ieee80211_rx_status rx_status = {0};
struct ath12k_skb_rxcb *rxcb;
struct sk_buff *msdu;
struct ath12k *ar;
u8 mac_id, pdev_id;
int ret;
if (skb_queue_empty(msdu_list))
return;
rcu_read_lock();
while ((msdu = __skb_dequeue(msdu_list))) {
rxcb = ATH12K_SKB_RXCB(msdu);
mac_id = rxcb->mac_id;
pdev_id = ath12k_hw_mac_id_to_pdev_id(ab->hw_params, mac_id);
ar = ab->pdevs[pdev_id].ar;
if (!rcu_dereference(ab->pdevs_active[pdev_id])) {
dev_kfree_skb_any(msdu);
continue;
}
if (test_bit(ATH12K_CAC_RUNNING, &ar->dev_flags)) {
dev_kfree_skb_any(msdu);
continue;
}
ret = ath12k_dp_rx_process_msdu(ar, msdu, msdu_list, &rx_status);
if (ret) {
ath12k_dbg(ab, ATH12K_DBG_DATA,
"Unable to process msdu %d", ret);
dev_kfree_skb_any(msdu);
continue;
}
ath12k_dp_rx_deliver_msdu(ar, napi, msdu, &rx_status);
}
rcu_read_unlock();
}
static u16 ath12k_dp_rx_get_peer_id(struct ath12k_base *ab,
enum ath12k_peer_metadata_version ver,
__le32 peer_metadata)
{
switch (ver) {
default:
ath12k_warn(ab, "Unknown peer metadata version: %d", ver);
fallthrough;
case ATH12K_PEER_METADATA_V0:
return le32_get_bits(peer_metadata,
RX_MPDU_DESC_META_DATA_V0_PEER_ID);
case ATH12K_PEER_METADATA_V1:
return le32_get_bits(peer_metadata,
RX_MPDU_DESC_META_DATA_V1_PEER_ID);
case ATH12K_PEER_METADATA_V1A:
return le32_get_bits(peer_metadata,
RX_MPDU_DESC_META_DATA_V1A_PEER_ID);
case ATH12K_PEER_METADATA_V1B:
return le32_get_bits(peer_metadata,
RX_MPDU_DESC_META_DATA_V1B_PEER_ID);
}
}
int ath12k_dp_rx_process(struct ath12k_base *ab, int ring_id,
struct napi_struct *napi, int budget)
{
LIST_HEAD(rx_desc_used_list);
struct ath12k_rx_desc_info *desc_info;
struct ath12k_dp *dp = &ab->dp;
struct dp_rxdma_ring *rx_ring = &dp->rx_refill_buf_ring;
struct hal_reo_dest_ring *desc;
int num_buffs_reaped = 0;
struct sk_buff_head msdu_list;
struct ath12k_skb_rxcb *rxcb;
int total_msdu_reaped = 0;
struct hal_srng *srng;
struct sk_buff *msdu;
bool done = false;
int mac_id;
u64 desc_va;
__skb_queue_head_init(&msdu_list);
srng = &ab->hal.srng_list[dp->reo_dst_ring[ring_id].ring_id];
spin_lock_bh(&srng->lock);
try_again:
ath12k_hal_srng_access_begin(ab, srng);
while ((desc = ath12k_hal_srng_dst_get_next_entry(ab, srng))) {
struct rx_mpdu_desc *mpdu_info;
struct rx_msdu_desc *msdu_info;
enum hal_reo_dest_ring_push_reason push_reason;
u32 cookie;
cookie = le32_get_bits(desc->buf_addr_info.info1,
BUFFER_ADDR_INFO1_SW_COOKIE);
mac_id = le32_get_bits(desc->info0,
HAL_REO_DEST_RING_INFO0_SRC_LINK_ID);
desc_va = ((u64)le32_to_cpu(desc->buf_va_hi) << 32 |
le32_to_cpu(desc->buf_va_lo));
desc_info = (struct ath12k_rx_desc_info *)((unsigned long)desc_va);
/* retry manual desc retrieval */
if (!desc_info) {
desc_info = ath12k_dp_get_rx_desc(ab, cookie);
if (!desc_info) {
ath12k_warn(ab, "Invalid cookie in manual descriptor retrieval: 0x%x\n",
cookie);
continue;
}
}
if (desc_info->magic != ATH12K_DP_RX_DESC_MAGIC)
ath12k_warn(ab, "Check HW CC implementation");
msdu = desc_info->skb;
desc_info->skb = NULL;
list_add_tail(&desc_info->list, &rx_desc_used_list);
rxcb = ATH12K_SKB_RXCB(msdu);
dma_unmap_single(ab->dev, rxcb->paddr,
msdu->len + skb_tailroom(msdu),
DMA_FROM_DEVICE);
num_buffs_reaped++;
push_reason = le32_get_bits(desc->info0,
HAL_REO_DEST_RING_INFO0_PUSH_REASON);
if (push_reason !=
HAL_REO_DEST_RING_PUSH_REASON_ROUTING_INSTRUCTION) {
dev_kfree_skb_any(msdu);
ab->soc_stats.hal_reo_error[ring_id]++;
continue;
}
msdu_info = &desc->rx_msdu_info;
mpdu_info = &desc->rx_mpdu_info;
rxcb->is_first_msdu = !!(le32_to_cpu(msdu_info->info0) &
RX_MSDU_DESC_INFO0_FIRST_MSDU_IN_MPDU);
rxcb->is_last_msdu = !!(le32_to_cpu(msdu_info->info0) &
RX_MSDU_DESC_INFO0_LAST_MSDU_IN_MPDU);
rxcb->is_continuation = !!(le32_to_cpu(msdu_info->info0) &
RX_MSDU_DESC_INFO0_MSDU_CONTINUATION);
rxcb->mac_id = mac_id;
rxcb->peer_id = ath12k_dp_rx_get_peer_id(ab, dp->peer_metadata_ver,
mpdu_info->peer_meta_data);
rxcb->tid = le32_get_bits(mpdu_info->info0,
RX_MPDU_DESC_INFO0_TID);
__skb_queue_tail(&msdu_list, msdu);
if (!rxcb->is_continuation) {
total_msdu_reaped++;
done = true;
} else {
done = false;
}
if (total_msdu_reaped >= budget)
break;
}
/* Hw might have updated the head pointer after we cached it.
* In this case, even though there are entries in the ring we'll
* get rx_desc NULL. Give the read another try with updated cached
* head pointer so that we can reap complete MPDU in the current
* rx processing.
