| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * The USB Monitor, inspired by Dave Harding's USBMon. |
| * |
| * This is a binary format reader. |
| * |
| * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it) |
| * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com) |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/sched/signal.h> |
| #include <linux/types.h> |
| #include <linux/fs.h> |
| #include <linux/cdev.h> |
| #include <linux/export.h> |
| #include <linux/usb.h> |
| #include <linux/poll.h> |
| #include <linux/compat.h> |
| #include <linux/mm.h> |
| #include <linux/scatterlist.h> |
| #include <linux/slab.h> |
| #include <linux/time64.h> |
| |
| #include <linux/uaccess.h> |
| |
| #include "usb_mon.h" |
| |
| /* |
| * Defined by USB 2.0 clause 9.3, table 9.2. |
| */ |
| #define SETUP_LEN 8 |
| |
| /* ioctl macros */ |
| #define MON_IOC_MAGIC 0x92 |
| |
| #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1) |
| /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */ |
| #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats) |
| #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4) |
| #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5) |
| #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get) |
| #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch) |
| #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8) |
| /* #9 was MON_IOCT_SETAPI */ |
| #define MON_IOCX_GETX _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get) |
| |
| #ifdef CONFIG_COMPAT |
| #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32) |
| #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32) |
| #define MON_IOCX_GETX32 _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32) |
| #endif |
| |
| /* |
| * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc). |
| * But it's all right. Just use a simple way to make sure the chunk is never |
| * smaller than a page. |
| * |
| * N.B. An application does not know our chunk size. |
| * |
| * Woops, get_zeroed_page() returns a single page. I guess we're stuck with |
| * page-sized chunks for the time being. |
| */ |
| #define CHUNK_SIZE PAGE_SIZE |
| #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1)) |
| |
| /* |
| * The magic limit was calculated so that it allows the monitoring |
| * application to pick data once in two ticks. This way, another application, |
| * which presumably drives the bus, gets to hog CPU, yet we collect our data. |
| * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an |
| * enormous overhead built into the bus protocol, so we need about 1000 KB. |
| * |
| * This is still too much for most cases, where we just snoop a few |
| * descriptor fetches for enumeration. So, the default is a "reasonable" |
| * amount for systems with HZ=250 and incomplete bus saturation. |
| * |
| * XXX What about multi-megabyte URBs which take minutes to transfer? |
| */ |
| #define BUFF_MAX CHUNK_ALIGN(1200*1024) |
| #define BUFF_DFL CHUNK_ALIGN(300*1024) |
| #define BUFF_MIN CHUNK_ALIGN(8*1024) |
| |
| /* |
| * The per-event API header (2 per URB). |
| * |
| * This structure is seen in userland as defined by the documentation. |
| */ |
| struct mon_bin_hdr { |
| u64 id; /* URB ID - from submission to callback */ |
| unsigned char type; /* Same as in text API; extensible. */ |
| unsigned char xfer_type; /* ISO, Intr, Control, Bulk */ |
| unsigned char epnum; /* Endpoint number and transfer direction */ |
| unsigned char devnum; /* Device address */ |
| unsigned short busnum; /* Bus number */ |
| char flag_setup; |
| char flag_data; |
| s64 ts_sec; /* ktime_get_real_ts64 */ |
| s32 ts_usec; /* ktime_get_real_ts64 */ |
| int status; |
| unsigned int len_urb; /* Length of data (submitted or actual) */ |
| unsigned int len_cap; /* Delivered length */ |
| union { |
| unsigned char setup[SETUP_LEN]; /* Only for Control S-type */ |
| struct iso_rec { |
| int error_count; |
| int numdesc; |
| } iso; |
| } s; |
| int interval; |
| int start_frame; |
| unsigned int xfer_flags; |
| unsigned int ndesc; /* Actual number of ISO descriptors */ |
| }; |
| |
| /* |
| * ISO vector, packed into the head of data stream. |
| * This has to take 16 bytes to make sure that the end of buffer |
| * wrap is not happening in the middle of a descriptor. |
| */ |
| struct mon_bin_isodesc { |
| int iso_status; |
| unsigned int iso_off; |
| unsigned int iso_len; |
| u32 _pad; |
| }; |
| |
| /* per file statistic */ |
| struct mon_bin_stats { |
| u32 queued; |
| u32 dropped; |
| }; |
| |
| struct mon_bin_get { |
| struct mon_bin_hdr __user *hdr; /* Can be 48 bytes or 64. */ |
| void __user *data; |
| size_t alloc; /* Length of data (can be zero) */ |
| }; |
| |
| struct mon_bin_mfetch { |
| u32 __user *offvec; /* Vector of events fetched */ |
