| // SPDX-License-Identifier: GPL-2.0 |
| |
| #include <linux/slab.h> |
| #include "messages.h" |
| #include "ctree.h" |
| #include "subpage.h" |
| #include "btrfs_inode.h" |
| |
| /* |
| * Subpage (sectorsize < PAGE_SIZE) support overview: |
| * |
| * Limitations: |
| * |
| * - Only support 64K page size for now |
| * This is to make metadata handling easier, as 64K page would ensure |
| * all nodesize would fit inside one page, thus we don't need to handle |
| * cases where a tree block crosses several pages. |
| * |
| * - Only metadata read-write for now |
| * The data read-write part is in development. |
| * |
| * - Metadata can't cross 64K page boundary |
| * btrfs-progs and kernel have done that for a while, thus only ancient |
| * filesystems could have such problem. For such case, do a graceful |
| * rejection. |
| * |
| * Special behavior: |
| * |
| * - Metadata |
| * Metadata read is fully supported. |
| * Meaning when reading one tree block will only trigger the read for the |
| * needed range, other unrelated range in the same page will not be touched. |
| * |
| * Metadata write support is partial. |
| * The writeback is still for the full page, but we will only submit |
| * the dirty extent buffers in the page. |
| * |
| * This means, if we have a metadata page like this: |
| * |
| * Page offset |
| * 0 16K 32K 48K 64K |
| * |/////////| |///////////| |
| * \- Tree block A \- Tree block B |
| * |
| * Even if we just want to writeback tree block A, we will also writeback |
| * tree block B if it's also dirty. |
| * |
| * This may cause extra metadata writeback which results more COW. |
| * |
| * Implementation: |
| * |
| * - Common |
| * Both metadata and data will use a new structure, btrfs_subpage, to |
| * record the status of each sector inside a page. This provides the extra |
| * granularity needed. |
| * |
| * - Metadata |
| * Since we have multiple tree blocks inside one page, we can't rely on page |
| * locking anymore, or we will have greatly reduced concurrency or even |
| * deadlocks (hold one tree lock while trying to lock another tree lock in |
| * the same page). |
| * |
| * Thus for metadata locking, subpage support relies on io_tree locking only. |
| * This means a slightly higher tree locking latency. |
| */ |
| |
| #if PAGE_SIZE > SZ_4K |
| bool btrfs_is_subpage(const struct btrfs_fs_info *fs_info, struct address_space *mapping) |
| { |
| if (fs_info->sectorsize >= PAGE_SIZE) |
| return false; |
| |
| /* |
| * Only data pages (either through DIO or compression) can have no |
| * mapping. And if page->mapping->host is data inode, it's subpage. |
| * As we have ruled our sectorsize >= PAGE_SIZE case already. |
| */ |
| if (!mapping || !mapping->host || is_data_inode(BTRFS_I(mapping->host))) |
| return true; |
| |
| /* |
| * Now the only remaining case is metadata, which we only go subpage |
| * routine if nodesize < PAGE_SIZE. |
| */ |
| if (fs_info->nodesize < PAGE_SIZE) |
| return true; |
| return false; |
| } |
| #endif |
| |
| int btrfs_attach_subpage(const struct btrfs_fs_info *fs_info, |
| struct folio *folio, enum btrfs_subpage_type type) |
| { |
| struct btrfs_subpage *subpage; |
| |
| /* |
| * We have cases like a dummy extent buffer page, which is not mapped |
| * and doesn't need to be locked. |
| */ |
| if (folio->mapping) |
| ASSERT(folio_test_locked(folio)); |
| |
| /* Either not subpage, or the folio already has private attached. */ |
| if (!btrfs_is_subpage(fs_info, folio->mapping) || folio_test_private(folio)) |
| return 0; |
| |
| subpage = btrfs_alloc_subpage(fs_info, type); |
| if (IS_ERR(subpage)) |
| return PTR_ERR(subpage); |
| |
| folio_attach_private(folio, subpage); |
| return 0; |
| } |
| |
| void btrfs_detach_subpage(const struct btrfs_fs_info *fs_info, struct folio *folio) |