*/
if (!done && ath12k_hal_srng_dst_num_free(ab, srng, true)) {
ath12k_hal_srng_access_end(ab, srng);
goto try_again;
}
ath12k_hal_srng_access_end(ab, srng);
spin_unlock_bh(&srng->lock);
if (!total_msdu_reaped)
goto exit;
ath12k_dp_rx_bufs_replenish(ab, rx_ring, &rx_desc_used_list,
num_buffs_reaped);
ath12k_dp_rx_process_received_packets(ab, napi, &msdu_list,
ring_id);
exit:
return total_msdu_reaped;
}
static void ath12k_dp_rx_frag_timer(struct timer_list *timer)
{
struct ath12k_dp_rx_tid *rx_tid = from_timer(rx_tid, timer, frag_timer);
spin_lock_bh(&rx_tid->ab->base_lock);
if (rx_tid->last_frag_no &&
rx_tid->rx_frag_bitmap == GENMASK(rx_tid->last_frag_no, 0)) {
spin_unlock_bh(&rx_tid->ab->base_lock);
return;
}
ath12k_dp_rx_frags_cleanup(rx_tid, true);
spin_unlock_bh(&rx_tid->ab->base_lock);
}
int ath12k_dp_rx_peer_frag_setup(struct ath12k *ar, const u8 *peer_mac, int vdev_id)
{
struct ath12k_base *ab = ar->ab;
struct crypto_shash *tfm;
struct ath12k_peer *peer;
struct ath12k_dp_rx_tid *rx_tid;
int i;
tfm = crypto_alloc_shash("michael_mic", 0, 0);
if (IS_ERR(tfm))
return PTR_ERR(tfm);
spin_lock_bh(&ab->base_lock);
peer = ath12k_peer_find(ab, vdev_id, peer_mac);
if (!peer) {
spin_unlock_bh(&ab->base_lock);
crypto_free_shash(tfm);
ath12k_warn(ab, "failed to find the peer to set up fragment info\n");
return -ENOENT;
}
for (i = 0; i <= IEEE80211_NUM_TIDS; i++) {
rx_tid = &peer->rx_tid[i];
rx_tid->ab = ab;
timer_setup(&rx_tid->frag_timer, ath12k_dp_rx_frag_timer, 0);
skb_queue_head_init(&rx_tid->rx_frags);
}
peer->tfm_mmic = tfm;
peer->dp_setup_done = true;
spin_unlock_bh(&ab->base_lock);
return 0;
}
static int ath12k_dp_rx_h_michael_mic(struct crypto_shash *tfm, u8 *key,
struct ieee80211_hdr *hdr, u8 *data,
size_t data_len, u8 *mic)
{
SHASH_DESC_ON_STACK(desc, tfm);
u8 mic_hdr[16] = {0};
u8 tid = 0;
int ret;
if (!tfm)
return -EINVAL;
desc->tfm = tfm;
ret = crypto_shash_setkey(tfm, key, 8);
if (ret)
goto out;
ret = crypto_shash_init(desc);
if (ret)
goto out;
/* TKIP MIC header */
memcpy(mic_hdr, ieee80211_get_DA(hdr), ETH_ALEN);
memcpy(mic_hdr + ETH_ALEN, ieee80211_get_SA(hdr), ETH_ALEN);
if (ieee80211_is_data_qos(hdr->frame_control))
tid = ieee80211_get_tid(hdr);
mic_hdr[12] = tid;
ret = crypto_shash_update(desc, mic_hdr, 16);
if (ret)
goto out;
ret = crypto_shash_update(desc, data, data_len);
if (ret)
goto out;
ret = crypto_shash_final(desc, mic);
out:
shash_desc_zero(desc);
return ret;
}
static int ath12k_dp_rx_h_verify_tkip_mic(struct ath12k *ar, struct ath12k_peer *peer,
struct sk_buff *msdu)
{
struct ath12k_base *ab = ar->ab;
struct hal_rx_desc *rx_desc = (struct hal_rx_desc *)msdu->data;
struct ieee80211_rx_status *rxs = IEEE80211_SKB_RXCB(msdu);
struct ieee80211_key_conf *key_conf;
struct ieee80211_hdr *hdr;
u8 mic[IEEE80211_CCMP_MIC_LEN];
int head_len, tail_len, ret;
size_t data_len;
u32 hdr_len, hal_rx_desc_sz = ar->ab->hal.hal_desc_sz;
u8 *key, *data;
u8 key_idx;
if (ath12k_dp_rx_h_enctype(ab, rx_desc) != HAL_ENCRYPT_TYPE_TKIP_MIC)
return 0;
hdr = (struct ieee80211_hdr *)(msdu->data + hal_rx_desc_sz);
hdr_len = ieee80211_hdrlen(hdr->frame_control);
head_len = hdr_len + hal_rx_desc_sz + IEEE80211_TKIP_IV_LEN;
tail_len = IEEE80211_CCMP_MIC_LEN + IEEE80211_TKIP_ICV_LEN + FCS_LEN;
if (!is_multicast_ether_addr(hdr->addr1))
key_idx = peer->ucast_keyidx;
else
key_idx = peer->mcast_keyidx;
key_conf = peer->keys[key_idx];
data = msdu->data + head_len;
data_len = msdu->len - head_len - tail_len;
key = &key_conf->key[NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY];
ret = ath12k_dp_rx_h_michael_mic(peer->tfm_mmic, key, hdr, data, data_len, mic);
if (ret || memcmp(mic, data + data_len, IEEE80211_CCMP_MIC_LEN))
goto mic_fail;
return 0;
mic_fail:
(ATH12K_SKB_RXCB(msdu))->is_first_msdu = true;
(ATH12K_SKB_RXCB(msdu))->is_last_msdu = true;
rxs->flag |= RX_FLAG_MMIC_ERROR | RX_FLAG_MMIC_STRIPPED |
RX_FLAG_IV_STRIPPED | RX_FLAG_DECRYPTED;
skb_pull(msdu, hal_rx_desc_sz);
ath12k_dp_rx_h_ppdu(ar, rx_desc, rxs);
ath12k_dp_rx_h_undecap(ar, msdu, rx_desc,
HAL_ENCRYPT_TYPE_TKIP_MIC, rxs, true);
ieee80211_rx(ath12k_ar_to_hw(ar), msdu);
return -EINVAL;
}
static void ath12k_dp_rx_h_undecap_frag(struct ath12k *ar, struct sk_buff *msdu,
enum hal_encrypt_type enctype, u32 flags)
{
struct ieee80211_hdr *hdr;
size_t hdr_len;
size_t crypto_len;
u32 hal_rx_desc_sz = ar->ab->hal.hal_desc_sz;
if (!flags)
return;
hdr = (struct ieee80211_hdr *)(msdu->data + hal_rx_desc_sz);
if (flags & RX_FLAG_MIC_STRIPPED)
skb_trim(msdu, msdu->len -
ath12k_dp_rx_crypto_mic_len(ar, enctype));
if (flags & RX_FLAG_ICV_STRIPPED)
skb_trim(msdu, msdu->len -
ath12k_dp_rx_crypto_icv_len(ar, enctype));
if (flags & RX_FLAG_IV_STRIPPED) {
hdr_len = ieee80211_hdrlen(hdr->frame_control);
crypto_len = ath12k_dp_rx_crypto_param_len(ar, enctype);
memmove(msdu->data + hal_rx_desc_sz + crypto_len,
msdu->data + hal_rx_desc_sz, hdr_len);
skb_pull(msdu, crypto_len);
}
}
static int ath12k_dp_rx_h_defrag(struct ath12k *ar,
struct ath12k_peer *peer,
struct ath12k_dp_rx_tid *rx_tid,
struct sk_buff **defrag_skb)
{
struct ath12k_base *ab = ar->ab;
struct hal_rx_desc *rx_desc;
struct sk_buff *skb, *first_frag, *last_frag;
struct ieee80211_hdr *hdr;
enum hal_encrypt_type enctype;
bool is_decrypted = false;
int msdu_len = 0;
int extra_space;
u32 flags, hal_rx_desc_sz = ar->ab->hal.hal_desc_sz;
first_frag = skb_peek(&rx_tid->rx_frags);
last_frag = skb_peek_tail(&rx_tid->rx_frags);
skb_queue_walk(&rx_tid->rx_frags, skb) {
flags = 0;
rx_desc = (struct hal_rx_desc *)skb->data;
hdr = (struct ieee80211_hdr *)(skb->data + hal_rx_desc_sz);
enctype = ath12k_dp_rx_h_enctype(ab, rx_desc);
if (enctype != HAL_ENCRYPT_TYPE_OPEN)
is_decrypted = ath12k_dp_rx_h_is_decrypted(ab,
rx_desc);
