| // SPDX-License-Identifier: ISC |
| /* |
| * Copyright (c) 2012-2017 Qualcomm Atheros, Inc. |
| * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved. |
| */ |
| |
| #include <linux/etherdevice.h> |
| #include <net/ieee80211_radiotap.h> |
| #include <linux/if_arp.h> |
| #include <linux/moduleparam.h> |
| #include <linux/ip.h> |
| #include <linux/ipv6.h> |
| #include <linux/if_vlan.h> |
| #include <net/ipv6.h> |
| #include <linux/prefetch.h> |
| |
| #include "wil6210.h" |
| #include "wmi.h" |
| #include "txrx.h" |
| #include "trace.h" |
| #include "txrx_edma.h" |
| |
| bool rx_align_2; |
| module_param(rx_align_2, bool, 0444); |
| MODULE_PARM_DESC(rx_align_2, " align Rx buffers on 4*n+2, default - no"); |
| |
| bool rx_large_buf; |
| module_param(rx_large_buf, bool, 0444); |
| MODULE_PARM_DESC(rx_large_buf, " allocate 8KB RX buffers, default - no"); |
| |
| /* Drop Tx packets in case Tx ring is full */ |
| bool drop_if_ring_full; |
| |
| static inline uint wil_rx_snaplen(void) |
| { |
| return rx_align_2 ? 6 : 0; |
| } |
| |
| /* wil_ring_wmark_low - low watermark for available descriptor space */ |
| static inline int wil_ring_wmark_low(struct wil_ring *ring) |
| { |
| return ring->size / 8; |
| } |
| |
| /* wil_ring_wmark_high - high watermark for available descriptor space */ |
| static inline int wil_ring_wmark_high(struct wil_ring *ring) |
| { |
| return ring->size / 4; |
| } |
| |
| /* returns true if num avail descriptors is lower than wmark_low */ |
| static inline int wil_ring_avail_low(struct wil_ring *ring) |
| { |
| return wil_ring_avail_tx(ring) < wil_ring_wmark_low(ring); |
| } |
| |
| /* returns true if num avail descriptors is higher than wmark_high */ |
| static inline int wil_ring_avail_high(struct wil_ring *ring) |
| { |
| return wil_ring_avail_tx(ring) > wil_ring_wmark_high(ring); |
| } |
| |
| /* returns true when all tx vrings are empty */ |
| bool wil_is_tx_idle(struct wil6210_priv *wil) |
| { |
| int i; |
| unsigned long data_comp_to; |
| int min_ring_id = wil_get_min_tx_ring_id(wil); |
| |
| for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) { |
| struct wil_ring *vring = &wil->ring_tx[i]; |
| int vring_index = vring - wil->ring_tx; |
| struct wil_ring_tx_data *txdata = |
| &wil->ring_tx_data[vring_index]; |
| |
| spin_lock(&txdata->lock); |
| |
| if (!vring->va || !txdata->enabled) { |
| spin_unlock(&txdata->lock); |
| continue; |
| } |
| |
| data_comp_to = jiffies + msecs_to_jiffies( |
| WIL_DATA_COMPLETION_TO_MS); |
| if (test_bit(wil_status_napi_en, wil->status)) { |
| while (!wil_ring_is_empty(vring)) { |
| if (time_after(jiffies, data_comp_to)) { |
| wil_dbg_pm(wil, |
| "TO waiting for idle tx\n"); |
| spin_unlock(&txdata->lock); |
| return false; |
| } |
| wil_dbg_ratelimited(wil, |
| "tx vring is not empty -> NAPI\n"); |
| spin_unlock(&txdata->lock); |
| napi_synchronize(&wil->napi_tx); |
| msleep(20); |
| spin_lock(&txdata->lock); |
| if (!vring->va || !txdata->enabled) |
| break; |
| } |
| } |
| |
| spin_unlock(&txdata->lock); |
| } |
| |
| return true; |
| } |
| |
| static int wil_vring_alloc(struct wil6210_priv *wil, struct wil_ring *vring) |
| { |
| struct device *dev = wil_to_dev(wil); |
| size_t sz = vring->size * sizeof(vring->va[0]); |
| uint i; |
| |
| wil_dbg_misc(wil, "vring_alloc:\n"); |
| |
| BUILD_BUG_ON(sizeof(vring->va[0]) != 32); |
| |
| vring->swhead = 0; |
| vring->swtail = 0; |
| vring->ctx = kcalloc(vring->size, sizeof(vring->ctx[0]), GFP_KERNEL); |
| if (!vring->ctx) { |
| vring->va = NULL; |
| return -ENOMEM; |
| } |
| |
| /* vring->va should be aligned on its size rounded up to power of 2 |
| * This is granted by the dma_alloc_coherent. |
| * |
| * HW has limitation that all vrings addresses must share the same |
| * upper 16 msb bits part of 48 bits address. To workaround that, |
| * if we are using more than 32 bit addresses switch to 32 bit |
| * allocation before allocating vring memory. |
| * |
| * There's no check for the return value of dma_set_mask_and_coherent, |
| * since we assume if we were able to set the mask during |
| * initialization in this system it will not fail if we set it again |
| */ |
| if (wil->dma_addr_size > 32) |
| dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); |
| |
| vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL); |
| if (!vring->va) { |
| kfree(vring->ctx); |
| vring->ctx = NULL; |
| return -ENOMEM; |
| } |
| |
| if (wil->dma_addr_size > 32) |
| dma_set_mask_and_coherent(dev, |
| DMA_BIT_MASK(wil->dma_addr_size)); |
| |
| /* initially, all descriptors are SW owned |
| * For Tx and Rx, ownership bit is at the same location, thus |
| * we can use any |
| */ |
| for (i = 0; i < vring->size; i++) { |
| volatile struct vring_tx_desc *_d = |
| &vring->va[i].tx.legacy; |
| |
| _d->dma.status = TX_DMA_STATUS_DU; |
| } |
| |
| wil_dbg_misc(wil, "vring[%d] 0x%p:%pad 0x%p\n", vring->size, |
| vring->va, &vring->pa, vring->ctx); |
| |
| return 0; |
| } |
| |
| static void wil_txdesc_unmap(struct device *dev, union wil_tx_desc *desc, |
| struct wil_ctx *ctx) |
| { |
| struct vring_tx_desc *d = &desc->legacy; |
| dma_addr_t pa = wil_desc_addr(&d->dma.addr); |
| u16 dmalen = le16_to_cpu(d->dma.length); |
| |
| switch (ctx->mapped_as) { |
| case wil_mapped_as_single: |
| dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE); |
| break; |
| case wil_mapped_as_page: |
| dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void wil_vring_free(struct wil6210_priv *wil, struct wil_ring *vring) |
| { |
| struct device *dev = wil_to_dev(wil); |
| size_t sz = vring->size * sizeof(vring->va[0]); |
| |
| lockdep_assert_held(&wil->mutex); |
| if (!vring->is_rx) { |
| int vring_index = vring - wil->ring_tx; |
| |
| wil_dbg_misc(wil, "free Tx vring %d [%d] 0x%p:%pad 0x%p\n", |
| vring_index, vring->size, vring->va, |
| &vring->pa, vring->ctx); |
| } else { |
| wil_dbg_misc(wil, "free Rx vring [%d] 0x%p:%pad 0x%p\n", |
| vring->size, vring->va, |
| &vring->pa, vring->ctx); |
| } |
| |
| while (!wil_ring_is_empty(vring)) { |
| dma_addr_t pa; |
| u16 dmalen; |
| struct wil_ctx *ctx; |
| |
| if (!vring->is_rx) { |
| struct vring_tx_desc dd, *d = ⅆ |
| volatile struct vring_tx_desc *_d = |
| &vring->va[vring->swtail].tx.legacy; |
| |
| ctx = &vring->ctx[vring->swtail]; |
| if (!ctx) { |
| wil_dbg_txrx(wil, |
| "ctx(%d) was already completed\n", |
| vring->swtail); |
| vring->swtail = wil_ring_next_tail(vring); |
| continue; |
| } |
| *d = *_d; |
| wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx); |
| if (ctx->skb) |
| dev_kfree_skb_any(ctx->skb); |
| vring->swtail = wil_ring_next_tail(vring); |
| } else { /* rx */ |
| struct vring_rx_desc dd, *d = ⅆ |
| volatile struct vring_rx_desc *_d = |
| &vring->va[vring->swhead].rx.legacy; |
| |
| ctx = &vring->ctx[vring->swhead]; |
| *d = *_d; |
| pa = wil_desc_addr(&d->dma.addr); |
| dmalen = le16_to_cpu(d->dma.length); |
| dma_unmap_single(dev, pa, dmalen, DMA_FROM_DEVICE); |
| kfree_skb(ctx->skb); |
| wil_ring_advance_head(vring, 1); |
| } |
| } |
| dma_free_coherent(dev, sz, (void *)vring->va, vring->pa); |
| kfree(vring->ctx); |
| vring->pa = 0; |
| vring->va = NULL; |
| vring->ctx = NULL; |
| } |
| |
| /* Allocate one skb for Rx VRING |
| * |
| * Safe to call from IRQ |
| */ |
| static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct wil_ring *vring, |
| u32 i, int headroom) |
| { |
| struct device *dev = wil_to_dev(wil); |
| unsigned int sz = wil->rx_buf_len + ETH_HLEN + wil_rx_snaplen(); |
| struct vring_rx_desc dd, *d = ⅆ |
| volatile struct vring_rx_desc *_d = &vring->va[i].rx.legacy; |
| dma_addr_t pa; |
| struct sk_buff *skb = dev_alloc_skb(sz + headroom); |
| |
| if (unlikely(!skb)) |
| return -ENOMEM; |
| |
| skb_reserve(skb, headroom); |
| skb_put(skb, sz); |
| |
| /** |
| * Make sure that the network stack calculates checksum for packets |
| * which failed the HW checksum calculation |
| */ |
| skb->ip_summed = CHECKSUM_NONE; |
| |
| pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE); |
| if (unlikely(dma_mapping_error(dev, pa))) { |
| kfree_skb(skb); |
| return -ENOMEM; |
| } |
| |
| d->dma.d0 = RX_DMA_D0_CMD_DMA_RT | RX_DMA_D0_CMD_DMA_IT; |
| wil_desc_addr_set(&d->dma.addr, pa); |
| /* ip_length don't care */ |
| /* b11 don't care */ |
| /* error don't care */ |
| d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */ |
| d->dma.length = cpu_to_le16(sz); |
| *_d = *d; |
| vring->ctx[i].skb = skb; |
| |
| return 0; |
| } |
| |
| /* Adds radiotap header |
| * |
| * Any error indicated as "Bad FCS" |
| * |
| * Vendor data for 04:ce:14-1 (Wilocity-1) consists of: |
| * - Rx descriptor: 32 bytes |
| * - Phy info |
| */ |
| static void wil_rx_add_radiotap_header(struct wil6210_priv *wil, |
| struct sk_buff *skb) |
| { |
| struct wil6210_rtap { |
| struct ieee80211_radiotap_header_fixed rthdr; |
| /* fields should be in the order of bits in rthdr.it_present */ |
| /* flags */ |
| u8 flags; |
| /* channel */ |
| __le16 chnl_freq __aligned(2); |
| __le16 chnl_flags; |
| /* MCS */ |
| u8 mcs_present; |
| u8 mcs_flags; |
| u8 mcs_index; |
| } __packed; |
| struct vring_rx_desc *d = wil_skb_rxdesc(skb); |
| struct wil6210_rtap *rtap; |
| int rtap_len = sizeof(struct wil6210_rtap); |
| struct ieee80211_channel *ch = wil->monitor_chandef.chan; |
| |
| if (skb_headroom(skb) < rtap_len && |
| pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) { |
| wil_err(wil, "Unable to expand headroom to %d\n", rtap_len); |
| return; |
| } |
| |
| rtap = skb_push(skb, rtap_len); |
| memset(rtap, 0, rtap_len); |
| |