| { |
| struct btrfs_subpage *subpage; |
| |
| /* Either not subpage, or the folio already has private attached. */ |
| if (!btrfs_is_subpage(fs_info, folio->mapping) || !folio_test_private(folio)) |
| return; |
| |
| subpage = folio_detach_private(folio); |
| ASSERT(subpage); |
| btrfs_free_subpage(subpage); |
| } |
| |
| struct btrfs_subpage *btrfs_alloc_subpage(const struct btrfs_fs_info *fs_info, |
| enum btrfs_subpage_type type) |
| { |
| struct btrfs_subpage *ret; |
| unsigned int real_size; |
| |
| ASSERT(fs_info->sectorsize < PAGE_SIZE); |
| |
| real_size = struct_size(ret, bitmaps, |
| BITS_TO_LONGS(btrfs_bitmap_nr_max * fs_info->sectors_per_page)); |
| ret = kzalloc(real_size, GFP_NOFS); |
| if (!ret) |
| return ERR_PTR(-ENOMEM); |
| |
| spin_lock_init(&ret->lock); |
| if (type == BTRFS_SUBPAGE_METADATA) |
| atomic_set(&ret->eb_refs, 0); |
| else |
| atomic_set(&ret->nr_locked, 0); |
| return ret; |
| } |
| |
| void btrfs_free_subpage(struct btrfs_subpage *subpage) |
| { |
| kfree(subpage); |
| } |
| |
| /* |
| * Increase the eb_refs of current subpage. |
| * |
| * This is important for eb allocation, to prevent race with last eb freeing |
| * of the same page. |
| * With the eb_refs increased before the eb inserted into radix tree, |
| * detach_extent_buffer_page() won't detach the folio private while we're still |
| * allocating the extent buffer. |
| */ |
| void btrfs_folio_inc_eb_refs(const struct btrfs_fs_info *fs_info, struct folio *folio) |
| { |
| struct btrfs_subpage *subpage; |
| |
| if (!btrfs_is_subpage(fs_info, folio->mapping)) |
| return; |
| |
| ASSERT(folio_test_private(folio) && folio->mapping); |
| lockdep_assert_held(&folio->mapping->i_private_lock); |
| |
| subpage = folio_get_private(folio); |
| atomic_inc(&subpage->eb_refs); |
| } |
| |
| void btrfs_folio_dec_eb_refs(const struct btrfs_fs_info *fs_info, struct folio *folio) |
| { |
| struct btrfs_subpage *subpage; |
| |
| if (!btrfs_is_subpage(fs_info, folio->mapping)) |
| return; |
| |
| ASSERT(folio_test_private(folio) && folio->mapping); |
| lockdep_assert_held(&folio->mapping->i_private_lock); |
| |
| subpage = folio_get_private(folio); |
| ASSERT(atomic_read(&subpage->eb_refs)); |
| atomic_dec(&subpage->eb_refs); |
| } |
| |
| static void btrfs_subpage_assert(const struct btrfs_fs_info *fs_info, |
| struct folio *folio, u64 start, u32 len) |
| { |
| /* For subpage support, the folio must be single page. */ |
| ASSERT(folio_order(folio) == 0); |
| |
| /* Basic checks */ |
| ASSERT(folio_test_private(folio) && folio_get_private(folio)); |
| ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && |
| IS_ALIGNED(len, fs_info->sectorsize)); |
| /* |
| * The range check only works for mapped page, we can still have |
| * unmapped page like dummy extent buffer pages. |
| */ |
| if (folio->mapping) |
| ASSERT(folio_pos(folio) <= start && |
| start + len <= folio_pos(folio) + PAGE_SIZE); |
| } |
| |
| #define subpage_calc_start_bit(fs_info, folio, name, start, len) \ |
| ({ \ |
| unsigned int __start_bit; \ |
| \ |
| btrfs_subpage_assert(fs_info, folio, start, len); \ |
| __start_bit = offset_in_page(start) >> fs_info->sectorsize_bits; \ |
| __start_bit += fs_info->sectors_per_page * btrfs_bitmap_nr_##name; \ |
| __start_bit; \ |
| }) |
| |
| static void btrfs_subpage_clamp_range(struct folio *folio, u64 *start, u32 *len) |
| { |
| u64 orig_start = *start; |
| u32 orig_len = *len; |
| |
| *start = max_t(u64, folio_pos(folio), orig_start); |
| /* |
| * For certain call sites like btrfs_drop_pages(), we may have pages |
| * beyond the target range. In that case, just set @len to 0, subpage |
| * helpers can handle @len == 0 without any problem. |
| */ |
| if (folio_pos(folio) >= orig_start + orig_len) |
| *len = 0; |
| else |