if (is_decrypted) {
if (skb != first_frag)
flags |= RX_FLAG_IV_STRIPPED;
if (skb != last_frag)
flags |= RX_FLAG_ICV_STRIPPED |
RX_FLAG_MIC_STRIPPED;
}
/* RX fragments are always raw packets */
if (skb != last_frag)
skb_trim(skb, skb->len - FCS_LEN);
ath12k_dp_rx_h_undecap_frag(ar, skb, enctype, flags);
if (skb != first_frag)
skb_pull(skb, hal_rx_desc_sz +
ieee80211_hdrlen(hdr->frame_control));
msdu_len += skb->len;
}
extra_space = msdu_len - (DP_RX_BUFFER_SIZE + skb_tailroom(first_frag));
if (extra_space > 0 &&
(pskb_expand_head(first_frag, 0, extra_space, GFP_ATOMIC) < 0))
return -ENOMEM;
__skb_unlink(first_frag, &rx_tid->rx_frags);
while ((skb = __skb_dequeue(&rx_tid->rx_frags))) {
skb_put_data(first_frag, skb->data, skb->len);
dev_kfree_skb_any(skb);
}
hdr = (struct ieee80211_hdr *)(first_frag->data + hal_rx_desc_sz);
hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
ATH12K_SKB_RXCB(first_frag)->is_frag = 1;
if (ath12k_dp_rx_h_verify_tkip_mic(ar, peer, first_frag))
first_frag = NULL;
*defrag_skb = first_frag;
return 0;
}
static int ath12k_dp_rx_h_defrag_reo_reinject(struct ath12k *ar,
struct ath12k_dp_rx_tid *rx_tid,
struct sk_buff *defrag_skb)
{
struct ath12k_base *ab = ar->ab;
struct ath12k_dp *dp = &ab->dp;
struct hal_rx_desc *rx_desc = (struct hal_rx_desc *)defrag_skb->data;
struct hal_reo_entrance_ring *reo_ent_ring;
struct hal_reo_dest_ring *reo_dest_ring;
struct dp_link_desc_bank *link_desc_banks;
struct hal_rx_msdu_link *msdu_link;
struct hal_rx_msdu_details *msdu0;
struct hal_srng *srng;
dma_addr_t link_paddr, buf_paddr;
u32 desc_bank, msdu_info, msdu_ext_info, mpdu_info;
u32 cookie, hal_rx_desc_sz, dest_ring_info0, queue_addr_hi;
int ret;
struct ath12k_rx_desc_info *desc_info;
enum hal_rx_buf_return_buf_manager idle_link_rbm = dp->idle_link_rbm;
u8 dst_ind;
hal_rx_desc_sz = ab->hal.hal_desc_sz;
link_desc_banks = dp->link_desc_banks;
reo_dest_ring = rx_tid->dst_ring_desc;
ath12k_hal_rx_reo_ent_paddr_get(ab, &reo_dest_ring->buf_addr_info,
&link_paddr, &cookie);
desc_bank = u32_get_bits(cookie, DP_LINK_DESC_BANK_MASK);
msdu_link = (struct hal_rx_msdu_link *)(link_desc_banks[desc_bank].vaddr +
(link_paddr - link_desc_banks[desc_bank].paddr));
msdu0 = &msdu_link->msdu_link[0];
msdu_ext_info = le32_to_cpu(msdu0->rx_msdu_ext_info.info0);
dst_ind = u32_get_bits(msdu_ext_info, RX_MSDU_EXT_DESC_INFO0_REO_DEST_IND);
memset(msdu0, 0, sizeof(*msdu0));
msdu_info = u32_encode_bits(1, RX_MSDU_DESC_INFO0_FIRST_MSDU_IN_MPDU) |
u32_encode_bits(1, RX_MSDU_DESC_INFO0_LAST_MSDU_IN_MPDU) |
u32_encode_bits(0, RX_MSDU_DESC_INFO0_MSDU_CONTINUATION) |
u32_encode_bits(defrag_skb->len - hal_rx_desc_sz,
RX_MSDU_DESC_INFO0_MSDU_LENGTH) |
u32_encode_bits(1, RX_MSDU_DESC_INFO0_VALID_SA) |
u32_encode_bits(1, RX_MSDU_DESC_INFO0_VALID_DA);
msdu0->rx_msdu_info.info0 = cpu_to_le32(msdu_info);
msdu0->rx_msdu_ext_info.info0 = cpu_to_le32(msdu_ext_info);
/* change msdu len in hal rx desc */
ath12k_dp_rxdesc_set_msdu_len(ab, rx_desc, defrag_skb->len - hal_rx_desc_sz);
buf_paddr = dma_map_single(ab->dev, defrag_skb->data,
defrag_skb->len + skb_tailroom(defrag_skb),
DMA_TO_DEVICE);
if (dma_mapping_error(ab->dev, buf_paddr))
return -ENOMEM;
spin_lock_bh(&dp->rx_desc_lock);
desc_info = list_first_entry_or_null(&dp->rx_desc_free_list,
struct ath12k_rx_desc_info,
list);
if (!desc_info) {
spin_unlock_bh(&dp->rx_desc_lock);
ath12k_warn(ab, "failed to find rx desc for reinject\n");
ret = -ENOMEM;
goto err_unmap_dma;
}
desc_info->skb = defrag_skb;
desc_info->in_use = true;
list_del(&desc_info->list);
spin_unlock_bh(&dp->rx_desc_lock);
ATH12K_SKB_RXCB(defrag_skb)->paddr = buf_paddr;
ath12k_hal_rx_buf_addr_info_set(&msdu0->buf_addr_info, buf_paddr,
desc_info->cookie,
HAL_RX_BUF_RBM_SW3_BM);
/* Fill mpdu details into reo entrance ring */
srng = &ab->hal.srng_list[dp->reo_reinject_ring.ring_id];
spin_lock_bh(&srng->lock);
ath12k_hal_srng_access_begin(ab, srng);
reo_ent_ring = ath12k_hal_srng_src_get_next_entry(ab, srng);
if (!reo_ent_ring) {
ath12k_hal_srng_access_end(ab, srng);
spin_unlock_bh(&srng->lock);
ret = -ENOSPC;
goto err_free_desc;
}
memset(reo_ent_ring, 0, sizeof(*reo_ent_ring));
ath12k_hal_rx_buf_addr_info_set(&reo_ent_ring->buf_addr_info, link_paddr,
cookie,
idle_link_rbm);
mpdu_info = u32_encode_bits(1, RX_MPDU_DESC_INFO0_MSDU_COUNT) |
u32_encode_bits(0, RX_MPDU_DESC_INFO0_FRAG_FLAG) |
u32_encode_bits(1, RX_MPDU_DESC_INFO0_RAW_MPDU) |
u32_encode_bits(1, RX_MPDU_DESC_INFO0_VALID_PN) |
u32_encode_bits(rx_tid->tid, RX_MPDU_DESC_INFO0_TID);
reo_ent_ring->rx_mpdu_info.info0 = cpu_to_le32(mpdu_info);
reo_ent_ring->rx_mpdu_info.peer_meta_data =
reo_dest_ring->rx_mpdu_info.peer_meta_data;
reo_ent_ring->queue_addr_lo = cpu_to_le32(lower_32_bits(rx_tid->paddr));
queue_addr_hi = upper_32_bits(rx_tid->paddr);
reo_ent_ring->info0 = le32_encode_bits(queue_addr_hi,
HAL_REO_ENTR_RING_INFO0_QUEUE_ADDR_HI) |
le32_encode_bits(dst_ind,
HAL_REO_ENTR_RING_INFO0_DEST_IND);
reo_ent_ring->info1 = le32_encode_bits(rx_tid->cur_sn,
HAL_REO_ENTR_RING_INFO1_MPDU_SEQ_NUM);
dest_ring_info0 = le32_get_bits(reo_dest_ring->info0,
HAL_REO_DEST_RING_INFO0_SRC_LINK_ID);
reo_ent_ring->info2 =
cpu_to_le32(u32_get_bits(dest_ring_info0,
HAL_REO_ENTR_RING_INFO2_SRC_LINK_ID));
ath12k_hal_srng_access_end(ab, srng);
spin_unlock_bh(&srng->lock);
return 0;
err_free_desc:
spin_lock_bh(&dp->rx_desc_lock);
desc_info->in_use = false;
desc_info->skb = NULL;
list_add_tail(&desc_info->list, &dp->rx_desc_free_list);
spin_unlock_bh(&dp->rx_desc_lock);
err_unmap_dma:
dma_unmap_single(ab->dev, buf_paddr, defrag_skb->len + skb_tailroom(defrag_skb),
DMA_TO_DEVICE);
return ret;
}
static int ath12k_dp_rx_h_cmp_frags(struct ath12k_base *ab,
struct sk_buff *a, struct sk_buff *b)
{
int frag1, frag2;