| rtap->rthdr.it_version = PKTHDR_RADIOTAP_VERSION; |
| rtap->rthdr.it_len = cpu_to_le16(rtap_len); |
| rtap->rthdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | |
| (1 << IEEE80211_RADIOTAP_CHANNEL) | |
| (1 << IEEE80211_RADIOTAP_MCS)); |
| if (d->dma.status & RX_DMA_STATUS_ERROR) |
| rtap->flags |= IEEE80211_RADIOTAP_F_BADFCS; |
| |
| rtap->chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320); |
| rtap->chnl_flags = cpu_to_le16(0); |
| |
| rtap->mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS; |
| rtap->mcs_flags = 0; |
| rtap->mcs_index = wil_rxdesc_mcs(d); |
| } |
| |
| static bool wil_is_rx_idle(struct wil6210_priv *wil) |
| { |
| struct vring_rx_desc *_d; |
| struct wil_ring *ring = &wil->ring_rx; |
| |
| _d = (struct vring_rx_desc *)&ring->va[ring->swhead].rx.legacy; |
| if (_d->dma.status & RX_DMA_STATUS_DU) |
| return false; |
| |
| return true; |
| } |
| |
| static int wil_rx_get_cid_by_skb(struct wil6210_priv *wil, struct sk_buff *skb) |
| { |
| struct vring_rx_desc *d = wil_skb_rxdesc(skb); |
| int mid = wil_rxdesc_mid(d); |
| struct wil6210_vif *vif = wil->vifs[mid]; |
| /* cid from DMA descriptor is limited to 3 bits. |
| * In case of cid>=8, the value would be cid modulo 8 and we need to |
| * find real cid by locating the transmitter (ta) inside sta array |
| */ |
| int cid = wil_rxdesc_cid(d); |
| unsigned int snaplen = wil_rx_snaplen(); |
| struct ieee80211_hdr_3addr *hdr; |
| int i; |
| unsigned char *ta; |
| u8 ftype; |
| |
| /* in monitor mode there are no connections */ |
| if (vif->wdev.iftype == NL80211_IFTYPE_MONITOR) |
| return cid; |
| |
| ftype = wil_rxdesc_ftype(d) << 2; |
| if (likely(ftype == IEEE80211_FTYPE_DATA)) { |
| if (unlikely(skb->len < ETH_HLEN + snaplen)) { |
| wil_err_ratelimited(wil, |
| "Short data frame, len = %d\n", |
| skb->len); |
| return -ENOENT; |
| } |
| ta = wil_skb_get_sa(skb); |
| } else { |
| if (unlikely(skb->len < sizeof(struct ieee80211_hdr_3addr))) { |
| wil_err_ratelimited(wil, "Short frame, len = %d\n", |
| skb->len); |
| return -ENOENT; |
| } |
| hdr = (void *)skb->data; |
| ta = hdr->addr2; |
| } |
| |
| if (wil->max_assoc_sta <= WIL6210_RX_DESC_MAX_CID) |
| return cid; |
| |
| /* assuming no concurrency between AP interfaces and STA interfaces. |
| * multista is used only in P2P_GO or AP mode. In other modes return |
| * cid from the rx descriptor |
| */ |
| if (vif->wdev.iftype != NL80211_IFTYPE_P2P_GO && |
| vif->wdev.iftype != NL80211_IFTYPE_AP) |
| return cid; |
| |
| /* For Rx packets cid from rx descriptor is limited to 3 bits (0..7), |
| * to find the real cid, compare transmitter address with the stored |
| * stations mac address in the driver sta array |
| */ |
| for (i = cid; i < wil->max_assoc_sta; i += WIL6210_RX_DESC_MAX_CID) { |
| if (wil->sta[i].status != wil_sta_unused && |
| ether_addr_equal(wil->sta[i].addr, ta)) { |
| cid = i; |
| break; |
| } |
| } |
| if (i >= wil->max_assoc_sta) { |
| wil_err_ratelimited(wil, "Could not find cid for frame with transmit addr = %pM, iftype = %d, frametype = %d, len = %d\n", |
| ta, vif->wdev.iftype, ftype, skb->len); |
| cid = -ENOENT; |
| } |
| |
| return cid; |
| } |
| |
| /* reap 1 frame from @swhead |
| * |
| * Rx descriptor copied to skb->cb |
| * |
| * Safe to call from IRQ |
| */ |
| static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil, |
| struct wil_ring *vring) |
| { |
| struct device *dev = wil_to_dev(wil); |
| struct wil6210_vif *vif; |
| struct net_device *ndev; |
| volatile struct vring_rx_desc *_d; |
| struct vring_rx_desc *d; |
| struct sk_buff *skb; |
| dma_addr_t pa; |
| unsigned int snaplen = wil_rx_snaplen(); |
| unsigned int sz = wil->rx_buf_len + ETH_HLEN + snaplen; |
| u16 dmalen; |
| u8 ftype; |
| int cid, mid; |
| int i; |
| struct wil_net_stats *stats; |
| |
| BUILD_BUG_ON(sizeof(struct skb_rx_info) > sizeof(skb->cb)); |
| |
| again: |
| if (unlikely(wil_ring_is_empty(vring))) |
| return NULL; |
| |
| i = (int)vring->swhead; |
| _d = &vring->va[i].rx.legacy; |
| if (unlikely(!(_d->dma.status & RX_DMA_STATUS_DU))) { |
| /* it is not error, we just reached end of Rx done area */ |
| return NULL; |
| } |
| |
| skb = vring->ctx[i].skb; |
| vring->ctx[i].skb = NULL; |
| wil_ring_advance_head(vring, 1); |
| if (!skb) { |
| wil_err(wil, "No Rx skb at [%d]\n", i); |
| goto again; |
| } |
| d = wil_skb_rxdesc(skb); |
| *d = *_d; |
| pa = wil_desc_addr(&d->dma.addr); |
| |
| dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE); |
| dmalen = le16_to_cpu(d->dma.length); |
| |
| trace_wil6210_rx(i, d); |
| wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", i, dmalen); |
| wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4, |
| (const void *)d, sizeof(*d), false); |
| |
| mid = wil_rxdesc_mid(d); |
| vif = wil->vifs[mid]; |
| |
| if (unlikely(!vif)) { |
| wil_dbg_txrx(wil, "skipped RX descriptor with invalid mid %d", |
| mid); |
| kfree_skb(skb); |
| goto again; |
| } |
| ndev = vif_to_ndev(vif); |
| if (unlikely(dmalen > sz)) { |
| wil_err_ratelimited(wil, "Rx size too large: %d bytes!\n", |
| dmalen); |
| kfree_skb(skb); |
| goto again; |
| } |
| skb_trim(skb, dmalen); |
| |
| prefetch(skb->data); |
| |
| wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1, |
| skb->data, skb_headlen(skb), false); |
| |
| cid = wil_rx_get_cid_by_skb(wil, skb); |
| if (cid == -ENOENT) { |
| kfree_skb(skb); |
| goto again; |
| } |
| wil_skb_set_cid(skb, (u8)cid); |
| stats = &wil->sta[cid].stats; |
| |
| stats->last_mcs_rx = wil_rxdesc_mcs(d); |
| if (stats->last_mcs_rx < ARRAY_SIZE(stats->rx_per_mcs)) |
| stats->rx_per_mcs[stats->last_mcs_rx]++; |
| |
| /* use radiotap header only if required */ |
| if (ndev->type == ARPHRD_IEEE80211_RADIOTAP) |
| wil_rx_add_radiotap_header(wil, skb); |
| |
| /* no extra checks if in sniffer mode */ |
| if (ndev->type != ARPHRD_ETHER) |
| return skb; |
| /* Non-data frames may be delivered through Rx DMA channel (ex: BAR) |
| * Driver should recognize it by frame type, that is found |
| * in Rx descriptor. If type is not data, it is 802.11 frame as is |
| */ |
| ftype = wil_rxdesc_ftype(d) << 2; |
| if (unlikely(ftype != IEEE80211_FTYPE_DATA)) { |
| u8 fc1 = wil_rxdesc_fc1(d); |
| int tid = wil_rxdesc_tid(d); |
| u16 seq = wil_rxdesc_seq(d); |
| |
| wil_dbg_txrx(wil, |
| "Non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n", |
| fc1, mid, cid, tid, seq); |
| stats->rx_non_data_frame++; |
| if (wil_is_back_req(fc1)) { |
| wil_dbg_txrx(wil, |
| "BAR: MID %d CID %d TID %d Seq 0x%03x\n", |
| mid, cid, tid, seq); |
| wil_rx_bar(wil, vif, cid, tid, seq); |
| } else { |
| /* print again all info. One can enable only this |
| * without overhead for printing every Rx frame |
| */ |
| wil_dbg_txrx(wil, |
| "Unhandled non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n", |
| fc1, mid, cid, tid, seq); |
| wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4, |
| (const void *)d, sizeof(*d), false); |
| wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1, |
| skb->data, skb_headlen(skb), false); |
| } |
| kfree_skb(skb); |
| goto again; |
| } |
| |
| /* L4 IDENT is on when HW calculated checksum, check status |
| * and in case of error drop the packet |
| * higher stack layers will handle retransmission (if required) |
| */ |
| if (likely(d->dma.status & RX_DMA_STATUS_L4I)) { |
| /* L4 protocol identified, csum calculated */ |
| if (likely((d->dma.error & RX_DMA_ERROR_L4_ERR) == 0)) |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| /* If HW reports bad checksum, let IP stack re-check it |
| * For example, HW don't understand Microsoft IP stack that |
| * mis-calculates TCP checksum - if it should be 0x0, |
| * it writes 0xffff in violation of RFC 1624 |
| */ |
| else |
| stats->rx_csum_err++; |
| } |
| |
| if (snaplen) { |
| /* Packet layout |
| * +-------+-------+---------+------------+------+ |
| * | SA(6) | DA(6) | SNAP(6) | ETHTYPE(2) | DATA | |
| * +-------+-------+---------+------------+------+ |
| * Need to remove SNAP, shifting SA and DA forward |
| */ |
| memmove(skb->data + snaplen, skb->data, 2 * ETH_ALEN); |
| skb_pull(skb, snaplen); |
| } |
| |
| return skb; |
| } |
| |
| /* allocate and fill up to @count buffers in rx ring |
| * buffers posted at @swtail |
| * Note: we have a single RX queue for servicing all VIFs, but we |
| * allocate skbs with headroom according to main interface only. This |
| * means it will not work with monitor interface together with other VIFs. |
| * Currently we only support monitor interface on its own without other VIFs, |
| * and we will need to fix this code once we add support. |
| */ |
| static int wil_rx_refill(struct wil6210_priv *wil, int count) |
| { |
| struct net_device *ndev = wil->main_ndev; |
| struct wil_ring *v = &wil->ring_rx; |
| u32 next_tail; |
| int rc = 0; |
| int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ? |
| WIL6210_RTAP_SIZE : 0; |
| |
| for (; next_tail = wil_ring_next_tail(v), |
| (next_tail != v->swhead) && (count-- > 0); |
| v->swtail = next_tail) { |
| rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom); |
| if (unlikely(rc)) { |
| wil_err_ratelimited(wil, "Error %d in rx refill[%d]\n", |
| rc, v->swtail); |
| break; |
| } |
| } |
| |
| /* make sure all writes to descriptors (shared memory) are done before |
| * committing them to HW |
| */ |
| wmb(); |
| |
| wil_w(wil, v->hwtail, v->swtail); |
| |
| return rc; |
| } |
| |
| /** |
| * reverse_memcmp - Compare two areas of memory, in reverse order |
| * @cs: One area of memory |
| * @ct: Another area of memory |