| *len = min_t(u64, folio_pos(folio) + PAGE_SIZE, |
| orig_start + orig_len) - *start; |
| } |
| |
| static bool btrfs_subpage_end_and_test_lock(const struct btrfs_fs_info *fs_info, |
| struct folio *folio, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage = folio_get_private(folio); |
| const int start_bit = subpage_calc_start_bit(fs_info, folio, locked, start, len); |
| const int nbits = (len >> fs_info->sectorsize_bits); |
| unsigned long flags; |
| unsigned int cleared = 0; |
| int bit = start_bit; |
| bool last; |
| |
| btrfs_subpage_assert(fs_info, folio, start, len); |
| |
| spin_lock_irqsave(&subpage->lock, flags); |
| /* |
| * We have call sites passing @lock_page into |
| * extent_clear_unlock_delalloc() for compression path. |
| * |
| * This @locked_page is locked by plain lock_page(), thus its |
| * subpage::locked is 0. Handle them in a special way. |
| */ |
| if (atomic_read(&subpage->nr_locked) == 0) { |
| spin_unlock_irqrestore(&subpage->lock, flags); |
| return true; |
| } |
| |
| for_each_set_bit_from(bit, subpage->bitmaps, start_bit + nbits) { |
| clear_bit(bit, subpage->bitmaps); |
| cleared++; |
| } |
| ASSERT(atomic_read(&subpage->nr_locked) >= cleared); |
| last = atomic_sub_and_test(cleared, &subpage->nr_locked); |
| spin_unlock_irqrestore(&subpage->lock, flags); |
| return last; |
| } |
| |
| /* |
| * Handle different locked folios: |
| * |
| * - Non-subpage folio |
| * Just unlock it. |
| * |
| * - folio locked but without any subpage locked |
| * This happens either before writepage_delalloc() or the delalloc range is |
| * already handled by previous folio. |
| * We can simple unlock it. |
| * |
| * - folio locked with subpage range locked. |
| * We go through the locked sectors inside the range and clear their locked |
| * bitmap, reduce the writer lock number, and unlock the page if that's |
| * the last locked range. |
| */ |
| void btrfs_folio_end_lock(const struct btrfs_fs_info *fs_info, |
| struct folio *folio, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage = folio_get_private(folio); |
| |
| ASSERT(folio_test_locked(folio)); |
| |
| if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, folio->mapping)) { |
| folio_unlock(folio); |
| return; |
| } |
| |
| /* |
| * For subpage case, there are two types of locked page. With or |
| * without locked number. |
| * |
| * Since we own the page lock, no one else could touch subpage::locked |
| * and we are safe to do several atomic operations without spinlock. |
| */ |
| if (atomic_read(&subpage->nr_locked) == 0) { |
| /* No subpage lock, locked by plain lock_page(). */ |
| folio_unlock(folio); |
| return; |
| } |
| |
| btrfs_subpage_clamp_range(folio, &start, &len); |
| if (btrfs_subpage_end_and_test_lock(fs_info, folio, start, len)) |
| folio_unlock(folio); |
| } |
| |
| void btrfs_folio_end_lock_bitmap(const struct btrfs_fs_info *fs_info, |
| struct folio *folio, unsigned long bitmap) |
| { |
| struct btrfs_subpage *subpage = folio_get_private(folio); |
| const int start_bit = fs_info->sectors_per_page * btrfs_bitmap_nr_locked; |
| unsigned long flags; |
| bool last = false; |
| int cleared = 0; |
| int bit; |
| |
| if (!btrfs_is_subpage(fs_info, folio->mapping)) { |
| folio_unlock(folio); |
| return; |
| } |
| |
| if (atomic_read(&subpage->nr_locked) == 0) { |
| /* No subpage lock, locked by plain lock_page(). */ |
| folio_unlock(folio); |
| return; |
| } |
| |
| spin_lock_irqsave(&subpage->lock, flags); |
| for_each_set_bit(bit, &bitmap, fs_info->sectors_per_page) { |
| if (test_and_clear_bit(bit + start_bit, subpage->bitmaps)) |
| cleared++; |
| } |
| ASSERT(atomic_read(&subpage->nr_locked) >= cleared); |
| last = atomic_sub_and_test(cleared, &subpage->nr_locked); |
| spin_unlock_irqrestore(&subpage->lock, flags); |