frag1 = ath12k_dp_rx_h_frag_no(ab, a);
frag2 = ath12k_dp_rx_h_frag_no(ab, b);
return frag1 - frag2;
}
static void ath12k_dp_rx_h_sort_frags(struct ath12k_base *ab,
struct sk_buff_head *frag_list,
struct sk_buff *cur_frag)
{
struct sk_buff *skb;
int cmp;
skb_queue_walk(frag_list, skb) {
cmp = ath12k_dp_rx_h_cmp_frags(ab, skb, cur_frag);
if (cmp < 0)
continue;
__skb_queue_before(frag_list, skb, cur_frag);
return;
}
__skb_queue_tail(frag_list, cur_frag);
}
static u64 ath12k_dp_rx_h_get_pn(struct ath12k *ar, struct sk_buff *skb)
{
struct ieee80211_hdr *hdr;
u64 pn = 0;
u8 *ehdr;
u32 hal_rx_desc_sz = ar->ab->hal.hal_desc_sz;
hdr = (struct ieee80211_hdr *)(skb->data + hal_rx_desc_sz);
ehdr = skb->data + hal_rx_desc_sz + ieee80211_hdrlen(hdr->frame_control);
pn = ehdr[0];
pn |= (u64)ehdr[1] << 8;
pn |= (u64)ehdr[4] << 16;
pn |= (u64)ehdr[5] << 24;
pn |= (u64)ehdr[6] << 32;
pn |= (u64)ehdr[7] << 40;
return pn;
}
static bool
ath12k_dp_rx_h_defrag_validate_incr_pn(struct ath12k *ar, struct ath12k_dp_rx_tid *rx_tid)
{
struct ath12k_base *ab = ar->ab;
enum hal_encrypt_type encrypt_type;
struct sk_buff *first_frag, *skb;
struct hal_rx_desc *desc;
u64 last_pn;
u64 cur_pn;
first_frag = skb_peek(&rx_tid->rx_frags);
desc = (struct hal_rx_desc *)first_frag->data;
encrypt_type = ath12k_dp_rx_h_enctype(ab, desc);
if (encrypt_type != HAL_ENCRYPT_TYPE_CCMP_128 &&
encrypt_type != HAL_ENCRYPT_TYPE_CCMP_256 &&
encrypt_type != HAL_ENCRYPT_TYPE_GCMP_128 &&
encrypt_type != HAL_ENCRYPT_TYPE_AES_GCMP_256)
return true;
last_pn = ath12k_dp_rx_h_get_pn(ar, first_frag);
skb_queue_walk(&rx_tid->rx_frags, skb) {
if (skb == first_frag)
continue;
cur_pn = ath12k_dp_rx_h_get_pn(ar, skb);
if (cur_pn != last_pn + 1)
return false;
last_pn = cur_pn;
}
return true;
}
static int ath12k_dp_rx_frag_h_mpdu(struct ath12k *ar,
struct sk_buff *msdu,
struct hal_reo_dest_ring *ring_desc)
{
struct ath12k_base *ab = ar->ab;
struct hal_rx_desc *rx_desc;
struct ath12k_peer *peer;
struct ath12k_dp_rx_tid *rx_tid;
struct sk_buff *defrag_skb = NULL;
u32 peer_id;
u16 seqno, frag_no;
u8 tid;
int ret = 0;
bool more_frags;
rx_desc = (struct hal_rx_desc *)msdu->data;
peer_id = ath12k_dp_rx_h_peer_id(ab, rx_desc);
tid = ath12k_dp_rx_h_tid(ab, rx_desc);
seqno = ath12k_dp_rx_h_seq_no(ab, rx_desc);
frag_no = ath12k_dp_rx_h_frag_no(ab, msdu);
more_frags = ath12k_dp_rx_h_more_frags(ab, msdu);
if (!ath12k_dp_rx_h_seq_ctrl_valid(ab, rx_desc) ||
!ath12k_dp_rx_h_fc_valid(ab, rx_desc) ||
tid > IEEE80211_NUM_TIDS)
return -EINVAL;
/* received unfragmented packet in reo
* exception ring, this shouldn't happen
* as these packets typically come from
* reo2sw srngs.
*/
if (WARN_ON_ONCE(!frag_no && !more_frags))
return -EINVAL;
spin_lock_bh(&ab->base_lock);
peer = ath12k_peer_find_by_id(ab, peer_id);
if (!peer) {
ath12k_warn(ab, "failed to find the peer to de-fragment received fragment peer_id %d\n",
peer_id);
ret = -ENOENT;
goto out_unlock;
}
if (!peer->dp_setup_done) {
ath12k_warn(ab, "The peer %pM [%d] has uninitialized datapath\n",
peer->addr, peer_id);
ret = -ENOENT;
goto out_unlock;
}
rx_tid = &peer->rx_tid[tid];
if ((!skb_queue_empty(&rx_tid->rx_frags) && seqno != rx_tid->cur_sn) ||
skb_queue_empty(&rx_tid->rx_frags)) {
/* Flush stored fragments and start a new sequence */
ath12k_dp_rx_frags_cleanup(rx_tid, true);
rx_tid->cur_sn = seqno;
}
if (rx_tid->rx_frag_bitmap & BIT(frag_no)) {
/* Fragment already present */
ret = -EINVAL;
goto out_unlock;
}
if ((!rx_tid->rx_frag_bitmap || frag_no > __fls(rx_tid->rx_frag_bitmap)))
__skb_queue_tail(&rx_tid->rx_frags, msdu);
else
ath12k_dp_rx_h_sort_frags(ab, &rx_tid->rx_frags, msdu);
rx_tid->rx_frag_bitmap |= BIT(frag_no);
if (!more_frags)
rx_tid->last_frag_no = frag_no;
if (frag_no == 0) {
rx_tid->dst_ring_desc = kmemdup(ring_desc,
sizeof(*rx_tid->dst_ring_desc),
GFP_ATOMIC);
if (!rx_tid->dst_ring_desc) {
ret = -ENOMEM;
goto out_unlock;
}
} else {
ath12k_dp_rx_link_desc_return(ab, ring_desc,
HAL_WBM_REL_BM_ACT_PUT_IN_IDLE);
}
if (!rx_tid->last_frag_no ||
rx_tid->rx_frag_bitmap != GENMASK(rx_tid->last_frag_no, 0)) {
mod_timer(&rx_tid->frag_timer, jiffies +
ATH12K_DP_RX_FRAGMENT_TIMEOUT_MS);
goto out_unlock;
}
spin_unlock_bh(&ab->base_lock);
del_timer_sync(&rx_tid->frag_timer);
spin_lock_bh(&ab->base_lock);
peer = ath12k_peer_find_by_id(ab, peer_id);
if (!peer)
goto err_frags_cleanup;
if (!ath12k_dp_rx_h_defrag_validate_incr_pn(ar, rx_tid))
goto err_frags_cleanup;
if (ath12k_dp_rx_h_defrag(ar, peer, rx_tid, &defrag_skb))
goto err_frags_cleanup;
if (!defrag_skb)
goto err_frags_cleanup;
if (ath12k_dp_rx_h_defrag_reo_reinject(ar, rx_tid, defrag_skb))
goto err_frags_cleanup;
ath12k_dp_rx_frags_cleanup(rx_tid, false);
goto out_unlock;
err_frags_cleanup:
dev_kfree_skb_any(defrag_skb);
ath12k_dp_rx_frags_cleanup(rx_tid, true);
out_unlock:
spin_unlock_bh(&ab->base_lock);
return ret;
}
static int
ath12k_dp_process_rx_err_buf(struct ath12k *ar, struct hal_reo_dest_ring *desc,
struct list_head *used_list,
bool drop, u32 cookie)
{
struct ath12k_base *ab = ar->ab;
struct sk_buff *msdu;
struct ath12k_skb_rxcb *rxcb;
struct hal_rx_desc *rx_desc;
u16 msdu_len;
u32 hal_rx_desc_sz = ab->hal.hal_desc_sz;
struct ath12k_rx_desc_info *desc_info;
u64 desc_va;
desc_va = ((u64)le32_to_cpu(desc->buf_va_hi) << 32 |
le32_to_cpu(desc->buf_va_lo));
desc_info = (struct ath12k_rx_desc_info *)((unsigned long)desc_va);
/* retry manual desc retrieval */
if (!desc_info) {
desc_info = ath12k_dp_get_rx_desc(ab, cookie);
if (!desc_info) {
ath12k_warn(ab, "Invalid cookie in DP rx error descriptor retrieval: 0x%x\n",
cookie);
return -EINVAL;
}
}
if (desc_info->magic != ATH12K_DP_RX_DESC_MAGIC)
ath12k_warn(ab, " RX Exception, Check HW CC implementation");
msdu = desc_info->skb;
desc_info->skb = NULL;