| u32 nfetch; /* Number of events to fetch (out: fetched) */ |
| u32 nflush; /* Number of events to flush */ |
| }; |
| |
| #ifdef CONFIG_COMPAT |
| struct mon_bin_get32 { |
| u32 hdr32; |
| u32 data32; |
| u32 alloc32; |
| }; |
| |
| struct mon_bin_mfetch32 { |
| u32 offvec32; |
| u32 nfetch32; |
| u32 nflush32; |
| }; |
| #endif |
| |
| /* Having these two values same prevents wrapping of the mon_bin_hdr */ |
| #define PKT_ALIGN 64 |
| #define PKT_SIZE 64 |
| |
| #define PKT_SZ_API0 48 /* API 0 (2.6.20) size */ |
| #define PKT_SZ_API1 64 /* API 1 size: extra fields */ |
| |
| #define ISODESC_MAX 128 /* Same number as usbfs allows, 2048 bytes. */ |
| |
| /* max number of USB bus supported */ |
| #define MON_BIN_MAX_MINOR 128 |
| |
| /* |
| * The buffer: map of used pages. |
| */ |
| struct mon_pgmap { |
| struct page *pg; |
| unsigned char *ptr; /* XXX just use page_to_virt everywhere? */ |
| }; |
| |
| /* |
| * This gets associated with an open file struct. |
| */ |
| struct mon_reader_bin { |
| /* The buffer: one per open. */ |
| spinlock_t b_lock; /* Protect b_cnt, b_in */ |
| unsigned int b_size; /* Current size of the buffer - bytes */ |
| unsigned int b_cnt; /* Bytes used */ |
| unsigned int b_in, b_out; /* Offsets into buffer - bytes */ |
| unsigned int b_read; /* Amount of read data in curr. pkt. */ |
| struct mon_pgmap *b_vec; /* The map array */ |
| wait_queue_head_t b_wait; /* Wait for data here */ |
| |
| struct mutex fetch_lock; /* Protect b_read, b_out */ |
| int mmap_active; |
| |
| /* A list of these is needed for "bus 0". Some time later. */ |
| struct mon_reader r; |
| |
| /* Stats */ |
| unsigned int cnt_lost; |
| }; |
| |
| static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp, |
| unsigned int offset) |
| { |
| return (struct mon_bin_hdr *) |
| (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE); |
| } |
| |
| #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0) |
| |
| static unsigned char xfer_to_pipe[4] = { |
| PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT |
| }; |
| |
| static const struct class mon_bin_class = { |
| .name = "usbmon", |
| }; |
| |
| static dev_t mon_bin_dev0; |
| static struct cdev mon_bin_cdev; |
| |
| static void mon_buff_area_fill(const struct mon_reader_bin *rp, |
| unsigned int offset, unsigned int size); |
| static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp); |
| static int mon_alloc_buff(struct mon_pgmap *map, int npages); |
| static void mon_free_buff(struct mon_pgmap *map, int npages); |
| |
| /* |
| * This is a "chunked memcpy". It does not manipulate any counters. |
| */ |
| static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this, |
| unsigned int off, const unsigned char *from, unsigned int length) |
| { |
| unsigned int step_len; |
| unsigned char *buf; |
| unsigned int in_page; |
| |
| while (length) { |
| /* |
| * Determine step_len. |
| */ |
| step_len = length; |
| in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1)); |
| if (in_page < step_len) |
| step_len = in_page; |
| |
| /* |
| * Copy data and advance pointers. |
| */ |
| buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE; |
| memcpy(buf, from, step_len); |
| if ((off += step_len) >= this->b_size) off = 0; |
| from += step_len; |
| length -= step_len; |
| } |
| return off; |
| } |
| |
| /* |
| * This is a little worse than the above because it's "chunked copy_to_user". |
| * The return value is an error code, not an offset. |
| */ |
| static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off, |
| char __user *to, int length) |
| { |
| unsigned int step_len; |
| unsigned char *buf; |
| unsigned int in_page; |
| |
| while (length) { |
| /* |
| * Determine step_len. |
| */ |
| step_len = length; |
| in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1)); |
| if (in_page < step_len) |
| step_len = in_page; |
| |
| /* |
| * Copy data and advance pointers. |
| */ |
| buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE; |
| if (copy_to_user(to, buf, step_len)) |
| return -EINVAL; |
| if ((off += step_len) >= this->b_size) off = 0; |
| to += step_len; |
| length -= step_len; |
| } |
| return 0; |
| } |
| |
| /* |
| * Allocate an (aligned) area in the buffer. |
| * This is called under b_lock. |
| * Returns ~0 on failure. |
| */ |
| static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp, |
| unsigned int size) |
| { |
| unsigned int offset; |
| |
| size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); |
| if (rp->b_cnt + size > rp->b_size) |
| return ~0; |
| offset = rp->b_in; |
| rp->b_cnt += size; |
| if ((rp->b_in += size) >= rp->b_size) |
| rp->b_in -= rp->b_size; |
| return offset; |
| } |
| |
| /* |
| * This is the same thing as mon_buff_area_alloc, only it does not allow |