| * @count: The size of the area. |
| * |
| * Cut'n'paste from original memcmp (see lib/string.c) |
| * with minimal modifications |
| */ |
| int reverse_memcmp(const void *cs, const void *ct, size_t count) |
| { |
| const unsigned char *su1, *su2; |
| int res = 0; |
| |
| for (su1 = cs + count - 1, su2 = ct + count - 1; count > 0; |
| --su1, --su2, count--) { |
| res = *su1 - *su2; |
| if (res) |
| break; |
| } |
| return res; |
| } |
| |
| static int wil_rx_crypto_check(struct wil6210_priv *wil, struct sk_buff *skb) |
| { |
| struct vring_rx_desc *d = wil_skb_rxdesc(skb); |
| int cid = wil_skb_get_cid(skb); |
| int tid = wil_rxdesc_tid(d); |
| int key_id = wil_rxdesc_key_id(d); |
| int mc = wil_rxdesc_mcast(d); |
| struct wil_sta_info *s = &wil->sta[cid]; |
| struct wil_tid_crypto_rx *c = mc ? &s->group_crypto_rx : |
| &s->tid_crypto_rx[tid]; |
| struct wil_tid_crypto_rx_single *cc = &c->key_id[key_id]; |
| const u8 *pn = (u8 *)&d->mac.pn; |
| |
| if (!cc->key_set) { |
| wil_err_ratelimited(wil, |
| "Key missing. CID %d TID %d MCast %d KEY_ID %d\n", |
| cid, tid, mc, key_id); |
| return -EINVAL; |
| } |
| |
| if (reverse_memcmp(pn, cc->pn, IEEE80211_GCMP_PN_LEN) <= 0) { |
| wil_err_ratelimited(wil, |
| "Replay attack. CID %d TID %d MCast %d KEY_ID %d PN %6phN last %6phN\n", |
| cid, tid, mc, key_id, pn, cc->pn); |
| return -EINVAL; |
| } |
| memcpy(cc->pn, pn, IEEE80211_GCMP_PN_LEN); |
| |
| return 0; |
| } |
| |
| static int wil_rx_error_check(struct wil6210_priv *wil, struct sk_buff *skb, |
| struct wil_net_stats *stats) |
| { |
| struct vring_rx_desc *d = wil_skb_rxdesc(skb); |
| |
| if ((d->dma.status & RX_DMA_STATUS_ERROR) && |
| (d->dma.error & RX_DMA_ERROR_MIC)) { |
| stats->rx_mic_error++; |
| wil_dbg_txrx(wil, "MIC error, dropping packet\n"); |
| return -EFAULT; |
| } |
| |
| return 0; |
| } |
| |
| static void wil_get_netif_rx_params(struct sk_buff *skb, int *cid, |
| int *security) |
| { |
| struct vring_rx_desc *d = wil_skb_rxdesc(skb); |
| |
| *cid = wil_skb_get_cid(skb); |
| *security = wil_rxdesc_security(d); |
| } |
| |
| /* |
| * Check if skb is ptk eapol key message |
| * |
| * returns a pointer to the start of the eapol key structure, NULL |
| * if frame is not PTK eapol key |
| */ |
| static struct wil_eapol_key *wil_is_ptk_eapol_key(struct wil6210_priv *wil, |
| struct sk_buff *skb) |
| { |
| u8 *buf; |
| const struct wil_1x_hdr *hdr; |
| struct wil_eapol_key *key; |
| u16 key_info; |
| int len = skb->len; |
| |
| if (!skb_mac_header_was_set(skb)) { |
| wil_err(wil, "mac header was not set\n"); |
| return NULL; |
| } |
| |
| len -= skb_mac_offset(skb); |
| |
| if (len < sizeof(struct ethhdr) + sizeof(struct wil_1x_hdr) + |
| sizeof(struct wil_eapol_key)) |
| return NULL; |
| |
| buf = skb_mac_header(skb) + sizeof(struct ethhdr); |
| |
| hdr = (const struct wil_1x_hdr *)buf; |
| if (hdr->type != WIL_1X_TYPE_EAPOL_KEY) |
| return NULL; |
| |
| key = (struct wil_eapol_key *)(buf + sizeof(struct wil_1x_hdr)); |
| if (key->type != WIL_EAPOL_KEY_TYPE_WPA && |
| key->type != WIL_EAPOL_KEY_TYPE_RSN) |
| return NULL; |
| |
| key_info = be16_to_cpu(key->key_info); |
| if (!(key_info & WIL_KEY_INFO_KEY_TYPE)) /* check if pairwise */ |
| return NULL; |
| |
| return key; |
| } |
| |
| static bool wil_skb_is_eap_3(struct wil6210_priv *wil, struct sk_buff *skb) |
| { |
| struct wil_eapol_key *key; |
| u16 key_info; |
| |
| key = wil_is_ptk_eapol_key(wil, skb); |
| if (!key) |
| return false; |
| |
| key_info = be16_to_cpu(key->key_info); |
| if (key_info & (WIL_KEY_INFO_MIC | |
| WIL_KEY_INFO_ENCR_KEY_DATA)) { |
| /* 3/4 of 4-Way Handshake */ |
| wil_dbg_misc(wil, "EAPOL key message 3\n"); |
| return true; |
| } |
| /* 1/4 of 4-Way Handshake */ |
| wil_dbg_misc(wil, "EAPOL key message 1\n"); |
| |
| return false; |
| } |
| |
| static bool wil_skb_is_eap_4(struct wil6210_priv *wil, struct sk_buff *skb) |
| { |
| struct wil_eapol_key *key; |
| u32 *nonce, i; |
| |
| key = wil_is_ptk_eapol_key(wil, skb); |
| if (!key) |
| return false; |
| |
| nonce = (u32 *)key->key_nonce; |
| for (i = 0; i < WIL_EAP_NONCE_LEN / sizeof(u32); i++, nonce++) { |
| if (*nonce != 0) { |
| /* message 2/4 */ |
| wil_dbg_misc(wil, "EAPOL key message 2\n"); |
| return false; |
| } |
| } |
| wil_dbg_misc(wil, "EAPOL key message 4\n"); |
| |
| return true; |
| } |
| |
| void wil_enable_tx_key_worker(struct work_struct *work) |
| { |
| struct wil6210_vif *vif = container_of(work, |
| struct wil6210_vif, enable_tx_key_worker); |
| struct wil6210_priv *wil = vif_to_wil(vif); |
| int rc, cid; |
| |
| rtnl_lock(); |
| if (vif->ptk_rekey_state != WIL_REKEY_WAIT_M4_SENT) { |
| wil_dbg_misc(wil, "Invalid rekey state = %d\n", |
| vif->ptk_rekey_state); |
| rtnl_unlock(); |
| return; |
| } |
| |
| cid = wil_find_cid_by_idx(wil, vif->mid, 0); |
| if (!wil_cid_valid(wil, cid)) { |
| wil_err(wil, "Invalid cid = %d\n", cid); |
| rtnl_unlock(); |
| return; |
| } |
| |
| wil_dbg_misc(wil, "Apply PTK key after eapol was sent out\n"); |
| rc = wmi_add_cipher_key(vif, 0, wil->sta[cid].addr, 0, NULL, |
| WMI_KEY_USE_APPLY_PTK); |
| |
| vif->ptk_rekey_state = WIL_REKEY_IDLE; |
| rtnl_unlock(); |
| |
| if (rc) |
| wil_err(wil, "Apply PTK key failed %d\n", rc); |
| } |
| |
| void wil_tx_complete_handle_eapol(struct wil6210_vif *vif, struct sk_buff *skb) |
| { |
| struct wil6210_priv *wil = vif_to_wil(vif); |
| struct wireless_dev *wdev = vif_to_wdev(vif); |
| bool q = false; |
| |
| if (wdev->iftype != NL80211_IFTYPE_STATION || |
| !test_bit(WMI_FW_CAPABILITY_SPLIT_REKEY, wil->fw_capabilities)) |
| return; |
| |
| /* check if skb is an EAP message 4/4 */ |
| if (!wil_skb_is_eap_4(wil, skb)) |
| return; |
| |
| spin_lock_bh(&wil->eap_lock); |
| switch (vif->ptk_rekey_state) { |
| case WIL_REKEY_IDLE: |
| /* ignore idle state, can happen due to M4 retransmission */ |
| break; |
| case WIL_REKEY_M3_RECEIVED: |
| vif->ptk_rekey_state = WIL_REKEY_IDLE; |
| break; |
| case WIL_REKEY_WAIT_M4_SENT: |
| q = true; |
| break; |
| default: |
| wil_err(wil, "Unknown rekey state = %d", |
| vif->ptk_rekey_state); |
| } |
| spin_unlock_bh(&wil->eap_lock); |
| |
| if (q) { |
| q = queue_work(wil->wmi_wq, &vif->enable_tx_key_worker); |
| wil_dbg_misc(wil, "queue_work of enable_tx_key_worker -> %d\n", |
| q); |
| } |
| } |
| |
| static void wil_rx_handle_eapol(struct wil6210_vif *vif, struct sk_buff *skb) |
| { |
| struct wil6210_priv *wil = vif_to_wil(vif); |
| struct wireless_dev *wdev = vif_to_wdev(vif); |
| |
| if (wdev->iftype != NL80211_IFTYPE_STATION || |
| !test_bit(WMI_FW_CAPABILITY_SPLIT_REKEY, wil->fw_capabilities)) |
| return; |
| |
| /* check if skb is a EAP message 3/4 */ |
| if (!wil_skb_is_eap_3(wil, skb)) |
| return; |
| |
| if (vif->ptk_rekey_state == WIL_REKEY_IDLE) |
| vif->ptk_rekey_state = WIL_REKEY_M3_RECEIVED; |
| } |
| |
| /* |
| * Pass Rx packet to the netif. Update statistics. |
| * Called in softirq context (NAPI poll). |
| */ |
| void wil_netif_rx(struct sk_buff *skb, struct net_device *ndev, int cid, |
| struct wil_net_stats *stats, bool gro) |
| { |
| struct wil6210_vif *vif = ndev_to_vif(ndev); |
| struct wil6210_priv *wil = ndev_to_wil(ndev); |
| struct wireless_dev *wdev = vif_to_wdev(vif); |
| unsigned int len = skb->len; |
| u8 *sa, *da = wil_skb_get_da(skb); |
| /* here looking for DA, not A1, thus Rxdesc's 'mcast' indication |
| * is not suitable, need to look at data |
| */ |
| int mcast = is_multicast_ether_addr(da); |
| struct sk_buff *xmit_skb = NULL; |
| |
| if (wdev->iftype == NL80211_IFTYPE_STATION) { |
| sa = wil_skb_get_sa(skb); |
| if (mcast && ether_addr_equal(sa, ndev->dev_addr)) { |
| /* mcast packet looped back to us */ |
| dev_kfree_skb(skb); |
| ndev->stats.rx_dropped++; |
| stats->rx_dropped++; |
| wil_dbg_txrx(wil, "Rx drop %d bytes\n", len); |
| return; |
| } |
| } else if (wdev->iftype == NL80211_IFTYPE_AP && !vif->ap_isolate) { |
| if (mcast) { |
| /* send multicast frames both to higher layers in |
| * local net stack and back to the wireless medium |
| */ |
| xmit_skb = skb_copy(skb, GFP_ATOMIC); |
| } else { |
| int xmit_cid = wil_find_cid(wil, vif->mid, da); |
| |
| if (xmit_cid >= 0) { |
| /* The destination station is associated to |
| * this AP (in this VLAN), so send the frame |
| * directly to it and do not pass it to local |
| * net stack. |
| */ |
| xmit_skb = skb; |
| skb = NULL; |
| } |
| } |
| } |
| if (xmit_skb) { |
| /* Send to wireless media and increase priority by 256 to |
| * keep the received priority instead of reclassifying |
| * the frame (see cfg80211_classify8021d). |
| */ |
| xmit_skb->dev = ndev; |
| xmit_skb->priority += 256; |
| xmit_skb->protocol = htons(ETH_P_802_3); |
| skb_reset_network_header(xmit_skb); |
| skb_reset_mac_header(xmit_skb); |
| wil_dbg_txrx(wil, "Rx -> Tx %d bytes\n", len); |
| dev_queue_xmit(xmit_skb); |
| } |
| |
| if (skb) { /* deliver to local stack */ |
| skb->protocol = eth_type_trans(skb, ndev); |
| skb->dev = ndev; |
| |
| if (skb->protocol == cpu_to_be16(ETH_P_PAE)) |
| wil_rx_handle_eapol(vif, skb); |
| |
| if (gro) |
| napi_gro_receive(&wil->napi_rx, skb); |
| else |
| netif_rx(skb); |
| } |
| ndev->stats.rx_packets++; |
| stats->rx_packets++; |
| ndev->stats.rx_bytes += len; |
| stats->rx_bytes += len; |
| if (mcast) |
| ndev->stats.multicast++; |
| } |
| |
| void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev) |
| { |
| int cid, security; |
| struct wil6210_priv *wil = ndev_to_wil(ndev); |
| struct wil_net_stats *stats; |
| |
| wil->txrx_ops.get_netif_rx_params(skb, &cid, &security); |
| |