list_add_tail(&desc_info->list, used_list);
rxcb = ATH12K_SKB_RXCB(msdu);
dma_unmap_single(ar->ab->dev, rxcb->paddr,
msdu->len + skb_tailroom(msdu),
DMA_FROM_DEVICE);
if (drop) {
dev_kfree_skb_any(msdu);
return 0;
}
rcu_read_lock();
if (!rcu_dereference(ar->ab->pdevs_active[ar->pdev_idx])) {
dev_kfree_skb_any(msdu);
goto exit;
}
if (test_bit(ATH12K_CAC_RUNNING, &ar->dev_flags)) {
dev_kfree_skb_any(msdu);
goto exit;
}
rx_desc = (struct hal_rx_desc *)msdu->data;
msdu_len = ath12k_dp_rx_h_msdu_len(ar->ab, rx_desc);
if ((msdu_len + hal_rx_desc_sz) > DP_RX_BUFFER_SIZE) {
ath12k_warn(ar->ab, "invalid msdu leng %u", msdu_len);
ath12k_dbg_dump(ar->ab, ATH12K_DBG_DATA, NULL, "", rx_desc,
sizeof(*rx_desc));
dev_kfree_skb_any(msdu);
goto exit;
}
skb_put(msdu, hal_rx_desc_sz + msdu_len);
if (ath12k_dp_rx_frag_h_mpdu(ar, msdu, desc)) {
dev_kfree_skb_any(msdu);
ath12k_dp_rx_link_desc_return(ar->ab, desc,
HAL_WBM_REL_BM_ACT_PUT_IN_IDLE);
}
exit:
rcu_read_unlock();
return 0;
}
int ath12k_dp_rx_process_err(struct ath12k_base *ab, struct napi_struct *napi,
int budget)
{
u32 msdu_cookies[HAL_NUM_RX_MSDUS_PER_LINK_DESC];
struct dp_link_desc_bank *link_desc_banks;
enum hal_rx_buf_return_buf_manager rbm;
struct hal_rx_msdu_link *link_desc_va;
int tot_n_bufs_reaped, quota, ret, i;
struct hal_reo_dest_ring *reo_desc;
struct dp_rxdma_ring *rx_ring;
struct dp_srng *reo_except;
LIST_HEAD(rx_desc_used_list);
u32 desc_bank, num_msdus;
struct hal_srng *srng;
struct ath12k_dp *dp;
int mac_id;
struct ath12k *ar;
dma_addr_t paddr;
bool is_frag;
bool drop;
int pdev_id;
tot_n_bufs_reaped = 0;
quota = budget;
dp = &ab->dp;
reo_except = &dp->reo_except_ring;
link_desc_banks = dp->link_desc_banks;
srng = &ab->hal.srng_list[reo_except->ring_id];
spin_lock_bh(&srng->lock);
ath12k_hal_srng_access_begin(ab, srng);
while (budget &&
(reo_desc = ath12k_hal_srng_dst_get_next_entry(ab, srng))) {
drop = false;
ab->soc_stats.err_ring_pkts++;
ret = ath12k_hal_desc_reo_parse_err(ab, reo_desc, &paddr,
&desc_bank);
if (ret) {
ath12k_warn(ab, "failed to parse error reo desc %d\n",
ret);
continue;
}
link_desc_va = link_desc_banks[desc_bank].vaddr +
(paddr - link_desc_banks[desc_bank].paddr);
ath12k_hal_rx_msdu_link_info_get(link_desc_va, &num_msdus, msdu_cookies,
&rbm);
if (rbm != dp->idle_link_rbm &&
rbm != HAL_RX_BUF_RBM_SW3_BM &&
rbm != ab->hw_params->hal_params->rx_buf_rbm) {
ab->soc_stats.invalid_rbm++;
ath12k_warn(ab, "invalid return buffer manager %d\n", rbm);
ath12k_dp_rx_link_desc_return(ab, reo_desc,
HAL_WBM_REL_BM_ACT_REL_MSDU);
continue;
}
is_frag = !!(le32_to_cpu(reo_desc->rx_mpdu_info.info0) &
RX_MPDU_DESC_INFO0_FRAG_FLAG);
/* Process only rx fragments with one msdu per link desc below, and drop
* msdu's indicated due to error reasons.
*/
if (!is_frag || num_msdus > 1) {
drop = true;
/* Return the link desc back to wbm idle list */
ath12k_dp_rx_link_desc_return(ab, reo_desc,
HAL_WBM_REL_BM_ACT_PUT_IN_IDLE);
}
for (i = 0; i < num_msdus; i++) {
mac_id = le32_get_bits(reo_desc->info0,
HAL_REO_DEST_RING_INFO0_SRC_LINK_ID);
pdev_id = ath12k_hw_mac_id_to_pdev_id(ab->hw_params, mac_id);
ar = ab->pdevs[pdev_id].ar;
if (!ath12k_dp_process_rx_err_buf(ar, reo_desc,
&rx_desc_used_list,
drop,
msdu_cookies[i]))
tot_n_bufs_reaped++;
}
if (tot_n_bufs_reaped >= quota) {
tot_n_bufs_reaped = quota;
goto exit;
}
budget = quota - tot_n_bufs_reaped;
}
exit:
ath12k_hal_srng_access_end(ab, srng);
spin_unlock_bh(&srng->lock);
rx_ring = &dp->rx_refill_buf_ring;
ath12k_dp_rx_bufs_replenish(ab, rx_ring, &rx_desc_used_list,
tot_n_bufs_reaped);
return tot_n_bufs_reaped;
}
static void ath12k_dp_rx_null_q_desc_sg_drop(struct ath12k *ar,
int msdu_len,
struct sk_buff_head *msdu_list)
{
struct sk_buff *skb, *tmp;
struct ath12k_skb_rxcb *rxcb;
int n_buffs;
n_buffs = DIV_ROUND_UP(msdu_len,
(DP_RX_BUFFER_SIZE - ar->ab->hal.hal_desc_sz));
skb_queue_walk_safe(msdu_list, skb, tmp) {
rxcb = ATH12K_SKB_RXCB(skb);
if (rxcb->err_rel_src == HAL_WBM_REL_SRC_MODULE_REO &&
rxcb->err_code == HAL_REO_DEST_RING_ERROR_CODE_DESC_ADDR_ZERO) {
if (!n_buffs)
break;
__skb_unlink(skb, msdu_list);
dev_kfree_skb_any(skb);
n_buffs--;
}
}
}
static int ath12k_dp_rx_h_null_q_desc(struct ath12k *ar, struct sk_buff *msdu,
struct ieee80211_rx_status *status,
struct sk_buff_head *msdu_list)
{
struct ath12k_base *ab = ar->ab;
u16 msdu_len;
struct hal_rx_desc *desc = (struct hal_rx_desc *)msdu->data;
u8 l3pad_bytes;
struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu);
u32 hal_rx_desc_sz = ar->ab->hal.hal_desc_sz;
msdu_len = ath12k_dp_rx_h_msdu_len(ab, desc);
if (!rxcb->is_frag && ((msdu_len + hal_rx_desc_sz) > DP_RX_BUFFER_SIZE)) {
/* First buffer will be freed by the caller, so deduct it's length */
msdu_len = msdu_len - (DP_RX_BUFFER_SIZE - hal_rx_desc_sz);
ath12k_dp_rx_null_q_desc_sg_drop(ar, msdu_len, msdu_list);
return -EINVAL;
}
/* Even after cleaning up the sg buffers in the msdu list with above check
* any msdu received with continuation flag needs to be dropped as invalid.
* This protects against some random err frame with continuation flag.
*/
if (rxcb->is_continuation)
return -EINVAL;
if (!ath12k_dp_rx_h_msdu_done(ab, desc)) {
ath12k_warn(ar->ab,
"msdu_done bit not set in null_q_des processing\n");
__skb_queue_purge(msdu_list);
return -EIO;
}
/* Handle NULL queue descriptor violations arising out a missing
* REO queue for a given peer or a given TID. This typically
* may happen if a packet is received on a QOS enabled TID before the
* ADDBA negotiation for that TID, when the TID queue is setup. Or
* it may also happen for MC/BC frames if they are not routed to the
* non-QOS TID queue, in the absence of any other default TID queue.
* This error can show up both in a REO destination or WBM release ring.