| * buffers to wrap. This is needed by applications which pass references |
| * into mmap-ed buffers up their stacks (libpcap can do that). |
| * |
| * Currently, we always have the header stuck with the data, although |
| * it is not strictly speaking necessary. |
| * |
| * When a buffer would wrap, we place a filler packet to mark the space. |
| */ |
| static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp, |
| unsigned int size) |
| { |
| unsigned int offset; |
| unsigned int fill_size; |
| |
| size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); |
| if (rp->b_cnt + size > rp->b_size) |
| return ~0; |
| if (rp->b_in + size > rp->b_size) { |
| /* |
| * This would wrap. Find if we still have space after |
| * skipping to the end of the buffer. If we do, place |
| * a filler packet and allocate a new packet. |
| */ |
| fill_size = rp->b_size - rp->b_in; |
| if (rp->b_cnt + size + fill_size > rp->b_size) |
| return ~0; |
| mon_buff_area_fill(rp, rp->b_in, fill_size); |
| |
| offset = 0; |
| rp->b_in = size; |
| rp->b_cnt += size + fill_size; |
| } else if (rp->b_in + size == rp->b_size) { |
| offset = rp->b_in; |
| rp->b_in = 0; |
| rp->b_cnt += size; |
| } else { |
| offset = rp->b_in; |
| rp->b_in += size; |
| rp->b_cnt += size; |
| } |
| return offset; |
| } |
| |
| /* |
| * Return a few (kilo-)bytes to the head of the buffer. |
| * This is used if a data fetch fails. |
| */ |
| static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size) |
| { |
| |
| /* size &= ~(PKT_ALIGN-1); -- we're called with aligned size */ |
| rp->b_cnt -= size; |
| if (rp->b_in < size) |
| rp->b_in += rp->b_size; |
| rp->b_in -= size; |
| } |
| |
| /* |
| * This has to be called under both b_lock and fetch_lock, because |
| * it accesses both b_cnt and b_out. |
| */ |
| static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size) |
| { |
| |
| size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); |
| rp->b_cnt -= size; |
| if ((rp->b_out += size) >= rp->b_size) |
| rp->b_out -= rp->b_size; |
| } |
| |
| static void mon_buff_area_fill(const struct mon_reader_bin *rp, |
| unsigned int offset, unsigned int size) |
| { |
| struct mon_bin_hdr *ep; |
| |
| ep = MON_OFF2HDR(rp, offset); |
| memset(ep, 0, PKT_SIZE); |
| ep->type = '@'; |
| ep->len_cap = size - PKT_SIZE; |
| } |
| |
| static inline char mon_bin_get_setup(unsigned char *setupb, |
| const struct urb *urb, char ev_type) |
| { |
| |
| if (urb->setup_packet == NULL) |
| return 'Z'; |
| memcpy(setupb, urb->setup_packet, SETUP_LEN); |
| return 0; |
| } |
| |
| static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp, |
| unsigned int offset, struct urb *urb, unsigned int length, |
| char *flag) |
| { |
| int i; |
| struct scatterlist *sg; |
| unsigned int this_len; |
| |
| *flag = 0; |
| if (urb->num_sgs == 0) { |
| if (urb->transfer_buffer == NULL) { |
| *flag = 'Z'; |
| return length; |
| } |
| mon_copy_to_buff(rp, offset, urb->transfer_buffer, length); |
| length = 0; |
| |
| } else { |
| /* If IOMMU coalescing occurred, we cannot trust sg_page */ |
| if (urb->transfer_flags & URB_DMA_SG_COMBINED) { |
| *flag = 'D'; |
| return length; |
| } |
| |
| /* Copy up to the first non-addressable segment */ |
| for_each_sg(urb->sg, sg, urb->num_sgs, i) { |
| if (length == 0 || PageHighMem(sg_page(sg))) |
| break; |
| this_len = min_t(unsigned int, sg->length, length); |
| offset = mon_copy_to_buff(rp, offset, sg_virt(sg), |
| this_len); |
| length -= this_len; |
| } |
| if (i == 0) |
| *flag = 'D'; |
| } |
| |
| return length; |
| } |
| |
| /* |
| * This is the look-ahead pass in case of 'C Zi', when actual_length cannot |
| * be used to determine the length of the whole contiguous buffer. |
| */ |
| static unsigned int mon_bin_collate_isodesc(const struct mon_reader_bin *rp, |
| struct urb *urb, unsigned int ndesc) |
| { |
| struct usb_iso_packet_descriptor *fp; |
| unsigned int length; |
| |
| length = 0; |
| fp = urb->iso_frame_desc; |
| while (ndesc-- != 0) { |
| if (fp->actual_length != 0) { |
| if (fp->offset + fp->actual_length > length) |
| length = fp->offset + fp->actual_length; |
| } |
| fp++; |
| } |
| return length; |
| } |
| |
| static void mon_bin_get_isodesc(const struct mon_reader_bin *rp, |
| unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc) |
| { |
| struct mon_bin_isodesc *dp; |
| struct usb_iso_packet_descriptor *fp; |
| |
| fp = urb->iso_frame_desc; |
| while (ndesc-- != 0) { |
| dp = (struct mon_bin_isodesc *) |
| (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE); |
| dp->iso_status = fp->status; |
| dp->iso_off = fp->offset; |
| dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length; |
| dp->_pad = 0; |
| if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size) |