| if (last) |
| folio_unlock(folio); |
| } |
| |
| #define subpage_test_bitmap_all_set(fs_info, subpage, name) \ |
| bitmap_test_range_all_set(subpage->bitmaps, \ |
| fs_info->sectors_per_page * btrfs_bitmap_nr_##name, \ |
| fs_info->sectors_per_page) |
| |
| #define subpage_test_bitmap_all_zero(fs_info, subpage, name) \ |
| bitmap_test_range_all_zero(subpage->bitmaps, \ |
| fs_info->sectors_per_page * btrfs_bitmap_nr_##name, \ |
| fs_info->sectors_per_page) |
| |
| void btrfs_subpage_set_uptodate(const struct btrfs_fs_info *fs_info, |
| struct folio *folio, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage = folio_get_private(folio); |
| unsigned int start_bit = subpage_calc_start_bit(fs_info, folio, |
| uptodate, start, len); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&subpage->lock, flags); |
| bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits); |
| if (subpage_test_bitmap_all_set(fs_info, subpage, uptodate)) |
| folio_mark_uptodate(folio); |
| spin_unlock_irqrestore(&subpage->lock, flags); |
| } |
| |
| void btrfs_subpage_clear_uptodate(const struct btrfs_fs_info *fs_info, |
| struct folio *folio, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage = folio_get_private(folio); |
| unsigned int start_bit = subpage_calc_start_bit(fs_info, folio, |
| uptodate, start, len); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&subpage->lock, flags); |
| bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits); |
| folio_clear_uptodate(folio); |
| spin_unlock_irqrestore(&subpage->lock, flags); |
| } |
| |
| void btrfs_subpage_set_dirty(const struct btrfs_fs_info *fs_info, |
| struct folio *folio, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage = folio_get_private(folio); |
| unsigned int start_bit = subpage_calc_start_bit(fs_info, folio, |
| dirty, start, len); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&subpage->lock, flags); |
| bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits); |
| spin_unlock_irqrestore(&subpage->lock, flags); |
| folio_mark_dirty(folio); |
| } |
| |
| /* |
| * Extra clear_and_test function for subpage dirty bitmap. |
| * |
| * Return true if we're the last bits in the dirty_bitmap and clear the |
| * dirty_bitmap. |
| * Return false otherwise. |
| * |
| * NOTE: Callers should manually clear page dirty for true case, as we have |
| * extra handling for tree blocks. |
| */ |
| bool btrfs_subpage_clear_and_test_dirty(const struct btrfs_fs_info *fs_info, |
| struct folio *folio, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage = folio_get_private(folio); |
| unsigned int start_bit = subpage_calc_start_bit(fs_info, folio, |
| dirty, start, len); |
| unsigned long flags; |
| bool last = false; |
| |
| spin_lock_irqsave(&subpage->lock, flags); |
| bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits); |
| if (subpage_test_bitmap_all_zero(fs_info, subpage, dirty)) |
| last = true; |
| spin_unlock_irqrestore(&subpage->lock, flags); |
| return last; |
| } |
| |
| void btrfs_subpage_clear_dirty(const struct btrfs_fs_info *fs_info, |
| struct folio *folio, u64 start, u32 len) |
| { |
| bool last; |
| |
| last = btrfs_subpage_clear_and_test_dirty(fs_info, folio, start, len); |
| if (last) |
| folio_clear_dirty_for_io(folio); |
| } |
| |
| void btrfs_subpage_set_writeback(const struct btrfs_fs_info *fs_info, |
| struct folio *folio, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage = folio_get_private(folio); |
| unsigned int start_bit = subpage_calc_start_bit(fs_info, folio, |
| writeback, start, len); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&subpage->lock, flags); |
| bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits); |
| if (!folio_test_writeback(folio)) |
| folio_start_writeback(folio); |
| spin_unlock_irqrestore(&subpage->lock, flags); |