*/
if (rxcb->is_frag) {
skb_pull(msdu, hal_rx_desc_sz);
} else {
l3pad_bytes = ath12k_dp_rx_h_l3pad(ab, desc);
if ((hal_rx_desc_sz + l3pad_bytes + msdu_len) > DP_RX_BUFFER_SIZE)
return -EINVAL;
skb_put(msdu, hal_rx_desc_sz + l3pad_bytes + msdu_len);
skb_pull(msdu, hal_rx_desc_sz + l3pad_bytes);
}
ath12k_dp_rx_h_ppdu(ar, desc, status);
ath12k_dp_rx_h_mpdu(ar, msdu, desc, status);
rxcb->tid = ath12k_dp_rx_h_tid(ab, desc);
/* Please note that caller will having the access to msdu and completing
* rx with mac80211. Need not worry about cleaning up amsdu_list.
*/
return 0;
}
static bool ath12k_dp_rx_h_reo_err(struct ath12k *ar, struct sk_buff *msdu,
struct ieee80211_rx_status *status,
struct sk_buff_head *msdu_list)
{
struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu);
bool drop = false;
ar->ab->soc_stats.reo_error[rxcb->err_code]++;
switch (rxcb->err_code) {
case HAL_REO_DEST_RING_ERROR_CODE_DESC_ADDR_ZERO:
if (ath12k_dp_rx_h_null_q_desc(ar, msdu, status, msdu_list))
drop = true;
break;
case HAL_REO_DEST_RING_ERROR_CODE_PN_CHECK_FAILED:
/* TODO: Do not drop PN failed packets in the driver;
* instead, it is good to drop such packets in mac80211
* after incrementing the replay counters.
*/
fallthrough;
default:
/* TODO: Review other errors and process them to mac80211
* as appropriate.
*/
drop = true;
break;
}
return drop;
}
static void ath12k_dp_rx_h_tkip_mic_err(struct ath12k *ar, struct sk_buff *msdu,
struct ieee80211_rx_status *status)
{
struct ath12k_base *ab = ar->ab;
u16 msdu_len;
struct hal_rx_desc *desc = (struct hal_rx_desc *)msdu->data;
u8 l3pad_bytes;
struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu);
u32 hal_rx_desc_sz = ar->ab->hal.hal_desc_sz;
rxcb->is_first_msdu = ath12k_dp_rx_h_first_msdu(ab, desc);
rxcb->is_last_msdu = ath12k_dp_rx_h_last_msdu(ab, desc);
l3pad_bytes = ath12k_dp_rx_h_l3pad(ab, desc);
msdu_len = ath12k_dp_rx_h_msdu_len(ab, desc);
skb_put(msdu, hal_rx_desc_sz + l3pad_bytes + msdu_len);
skb_pull(msdu, hal_rx_desc_sz + l3pad_bytes);
ath12k_dp_rx_h_ppdu(ar, desc, status);
status->flag |= (RX_FLAG_MMIC_STRIPPED | RX_FLAG_MMIC_ERROR |
RX_FLAG_DECRYPTED);
ath12k_dp_rx_h_undecap(ar, msdu, desc,
HAL_ENCRYPT_TYPE_TKIP_MIC, status, false);
}
static bool ath12k_dp_rx_h_rxdma_err(struct ath12k *ar, struct sk_buff *msdu,
struct ieee80211_rx_status *status)
{
struct ath12k_base *ab = ar->ab;
struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu);
struct hal_rx_desc *rx_desc = (struct hal_rx_desc *)msdu->data;
bool drop = false;
u32 err_bitmap;
ar->ab->soc_stats.rxdma_error[rxcb->err_code]++;
switch (rxcb->err_code) {
case HAL_REO_ENTR_RING_RXDMA_ECODE_DECRYPT_ERR:
case HAL_REO_ENTR_RING_RXDMA_ECODE_TKIP_MIC_ERR:
err_bitmap = ath12k_dp_rx_h_mpdu_err(ab, rx_desc);
if (err_bitmap & HAL_RX_MPDU_ERR_TKIP_MIC) {
ath12k_dp_rx_h_tkip_mic_err(ar, msdu, status);
break;
}
fallthrough;
default:
/* TODO: Review other rxdma error code to check if anything is
* worth reporting to mac80211
*/
drop = true;
break;
}
return drop;
}
static void ath12k_dp_rx_wbm_err(struct ath12k *ar,
struct napi_struct *napi,
struct sk_buff *msdu,
struct sk_buff_head *msdu_list)
{
struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu);
struct ieee80211_rx_status rxs = {0};
bool drop = true;
switch (rxcb->err_rel_src) {
case HAL_WBM_REL_SRC_MODULE_REO:
drop = ath12k_dp_rx_h_reo_err(ar, msdu, &rxs, msdu_list);
break;
case HAL_WBM_REL_SRC_MODULE_RXDMA:
drop = ath12k_dp_rx_h_rxdma_err(ar, msdu, &rxs);
break;
default:
/* msdu will get freed */
break;
}
if (drop) {
dev_kfree_skb_any(msdu);
return;
}
ath12k_dp_rx_deliver_msdu(ar, napi, msdu, &rxs);
}
int ath12k_dp_rx_process_wbm_err(struct ath12k_base *ab,
struct napi_struct *napi, int budget)
{
LIST_HEAD(rx_desc_used_list);
struct ath12k *ar;
struct ath12k_dp *dp = &ab->dp;
struct dp_rxdma_ring *rx_ring;
struct hal_rx_wbm_rel_info err_info;
struct hal_srng *srng;
struct sk_buff *msdu;
struct sk_buff_head msdu_list, scatter_msdu_list;
struct ath12k_skb_rxcb *rxcb;
void *rx_desc;
u8 mac_id;
int num_buffs_reaped = 0;
struct ath12k_rx_desc_info *desc_info;
int ret, pdev_id;
struct hal_rx_desc *msdu_data;
__skb_queue_head_init(&msdu_list);
__skb_queue_head_init(&scatter_msdu_list);
srng = &ab->hal.srng_list[dp->rx_rel_ring.ring_id];
rx_ring = &dp->rx_refill_buf_ring;
spin_lock_bh(&srng->lock);
ath12k_hal_srng_access_begin(ab, srng);
while (budget) {
rx_desc = ath12k_hal_srng_dst_get_next_entry(ab, srng);
if (!rx_desc)
break;
ret = ath12k_hal_wbm_desc_parse_err(ab, rx_desc, &err_info);
if (ret) {
ath12k_warn(ab,
"failed to parse rx error in wbm_rel ring desc %d\n",
ret);
continue;
}
desc_info = err_info.rx_desc;
/* retry manual desc retrieval if hw cc is not done */
if (!desc_info) {
desc_info = ath12k_dp_get_rx_desc(ab, err_info.cookie);
if (!desc_info) {
ath12k_warn(ab, "Invalid cookie in DP WBM rx error descriptor retrieval: 0x%x\n",
err_info.cookie);
continue;
}
}
if (desc_info->magic != ATH12K_DP_RX_DESC_MAGIC)
ath12k_warn(ab, "WBM RX err, Check HW CC implementation");
msdu = desc_info->skb;
desc_info->skb = NULL;
list_add_tail(&desc_info->list, &rx_desc_used_list);
rxcb = ATH12K_SKB_RXCB(msdu);
dma_unmap_single(ab->dev, rxcb->paddr,
msdu->len + skb_tailroom(msdu),
DMA_FROM_DEVICE);
num_buffs_reaped++;
if (!err_info.continuation)
budget--;
if (err_info.push_reason !=
HAL_REO_DEST_RING_PUSH_REASON_ERR_DETECTED) {
dev_kfree_skb_any(msdu);
continue;
}
msdu_data = (struct hal_rx_desc *)msdu->data;
rxcb->err_rel_src = err_info.err_rel_src;