| stats = &wil->sta[cid].stats; |
| |
| skb_orphan(skb); |
| |
| if (security && (wil->txrx_ops.rx_crypto_check(wil, skb) != 0)) { |
| wil_dbg_txrx(wil, "Rx drop %d bytes\n", skb->len); |
| dev_kfree_skb(skb); |
| ndev->stats.rx_dropped++; |
| stats->rx_replay++; |
| stats->rx_dropped++; |
| return; |
| } |
| |
| /* check errors reported by HW and update statistics */ |
| if (unlikely(wil->txrx_ops.rx_error_check(wil, skb, stats))) { |
| dev_kfree_skb(skb); |
| return; |
| } |
| |
| wil_netif_rx(skb, ndev, cid, stats, true); |
| } |
| |
| /* Proceed all completed skb's from Rx VRING |
| * |
| * Safe to call from NAPI poll, i.e. softirq with interrupts enabled |
| */ |
| void wil_rx_handle(struct wil6210_priv *wil, int *quota) |
| { |
| struct net_device *ndev = wil->main_ndev; |
| struct wireless_dev *wdev = ndev->ieee80211_ptr; |
| struct wil_ring *v = &wil->ring_rx; |
| struct sk_buff *skb; |
| |
| if (unlikely(!v->va)) { |
| wil_err(wil, "Rx IRQ while Rx not yet initialized\n"); |
| return; |
| } |
| wil_dbg_txrx(wil, "rx_handle\n"); |
| while ((*quota > 0) && (NULL != (skb = wil_vring_reap_rx(wil, v)))) { |
| (*quota)--; |
| |
| /* monitor is currently supported on main interface only */ |
| if (wdev->iftype == NL80211_IFTYPE_MONITOR) { |
| skb->dev = ndev; |
| skb_reset_mac_header(skb); |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| skb->pkt_type = PACKET_OTHERHOST; |
| skb->protocol = htons(ETH_P_802_2); |
| wil_netif_rx_any(skb, ndev); |
| } else { |
| wil_rx_reorder(wil, skb); |
| } |
| } |
| wil_rx_refill(wil, v->size); |
| } |
| |
| static void wil_rx_buf_len_init(struct wil6210_priv *wil) |
| { |
| wil->rx_buf_len = rx_large_buf ? |
| WIL_MAX_ETH_MTU : TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD; |
| if (mtu_max > wil->rx_buf_len) { |
| /* do not allow RX buffers to be smaller than mtu_max, for |
| * backward compatibility (mtu_max parameter was also used |
| * to support receiving large packets) |
| */ |
| wil_info(wil, "Override RX buffer to mtu_max(%d)\n", mtu_max); |
| wil->rx_buf_len = mtu_max; |
| } |
| } |
| |
| static int wil_rx_init(struct wil6210_priv *wil, uint order) |
| { |
| struct wil_ring *vring = &wil->ring_rx; |
| int rc; |
| |
| wil_dbg_misc(wil, "rx_init\n"); |
| |
| if (vring->va) { |
| wil_err(wil, "Rx ring already allocated\n"); |
| return -EINVAL; |
| } |
| |
| wil_rx_buf_len_init(wil); |
| |
| vring->size = 1 << order; |
| vring->is_rx = true; |
| rc = wil_vring_alloc(wil, vring); |
| if (rc) |
| return rc; |
| |
| rc = wmi_rx_chain_add(wil, vring); |
| if (rc) |
| goto err_free; |
| |
| rc = wil_rx_refill(wil, vring->size); |
| if (rc) |
| goto err_free; |
| |
| return 0; |
| err_free: |
| wil_vring_free(wil, vring); |
| |
| return rc; |
| } |
| |
| static void wil_rx_fini(struct wil6210_priv *wil) |
| { |
| struct wil_ring *vring = &wil->ring_rx; |
| |
| wil_dbg_misc(wil, "rx_fini\n"); |
| |
| if (vring->va) |
| wil_vring_free(wil, vring); |
| } |
| |
| static int wil_tx_desc_map(union wil_tx_desc *desc, dma_addr_t pa, |
| u32 len, int vring_index) |
| { |
| struct vring_tx_desc *d = &desc->legacy; |
| |
| wil_desc_addr_set(&d->dma.addr, pa); |
| d->dma.ip_length = 0; |
| /* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/ |
| d->dma.b11 = 0/*14 | BIT(7)*/; |
| d->dma.error = 0; |
| d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */ |
| d->dma.length = cpu_to_le16((u16)len); |
| d->dma.d0 = (vring_index << DMA_CFG_DESC_TX_0_QID_POS); |
| d->mac.d[0] = 0; |
| d->mac.d[1] = 0; |
| d->mac.d[2] = 0; |
| d->mac.ucode_cmd = 0; |
| /* translation type: 0 - bypass; 1 - 802.3; 2 - native wifi */ |
| d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) | |
| (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS); |
| |
| return 0; |
| } |
| |
| void wil_tx_data_init(struct wil_ring_tx_data *txdata) |
| { |
| spin_lock_bh(&txdata->lock); |
| txdata->dot1x_open = false; |
| txdata->enabled = 0; |
| txdata->idle = 0; |
| txdata->last_idle = 0; |
| txdata->begin = 0; |
| txdata->agg_wsize = 0; |
| txdata->agg_timeout = 0; |
| txdata->agg_amsdu = 0; |
| txdata->addba_in_progress = false; |
| txdata->mid = U8_MAX; |
| spin_unlock_bh(&txdata->lock); |
| } |
| |
| static int wil_vring_init_tx(struct wil6210_vif *vif, int id, int size, |
| int cid, int tid) |
| { |
| struct wil6210_priv *wil = vif_to_wil(vif); |
| int rc; |
| struct wmi_vring_cfg_cmd cmd = { |
| .action = cpu_to_le32(WMI_VRING_CMD_ADD), |
| .vring_cfg = { |
| .tx_sw_ring = { |
| .max_mpdu_size = |
| cpu_to_le16(wil_mtu2macbuf(mtu_max)), |
| .ring_size = cpu_to_le16(size), |
| }, |
| .ringid = id, |
| .encap_trans_type = WMI_VRING_ENC_TYPE_802_3, |
| .mac_ctrl = 0, |
| .to_resolution = 0, |
| .agg_max_wsize = 0, |
| .schd_params = { |
| .priority = cpu_to_le16(0), |
| .timeslot_us = cpu_to_le16(0xfff), |
| }, |
| }, |
| }; |
| struct { |
| struct wmi_cmd_hdr wmi; |
| struct wmi_vring_cfg_done_event cmd; |
| } __packed reply = { |
| .cmd = {.status = WMI_FW_STATUS_FAILURE}, |
| }; |
| struct wil_ring *vring = &wil->ring_tx[id]; |
| struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id]; |
| |
| if (cid >= WIL6210_RX_DESC_MAX_CID) { |
| cmd.vring_cfg.cidxtid = CIDXTID_EXTENDED_CID_TID; |
| cmd.vring_cfg.cid = cid; |
| cmd.vring_cfg.tid = tid; |
| } else { |
| cmd.vring_cfg.cidxtid = mk_cidxtid(cid, tid); |
| } |
| |
| wil_dbg_misc(wil, "vring_init_tx: max_mpdu_size %d\n", |
| cmd.vring_cfg.tx_sw_ring.max_mpdu_size); |
| lockdep_assert_held(&wil->mutex); |
| |
| if (vring->va) { |
| wil_err(wil, "Tx ring [%d] already allocated\n", id); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| wil_tx_data_init(txdata); |
| vring->is_rx = false; |
| vring->size = size; |
| rc = wil_vring_alloc(wil, vring); |
| if (rc) |
| goto out; |
| |
| wil->ring2cid_tid[id][0] = cid; |
| wil->ring2cid_tid[id][1] = tid; |
| |
| cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa); |
| |
| if (!vif->privacy) |
| txdata->dot1x_open = true; |
| rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd), |
| WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), |
| WIL_WMI_CALL_GENERAL_TO_MS); |
| if (rc) |
| goto out_free; |
| |
| if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) { |
| wil_err(wil, "Tx config failed, status 0x%02x\n", |
| reply.cmd.status); |
| rc = -EINVAL; |
| goto out_free; |
| } |
| |
| spin_lock_bh(&txdata->lock); |
| vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr); |
| txdata->mid = vif->mid; |
| txdata->enabled = 1; |
| spin_unlock_bh(&txdata->lock); |
| |
| if (txdata->dot1x_open && (agg_wsize >= 0)) |
| wil_addba_tx_request(wil, id, agg_wsize); |
| |
| return 0; |
| out_free: |
| spin_lock_bh(&txdata->lock); |
| txdata->dot1x_open = false; |
| txdata->enabled = 0; |
| spin_unlock_bh(&txdata->lock); |
| wil_vring_free(wil, vring); |
| wil->ring2cid_tid[id][0] = wil->max_assoc_sta; |
| wil->ring2cid_tid[id][1] = 0; |
| |
| out: |
| |
| return rc; |
| } |
| |
| static int wil_tx_vring_modify(struct wil6210_vif *vif, int ring_id, int cid, |
| int tid) |
| { |
| struct wil6210_priv *wil = vif_to_wil(vif); |
| int rc; |
| struct wmi_vring_cfg_cmd cmd = { |
| .action = cpu_to_le32(WMI_VRING_CMD_MODIFY), |
| .vring_cfg = { |
| .tx_sw_ring = { |
| .max_mpdu_size = |
| cpu_to_le16(wil_mtu2macbuf(mtu_max)), |
| .ring_size = 0, |
| }, |
| .ringid = ring_id, |
| .cidxtid = mk_cidxtid(cid, tid), |
| .encap_trans_type = WMI_VRING_ENC_TYPE_802_3, |
| .mac_ctrl = 0, |
| .to_resolution = 0, |
| .agg_max_wsize = 0, |
| .schd_params = { |
| .priority = cpu_to_le16(0), |
| .timeslot_us = cpu_to_le16(0xfff), |
| }, |
| }, |
| }; |
| struct { |
| struct wmi_cmd_hdr wmi; |
| struct wmi_vring_cfg_done_event cmd; |
| } __packed reply = { |
| .cmd = {.status = WMI_FW_STATUS_FAILURE}, |
| }; |
| struct wil_ring *vring = &wil->ring_tx[ring_id]; |
| struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id]; |
| |
| wil_dbg_misc(wil, "vring_modify: ring %d cid %d tid %d\n", ring_id, |
| cid, tid); |
| lockdep_assert_held(&wil->mutex); |
| |
| if (!vring->va) { |
| wil_err(wil, "Tx ring [%d] not allocated\n", ring_id); |
| return -EINVAL; |
| } |
| |
| if (wil->ring2cid_tid[ring_id][0] != cid || |
| wil->ring2cid_tid[ring_id][1] != tid) { |
| wil_err(wil, "ring info does not match cid=%u tid=%u\n", |
| wil->ring2cid_tid[ring_id][0], |
| wil->ring2cid_tid[ring_id][1]); |
| } |
| |
| cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa); |
| |
| rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd), |
| WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), |
| WIL_WMI_CALL_GENERAL_TO_MS); |
| if (rc) |
| goto fail; |
| |
| if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) { |
| wil_err(wil, "Tx modify failed, status 0x%02x\n", |
| reply.cmd.status); |
| rc = -EINVAL; |
| goto fail; |
| } |
| |
| /* set BA aggregation window size to 0 to force a new BA with the |
| * new AP |
| */ |
| txdata->agg_wsize = 0; |
| if (txdata->dot1x_open && agg_wsize >= 0) |
| wil_addba_tx_request(wil, ring_id, agg_wsize); |
| |
| return 0; |
| fail: |
| spin_lock_bh(&txdata->lock); |
| txdata->dot1x_open = false; |
| txdata->enabled = 0; |
| spin_unlock_bh(&txdata->lock); |
| wil->ring2cid_tid[ring_id][0] = wil->max_assoc_sta; |
| wil->ring2cid_tid[ring_id][1] = 0; |
| return rc; |
| } |
| |
| int wil_vring_init_bcast(struct wil6210_vif *vif, int id, int size) |
| { |
| struct wil6210_priv *wil = vif_to_wil(vif); |
| int rc; |
| struct wmi_bcast_vring_cfg_cmd cmd = { |
| .action = cpu_to_le32(WMI_VRING_CMD_ADD), |
| .vring_cfg = { |
| .tx_sw_ring = { |