| } |
| |
| void btrfs_subpage_clear_writeback(const struct btrfs_fs_info *fs_info, |
| struct folio *folio, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage = folio_get_private(folio); |
| unsigned int start_bit = subpage_calc_start_bit(fs_info, folio, |
| writeback, start, len); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&subpage->lock, flags); |
| bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits); |
| if (subpage_test_bitmap_all_zero(fs_info, subpage, writeback)) { |
| ASSERT(folio_test_writeback(folio)); |
| folio_end_writeback(folio); |
| } |
| spin_unlock_irqrestore(&subpage->lock, flags); |
| } |
| |
| void btrfs_subpage_set_ordered(const struct btrfs_fs_info *fs_info, |
| struct folio *folio, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage = folio_get_private(folio); |
| unsigned int start_bit = subpage_calc_start_bit(fs_info, folio, |
| ordered, start, len); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&subpage->lock, flags); |
| bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits); |
| folio_set_ordered(folio); |
| spin_unlock_irqrestore(&subpage->lock, flags); |
| } |
| |
| void btrfs_subpage_clear_ordered(const struct btrfs_fs_info *fs_info, |
| struct folio *folio, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage = folio_get_private(folio); |
| unsigned int start_bit = subpage_calc_start_bit(fs_info, folio, |
| ordered, start, len); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&subpage->lock, flags); |
| bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits); |
| if (subpage_test_bitmap_all_zero(fs_info, subpage, ordered)) |
| folio_clear_ordered(folio); |
| spin_unlock_irqrestore(&subpage->lock, flags); |
| } |
| |
| void btrfs_subpage_set_checked(const struct btrfs_fs_info *fs_info, |
| struct folio *folio, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage = folio_get_private(folio); |
| unsigned int start_bit = subpage_calc_start_bit(fs_info, folio, |
| checked, start, len); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&subpage->lock, flags); |
| bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits); |
| if (subpage_test_bitmap_all_set(fs_info, subpage, checked)) |
| folio_set_checked(folio); |
| spin_unlock_irqrestore(&subpage->lock, flags); |
| } |
| |
| void btrfs_subpage_clear_checked(const struct btrfs_fs_info *fs_info, |
| struct folio *folio, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage = folio_get_private(folio); |
| unsigned int start_bit = subpage_calc_start_bit(fs_info, folio, |
| checked, start, len); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&subpage->lock, flags); |
| bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits); |
| folio_clear_checked(folio); |
| spin_unlock_irqrestore(&subpage->lock, flags); |
| } |
| |
| /* |
| * Unlike set/clear which is dependent on each page status, for test all bits |
| * are tested in the same way. |
| */ |
| #define IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(name) \ |
| bool btrfs_subpage_test_##name(const struct btrfs_fs_info *fs_info, \ |
| struct folio *folio, u64 start, u32 len) \ |
| { \ |
| struct btrfs_subpage *subpage = folio_get_private(folio); \ |
| unsigned int start_bit = subpage_calc_start_bit(fs_info, folio, \ |
| name, start, len); \ |
| unsigned long flags; \ |
| bool ret; \ |
| \ |
| spin_lock_irqsave(&subpage->lock, flags); \ |
| ret = bitmap_test_range_all_set(subpage->bitmaps, start_bit, \ |
| len >> fs_info->sectorsize_bits); \ |
| spin_unlock_irqrestore(&subpage->lock, flags); \ |
| return ret; \ |
| } |
| IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(uptodate); |
| IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(dirty); |
| IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(writeback); |
| IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(ordered); |
| IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(checked); |
| |
| /* |
| * Note that, in selftests (extent-io-tests), we can have empty fs_info passed |
| * in. We only test sectorsize == PAGE_SIZE cases so far, thus we can fall |
| * back to regular sectorsize branch. |
| */ |
| #define IMPLEMENT_BTRFS_PAGE_OPS(name, folio_set_func, \ |
| folio_clear_func, folio_test_func) \ |
| void btrfs_folio_set_##name(const struct btrfs_fs_info *fs_info, \ |
| struct folio *folio, u64 start, u32 len) \ |
| { \ |
| if (unlikely(!fs_info) || \ |
| !btrfs_is_subpage(fs_info, folio->mapping)) { \ |
| folio_set_func(folio); \ |
| return; \ |
| } \ |
| btrfs_subpage_set_##name(fs_info, folio, start, len); \ |
| } \ |
| void btrfs_folio_clear_##name(const struct btrfs_fs_info *fs_info, \ |
| struct folio *folio, u64 start, u32 len) \ |
| { \ |
| if (unlikely(!fs_info) || \ |
| !btrfs_is_subpage(fs_info, folio->mapping)) { \ |
| folio_clear_func(folio); \ |
| return; \ |
| } \ |
| btrfs_subpage_clear_##name(fs_info, folio, start, len); \ |
| } \ |
| bool btrfs_folio_test_##name(const struct btrfs_fs_info *fs_info, \ |
| struct folio *folio, u64 start, u32 len) \ |
| { \ |
| if (unlikely(!fs_info) || \ |
| !btrfs_is_subpage(fs_info, folio->mapping)) \ |
| return folio_test_func(folio); \ |
| return btrfs_subpage_test_##name(fs_info, folio, start, len); \ |
| } \ |
| void btrfs_folio_clamp_set_##name(const struct btrfs_fs_info *fs_info, \ |
| struct folio *folio, u64 start, u32 len) \ |
| { \ |
| if (unlikely(!fs_info) || \ |
| !btrfs_is_subpage(fs_info, folio->mapping)) { \ |
| folio_set_func(folio); \ |
| return; \ |
| } \ |
| btrfs_subpage_clamp_range(folio, &start, &len); \ |
| btrfs_subpage_set_##name(fs_info, folio, start, len); \ |
| } \ |
| void btrfs_folio_clamp_clear_##name(const struct btrfs_fs_info *fs_info, \ |
| struct folio *folio, u64 start, u32 len) \ |
| { \ |
| if (unlikely(!fs_info) || \ |
| !btrfs_is_subpage(fs_info, folio->mapping)) { \ |
| folio_clear_func(folio); \ |
| return; \ |
| } \ |
| btrfs_subpage_clamp_range(folio, &start, &len); \ |
| btrfs_subpage_clear_##name(fs_info, folio, start, len); \ |
| } \ |
| bool btrfs_folio_clamp_test_##name(const struct btrfs_fs_info *fs_info, \ |
| struct folio *folio, u64 start, u32 len) \ |
| { \ |
| if (unlikely(!fs_info) || \ |
| !btrfs_is_subpage(fs_info, folio->mapping)) \ |
| return folio_test_func(folio); \ |
| btrfs_subpage_clamp_range(folio, &start, &len); \ |
| return btrfs_subpage_test_##name(fs_info, folio, start, len); \ |
| } |
| IMPLEMENT_BTRFS_PAGE_OPS(uptodate, folio_mark_uptodate, folio_clear_uptodate, |
| folio_test_uptodate); |
| IMPLEMENT_BTRFS_PAGE_OPS(dirty, folio_mark_dirty, folio_clear_dirty_for_io, |
| folio_test_dirty); |
| IMPLEMENT_BTRFS_PAGE_OPS(writeback, folio_start_writeback, folio_end_writeback, |
| folio_test_writeback); |
| IMPLEMENT_BTRFS_PAGE_OPS(ordered, folio_set_ordered, folio_clear_ordered, |
| folio_test_ordered); |
| IMPLEMENT_BTRFS_PAGE_OPS(checked, folio_set_checked, folio_clear_checked, |
| folio_test_checked); |
| |
| /* |
| * Make sure not only the page dirty bit is cleared, but also subpage dirty bit |
| * is cleared. |
| */ |
| void btrfs_folio_assert_not_dirty(const struct btrfs_fs_info *fs_info, |
| struct folio *folio, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage; |
| unsigned int start_bit; |
| unsigned int nbits; |
| unsigned long flags; |
| |
| if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) |
| return; |
| |
| if (!btrfs_is_subpage(fs_info, folio->mapping)) { |
| ASSERT(!folio_test_dirty(folio)); |
| return; |
| } |
| |
| start_bit = subpage_calc_start_bit(fs_info, folio, dirty, start, len); |