rxcb->err_code = err_info.err_code;
rxcb->is_first_msdu = err_info.first_msdu;
rxcb->is_last_msdu = err_info.last_msdu;
rxcb->is_continuation = err_info.continuation;
rxcb->rx_desc = msdu_data;
if (err_info.continuation) {
__skb_queue_tail(&scatter_msdu_list, msdu);
continue;
}
mac_id = ath12k_dp_rx_get_msdu_src_link(ab,
msdu_data);
if (mac_id >= MAX_RADIOS) {
dev_kfree_skb_any(msdu);
/* In any case continuation bit is set
* in the previous record, cleanup scatter_msdu_list
*/
ath12k_dp_clean_up_skb_list(&scatter_msdu_list);
continue;
}
if (!skb_queue_empty(&scatter_msdu_list)) {
struct sk_buff *msdu;
skb_queue_walk(&scatter_msdu_list, msdu) {
rxcb = ATH12K_SKB_RXCB(msdu);
rxcb->mac_id = mac_id;
}
skb_queue_splice_tail_init(&scatter_msdu_list,
&msdu_list);
}
rxcb = ATH12K_SKB_RXCB(msdu);
rxcb->mac_id = mac_id;
__skb_queue_tail(&msdu_list, msdu);
}
/* In any case continuation bit is set in the
* last record, cleanup scatter_msdu_list
*/
ath12k_dp_clean_up_skb_list(&scatter_msdu_list);
ath12k_hal_srng_access_end(ab, srng);
spin_unlock_bh(&srng->lock);
if (!num_buffs_reaped)
goto done;
ath12k_dp_rx_bufs_replenish(ab, rx_ring, &rx_desc_used_list,
num_buffs_reaped);
rcu_read_lock();
while ((msdu = __skb_dequeue(&msdu_list))) {
rxcb = ATH12K_SKB_RXCB(msdu);
mac_id = rxcb->mac_id;
pdev_id = ath12k_hw_mac_id_to_pdev_id(ab->hw_params, mac_id);
ar = ab->pdevs[pdev_id].ar;
if (!ar || !rcu_dereference(ar->ab->pdevs_active[mac_id])) {
dev_kfree_skb_any(msdu);
continue;
}
if (test_bit(ATH12K_CAC_RUNNING, &ar->dev_flags)) {
dev_kfree_skb_any(msdu);
continue;
}
ath12k_dp_rx_wbm_err(ar, napi, msdu, &msdu_list);
}
rcu_read_unlock();
done:
return num_buffs_reaped;
}
void ath12k_dp_rx_process_reo_status(struct ath12k_base *ab)
{
struct ath12k_dp *dp = &ab->dp;
struct hal_tlv_64_hdr *hdr;
struct hal_srng *srng;
struct ath12k_dp_rx_reo_cmd *cmd, *tmp;
bool found = false;
u16 tag;
struct hal_reo_status reo_status;
srng = &ab->hal.srng_list[dp->reo_status_ring.ring_id];
memset(&reo_status, 0, sizeof(reo_status));
spin_lock_bh(&srng->lock);
ath12k_hal_srng_access_begin(ab, srng);
while ((hdr = ath12k_hal_srng_dst_get_next_entry(ab, srng))) {
tag = u64_get_bits(hdr->tl, HAL_SRNG_TLV_HDR_TAG);
switch (tag) {
case HAL_REO_GET_QUEUE_STATS_STATUS:
ath12k_hal_reo_status_queue_stats(ab, hdr,
&reo_status);
break;
case HAL_REO_FLUSH_QUEUE_STATUS:
ath12k_hal_reo_flush_queue_status(ab, hdr,
&reo_status);
break;
case HAL_REO_FLUSH_CACHE_STATUS:
ath12k_hal_reo_flush_cache_status(ab, hdr,
&reo_status);
break;
case HAL_REO_UNBLOCK_CACHE_STATUS:
ath12k_hal_reo_unblk_cache_status(ab, hdr,
&reo_status);
break;
case HAL_REO_FLUSH_TIMEOUT_LIST_STATUS:
ath12k_hal_reo_flush_timeout_list_status(ab, hdr,
&reo_status);
break;
case HAL_REO_DESCRIPTOR_THRESHOLD_REACHED_STATUS:
ath12k_hal_reo_desc_thresh_reached_status(ab, hdr,
&reo_status);
break;
case HAL_REO_UPDATE_RX_REO_QUEUE_STATUS:
ath12k_hal_reo_update_rx_reo_queue_status(ab, hdr,
&reo_status);
break;
default:
ath12k_warn(ab, "Unknown reo status type %d\n", tag);
continue;
}
spin_lock_bh(&dp->reo_cmd_lock);
list_for_each_entry_safe(cmd, tmp, &dp->reo_cmd_list, list) {
if (reo_status.uniform_hdr.cmd_num == cmd->cmd_num) {
found = true;
list_del(&cmd->list);
break;
}
}
spin_unlock_bh(&dp->reo_cmd_lock);
if (found) {
cmd->handler(dp, (void *)&cmd->data,
reo_status.uniform_hdr.cmd_status);
kfree(cmd);
}
found = false;
}
ath12k_hal_srng_access_end(ab, srng);
spin_unlock_bh(&srng->lock);
}
void ath12k_dp_rx_free(struct ath12k_base *ab)
{
struct ath12k_dp *dp = &ab->dp;
int i;
ath12k_dp_srng_cleanup(ab, &dp->rx_refill_buf_ring.refill_buf_ring);
for (i = 0; i < ab->hw_params->num_rxdma_per_pdev; i++) {
if (ab->hw_params->rx_mac_buf_ring)
ath12k_dp_srng_cleanup(ab, &dp->rx_mac_buf_ring[i]);
}
for (i = 0; i < ab->hw_params->num_rxdma_dst_ring; i++)
ath12k_dp_srng_cleanup(ab, &dp->rxdma_err_dst_ring[i]);
ath12k_dp_srng_cleanup(ab, &dp->rxdma_mon_buf_ring.refill_buf_ring);
ath12k_dp_rxdma_buf_free(ab);
}
void ath12k_dp_rx_pdev_free(struct ath12k_base *ab, int mac_id)
{
struct ath12k *ar = ab->pdevs[mac_id].ar;
ath12k_dp_rx_pdev_srng_free(ar);
}
int ath12k_dp_rxdma_ring_sel_config_qcn9274(struct ath12k_base *ab)
{
struct ath12k_dp *dp = &ab->dp;
struct htt_rx_ring_tlv_filter tlv_filter = {0};
u32 ring_id;
int ret;
u32 hal_rx_desc_sz = ab->hal.hal_desc_sz;
ring_id = dp->rx_refill_buf_ring.refill_buf_ring.ring_id;
tlv_filter.rx_filter = HTT_RX_TLV_FLAGS_RXDMA_RING;
tlv_filter.pkt_filter_flags2 = HTT_RX_FP_CTRL_PKT_FILTER_TLV_FLAGS2_BAR;
tlv_filter.pkt_filter_flags3 = HTT_RX_FP_DATA_PKT_FILTER_TLV_FLASG3_MCAST |
HTT_RX_FP_DATA_PKT_FILTER_TLV_FLASG3_UCAST |
HTT_RX_FP_DATA_PKT_FILTER_TLV_FLASG3_NULL_DATA;
tlv_filter.offset_valid = true;
tlv_filter.rx_packet_offset = hal_rx_desc_sz;
tlv_filter.rx_mpdu_start_offset =
ab->hal_rx_ops->rx_desc_get_mpdu_start_offset();
tlv_filter.rx_msdu_end_offset =
ab->hal_rx_ops->rx_desc_get_msdu_end_offset();
if (ath12k_dp_wmask_compaction_rx_tlv_supported(ab)) {
tlv_filter.rx_mpdu_start_wmask =
ab->hw_params->hal_ops->rxdma_ring_wmask_rx_mpdu_start();
tlv_filter.rx_msdu_end_wmask =
ab->hw_params->hal_ops->rxdma_ring_wmask_rx_msdu_end();
ath12k_dbg(ab, ATH12K_DBG_DATA,
"Configuring compact tlv masks rx_mpdu_start_wmask 0x%x rx_msdu_end_wmask 0x%x\n",
tlv_filter.rx_mpdu_start_wmask, tlv_filter.rx_msdu_end_wmask);
}
ret = ath12k_dp_tx_htt_rx_filter_setup(ab, ring_id, 0,
HAL_RXDMA_BUF,
DP_RXDMA_REFILL_RING_SIZE,
&tlv_filter);
return ret;
}