| offset = 0; |
| fp++; |
| } |
| } |
| |
| static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb, |
| char ev_type, int status) |
| { |
| const struct usb_endpoint_descriptor *epd = &urb->ep->desc; |
| struct timespec64 ts; |
| unsigned long flags; |
| unsigned int urb_length; |
| unsigned int offset; |
| unsigned int length; |
| unsigned int delta; |
| unsigned int ndesc, lendesc; |
| unsigned char dir; |
| struct mon_bin_hdr *ep; |
| char data_tag = 0; |
| |
| ktime_get_real_ts64(&ts); |
| |
| spin_lock_irqsave(&rp->b_lock, flags); |
| |
| /* |
| * Find the maximum allowable length, then allocate space. |
| */ |
| urb_length = (ev_type == 'S') ? |
| urb->transfer_buffer_length : urb->actual_length; |
| length = urb_length; |
| |
| if (usb_endpoint_xfer_isoc(epd)) { |
| if (urb->number_of_packets < 0) { |
| ndesc = 0; |
| } else if (urb->number_of_packets >= ISODESC_MAX) { |
| ndesc = ISODESC_MAX; |
| } else { |
| ndesc = urb->number_of_packets; |
| } |
| if (ev_type == 'C' && usb_urb_dir_in(urb)) |
| length = mon_bin_collate_isodesc(rp, urb, ndesc); |
| } else { |
| ndesc = 0; |
| } |
| lendesc = ndesc*sizeof(struct mon_bin_isodesc); |
| |
| /* not an issue unless there's a subtle bug in a HCD somewhere */ |
| if (length >= urb->transfer_buffer_length) |
| length = urb->transfer_buffer_length; |
| |
| if (length >= rp->b_size/5) |
| length = rp->b_size/5; |
| |
| if (usb_urb_dir_in(urb)) { |
| if (ev_type == 'S') { |
| length = 0; |
| data_tag = '<'; |
| } |
| /* Cannot rely on endpoint number in case of control ep.0 */ |
| dir = USB_DIR_IN; |
| } else { |
| if (ev_type == 'C') { |
| length = 0; |
| data_tag = '>'; |
| } |
| dir = 0; |
| } |
| |
| if (rp->mmap_active) { |
| offset = mon_buff_area_alloc_contiguous(rp, |
| length + PKT_SIZE + lendesc); |
| } else { |
| offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc); |
| } |
| if (offset == ~0) { |
| rp->cnt_lost++; |
| spin_unlock_irqrestore(&rp->b_lock, flags); |
| return; |
| } |
| |
| ep = MON_OFF2HDR(rp, offset); |
| if ((offset += PKT_SIZE) >= rp->b_size) offset = 0; |
| |
| /* |
| * Fill the allocated area. |
| */ |
| memset(ep, 0, PKT_SIZE); |
| ep->type = ev_type; |
| ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)]; |
| ep->epnum = dir | usb_endpoint_num(epd); |
| ep->devnum = urb->dev->devnum; |
| ep->busnum = urb->dev->bus->busnum; |
| ep->id = (unsigned long) urb; |
| ep->ts_sec = ts.tv_sec; |
| ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC; |
| ep->status = status; |
| ep->len_urb = urb_length; |
| ep->len_cap = length + lendesc; |
| ep->xfer_flags = urb->transfer_flags; |
| |
| if (usb_endpoint_xfer_int(epd)) { |
| ep->interval = urb->interval; |
| } else if (usb_endpoint_xfer_isoc(epd)) { |
| ep->interval = urb->interval; |
| ep->start_frame = urb->start_frame; |
| ep->s.iso.error_count = urb->error_count; |
| ep->s.iso.numdesc = urb->number_of_packets; |
| } |
| |
| if (usb_endpoint_xfer_control(epd) && ev_type == 'S') { |
| ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type); |
| } else { |
| ep->flag_setup = '-'; |
| } |
| |
| if (ndesc != 0) { |
| ep->ndesc = ndesc; |
| mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc); |
| if ((offset += lendesc) >= rp->b_size) |
| offset -= rp->b_size; |
| } |
| |
| if (length != 0) { |
| length = mon_bin_get_data(rp, offset, urb, length, |
| &ep->flag_data); |
| if (length > 0) { |
| delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1); |
| ep->len_cap -= length; |
| delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1); |
| mon_buff_area_shrink(rp, delta); |
| } |
| } else { |
| ep->flag_data = data_tag; |
| } |
| |
| spin_unlock_irqrestore(&rp->b_lock, flags); |
| |
| wake_up(&rp->b_wait); |
| } |
| |
| static void mon_bin_submit(void *data, struct urb *urb) |
| { |
| struct mon_reader_bin *rp = data; |
| mon_bin_event(rp, urb, 'S', -EINPROGRESS); |
| } |
| |
| static void mon_bin_complete(void *data, struct urb *urb, int status) |
| { |
| struct mon_reader_bin *rp = data; |
| mon_bin_event(rp, urb, 'C', status); |
| } |
| |
| static void mon_bin_error(void *data, struct urb *urb, int error) |
| { |
| struct mon_reader_bin *rp = data; |
| struct timespec64 ts; |
| unsigned long flags; |
| unsigned int offset; |
| struct mon_bin_hdr *ep; |
| |
| ktime_get_real_ts64(&ts); |
| |
| spin_lock_irqsave(&rp->b_lock, flags); |
| |
| offset = mon_buff_area_alloc(rp, PKT_SIZE); |
| if (offset == ~0) { |
| /* Not incrementing cnt_lost. Just because. */ |
| spin_unlock_irqrestore(&rp->b_lock, flags); |
| return; |
| } |
| |
| ep = MON_OFF2HDR(rp, offset); |
| |
| memset(ep, 0, PKT_SIZE); |
| ep->type = 'E'; |
| ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)]; |
| ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0; |