| .max_mpdu_size = |
| cpu_to_le16(wil_mtu2macbuf(mtu_max)), |
| .ring_size = cpu_to_le16(size), |
| }, |
| .ringid = id, |
| .encap_trans_type = WMI_VRING_ENC_TYPE_802_3, |
| }, |
| }; |
| struct { |
| struct wmi_cmd_hdr wmi; |
| struct wmi_vring_cfg_done_event cmd; |
| } __packed reply = { |
| .cmd = {.status = WMI_FW_STATUS_FAILURE}, |
| }; |
| struct wil_ring *vring = &wil->ring_tx[id]; |
| struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id]; |
| |
| wil_dbg_misc(wil, "vring_init_bcast: max_mpdu_size %d\n", |
| cmd.vring_cfg.tx_sw_ring.max_mpdu_size); |
| lockdep_assert_held(&wil->mutex); |
| |
| if (vring->va) { |
| wil_err(wil, "Tx ring [%d] already allocated\n", id); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| wil_tx_data_init(txdata); |
| vring->is_rx = false; |
| vring->size = size; |
| rc = wil_vring_alloc(wil, vring); |
| if (rc) |
| goto out; |
| |
| wil->ring2cid_tid[id][0] = wil->max_assoc_sta; /* CID */ |
| wil->ring2cid_tid[id][1] = 0; /* TID */ |
| |
| cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa); |
| |
| if (!vif->privacy) |
| txdata->dot1x_open = true; |
| rc = wmi_call(wil, WMI_BCAST_VRING_CFG_CMDID, vif->mid, |
| &cmd, sizeof(cmd), |
| WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), |
| WIL_WMI_CALL_GENERAL_TO_MS); |
| if (rc) |
| goto out_free; |
| |
| if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) { |
| wil_err(wil, "Tx config failed, status 0x%02x\n", |
| reply.cmd.status); |
| rc = -EINVAL; |
| goto out_free; |
| } |
| |
| spin_lock_bh(&txdata->lock); |
| vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr); |
| txdata->mid = vif->mid; |
| txdata->enabled = 1; |
| spin_unlock_bh(&txdata->lock); |
| |
| return 0; |
| out_free: |
| spin_lock_bh(&txdata->lock); |
| txdata->enabled = 0; |
| txdata->dot1x_open = false; |
| spin_unlock_bh(&txdata->lock); |
| wil_vring_free(wil, vring); |
| out: |
| |
| return rc; |
| } |
| |
| static struct wil_ring *wil_find_tx_ucast(struct wil6210_priv *wil, |
| struct wil6210_vif *vif, |
| struct sk_buff *skb) |
| { |
| int i, cid; |
| const u8 *da = wil_skb_get_da(skb); |
| int min_ring_id = wil_get_min_tx_ring_id(wil); |
| |
| cid = wil_find_cid(wil, vif->mid, da); |
| |
| if (cid < 0 || cid >= wil->max_assoc_sta) |
| return NULL; |
| |
| /* TODO: fix for multiple TID */ |
| for (i = min_ring_id; i < ARRAY_SIZE(wil->ring2cid_tid); i++) { |
| if (!wil->ring_tx_data[i].dot1x_open && |
| skb->protocol != cpu_to_be16(ETH_P_PAE)) |
| continue; |
| if (wil->ring2cid_tid[i][0] == cid) { |
| struct wil_ring *v = &wil->ring_tx[i]; |
| struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i]; |
| |
| wil_dbg_txrx(wil, "find_tx_ucast: (%pM) -> [%d]\n", |
| da, i); |
| if (v->va && txdata->enabled) { |
| return v; |
| } else { |
| wil_dbg_txrx(wil, |
| "find_tx_ucast: vring[%d] not valid\n", |
| i); |
| return NULL; |
| } |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif, |
| struct wil_ring *ring, struct sk_buff *skb); |
| |
| static struct wil_ring *wil_find_tx_ring_sta(struct wil6210_priv *wil, |
| struct wil6210_vif *vif, |
| struct sk_buff *skb) |
| { |
| struct wil_ring *ring; |
| int i; |
| u8 cid; |
| struct wil_ring_tx_data *txdata; |
| int min_ring_id = wil_get_min_tx_ring_id(wil); |
| |
| /* In the STA mode, it is expected to have only 1 VRING |
| * for the AP we connected to. |
| * find 1-st vring eligible for this skb and use it. |
| */ |
| for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) { |
| ring = &wil->ring_tx[i]; |
| txdata = &wil->ring_tx_data[i]; |
| if (!ring->va || !txdata->enabled || txdata->mid != vif->mid) |
| continue; |
| |
| cid = wil->ring2cid_tid[i][0]; |
| if (cid >= wil->max_assoc_sta) /* skip BCAST */ |
| continue; |
| |
| if (!wil->ring_tx_data[i].dot1x_open && |
| skb->protocol != cpu_to_be16(ETH_P_PAE)) |
| continue; |
| |
| wil_dbg_txrx(wil, "Tx -> ring %d\n", i); |
| |
| return ring; |
| } |
| |
| wil_dbg_txrx(wil, "Tx while no rings active?\n"); |
| |
| return NULL; |
| } |
| |
| /* Use one of 2 strategies: |
| * |
| * 1. New (real broadcast): |
| * use dedicated broadcast vring |
| * 2. Old (pseudo-DMS): |
| * Find 1-st vring and return it; |
| * duplicate skb and send it to other active vrings; |
| * in all cases override dest address to unicast peer's address |
| * Use old strategy when new is not supported yet: |
| * - for PBSS |
| */ |
| static struct wil_ring *wil_find_tx_bcast_1(struct wil6210_priv *wil, |
| struct wil6210_vif *vif, |
| struct sk_buff *skb) |
| { |
| struct wil_ring *v; |
| struct wil_ring_tx_data *txdata; |
| int i = vif->bcast_ring; |
| |
| if (i < 0) |
| return NULL; |
| v = &wil->ring_tx[i]; |
| txdata = &wil->ring_tx_data[i]; |
| if (!v->va || !txdata->enabled) |
| return NULL; |
| if (!wil->ring_tx_data[i].dot1x_open && |
| skb->protocol != cpu_to_be16(ETH_P_PAE)) |
| return NULL; |
| |
| return v; |
| } |
| |
| /* apply multicast to unicast only for ARP and IP packets |
| * (see NL80211_CMD_SET_MULTICAST_TO_UNICAST for more info) |
| */ |
| static bool wil_check_multicast_to_unicast(struct wil6210_priv *wil, |
| struct sk_buff *skb) |
| { |
| const struct ethhdr *eth = (void *)skb->data; |
| const struct vlan_ethhdr *ethvlan = (void *)skb->data; |
| __be16 ethertype; |
| |
| if (!wil->multicast_to_unicast) |
| return false; |
| |
| /* multicast to unicast conversion only for some payload */ |
| ethertype = eth->h_proto; |
| if (ethertype == htons(ETH_P_8021Q) && skb->len >= VLAN_ETH_HLEN) |
| ethertype = ethvlan->h_vlan_encapsulated_proto; |
| switch (ethertype) { |
| case htons(ETH_P_ARP): |
| case htons(ETH_P_IP): |
| case htons(ETH_P_IPV6): |
| break; |
| default: |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void wil_set_da_for_vring(struct wil6210_priv *wil, |
| struct sk_buff *skb, int vring_index) |
| { |
| u8 *da = wil_skb_get_da(skb); |
| int cid = wil->ring2cid_tid[vring_index][0]; |
| |
| ether_addr_copy(da, wil->sta[cid].addr); |
| } |
| |
| static struct wil_ring *wil_find_tx_bcast_2(struct wil6210_priv *wil, |
| struct wil6210_vif *vif, |
| struct sk_buff *skb) |
| { |
| struct wil_ring *v, *v2; |
| struct sk_buff *skb2; |
| int i; |
| u8 cid; |
| const u8 *src = wil_skb_get_sa(skb); |
| struct wil_ring_tx_data *txdata, *txdata2; |
| int min_ring_id = wil_get_min_tx_ring_id(wil); |
| |
| /* find 1-st vring eligible for data */ |
| for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) { |
| v = &wil->ring_tx[i]; |
| txdata = &wil->ring_tx_data[i]; |
| if (!v->va || !txdata->enabled || txdata->mid != vif->mid) |
| continue; |
| |
| cid = wil->ring2cid_tid[i][0]; |
| if (cid >= wil->max_assoc_sta) /* skip BCAST */ |
| continue; |
| if (!wil->ring_tx_data[i].dot1x_open && |
| skb->protocol != cpu_to_be16(ETH_P_PAE)) |
| continue; |
| |
| /* don't Tx back to source when re-routing Rx->Tx at the AP */ |
| if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN)) |
| continue; |
| |
| goto found; |
| } |
| |
| wil_dbg_txrx(wil, "Tx while no vrings active?\n"); |
| |
| return NULL; |
| |
| found: |
| wil_dbg_txrx(wil, "BCAST -> ring %d\n", i); |
| wil_set_da_for_vring(wil, skb, i); |
| |
| /* find other active vrings and duplicate skb for each */ |
| for (i++; i < WIL6210_MAX_TX_RINGS; i++) { |
| v2 = &wil->ring_tx[i]; |
| txdata2 = &wil->ring_tx_data[i]; |
| if (!v2->va || txdata2->mid != vif->mid) |
| continue; |
| cid = wil->ring2cid_tid[i][0]; |
| if (cid >= wil->max_assoc_sta) /* skip BCAST */ |
| continue; |
| if (!wil->ring_tx_data[i].dot1x_open && |
| skb->protocol != cpu_to_be16(ETH_P_PAE)) |
| continue; |
| |
| if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN)) |
| continue; |
| |
| skb2 = skb_copy(skb, GFP_ATOMIC); |
| if (skb2) { |
| wil_dbg_txrx(wil, "BCAST DUP -> ring %d\n", i); |
| wil_set_da_for_vring(wil, skb2, i); |
| wil_tx_ring(wil, vif, v2, skb2); |
| /* successful call to wil_tx_ring takes skb2 ref */ |
| dev_kfree_skb_any(skb2); |
| } else { |
| wil_err(wil, "skb_copy failed\n"); |
| } |
| } |
| |
| return v; |
| } |
| |
| static inline |
| void wil_tx_desc_set_nr_frags(struct vring_tx_desc *d, int nr_frags) |
| { |
| d->mac.d[2] |= (nr_frags << MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS); |
| } |
| |
| /* Sets the descriptor @d up for csum and/or TSO offloading. The corresponding |
| * @skb is used to obtain the protocol and headers length. |
| * @tso_desc_type is a descriptor type for TSO: 0 - a header, 1 - first data, |
| * 2 - middle, 3 - last descriptor. |
| */ |
| |
| static void wil_tx_desc_offload_setup_tso(struct vring_tx_desc *d, |
| struct sk_buff *skb, |
| int tso_desc_type, bool is_ipv4, |
| int tcp_hdr_len, int skb_net_hdr_len) |
| { |
| d->dma.b11 = ETH_HLEN; /* MAC header length */ |
| d->dma.b11 |= is_ipv4 << DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS; |
| |
| d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS); |
| /* L4 header len: TCP header length */ |
| d->dma.d0 |= (tcp_hdr_len & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK); |
| |
| /* Setup TSO: bit and desc type */ |
| d->dma.d0 |= (BIT(DMA_CFG_DESC_TX_0_TCP_SEG_EN_POS)) | |
| (tso_desc_type << DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS); |
| d->dma.d0 |= (is_ipv4 << DMA_CFG_DESC_TX_0_IPV4_CHECKSUM_EN_POS); |
| |
| d->dma.ip_length = skb_net_hdr_len; |
| /* Enable TCP/UDP checksum */ |
| d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS); |
| /* Calculate pseudo-header */ |
| d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS); |
| } |
| |
| /* Sets the descriptor @d up for csum. The corresponding |