int ath12k_dp_rxdma_ring_sel_config_wcn7850(struct ath12k_base *ab)
{
struct ath12k_dp *dp = &ab->dp;
struct htt_rx_ring_tlv_filter tlv_filter = {0};
u32 ring_id;
int ret = 0;
u32 hal_rx_desc_sz = ab->hal.hal_desc_sz;
int i;
ring_id = dp->rx_refill_buf_ring.refill_buf_ring.ring_id;
tlv_filter.rx_filter = HTT_RX_TLV_FLAGS_RXDMA_RING;
tlv_filter.pkt_filter_flags2 = HTT_RX_FP_CTRL_PKT_FILTER_TLV_FLAGS2_BAR;
tlv_filter.pkt_filter_flags3 = HTT_RX_FP_DATA_PKT_FILTER_TLV_FLASG3_MCAST |
HTT_RX_FP_DATA_PKT_FILTER_TLV_FLASG3_UCAST |
HTT_RX_FP_DATA_PKT_FILTER_TLV_FLASG3_NULL_DATA;
tlv_filter.offset_valid = true;
tlv_filter.rx_packet_offset = hal_rx_desc_sz;
tlv_filter.rx_header_offset = offsetof(struct hal_rx_desc_wcn7850, pkt_hdr_tlv);
tlv_filter.rx_mpdu_start_offset =
ab->hal_rx_ops->rx_desc_get_mpdu_start_offset();
tlv_filter.rx_msdu_end_offset =
ab->hal_rx_ops->rx_desc_get_msdu_end_offset();
/* TODO: Selectively subscribe to required qwords within msdu_end
* and mpdu_start and setup the mask in below msg
* and modify the rx_desc struct
*/
for (i = 0; i < ab->hw_params->num_rxdma_per_pdev; i++) {
ring_id = dp->rx_mac_buf_ring[i].ring_id;
ret = ath12k_dp_tx_htt_rx_filter_setup(ab, ring_id, i,
HAL_RXDMA_BUF,
DP_RXDMA_REFILL_RING_SIZE,
&tlv_filter);
}
return ret;
}
int ath12k_dp_rx_htt_setup(struct ath12k_base *ab)
{
struct ath12k_dp *dp = &ab->dp;
u32 ring_id;
int i, ret;
/* TODO: Need to verify the HTT setup for QCN9224 */
ring_id = dp->rx_refill_buf_ring.refill_buf_ring.ring_id;
ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id, 0, HAL_RXDMA_BUF);
if (ret) {
ath12k_warn(ab, "failed to configure rx_refill_buf_ring %d\n",
ret);
return ret;
}
if (ab->hw_params->rx_mac_buf_ring) {
for (i = 0; i < ab->hw_params->num_rxdma_per_pdev; i++) {
ring_id = dp->rx_mac_buf_ring[i].ring_id;
ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id,
i, HAL_RXDMA_BUF);
if (ret) {
ath12k_warn(ab, "failed to configure rx_mac_buf_ring%d %d\n",
i, ret);
return ret;
}
}
}
for (i = 0; i < ab->hw_params->num_rxdma_dst_ring; i++) {
ring_id = dp->rxdma_err_dst_ring[i].ring_id;
ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id,
i, HAL_RXDMA_DST);
if (ret) {
ath12k_warn(ab, "failed to configure rxdma_err_dest_ring%d %d\n",
i, ret);
return ret;
}
}
if (ab->hw_params->rxdma1_enable) {
ring_id = dp->rxdma_mon_buf_ring.refill_buf_ring.ring_id;
ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id,
0, HAL_RXDMA_MONITOR_BUF);
if (ret) {
ath12k_warn(ab, "failed to configure rxdma_mon_buf_ring %d\n",
ret);
return ret;
}
}
ret = ab->hw_params->hw_ops->rxdma_ring_sel_config(ab);
if (ret) {
ath12k_warn(ab, "failed to setup rxdma ring selection config\n");
return ret;
}
return 0;
}
int ath12k_dp_rx_alloc(struct ath12k_base *ab)
{
struct ath12k_dp *dp = &ab->dp;
int i, ret;
idr_init(&dp->rxdma_mon_buf_ring.bufs_idr);
spin_lock_init(&dp->rxdma_mon_buf_ring.idr_lock);
ret = ath12k_dp_srng_setup(ab,
&dp->rx_refill_buf_ring.refill_buf_ring,
HAL_RXDMA_BUF, 0, 0,
DP_RXDMA_BUF_RING_SIZE);
if (ret) {
ath12k_warn(ab, "failed to setup rx_refill_buf_ring\n");
return ret;
}
if (ab->hw_params->rx_mac_buf_ring) {
for (i = 0; i < ab->hw_params->num_rxdma_per_pdev; i++) {
ret = ath12k_dp_srng_setup(ab,
&dp->rx_mac_buf_ring[i],
HAL_RXDMA_BUF, 1,
i, DP_RX_MAC_BUF_RING_SIZE);
if (ret) {
ath12k_warn(ab, "failed to setup rx_mac_buf_ring %d\n",
i);
return ret;
}
}
}
for (i = 0; i < ab->hw_params->num_rxdma_dst_ring; i++) {
ret = ath12k_dp_srng_setup(ab, &dp->rxdma_err_dst_ring[i],
HAL_RXDMA_DST, 0, i,
DP_RXDMA_ERR_DST_RING_SIZE);
if (ret) {
ath12k_warn(ab, "failed to setup rxdma_err_dst_ring %d\n", i);
return ret;
}
}
if (ab->hw_params->rxdma1_enable) {
ret = ath12k_dp_srng_setup(ab,
&dp->rxdma_mon_buf_ring.refill_buf_ring,
HAL_RXDMA_MONITOR_BUF, 0, 0,
DP_RXDMA_MONITOR_BUF_RING_SIZE);
if (ret) {
ath12k_warn(ab, "failed to setup HAL_RXDMA_MONITOR_BUF\n");
return ret;
}
}
ret = ath12k_dp_rxdma_buf_setup(ab);
if (ret) {
ath12k_warn(ab, "failed to setup rxdma ring\n");
return ret;
}
return 0;
}
int ath12k_dp_rx_pdev_alloc(struct ath12k_base *ab, int mac_id)
{
struct ath12k *ar = ab->pdevs[mac_id].ar;
struct ath12k_pdev_dp *dp = &ar->dp;
u32 ring_id;
int i;
int ret;
if (!ab->hw_params->rxdma1_enable)
goto out;
ret = ath12k_dp_rx_pdev_srng_alloc(ar);
if (ret) {
ath12k_warn(ab, "failed to setup rx srngs\n");
return ret;
}
for (i = 0; i < ab->hw_params->num_rxdma_per_pdev; i++) {
ring_id = dp->rxdma_mon_dst_ring[i].ring_id;
ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id,
mac_id + i,
HAL_RXDMA_MONITOR_DST);
if (ret) {
ath12k_warn(ab,
"failed to configure rxdma_mon_dst_ring %d %d\n",
i, ret);
return ret;
}
}
out:
return 0;
}
static int ath12k_dp_rx_pdev_mon_status_attach(struct ath12k *ar)
{
struct ath12k_pdev_dp *dp = &ar->dp;
struct ath12k_mon_data *pmon = (struct ath12k_mon_data *)&dp->mon_data;
skb_queue_head_init(&pmon->rx_status_q);
pmon->mon_ppdu_status = DP_PPDU_STATUS_START;
memset(&pmon->rx_mon_stats, 0,
sizeof(pmon->rx_mon_stats));
return 0;
}
int ath12k_dp_rx_pdev_mon_attach(struct ath12k *ar)
{
struct ath12k_pdev_dp *dp = &ar->dp;
struct ath12k_mon_data *pmon = &dp->mon_data;
int ret = 0;
ret = ath12k_dp_rx_pdev_mon_status_attach(ar);
if (ret) {
ath12k_warn(ar->ab, "pdev_mon_status_attach() failed");
return ret;
}
/* if rxdma1_enable is false, no need to setup
* rxdma_mon_desc_ring.
*/
if (!ar->ab->hw_params->rxdma1_enable)
return 0;
pmon->mon_last_linkdesc_paddr = 0;
pmon->mon_last_buf_cookie = DP_RX_DESC_COOKIE_MAX + 1;
spin_lock_init(&pmon->mon_lock);
return 0;
}