| ep->epnum |= usb_endpoint_num(&urb->ep->desc); |
| ep->devnum = urb->dev->devnum; |
| ep->busnum = urb->dev->bus->busnum; |
| ep->id = (unsigned long) urb; |
| ep->ts_sec = ts.tv_sec; |
| ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC; |
| ep->status = error; |
| |
| ep->flag_setup = '-'; |
| ep->flag_data = 'E'; |
| |
| spin_unlock_irqrestore(&rp->b_lock, flags); |
| |
| wake_up(&rp->b_wait); |
| } |
| |
| static int mon_bin_open(struct inode *inode, struct file *file) |
| { |
| struct mon_bus *mbus; |
| struct mon_reader_bin *rp; |
| size_t size; |
| int rc; |
| |
| mutex_lock(&mon_lock); |
| mbus = mon_bus_lookup(iminor(inode)); |
| if (mbus == NULL) { |
| mutex_unlock(&mon_lock); |
| return -ENODEV; |
| } |
| if (mbus != &mon_bus0 && mbus->u_bus == NULL) { |
| printk(KERN_ERR TAG ": consistency error on open\n"); |
| mutex_unlock(&mon_lock); |
| return -ENODEV; |
| } |
| |
| rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL); |
| if (rp == NULL) { |
| rc = -ENOMEM; |
| goto err_alloc; |
| } |
| spin_lock_init(&rp->b_lock); |
| init_waitqueue_head(&rp->b_wait); |
| mutex_init(&rp->fetch_lock); |
| rp->b_size = BUFF_DFL; |
| |
| size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE); |
| if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) { |
| rc = -ENOMEM; |
| goto err_allocvec; |
| } |
| |
| if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0) |
| goto err_allocbuff; |
| |
| rp->r.m_bus = mbus; |
| rp->r.r_data = rp; |
| rp->r.rnf_submit = mon_bin_submit; |
| rp->r.rnf_error = mon_bin_error; |
| rp->r.rnf_complete = mon_bin_complete; |
| |
| mon_reader_add(mbus, &rp->r); |
| |
| file->private_data = rp; |
| mutex_unlock(&mon_lock); |
| return 0; |
| |
| err_allocbuff: |
| kfree(rp->b_vec); |
| err_allocvec: |
| kfree(rp); |
| err_alloc: |
| mutex_unlock(&mon_lock); |
| return rc; |
| } |
| |
| /* |
| * Extract an event from buffer and copy it to user space. |
| * Wait if there is no event ready. |
| * Returns zero or error. |
| */ |
| static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp, |
| struct mon_bin_hdr __user *hdr, unsigned int hdrbytes, |
| void __user *data, unsigned int nbytes) |
| { |
| unsigned long flags; |
| struct mon_bin_hdr *ep; |
| size_t step_len; |
| unsigned int offset; |
| int rc; |
| |
| mutex_lock(&rp->fetch_lock); |
| |
| if ((rc = mon_bin_wait_event(file, rp)) < 0) { |
| mutex_unlock(&rp->fetch_lock); |
| return rc; |
| } |
| |
| ep = MON_OFF2HDR(rp, rp->b_out); |
| |
| if (copy_to_user(hdr, ep, hdrbytes)) { |
| mutex_unlock(&rp->fetch_lock); |
| return -EFAULT; |
| } |
| |
| step_len = min(ep->len_cap, nbytes); |
| if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0; |
| |
| if (copy_from_buf(rp, offset, data, step_len)) { |
| mutex_unlock(&rp->fetch_lock); |
| return -EFAULT; |
| } |
| |
| spin_lock_irqsave(&rp->b_lock, flags); |
| mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); |
| spin_unlock_irqrestore(&rp->b_lock, flags); |
| rp->b_read = 0; |
| |
| mutex_unlock(&rp->fetch_lock); |
| return 0; |
| } |
| |
| static int mon_bin_release(struct inode *inode, struct file *file) |
| { |
| struct mon_reader_bin *rp = file->private_data; |
| struct mon_bus* mbus = rp->r.m_bus; |
| |
| mutex_lock(&mon_lock); |
| |
| if (mbus->nreaders <= 0) { |
| printk(KERN_ERR TAG ": consistency error on close\n"); |
| mutex_unlock(&mon_lock); |
| return 0; |
| } |
| mon_reader_del(mbus, &rp->r); |
| |
| mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE); |
| kfree(rp->b_vec); |
| kfree(rp); |
| |
| mutex_unlock(&mon_lock); |
| return 0; |
| } |
| |
| static ssize_t mon_bin_read(struct file *file, char __user *buf, |
| size_t nbytes, loff_t *ppos) |
| { |
| struct mon_reader_bin *rp = file->private_data; |
| unsigned int hdrbytes = PKT_SZ_API0; |
| unsigned long flags; |
| struct mon_bin_hdr *ep; |
| unsigned int offset; |
| size_t step_len; |
| char *ptr; |
| ssize_t done = 0; |
| int rc; |
| |
| mutex_lock(&rp->fetch_lock); |
| |
| if ((rc = mon_bin_wait_event(file, rp)) < 0) { |
| mutex_unlock(&rp->fetch_lock); |
| return rc; |
| } |
| |
| ep = MON_OFF2HDR(rp, rp->b_out); |
| |
| if (rp->b_read < hdrbytes) { |
| step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read)); |
| ptr = ((char *)ep) + rp->b_read; |
| if (step_len && copy_to_user(buf, ptr, step_len)) { |
| mutex_unlock(&rp->fetch_lock); |
| return -EFAULT; |
| } |
| nbytes -= step_len; |
| buf += step_len; |
| rp->b_read += step_len; |
| done += step_len; |
| } |
| |
| if (rp->b_read >= hdrbytes) { |
| step_len = ep->len_cap; |
| step_len -= rp->b_read - hdrbytes; |
| if (step_len > nbytes) |
| step_len = nbytes; |
| offset = rp->b_out + PKT_SIZE; |
| offset += rp->b_read - hdrbytes; |
| if (offset >= rp->b_size) |