| * @skb is used to obtain the protocol and headers length. |
| * Returns the protocol: 0 - not TCP, 1 - TCPv4, 2 - TCPv6. |
| * Note, if d==NULL, the function only returns the protocol result. |
| * |
| * It is very similar to previous wil_tx_desc_offload_setup_tso. This |
| * is "if unrolling" to optimize the critical path. |
| */ |
| |
| static int wil_tx_desc_offload_setup(struct vring_tx_desc *d, |
| struct sk_buff *skb){ |
| int protocol; |
| |
| if (skb->ip_summed != CHECKSUM_PARTIAL) |
| return 0; |
| |
| d->dma.b11 = ETH_HLEN; /* MAC header length */ |
| |
| switch (skb->protocol) { |
| case cpu_to_be16(ETH_P_IP): |
| protocol = ip_hdr(skb)->protocol; |
| d->dma.b11 |= BIT(DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS); |
| break; |
| case cpu_to_be16(ETH_P_IPV6): |
| protocol = ipv6_hdr(skb)->nexthdr; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| switch (protocol) { |
| case IPPROTO_TCP: |
| d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS); |
| /* L4 header len: TCP header length */ |
| d->dma.d0 |= |
| (tcp_hdrlen(skb) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK); |
| break; |
| case IPPROTO_UDP: |
| /* L4 header len: UDP header length */ |
| d->dma.d0 |= |
| (sizeof(struct udphdr) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| d->dma.ip_length = skb_network_header_len(skb); |
| /* Enable TCP/UDP checksum */ |
| d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS); |
| /* Calculate pseudo-header */ |
| d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS); |
| |
| return 0; |
| } |
| |
| static inline void wil_tx_last_desc(struct vring_tx_desc *d) |
| { |
| d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS) | |
| BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS) | |
| BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS); |
| } |
| |
| static inline void wil_set_tx_desc_last_tso(volatile struct vring_tx_desc *d) |
| { |
| d->dma.d0 |= wil_tso_type_lst << |
| DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS; |
| } |
| |
| static int __wil_tx_vring_tso(struct wil6210_priv *wil, struct wil6210_vif *vif, |
| struct wil_ring *vring, struct sk_buff *skb) |
| { |
| struct device *dev = wil_to_dev(wil); |
| |
| /* point to descriptors in shared memory */ |
| volatile struct vring_tx_desc *_desc = NULL, *_hdr_desc, |
| *_first_desc = NULL; |
| |
| /* pointers to shadow descriptors */ |
| struct vring_tx_desc desc_mem, hdr_desc_mem, first_desc_mem, |
| *d = &hdr_desc_mem, *hdr_desc = &hdr_desc_mem, |
| *first_desc = &first_desc_mem; |
| |
| /* pointer to shadow descriptors' context */ |
| struct wil_ctx *hdr_ctx, *first_ctx = NULL; |
| |
| int descs_used = 0; /* total number of used descriptors */ |
| int sg_desc_cnt = 0; /* number of descriptors for current mss*/ |
| |
| u32 swhead = vring->swhead; |
| int used, avail = wil_ring_avail_tx(vring); |
| int nr_frags = skb_shinfo(skb)->nr_frags; |
| int min_desc_required = nr_frags + 1; |
| int mss = skb_shinfo(skb)->gso_size; /* payload size w/o headers */ |
| int f, len, hdrlen, headlen; |
| int vring_index = vring - wil->ring_tx; |
| struct wil_ring_tx_data *txdata = &wil->ring_tx_data[vring_index]; |
| uint i = swhead; |
| dma_addr_t pa; |
| const skb_frag_t *frag = NULL; |
| int rem_data = mss; |
| int lenmss; |
| int hdr_compensation_need = true; |
| int desc_tso_type = wil_tso_type_first; |
| bool is_ipv4; |
| int tcp_hdr_len; |
| int skb_net_hdr_len; |
| int gso_type; |
| int rc = -EINVAL; |
| |
| wil_dbg_txrx(wil, "tx_vring_tso: %d bytes to vring %d\n", skb->len, |
| vring_index); |
| |
| if (unlikely(!txdata->enabled)) |
| return -EINVAL; |
| |
| /* A typical page 4K is 3-4 payloads, we assume each fragment |
| * is a full payload, that's how min_desc_required has been |
| * calculated. In real we might need more or less descriptors, |
| * this is the initial check only. |
| */ |
| if (unlikely(avail < min_desc_required)) { |
| wil_err_ratelimited(wil, |
| "TSO: Tx ring[%2d] full. No space for %d fragments\n", |
| vring_index, min_desc_required); |
| return -ENOMEM; |
| } |
| |
| /* Header Length = MAC header len + IP header len + TCP header len*/ |
| hdrlen = skb_tcp_all_headers(skb); |
| |
| gso_type = skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV6 | SKB_GSO_TCPV4); |
| switch (gso_type) { |
| case SKB_GSO_TCPV4: |
| /* TCP v4, zero out the IP length and IPv4 checksum fields |
| * as required by the offloading doc |
| */ |
| ip_hdr(skb)->tot_len = 0; |
| ip_hdr(skb)->check = 0; |
| is_ipv4 = true; |
| break; |
| case SKB_GSO_TCPV6: |
| /* TCP v6, zero out the payload length */ |
| ipv6_hdr(skb)->payload_len = 0; |
| is_ipv4 = false; |
| break; |
| default: |
| /* other than TCPv4 or TCPv6 types are not supported for TSO. |
| * It is also illegal for both to be set simultaneously |
| */ |
| return -EINVAL; |
| } |
| |
| if (skb->ip_summed != CHECKSUM_PARTIAL) |
| return -EINVAL; |
| |
| /* tcp header length and skb network header length are fixed for all |
| * packet's descriptors - read then once here |
| */ |
| tcp_hdr_len = tcp_hdrlen(skb); |
| skb_net_hdr_len = skb_network_header_len(skb); |
| |
| _hdr_desc = &vring->va[i].tx.legacy; |
| |
| pa = dma_map_single(dev, skb->data, hdrlen, DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(dev, pa))) { |
| wil_err(wil, "TSO: Skb head DMA map error\n"); |
| goto err_exit; |
| } |
| |
| wil->txrx_ops.tx_desc_map((union wil_tx_desc *)hdr_desc, pa, |
| hdrlen, vring_index); |
| wil_tx_desc_offload_setup_tso(hdr_desc, skb, wil_tso_type_hdr, is_ipv4, |
| tcp_hdr_len, skb_net_hdr_len); |
| wil_tx_last_desc(hdr_desc); |
| |
| vring->ctx[i].mapped_as = wil_mapped_as_single; |
| hdr_ctx = &vring->ctx[i]; |
| |
| descs_used++; |
| headlen = skb_headlen(skb) - hdrlen; |
| |
| for (f = headlen ? -1 : 0; f < nr_frags; f++) { |
| if (headlen) { |
| len = headlen; |
| wil_dbg_txrx(wil, "TSO: process skb head, len %u\n", |
| len); |
| } else { |
| frag = &skb_shinfo(skb)->frags[f]; |
| len = skb_frag_size(frag); |
| wil_dbg_txrx(wil, "TSO: frag[%d]: len %u\n", f, len); |
| } |
| |
| while (len) { |
| wil_dbg_txrx(wil, |
| "TSO: len %d, rem_data %d, descs_used %d\n", |
| len, rem_data, descs_used); |
| |
| if (descs_used == avail) { |
| wil_err_ratelimited(wil, "TSO: ring overflow\n"); |
| rc = -ENOMEM; |
| goto mem_error; |
| } |
| |
| lenmss = min_t(int, rem_data, len); |
| i = (swhead + descs_used) % vring->size; |
| wil_dbg_txrx(wil, "TSO: lenmss %d, i %d\n", lenmss, i); |
| |
| if (!headlen) { |
| pa = skb_frag_dma_map(dev, frag, |
| skb_frag_size(frag) - len, |
| lenmss, DMA_TO_DEVICE); |
| vring->ctx[i].mapped_as = wil_mapped_as_page; |
| } else { |
| pa = dma_map_single(dev, |
| skb->data + |
| skb_headlen(skb) - headlen, |
| lenmss, |
| DMA_TO_DEVICE); |
| vring->ctx[i].mapped_as = wil_mapped_as_single; |
| headlen -= lenmss; |
| } |
| |
| if (unlikely(dma_mapping_error(dev, pa))) { |
| wil_err(wil, "TSO: DMA map page error\n"); |
| goto mem_error; |
| } |
| |
| _desc = &vring->va[i].tx.legacy; |
| |
| if (!_first_desc) { |
| _first_desc = _desc; |
| first_ctx = &vring->ctx[i]; |
| d = first_desc; |
| } else { |
| d = &desc_mem; |
| } |
| |
| wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, |
| pa, lenmss, vring_index); |
| wil_tx_desc_offload_setup_tso(d, skb, desc_tso_type, |
| is_ipv4, tcp_hdr_len, |
| skb_net_hdr_len); |
| |
| /* use tso_type_first only once */ |
| desc_tso_type = wil_tso_type_mid; |
| |
| descs_used++; /* desc used so far */ |
| sg_desc_cnt++; /* desc used for this segment */ |
| len -= lenmss; |
| rem_data -= lenmss; |
| |
| wil_dbg_txrx(wil, |
| "TSO: len %d, rem_data %d, descs_used %d, sg_desc_cnt %d,\n", |
| len, rem_data, descs_used, sg_desc_cnt); |
| |
| /* Close the segment if reached mss size or last frag*/ |
| if (rem_data == 0 || (f == nr_frags - 1 && len == 0)) { |
| if (hdr_compensation_need) { |
| /* first segment include hdr desc for |
| * release |
| */ |
| hdr_ctx->nr_frags = sg_desc_cnt; |
| wil_tx_desc_set_nr_frags(first_desc, |
| sg_desc_cnt + |
| 1); |
| hdr_compensation_need = false; |
| } else { |
| wil_tx_desc_set_nr_frags(first_desc, |
| sg_desc_cnt); |
| } |
| first_ctx->nr_frags = sg_desc_cnt - 1; |
| |
| wil_tx_last_desc(d); |
| |
| /* first descriptor may also be the last |
| * for this mss - make sure not to copy |
| * it twice |
| */ |
| if (first_desc != d) |
| *_first_desc = *first_desc; |
| |
| /*last descriptor will be copied at the end |
| * of this TS processing |
| */ |
| if (f < nr_frags - 1 || len > 0) |
| *_desc = *d; |
| |
| rem_data = mss; |
| _first_desc = NULL; |
| sg_desc_cnt = 0; |
| } else if (first_desc != d) /* update mid descriptor */ |
| *_desc = *d; |
| } |
| } |
| |
| if (!_desc) |
| goto mem_error; |
| |
| /* first descriptor may also be the last. |
| * in this case d pointer is invalid |
| */ |
| if (_first_desc == _desc) |
| d = first_desc; |
| |
| /* Last data descriptor */ |
| wil_set_tx_desc_last_tso(d); |
| *_desc = *d; |
| |
| /* Fill the total number of descriptors in first desc (hdr)*/ |
| wil_tx_desc_set_nr_frags(hdr_desc, descs_used); |
| *_hdr_desc = *hdr_desc; |
| |
| /* hold reference to skb |
| * to prevent skb release before accounting |
| * in case of immediate "tx done" |
| */ |
| vring->ctx[i].skb = skb_get(skb); |
| |
| /* performance monitoring */ |
| used = wil_ring_used_tx(vring); |
| if (wil_val_in_range(wil->ring_idle_trsh, |
| used, used + descs_used)) { |
| txdata->idle += get_cycles() - txdata->last_idle; |
| wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n", |
