| // SPDX-License-Identifier: GPL-2.0-only |
| /* Copyright (c) 2024 Meta Platforms, Inc. and affiliates. */ |
| #include <linux/bpf.h> |
| #include <linux/btf.h> |
| #include <linux/err.h> |
| #include <linux/btf_ids.h> |
| #include <linux/vmalloc.h> |
| #include <linux/pagemap.h> |
| |
| /* |
| * bpf_arena is a sparsely populated shared memory region between bpf program and |
| * user space process. |
| * |
| * For example on x86-64 the values could be: |
| * user_vm_start 7f7d26200000 // picked by mmap() |
| * kern_vm_start ffffc90001e69000 // picked by get_vm_area() |
| * For user space all pointers within the arena are normal 8-byte addresses. |
| * In this example 7f7d26200000 is the address of the first page (pgoff=0). |
| * The bpf program will access it as: kern_vm_start + lower_32bit_of_user_ptr |
| * (u32)7f7d26200000 -> 26200000 |
| * hence |
| * ffffc90001e69000 + 26200000 == ffffc90028069000 is "pgoff=0" within 4Gb |
| * kernel memory region. |
| * |
| * BPF JITs generate the following code to access arena: |
| * mov eax, eax // eax has lower 32-bit of user pointer |
| * mov word ptr [rax + r12 + off], bx |
| * where r12 == kern_vm_start and off is s16. |
| * Hence allocate 4Gb + GUARD_SZ/2 on each side. |
| * |
| * Initially kernel vm_area and user vma are not populated. |
| * User space can fault-in any address which will insert the page |
| * into kernel and user vma. |
| * bpf program can allocate a page via bpf_arena_alloc_pages() kfunc |
| * which will insert it into kernel vm_area. |
| * The later fault-in from user space will populate that page into user vma. |
| */ |
| |
| /* number of bytes addressable by LDX/STX insn with 16-bit 'off' field */ |
| #define GUARD_SZ (1ull << sizeof_field(struct bpf_insn, off) * 8) |
| #define KERN_VM_SZ (SZ_4G + GUARD_SZ) |
| |
| struct bpf_arena { |
| struct bpf_map map; |
| u64 user_vm_start; |
| u64 user_vm_end; |
| struct vm_struct *kern_vm; |
| struct maple_tree mt; |
| struct list_head vma_list; |
| struct mutex lock; |
| }; |
| |
| u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena) |
| { |
| return arena ? (u64) (long) arena->kern_vm->addr + GUARD_SZ / 2 : 0; |
| } |
| |
| u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena) |
| { |
| return arena ? arena->user_vm_start : 0; |
| } |
| |
| static long arena_map_peek_elem(struct bpf_map *map, void *value) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| static long arena_map_push_elem(struct bpf_map *map, void *value, u64 flags) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| static long arena_map_pop_elem(struct bpf_map *map, void *value) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| static long arena_map_delete_elem(struct bpf_map *map, void *value) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| static int arena_map_get_next_key(struct bpf_map *map, void *key, void *next_key) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| static long compute_pgoff(struct bpf_arena *arena, long uaddr) |
| { |
| return (u32)(uaddr - (u32)arena->user_vm_start) >> PAGE_SHIFT; |
| } |
| |
| static struct bpf_map *arena_map_alloc(union bpf_attr *attr) |
| { |
| struct vm_struct *kern_vm; |
| int numa_node = bpf_map_attr_numa_node(attr); |
| struct bpf_arena *arena; |
| u64 vm_range; |
| int err = -ENOMEM; |
| |
| if (attr->key_size || attr->value_size || attr->max_entries == 0 || |
| /* BPF_F_MMAPABLE must be set */ |
| !(attr->map_flags & BPF_F_MMAPABLE) || |
| /* No unsupported flags present */ |
| (attr->map_flags & ~(BPF_F_SEGV_ON_FAULT | BPF_F_MMAPABLE | BPF_F_NO_USER_CONV))) |
| return ERR_PTR(-EINVAL); |
| |
| if (attr->map_extra & ~PAGE_MASK) |
| /* If non-zero the map_extra is an expected user VMA start address */ |
| return ERR_PTR(-EINVAL); |
| |
| vm_range = (u64)attr->max_entries * PAGE_SIZE; |
| if (vm_range > SZ_4G) |
| return ERR_PTR(-E2BIG); |
| |
| if ((attr->map_extra >> 32) != ((attr->map_extra + vm_range - 1) >> 32)) |
| /* user vma must not cross 32-bit boundary */ |
| return ERR_PTR(-ERANGE); |
| |
| kern_vm = get_vm_area(KERN_VM_SZ, VM_SPARSE | VM_USERMAP); |
| if (!kern_vm) |