| offset -= rp->b_size; |
| if (copy_from_buf(rp, offset, buf, step_len)) { |
| mutex_unlock(&rp->fetch_lock); |
| return -EFAULT; |
| } |
| nbytes -= step_len; |
| buf += step_len; |
| rp->b_read += step_len; |
| done += step_len; |
| } |
| |
| /* |
| * Check if whole packet was read, and if so, jump to the next one. |
| */ |
| if (rp->b_read >= hdrbytes + ep->len_cap) { |
| spin_lock_irqsave(&rp->b_lock, flags); |
| mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); |
| spin_unlock_irqrestore(&rp->b_lock, flags); |
| rp->b_read = 0; |
| } |
| |
| mutex_unlock(&rp->fetch_lock); |
| return done; |
| } |
| |
| /* |
| * Remove at most nevents from chunked buffer. |
| * Returns the number of removed events. |
| */ |
| static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents) |
| { |
| unsigned long flags; |
| struct mon_bin_hdr *ep; |
| int i; |
| |
| mutex_lock(&rp->fetch_lock); |
| spin_lock_irqsave(&rp->b_lock, flags); |
| for (i = 0; i < nevents; ++i) { |
| if (MON_RING_EMPTY(rp)) |
| break; |
| |
| ep = MON_OFF2HDR(rp, rp->b_out); |
| mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); |
| } |
| spin_unlock_irqrestore(&rp->b_lock, flags); |
| rp->b_read = 0; |
| mutex_unlock(&rp->fetch_lock); |
| return i; |
| } |
| |
| /* |
| * Fetch at most max event offsets into the buffer and put them into vec. |
| * The events are usually freed later with mon_bin_flush. |
| * Return the effective number of events fetched. |
| */ |
| static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp, |
| u32 __user *vec, unsigned int max) |
| { |
| unsigned int cur_out; |
| unsigned int bytes, avail; |
| unsigned int size; |
| unsigned int nevents; |
| struct mon_bin_hdr *ep; |
| unsigned long flags; |
| int rc; |
| |
| mutex_lock(&rp->fetch_lock); |
| |
| if ((rc = mon_bin_wait_event(file, rp)) < 0) { |
| mutex_unlock(&rp->fetch_lock); |
| return rc; |
| } |
| |
| spin_lock_irqsave(&rp->b_lock, flags); |
| avail = rp->b_cnt; |
| spin_unlock_irqrestore(&rp->b_lock, flags); |
| |
| cur_out = rp->b_out; |
| nevents = 0; |
| bytes = 0; |
| while (bytes < avail) { |
| if (nevents >= max) |
| break; |
| |
| ep = MON_OFF2HDR(rp, cur_out); |
| if (put_user(cur_out, &vec[nevents])) { |
| mutex_unlock(&rp->fetch_lock); |
| return -EFAULT; |
| } |
| |
| nevents++; |
| size = ep->len_cap + PKT_SIZE; |
| size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); |
| if ((cur_out += size) >= rp->b_size) |
| cur_out -= rp->b_size; |
| bytes += size; |
| } |
| |
| mutex_unlock(&rp->fetch_lock); |
| return nevents; |
| } |
| |
| /* |
| * Count events. This is almost the same as the above mon_bin_fetch, |
| * only we do not store offsets into user vector, and we have no limit. |
| */ |
| static int mon_bin_queued(struct mon_reader_bin *rp) |
| { |
| unsigned int cur_out; |
| unsigned int bytes, avail; |
| unsigned int size; |
| unsigned int nevents; |
| struct mon_bin_hdr *ep; |
| unsigned long flags; |
| |
| mutex_lock(&rp->fetch_lock); |
| |
| spin_lock_irqsave(&rp->b_lock, flags); |
| avail = rp->b_cnt; |
| spin_unlock_irqrestore(&rp->b_lock, flags); |
| |
| cur_out = rp->b_out; |
| nevents = 0; |
| bytes = 0; |
| while (bytes < avail) { |
| ep = MON_OFF2HDR(rp, cur_out); |
| |
| nevents++; |
| size = ep->len_cap + PKT_SIZE; |
| size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); |
| if ((cur_out += size) >= rp->b_size) |
| cur_out -= rp->b_size; |
| bytes += size; |
| } |
| |
| mutex_unlock(&rp->fetch_lock); |
| return nevents; |
| } |
| |
| /* |
| */ |
| static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg) |
| { |
| struct mon_reader_bin *rp = file->private_data; |
| // struct mon_bus* mbus = rp->r.m_bus; |
| int ret = 0; |
| struct mon_bin_hdr *ep; |
| unsigned long flags; |
| |
| switch (cmd) { |
| |
| case MON_IOCQ_URB_LEN: |
| /* |
| * N.B. This only returns the size of data, without the header. |
| */ |
| spin_lock_irqsave(&rp->b_lock, flags); |
| if (!MON_RING_EMPTY(rp)) { |
| ep = MON_OFF2HDR(rp, rp->b_out); |
| ret = ep->len_cap; |
| } |
| spin_unlock_irqrestore(&rp->b_lock, flags); |
| break; |
| |
| case MON_IOCQ_RING_SIZE: |
| mutex_lock(&rp->fetch_lock); |
| ret = rp->b_size; |
| mutex_unlock(&rp->fetch_lock); |
| break; |
| |
| case MON_IOCT_RING_SIZE: |
| /* |
| * Changing the buffer size will flush it's contents; the new |
| * buffer is allocated before releasing the old one to be sure |
| * the device will stay functional also in case of memory |
| * pressure. |
| */ |
| { |
| int size; |
| struct mon_pgmap *vec; |
| |
| if (arg < BUFF_MIN || arg > BUFF_MAX) |
| return -EINVAL; |
| |
| size = CHUNK_ALIGN(arg); |
| vec = kcalloc(size / CHUNK_SIZE, sizeof(struct mon_pgmap), |
| GFP_KERNEL); |
| if (vec == NULL) { |
| ret = -ENOMEM; |
| break; |
| } |