| vring_index, used, used + descs_used); |
| } |
| |
| /* Make sure to advance the head only after descriptor update is done. |
| * This will prevent a race condition where the completion thread |
| * will see the DU bit set from previous run and will handle the |
| * skb before it was completed. |
| */ |
| wmb(); |
| |
| /* advance swhead */ |
| wil_ring_advance_head(vring, descs_used); |
| wil_dbg_txrx(wil, "TSO: Tx swhead %d -> %d\n", swhead, vring->swhead); |
| |
| /* make sure all writes to descriptors (shared memory) are done before |
| * committing them to HW |
| */ |
| wmb(); |
| |
| if (wil->tx_latency) |
| *(ktime_t *)&skb->cb = ktime_get(); |
| else |
| memset(skb->cb, 0, sizeof(ktime_t)); |
| |
| wil_w(wil, vring->hwtail, vring->swhead); |
| return 0; |
| |
| mem_error: |
| while (descs_used > 0) { |
| struct wil_ctx *ctx; |
| |
| i = (swhead + descs_used - 1) % vring->size; |
| d = (struct vring_tx_desc *)&vring->va[i].tx.legacy; |
| _desc = &vring->va[i].tx.legacy; |
| *d = *_desc; |
| _desc->dma.status = TX_DMA_STATUS_DU; |
| ctx = &vring->ctx[i]; |
| wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx); |
| memset(ctx, 0, sizeof(*ctx)); |
| descs_used--; |
| } |
| err_exit: |
| return rc; |
| } |
| |
| static int __wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif, |
| struct wil_ring *ring, struct sk_buff *skb) |
| { |
| struct device *dev = wil_to_dev(wil); |
| struct vring_tx_desc dd, *d = ⅆ |
| volatile struct vring_tx_desc *_d; |
| u32 swhead = ring->swhead; |
| int avail = wil_ring_avail_tx(ring); |
| int nr_frags = skb_shinfo(skb)->nr_frags; |
| uint f = 0; |
| int ring_index = ring - wil->ring_tx; |
| struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index]; |
| uint i = swhead; |
| dma_addr_t pa; |
| int used; |
| bool mcast = (ring_index == vif->bcast_ring); |
| uint len = skb_headlen(skb); |
| |
| wil_dbg_txrx(wil, "tx_ring: %d bytes to ring %d, nr_frags %d\n", |
| skb->len, ring_index, nr_frags); |
| |
| if (unlikely(!txdata->enabled)) |
| return -EINVAL; |
| |
| if (unlikely(avail < 1 + nr_frags)) { |
| wil_err_ratelimited(wil, |
| "Tx ring[%2d] full. No space for %d fragments\n", |
| ring_index, 1 + nr_frags); |
| return -ENOMEM; |
| } |
| _d = &ring->va[i].tx.legacy; |
| |
| pa = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); |
| |
| wil_dbg_txrx(wil, "Tx[%2d] skb %d bytes 0x%p -> %pad\n", ring_index, |
| skb_headlen(skb), skb->data, &pa); |
| wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1, |
| skb->data, skb_headlen(skb), false); |
| |
| if (unlikely(dma_mapping_error(dev, pa))) |
| return -EINVAL; |
| ring->ctx[i].mapped_as = wil_mapped_as_single; |
| /* 1-st segment */ |
| wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, pa, len, |
| ring_index); |
| if (unlikely(mcast)) { |
| d->mac.d[0] |= BIT(MAC_CFG_DESC_TX_0_MCS_EN_POS); /* MCS 0 */ |
| if (unlikely(len > WIL_BCAST_MCS0_LIMIT)) /* set MCS 1 */ |
| d->mac.d[0] |= (1 << MAC_CFG_DESC_TX_0_MCS_INDEX_POS); |
| } |
| /* Process TCP/UDP checksum offloading */ |
| if (unlikely(wil_tx_desc_offload_setup(d, skb))) { |
| wil_err(wil, "Tx[%2d] Failed to set cksum, drop packet\n", |
| ring_index); |
| goto dma_error; |
| } |
| |
| ring->ctx[i].nr_frags = nr_frags; |
| wil_tx_desc_set_nr_frags(d, nr_frags + 1); |
| |
| /* middle segments */ |
| for (; f < nr_frags; f++) { |
| const skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; |
| int len = skb_frag_size(frag); |
| |
| *_d = *d; |
| wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i); |
| wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4, |
| (const void *)d, sizeof(*d), false); |
| i = (swhead + f + 1) % ring->size; |
| _d = &ring->va[i].tx.legacy; |
| pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag), |
| DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(dev, pa))) { |
| wil_err(wil, "Tx[%2d] failed to map fragment\n", |
| ring_index); |
| goto dma_error; |
| } |
| ring->ctx[i].mapped_as = wil_mapped_as_page; |
| wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, |
| pa, len, ring_index); |
| /* no need to check return code - |
| * if it succeeded for 1-st descriptor, |
| * it will succeed here too |
| */ |
| wil_tx_desc_offload_setup(d, skb); |
| } |
| /* for the last seg only */ |
| d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS); |
| d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS); |
| d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS); |
| *_d = *d; |
| wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i); |
| wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4, |
| (const void *)d, sizeof(*d), false); |
| |
| /* hold reference to skb |
| * to prevent skb release before accounting |
| * in case of immediate "tx done" |
| */ |
| ring->ctx[i].skb = skb_get(skb); |
| |
| /* performance monitoring */ |
| used = wil_ring_used_tx(ring); |
| if (wil_val_in_range(wil->ring_idle_trsh, |
| used, used + nr_frags + 1)) { |
| txdata->idle += get_cycles() - txdata->last_idle; |
| wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n", |
| ring_index, used, used + nr_frags + 1); |
| } |
| |
| /* Make sure to advance the head only after descriptor update is done. |
| * This will prevent a race condition where the completion thread |
| * will see the DU bit set from previous run and will handle the |
| * skb before it was completed. |
| */ |
| wmb(); |
| |
| /* advance swhead */ |
| wil_ring_advance_head(ring, nr_frags + 1); |
| wil_dbg_txrx(wil, "Tx[%2d] swhead %d -> %d\n", ring_index, swhead, |
| ring->swhead); |
| trace_wil6210_tx(ring_index, swhead, skb->len, nr_frags); |
| |
| /* make sure all writes to descriptors (shared memory) are done before |
| * committing them to HW |
| */ |
| wmb(); |
| |
| if (wil->tx_latency) |
| *(ktime_t *)&skb->cb = ktime_get(); |
| else |
| memset(skb->cb, 0, sizeof(ktime_t)); |
| |
| wil_w(wil, ring->hwtail, ring->swhead); |
| |
| return 0; |
| dma_error: |
| /* unmap what we have mapped */ |
| nr_frags = f + 1; /* frags mapped + one for skb head */ |
| for (f = 0; f < nr_frags; f++) { |
| struct wil_ctx *ctx; |
| |
| i = (swhead + f) % ring->size; |
| ctx = &ring->ctx[i]; |
| _d = &ring->va[i].tx.legacy; |
| *d = *_d; |
| _d->dma.status = TX_DMA_STATUS_DU; |
| wil->txrx_ops.tx_desc_unmap(dev, |
| (union wil_tx_desc *)d, |
| ctx); |
| |
| memset(ctx, 0, sizeof(*ctx)); |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif, |
| struct wil_ring *ring, struct sk_buff *skb) |
| { |
| int ring_index = ring - wil->ring_tx; |
| struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index]; |
| int rc; |
| |
| spin_lock(&txdata->lock); |
| |
| if (test_bit(wil_status_suspending, wil->status) || |
| test_bit(wil_status_suspended, wil->status) || |
| test_bit(wil_status_resuming, wil->status)) { |
| wil_dbg_txrx(wil, |
| "suspend/resume in progress. drop packet\n"); |
| spin_unlock(&txdata->lock); |
| return -EINVAL; |
| } |
| |
| rc = (skb_is_gso(skb) ? wil->txrx_ops.tx_ring_tso : __wil_tx_ring) |
| (wil, vif, ring, skb); |
| |
| spin_unlock(&txdata->lock); |
| |
| return rc; |
| } |
| |
| /* Check status of tx vrings and stop/wake net queues if needed |
| * It will start/stop net queues of a specific VIF net_device. |
| * |
| * This function does one of two checks: |
| * In case check_stop is true, will check if net queues need to be stopped. If |
| * the conditions for stopping are met, netif_tx_stop_all_queues() is called. |
| * In case check_stop is false, will check if net queues need to be waked. If |
| * the conditions for waking are met, netif_tx_wake_all_queues() is called. |
| * vring is the vring which is currently being modified by either adding |
| * descriptors (tx) into it or removing descriptors (tx complete) from it. Can |
| * be null when irrelevant (e.g. connect/disconnect events). |
| * |
| * The implementation is to stop net queues if modified vring has low |
| * descriptor availability. Wake if all vrings are not in low descriptor |
| * availability and modified vring has high descriptor availability. |
| */ |
| static inline void __wil_update_net_queues(struct wil6210_priv *wil, |
| struct wil6210_vif *vif, |
| struct wil_ring *ring, |
| bool check_stop) |
| { |
| int i; |
| int min_ring_id = wil_get_min_tx_ring_id(wil); |
| |
| if (unlikely(!vif)) |
| return; |
| |
| if (ring) |
| wil_dbg_txrx(wil, "vring %d, mid %d, check_stop=%d, stopped=%d", |
| (int)(ring - wil->ring_tx), vif->mid, check_stop, |
| vif->net_queue_stopped); |
| else |
| wil_dbg_txrx(wil, "check_stop=%d, mid=%d, stopped=%d", |
| check_stop, vif->mid, vif->net_queue_stopped); |
| |
| if (ring && drop_if_ring_full) |
| /* no need to stop/wake net queues */ |
| return; |
| |
| if (check_stop == vif->net_queue_stopped) |
| /* net queues already in desired state */ |
| return; |
| |
| if (check_stop) { |
| if (!ring || unlikely(wil_ring_avail_low(ring))) { |
| /* not enough room in the vring */ |
| netif_tx_stop_all_queues(vif_to_ndev(vif)); |
| vif->net_queue_stopped = true; |
| wil_dbg_txrx(wil, "netif_tx_stop called\n"); |
| } |
| return; |
| } |
| |
| /* Do not wake the queues in suspend flow */ |
| if (test_bit(wil_status_suspending, wil->status) || |
| test_bit(wil_status_suspended, wil->status)) |
| return; |
| |
| /* check wake */ |
| for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) { |
| struct wil_ring *cur_ring = &wil->ring_tx[i]; |
| struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i]; |
| |
| if (txdata->mid != vif->mid || !cur_ring->va || |
| !txdata->enabled || cur_ring == ring) |