| nbits = len >> fs_info->sectorsize_bits; |
| subpage = folio_get_private(folio); |
| ASSERT(subpage); |
| spin_lock_irqsave(&subpage->lock, flags); |
| ASSERT(bitmap_test_range_all_zero(subpage->bitmaps, start_bit, nbits)); |
| spin_unlock_irqrestore(&subpage->lock, flags); |
| } |
| |
| /* |
| * This is for folio already locked by plain lock_page()/folio_lock(), which |
| * doesn't have any subpage awareness. |
| * |
| * This populates the involved subpage ranges so that subpage helpers can |
| * properly unlock them. |
| */ |
| void btrfs_folio_set_lock(const struct btrfs_fs_info *fs_info, |
| struct folio *folio, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage; |
| unsigned long flags; |
| unsigned int start_bit; |
| unsigned int nbits; |
| int ret; |
| |
| ASSERT(folio_test_locked(folio)); |
| if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, folio->mapping)) |
| return; |
| |
| subpage = folio_get_private(folio); |
| start_bit = subpage_calc_start_bit(fs_info, folio, locked, start, len); |
| nbits = len >> fs_info->sectorsize_bits; |
| spin_lock_irqsave(&subpage->lock, flags); |
| /* Target range should not yet be locked. */ |
| ASSERT(bitmap_test_range_all_zero(subpage->bitmaps, start_bit, nbits)); |
| bitmap_set(subpage->bitmaps, start_bit, nbits); |
| ret = atomic_add_return(nbits, &subpage->nr_locked); |
| ASSERT(ret <= fs_info->sectors_per_page); |
| spin_unlock_irqrestore(&subpage->lock, flags); |
| } |
| |
| #define GET_SUBPAGE_BITMAP(subpage, fs_info, name, dst) \ |
| { \ |
| const int sectors_per_page = fs_info->sectors_per_page; \ |
| \ |
| ASSERT(sectors_per_page < BITS_PER_LONG); \ |
| *dst = bitmap_read(subpage->bitmaps, \ |
| sectors_per_page * btrfs_bitmap_nr_##name, \ |
| sectors_per_page); \ |
| } |
| |
| void __cold btrfs_subpage_dump_bitmap(const struct btrfs_fs_info *fs_info, |
| struct folio *folio, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage; |
| const u32 sectors_per_page = fs_info->sectors_per_page; |
| unsigned long uptodate_bitmap; |
| unsigned long dirty_bitmap; |
| unsigned long writeback_bitmap; |
| unsigned long ordered_bitmap; |
| unsigned long checked_bitmap; |
| unsigned long flags; |
| |
| ASSERT(folio_test_private(folio) && folio_get_private(folio)); |
| ASSERT(sectors_per_page > 1); |
| subpage = folio_get_private(folio); |
| |
| spin_lock_irqsave(&subpage->lock, flags); |
| GET_SUBPAGE_BITMAP(subpage, fs_info, uptodate, &uptodate_bitmap); |
| GET_SUBPAGE_BITMAP(subpage, fs_info, dirty, &dirty_bitmap); |
| GET_SUBPAGE_BITMAP(subpage, fs_info, writeback, &writeback_bitmap); |
| GET_SUBPAGE_BITMAP(subpage, fs_info, ordered, &ordered_bitmap); |
| GET_SUBPAGE_BITMAP(subpage, fs_info, checked, &checked_bitmap); |
| GET_SUBPAGE_BITMAP(subpage, fs_info, locked, &checked_bitmap); |
| spin_unlock_irqrestore(&subpage->lock, flags); |
| |
| dump_page(folio_page(folio, 0), "btrfs subpage dump"); |
| btrfs_warn(fs_info, |
| "start=%llu len=%u page=%llu, bitmaps uptodate=%*pbl dirty=%*pbl writeback=%*pbl ordered=%*pbl checked=%*pbl", |
| start, len, folio_pos(folio), |
| sectors_per_page, &uptodate_bitmap, |
| sectors_per_page, &dirty_bitmap, |
| sectors_per_page, &writeback_bitmap, |
| sectors_per_page, &ordered_bitmap, |
| sectors_per_page, &checked_bitmap); |
| } |
| |
| void btrfs_get_subpage_dirty_bitmap(struct btrfs_fs_info *fs_info, |
| struct folio *folio, |
| unsigned long *ret_bitmap) |
| { |
| struct btrfs_subpage *subpage; |
| unsigned long flags; |
| |
| ASSERT(folio_test_private(folio) && folio_get_private(folio)); |
| ASSERT(fs_info->sectors_per_page > 1); |
| subpage = folio_get_private(folio); |
| |
| spin_lock_irqsave(&subpage->lock, flags); |
| GET_SUBPAGE_BITMAP(subpage, fs_info, dirty, ret_bitmap); |
| spin_unlock_irqrestore(&subpage->lock, flags); |
| } |