| |
| ret = mon_alloc_buff(vec, size/CHUNK_SIZE); |
| if (ret < 0) { |
| kfree(vec); |
| break; |
| } |
| |
| mutex_lock(&rp->fetch_lock); |
| spin_lock_irqsave(&rp->b_lock, flags); |
| if (rp->mmap_active) { |
| mon_free_buff(vec, size/CHUNK_SIZE); |
| kfree(vec); |
| ret = -EBUSY; |
| } else { |
| mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE); |
| kfree(rp->b_vec); |
| rp->b_vec = vec; |
| rp->b_size = size; |
| rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0; |
| rp->cnt_lost = 0; |
| } |
| spin_unlock_irqrestore(&rp->b_lock, flags); |
| mutex_unlock(&rp->fetch_lock); |
| } |
| break; |
| |
| case MON_IOCH_MFLUSH: |
| ret = mon_bin_flush(rp, arg); |
| break; |
| |
| case MON_IOCX_GET: |
| case MON_IOCX_GETX: |
| { |
| struct mon_bin_get getb; |
| |
| if (copy_from_user(&getb, (void __user *)arg, |
| sizeof(struct mon_bin_get))) |
| return -EFAULT; |
| |
| if (getb.alloc > 0x10000000) /* Want to cast to u32 */ |
| return -EINVAL; |
| ret = mon_bin_get_event(file, rp, getb.hdr, |
| (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1, |
| getb.data, (unsigned int)getb.alloc); |
| } |
| break; |
| |
| case MON_IOCX_MFETCH: |
| { |
| struct mon_bin_mfetch mfetch; |
| struct mon_bin_mfetch __user *uptr; |
| |
| uptr = (struct mon_bin_mfetch __user *)arg; |
| |
| if (copy_from_user(&mfetch, uptr, sizeof(mfetch))) |
| return -EFAULT; |
| |
| if (mfetch.nflush) { |
| ret = mon_bin_flush(rp, mfetch.nflush); |
| if (ret < 0) |
| return ret; |
| if (put_user(ret, &uptr->nflush)) |
| return -EFAULT; |
| } |
| ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch); |
| if (ret < 0) |
| return ret; |
| if (put_user(ret, &uptr->nfetch)) |
| return -EFAULT; |
| ret = 0; |
| } |
| break; |
| |
| case MON_IOCG_STATS: { |
| struct mon_bin_stats __user *sp; |
| unsigned int nevents; |
| unsigned int ndropped; |
| |
| spin_lock_irqsave(&rp->b_lock, flags); |
| ndropped = rp->cnt_lost; |
| rp->cnt_lost = 0; |
| spin_unlock_irqrestore(&rp->b_lock, flags); |
| nevents = mon_bin_queued(rp); |
| |
| sp = (struct mon_bin_stats __user *)arg; |
| if (put_user(ndropped, &sp->dropped)) |
| return -EFAULT; |
| if (put_user(nevents, &sp->queued)) |
| return -EFAULT; |
| |
| } |
| break; |
| |
| default: |
| return -ENOTTY; |
| } |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_COMPAT |
| static long mon_bin_compat_ioctl(struct file *file, |
| unsigned int cmd, unsigned long arg) |
| { |
| struct mon_reader_bin *rp = file->private_data; |
| int ret; |
| |
| switch (cmd) { |
| |
| case MON_IOCX_GET32: |
| case MON_IOCX_GETX32: |
| { |
| struct mon_bin_get32 getb; |
| |
| if (copy_from_user(&getb, (void __user *)arg, |
| sizeof(struct mon_bin_get32))) |
| return -EFAULT; |
| |
| ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32), |
| (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1, |
| compat_ptr(getb.data32), getb.alloc32); |
| if (ret < 0) |
| return ret; |
| } |
| return 0; |
| |
| case MON_IOCX_MFETCH32: |
| { |
| struct mon_bin_mfetch32 mfetch; |
| struct mon_bin_mfetch32 __user *uptr; |
| |
| uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg); |
| |
| if (copy_from_user(&mfetch, uptr, sizeof(mfetch))) |
| return -EFAULT; |
| |
| if (mfetch.nflush32) { |
| ret = mon_bin_flush(rp, mfetch.nflush32); |
| if (ret < 0) |
| return ret; |
| if (put_user(ret, &uptr->nflush32)) |
| return -EFAULT; |
| } |
| ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32), |
| mfetch.nfetch32); |
| if (ret < 0) |
| return ret; |
| if (put_user(ret, &uptr->nfetch32)) |
| return -EFAULT; |
| } |
| return 0; |
| |
| case MON_IOCG_STATS: |
| return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); |
| |
| case MON_IOCQ_URB_LEN: |
| case MON_IOCQ_RING_SIZE: |
| case MON_IOCT_RING_SIZE: |
| case MON_IOCH_MFLUSH: |
| return mon_bin_ioctl(file, cmd, arg); |
| |
| default: |
| ; |
| } |
| return -ENOTTY; |
| } |
| #endif /* CONFIG_COMPAT */ |
| |
| static __poll_t |
| mon_bin_poll(struct file *file, struct poll_table_struct *wait) |
| { |
| struct mon_reader_bin *rp = file->private_data; |
| __poll_t mask = 0; |
| unsigned long flags; |
| |
| if (file->f_mode & FMODE_READ) |
| poll_wait(file, &rp->b_wait, wait); |
| |
| spin_lock_irqsave(&rp->b_lock, flags); |
| if (!MON_RING_EMPTY(rp)) |
| mask |= EPOLLIN | EPOLLRDNORM; /* readable */ |
| spin_unlock_irqrestore(&rp->b_lock, flags); |
| return mask; |
| } |
| |
| /* |
| * open and close: just keep track of how many times the device is |
| * mapped, to use the proper memory allocation function. |
| */ |
| static void mon_bin_vma_open(struct vm_area_struct *vma) |
| { |
| struct mon_reader_bin *rp = vma->vm_private_data; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&rp->b_lock, flags); |
| rp->mmap_active++; |