| continue; |
| |
| if (wil_ring_avail_low(cur_ring)) { |
| wil_dbg_txrx(wil, "ring %d full, can't wake\n", |
| (int)(cur_ring - wil->ring_tx)); |
| return; |
| } |
| } |
| |
| if (!ring || wil_ring_avail_high(ring)) { |
| /* enough room in the ring */ |
| wil_dbg_txrx(wil, "calling netif_tx_wake\n"); |
| netif_tx_wake_all_queues(vif_to_ndev(vif)); |
| vif->net_queue_stopped = false; |
| } |
| } |
| |
| void wil_update_net_queues(struct wil6210_priv *wil, struct wil6210_vif *vif, |
| struct wil_ring *ring, bool check_stop) |
| { |
| spin_lock(&wil->net_queue_lock); |
| __wil_update_net_queues(wil, vif, ring, check_stop); |
| spin_unlock(&wil->net_queue_lock); |
| } |
| |
| void wil_update_net_queues_bh(struct wil6210_priv *wil, struct wil6210_vif *vif, |
| struct wil_ring *ring, bool check_stop) |
| { |
| spin_lock_bh(&wil->net_queue_lock); |
| __wil_update_net_queues(wil, vif, ring, check_stop); |
| spin_unlock_bh(&wil->net_queue_lock); |
| } |
| |
| netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev) |
| { |
| struct wil6210_vif *vif = ndev_to_vif(ndev); |
| struct wil6210_priv *wil = vif_to_wil(vif); |
| const u8 *da = wil_skb_get_da(skb); |
| bool bcast = is_multicast_ether_addr(da); |
| struct wil_ring *ring; |
| static bool pr_once_fw; |
| int rc; |
| |
| wil_dbg_txrx(wil, "start_xmit\n"); |
| if (unlikely(!test_bit(wil_status_fwready, wil->status))) { |
| if (!pr_once_fw) { |
| wil_err(wil, "FW not ready\n"); |
| pr_once_fw = true; |
| } |
| goto drop; |
| } |
| if (unlikely(!test_bit(wil_vif_fwconnected, vif->status))) { |
| wil_dbg_ratelimited(wil, |
| "VIF not connected, packet dropped\n"); |
| goto drop; |
| } |
| if (unlikely(vif->wdev.iftype == NL80211_IFTYPE_MONITOR)) { |
| wil_err(wil, "Xmit in monitor mode not supported\n"); |
| goto drop; |
| } |
| pr_once_fw = false; |
| |
| /* find vring */ |
| if (vif->wdev.iftype == NL80211_IFTYPE_STATION && !vif->pbss) { |
| /* in STA mode (ESS), all to same VRING (to AP) */ |
| ring = wil_find_tx_ring_sta(wil, vif, skb); |
| } else if (bcast) { |
| if (vif->pbss || wil_check_multicast_to_unicast(wil, skb)) |
| /* in pbss, no bcast VRING - duplicate skb in |
| * all stations VRINGs |
| */ |
| ring = wil_find_tx_bcast_2(wil, vif, skb); |
| else if (vif->wdev.iftype == NL80211_IFTYPE_AP) |
| /* AP has a dedicated bcast VRING */ |
| ring = wil_find_tx_bcast_1(wil, vif, skb); |
| else |
| /* unexpected combination, fallback to duplicating |
| * the skb in all stations VRINGs |
| */ |
| ring = wil_find_tx_bcast_2(wil, vif, skb); |
| } else { |
| /* unicast, find specific VRING by dest. address */ |
| ring = wil_find_tx_ucast(wil, vif, skb); |
| } |
| if (unlikely(!ring)) { |
| wil_dbg_txrx(wil, "No Tx RING found for %pM\n", da); |
| goto drop; |
| } |
| /* set up vring entry */ |
| rc = wil_tx_ring(wil, vif, ring, skb); |
| |
| switch (rc) { |
| case 0: |
| /* shall we stop net queues? */ |
| wil_update_net_queues_bh(wil, vif, ring, true); |
| /* statistics will be updated on the tx_complete */ |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| case -ENOMEM: |
| if (drop_if_ring_full) |
| goto drop; |
| return NETDEV_TX_BUSY; |
| default: |
| break; /* goto drop; */ |
| } |
| drop: |
| ndev->stats.tx_dropped++; |
| dev_kfree_skb_any(skb); |
| |
| return NET_XMIT_DROP; |
| } |
| |
| void wil_tx_latency_calc(struct wil6210_priv *wil, struct sk_buff *skb, |
| struct wil_sta_info *sta) |
| { |
| int skb_time_us; |
| int bin; |
| |
| if (!wil->tx_latency) |
| return; |
| |
| if (ktime_to_ms(*(ktime_t *)&skb->cb) == 0) |
| return; |
| |
| skb_time_us = ktime_us_delta(ktime_get(), *(ktime_t *)&skb->cb); |
| bin = skb_time_us / wil->tx_latency_res; |
| bin = min_t(int, bin, WIL_NUM_LATENCY_BINS - 1); |
| |
| wil_dbg_txrx(wil, "skb time %dus => bin %d\n", skb_time_us, bin); |
| sta->tx_latency_bins[bin]++; |
| sta->stats.tx_latency_total_us += skb_time_us; |
| if (skb_time_us < sta->stats.tx_latency_min_us) |
| sta->stats.tx_latency_min_us = skb_time_us; |
| if (skb_time_us > sta->stats.tx_latency_max_us) |
| sta->stats.tx_latency_max_us = skb_time_us; |
| } |
| |
| /* Clean up transmitted skb's from the Tx VRING |
| * |
| * Return number of descriptors cleared |
| * |
| * Safe to call from IRQ |
| */ |
| int wil_tx_complete(struct wil6210_vif *vif, int ringid) |
| { |
| struct wil6210_priv *wil = vif_to_wil(vif); |
| struct net_device *ndev = vif_to_ndev(vif); |
| struct device *dev = wil_to_dev(wil); |
| struct wil_ring *vring = &wil->ring_tx[ringid]; |
| struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ringid]; |
| int done = 0; |
| int cid = wil->ring2cid_tid[ringid][0]; |
| struct wil_net_stats *stats = NULL; |
| volatile struct vring_tx_desc *_d; |
| int used_before_complete; |
| int used_new; |
| |
| if (unlikely(!vring->va)) { |
| wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid); |
| return 0; |
| } |
| |
| if (unlikely(!txdata->enabled)) { |
| wil_info(wil, "Tx irq[%d]: vring disabled\n", ringid); |
| return 0; |
| } |
| |
| wil_dbg_txrx(wil, "tx_complete: (%d)\n", ringid); |
| |
| used_before_complete = wil_ring_used_tx(vring); |
| |
| if (cid < wil->max_assoc_sta) |
| stats = &wil->sta[cid].stats; |
| |
| while (!wil_ring_is_empty(vring)) { |
| int new_swtail; |
| struct wil_ctx *ctx = &vring->ctx[vring->swtail]; |
| /* For the fragmented skb, HW will set DU bit only for the |
| * last fragment. look for it. |
| * In TSO the first DU will include hdr desc |
| */ |
| int lf = (vring->swtail + ctx->nr_frags) % vring->size; |
| /* TODO: check we are not past head */ |
| |
| _d = &vring->va[lf].tx.legacy; |
| if (unlikely(!(_d->dma.status & TX_DMA_STATUS_DU))) |
| break; |
| |
| new_swtail = (lf + 1) % vring->size; |
| while (vring->swtail != new_swtail) { |
| struct vring_tx_desc dd, *d = ⅆ |
| u16 dmalen; |
| struct sk_buff *skb; |
| |
| ctx = &vring->ctx[vring->swtail]; |
| skb = ctx->skb; |
| _d = &vring->va[vring->swtail].tx.legacy; |
| |
| *d = *_d; |
| |
| dmalen = le16_to_cpu(d->dma.length); |
| trace_wil6210_tx_done(ringid, vring->swtail, dmalen, |
| d->dma.error); |
| wil_dbg_txrx(wil, |
| "TxC[%2d][%3d] : %d bytes, status 0x%02x err 0x%02x\n", |
| ringid, vring->swtail, dmalen, |
| d->dma.status, d->dma.error); |
| wil_hex_dump_txrx("TxCD ", DUMP_PREFIX_NONE, 32, 4, |
| (const void *)d, sizeof(*d), false); |
| |
| wil->txrx_ops.tx_desc_unmap(dev, |
| (union wil_tx_desc *)d, |
| ctx); |
| |
| if (skb) { |
| if (likely(d->dma.error == 0)) { |
| ndev->stats.tx_packets++; |
| ndev->stats.tx_bytes += skb->len; |
| if (stats) { |
| stats->tx_packets++; |
| stats->tx_bytes += skb->len; |
| |
| wil_tx_latency_calc(wil, skb, |
| &wil->sta[cid]); |
| } |
| } else { |
| ndev->stats.tx_errors++; |
| if (stats) |
| stats->tx_errors++; |
| } |
| |
| if (skb->protocol == cpu_to_be16(ETH_P_PAE)) |
| wil_tx_complete_handle_eapol(vif, skb); |
| |
| wil_consume_skb(skb, d->dma.error == 0); |
| } |
| memset(ctx, 0, sizeof(*ctx)); |
| /* Make sure the ctx is zeroed before updating the tail |
| * to prevent a case where wil_tx_ring will see |
| * this descriptor as used and handle it before ctx zero |
| * is completed. |
| */ |
| wmb(); |
| /* There is no need to touch HW descriptor: |
| * - ststus bit TX_DMA_STATUS_DU is set by design, |
| * so hardware will not try to process this desc., |
| * - rest of descriptor will be initialized on Tx. |
| */ |
| vring->swtail = wil_ring_next_tail(vring); |
| done++; |
| } |
| } |
| |
| /* performance monitoring */ |
| used_new = wil_ring_used_tx(vring); |
| if (wil_val_in_range(wil->ring_idle_trsh, |
| used_new, used_before_complete)) { |
| wil_dbg_txrx(wil, "Ring[%2d] idle %d -> %d\n", |
| ringid, used_before_complete, used_new); |
| txdata->last_idle = get_cycles(); |
| } |
| |
| /* shall we wake net queues? */ |
| if (done) |
| wil_update_net_queues(wil, vif, vring, false); |
| |
| return done; |
| } |
| |
| static inline int wil_tx_init(struct wil6210_priv *wil) |
| { |
| return 0; |
| } |
| |
| static inline void wil_tx_fini(struct wil6210_priv *wil) {} |
| |
| static void wil_get_reorder_params(struct wil6210_priv *wil, |
| struct sk_buff *skb, int *tid, int *cid, |
| int *mid, u16 *seq, int *mcast, int *retry) |
| { |
| struct vring_rx_desc *d = wil_skb_rxdesc(skb); |
| |
| *tid = wil_rxdesc_tid(d); |
| *cid = wil_skb_get_cid(skb); |
| *mid = wil_rxdesc_mid(d); |
| *seq = wil_rxdesc_seq(d); |
| *mcast = wil_rxdesc_mcast(d); |
| *retry = wil_rxdesc_retry(d); |
| } |
| |
| void wil_init_txrx_ops_legacy_dma(struct wil6210_priv *wil) |
| { |
| wil->txrx_ops.configure_interrupt_moderation = |
| wil_configure_interrupt_moderation; |
| /* TX ops */ |
| wil->txrx_ops.tx_desc_map = wil_tx_desc_map; |
| wil->txrx_ops.tx_desc_unmap = wil_txdesc_unmap; |
| wil->txrx_ops.tx_ring_tso = __wil_tx_vring_tso; |
| wil->txrx_ops.ring_init_tx = wil_vring_init_tx; |
| wil->txrx_ops.ring_fini_tx = wil_vring_free; |
| wil->txrx_ops.ring_init_bcast = wil_vring_init_bcast; |
| wil->txrx_ops.tx_init = wil_tx_init; |
| wil->txrx_ops.tx_fini = wil_tx_fini; |
| wil->txrx_ops.tx_ring_modify = wil_tx_vring_modify; |
| /* RX ops */ |
| wil->txrx_ops.rx_init = wil_rx_init; |
| wil->txrx_ops.wmi_addba_rx_resp = wmi_addba_rx_resp; |
| wil->txrx_ops.get_reorder_params = wil_get_reorder_params; |
| wil->txrx_ops.get_netif_rx_params = |
| wil_get_netif_rx_params; |
| wil->txrx_ops.rx_crypto_check = wil_rx_crypto_check; |
| wil->txrx_ops.rx_error_check = wil_rx_error_check; |
| wil->txrx_ops.is_rx_idle = wil_is_rx_idle; |
| wil->txrx_ops.rx_fini = wil_rx_fini; |
| } |