| spin_unlock_irqrestore(&rp->b_lock, flags); |
| } |
| |
| static void mon_bin_vma_close(struct vm_area_struct *vma) |
| { |
| unsigned long flags; |
| |
| struct mon_reader_bin *rp = vma->vm_private_data; |
| spin_lock_irqsave(&rp->b_lock, flags); |
| rp->mmap_active--; |
| spin_unlock_irqrestore(&rp->b_lock, flags); |
| } |
| |
| /* |
| * Map ring pages to user space. |
| */ |
| static vm_fault_t mon_bin_vma_fault(struct vm_fault *vmf) |
| { |
| struct mon_reader_bin *rp = vmf->vma->vm_private_data; |
| unsigned long offset, chunk_idx; |
| struct page *pageptr; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&rp->b_lock, flags); |
| offset = vmf->pgoff << PAGE_SHIFT; |
| if (offset >= rp->b_size) { |
| spin_unlock_irqrestore(&rp->b_lock, flags); |
| return VM_FAULT_SIGBUS; |
| } |
| chunk_idx = offset / CHUNK_SIZE; |
| pageptr = rp->b_vec[chunk_idx].pg; |
| get_page(pageptr); |
| vmf->page = pageptr; |
| spin_unlock_irqrestore(&rp->b_lock, flags); |
| return 0; |
| } |
| |
| static const struct vm_operations_struct mon_bin_vm_ops = { |
| .open = mon_bin_vma_open, |
| .close = mon_bin_vma_close, |
| .fault = mon_bin_vma_fault, |
| }; |
| |
| static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma) |
| { |
| /* don't do anything here: "fault" will set up page table entries */ |
| vma->vm_ops = &mon_bin_vm_ops; |
| |
| if (vma->vm_flags & VM_WRITE) |
| return -EPERM; |
| |
| vm_flags_mod(vma, VM_DONTEXPAND | VM_DONTDUMP, VM_MAYWRITE); |
| vma->vm_private_data = filp->private_data; |
| mon_bin_vma_open(vma); |
| return 0; |
| } |
| |
| static const struct file_operations mon_fops_binary = { |
| .owner = THIS_MODULE, |
| .open = mon_bin_open, |
| .read = mon_bin_read, |
| /* .write = mon_text_write, */ |
| .poll = mon_bin_poll, |
| .unlocked_ioctl = mon_bin_ioctl, |
| #ifdef CONFIG_COMPAT |
| .compat_ioctl = mon_bin_compat_ioctl, |
| #endif |
| .release = mon_bin_release, |
| .mmap = mon_bin_mmap, |
| }; |
| |
| static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp) |
| { |
| DECLARE_WAITQUEUE(waita, current); |
| unsigned long flags; |
| |
| add_wait_queue(&rp->b_wait, &waita); |
| set_current_state(TASK_INTERRUPTIBLE); |
| |
| spin_lock_irqsave(&rp->b_lock, flags); |
| while (MON_RING_EMPTY(rp)) { |
| spin_unlock_irqrestore(&rp->b_lock, flags); |
| |
| if (file->f_flags & O_NONBLOCK) { |
| set_current_state(TASK_RUNNING); |
| remove_wait_queue(&rp->b_wait, &waita); |
| return -EWOULDBLOCK; /* Same as EAGAIN in Linux */ |
| } |
| schedule(); |
| if (signal_pending(current)) { |
| remove_wait_queue(&rp->b_wait, &waita); |
| return -EINTR; |
| } |
| set_current_state(TASK_INTERRUPTIBLE); |
| |
| spin_lock_irqsave(&rp->b_lock, flags); |
| } |
| spin_unlock_irqrestore(&rp->b_lock, flags); |
| |
| set_current_state(TASK_RUNNING); |
| remove_wait_queue(&rp->b_wait, &waita); |
| return 0; |
| } |
| |
| static int mon_alloc_buff(struct mon_pgmap *map, int npages) |
| { |
| int n; |
| unsigned long vaddr; |
| |
| for (n = 0; n < npages; n++) { |
| vaddr = get_zeroed_page(GFP_KERNEL); |
| if (vaddr == 0) { |
| while (n-- != 0) |
| free_page((unsigned long) map[n].ptr); |
| return -ENOMEM; |
| } |
| map[n].ptr = (unsigned char *) vaddr; |
| map[n].pg = virt_to_page((void *) vaddr); |
| } |
| return 0; |
| } |
| |
| static void mon_free_buff(struct mon_pgmap *map, int npages) |
| { |
| int n; |
| |
| for (n = 0; n < npages; n++) |
| free_page((unsigned long) map[n].ptr); |
| } |
| |
| int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus) |
| { |
| struct device *dev; |
| unsigned minor = ubus? ubus->busnum: 0; |
| |
| if (minor >= MON_BIN_MAX_MINOR) |
| return 0; |
| |
| dev = device_create(&mon_bin_class, ubus ? ubus->controller : NULL, |
| MKDEV(MAJOR(mon_bin_dev0), minor), NULL, |
| "usbmon%d", minor); |
| if (IS_ERR(dev)) |
| return 0; |
| |
| mbus->classdev = dev; |
| return 1; |
| } |
| |
| void mon_bin_del(struct mon_bus *mbus) |
| { |
| device_destroy(&mon_bin_class, mbus->classdev->devt); |
| } |
| |
| int __init mon_bin_init(void) |
| { |
| int rc; |
| |
| rc = class_register(&mon_bin_class); |
| if (rc) |
| goto err_class; |
| |
| rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon"); |
| if (rc < 0) |
| goto err_dev; |
| |
| cdev_init(&mon_bin_cdev, &mon_fops_binary); |
| mon_bin_cdev.owner = THIS_MODULE; |
| |
| rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR); |
| if (rc < 0) |
| goto err_add; |
| |
| return 0; |
| |
| err_add: |
| unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR); |
| err_dev: |
| class_unregister(&mon_bin_class); |
| err_class: |
| return rc; |
| } |
| |
| void mon_bin_exit(void) |
| { |
| cdev_del(&mon_bin_cdev); |
| unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR); |
| class_unregister(&mon_bin_class); |
| } |