| return ERR_PTR(-ENOMEM); |
| |
| arena = bpf_map_area_alloc(sizeof(*arena), numa_node); |
| if (!arena) |
| goto err; |
| |
| arena->kern_vm = kern_vm; |
| arena->user_vm_start = attr->map_extra; |
| if (arena->user_vm_start) |
| arena->user_vm_end = arena->user_vm_start + vm_range; |
| |
| INIT_LIST_HEAD(&arena->vma_list); |
| bpf_map_init_from_attr(&arena->map, attr); |
| mt_init_flags(&arena->mt, MT_FLAGS_ALLOC_RANGE); |
| mutex_init(&arena->lock); |
| |
| return &arena->map; |
| err: |
| free_vm_area(kern_vm); |
| return ERR_PTR(err); |
| } |
| |
| static int existing_page_cb(pte_t *ptep, unsigned long addr, void *data) |
| { |
| struct page *page; |
| pte_t pte; |
| |
| pte = ptep_get(ptep); |
| if (!pte_present(pte)) /* sanity check */ |
| return 0; |
| page = pte_page(pte); |
| /* |
| * We do not update pte here: |
| * 1. Nobody should be accessing bpf_arena's range outside of a kernel bug |
| * 2. TLB flushing is batched or deferred. Even if we clear pte, |
| * the TLB entries can stick around and continue to permit access to |
| * the freed page. So it all relies on 1. |
| */ |
| __free_page(page); |
| return 0; |
| } |
| |
| static void arena_map_free(struct bpf_map *map) |
| { |
| struct bpf_arena *arena = container_of(map, struct bpf_arena, map); |
| |
| /* |
| * Check that user vma-s are not around when bpf map is freed. |
| * mmap() holds vm_file which holds bpf_map refcnt. |
| * munmap() must have happened on vma followed by arena_vm_close() |
| * which would clear arena->vma_list. |
| */ |
| if (WARN_ON_ONCE(!list_empty(&arena->vma_list))) |
| return; |
| |
| /* |
| * free_vm_area() calls remove_vm_area() that calls free_unmap_vmap_area(). |
| * It unmaps everything from vmalloc area and clears pgtables. |
| * Call apply_to_existing_page_range() first to find populated ptes and |
| * free those pages. |
| */ |
| apply_to_existing_page_range(&init_mm, bpf_arena_get_kern_vm_start(arena), |
| KERN_VM_SZ - GUARD_SZ, existing_page_cb, NULL); |
| free_vm_area(arena->kern_vm); |
| mtree_destroy(&arena->mt); |
| bpf_map_area_free(arena); |
| } |
| |
| static void *arena_map_lookup_elem(struct bpf_map *map, void *key) |
| { |
| return ERR_PTR(-EINVAL); |
| } |
| |
| static long arena_map_update_elem(struct bpf_map *map, void *key, |
| void *value, u64 flags) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| static int arena_map_check_btf(const struct bpf_map *map, const struct btf *btf, |
| const struct btf_type *key_type, const struct btf_type *value_type) |
| { |
| return 0; |
| } |
| |
| static u64 arena_map_mem_usage(const struct bpf_map *map) |
| { |
| return 0; |
| } |
| |
| struct vma_list { |
| struct vm_area_struct *vma; |
| struct list_head head; |
| atomic_t mmap_count; |
| }; |
| |
| static int remember_vma(struct bpf_arena *arena, struct vm_area_struct *vma) |
| { |
| struct vma_list *vml; |
| |
| vml = kmalloc(sizeof(*vml), GFP_KERNEL); |
| if (!vml) |
| return -ENOMEM; |
| atomic_set(&vml->mmap_count, 1); |
| vma->vm_private_data = vml; |
| vml->vma = vma; |
| list_add(&vml->head, &arena->vma_list); |
| return 0; |
| } |
| |
| static void arena_vm_open(struct vm_area_struct *vma) |
| { |
| struct vma_list *vml = vma->vm_private_data; |
| |
| atomic_inc(&vml->mmap_count); |
| } |
| |
| static void arena_vm_close(struct vm_area_struct *vma) |
| { |
| struct bpf_map *map = vma->vm_file->private_data; |
| struct bpf_arena *arena = container_of(map, struct bpf_arena, map); |
| struct vma_list *vml = vma->vm_private_data; |
| |
| if (!atomic_dec_and_test(&vml->mmap_count)) |
| return; |
| guard(mutex)(&arena->lock); |
| /* update link list under lock */ |
| list_del(&vml->head); |
| vma->vm_private_data = NULL; |
| kfree(vml); |
| } |
| |
| #define MT_ENTRY ((void *)&arena_map_ops) /* unused. has to be valid pointer */ |
| |
| static vm_fault_t arena_vm_fault(struct vm_fault *vmf) |
| { |
| struct bpf_map *map = vmf->vma->vm_file->private_data; |
| struct bpf_arena *arena = container_of(map, struct bpf_arena, map); |
| struct page *page; |
| long kbase, kaddr; |
| int ret; |
| |
| kbase = bpf_arena_get_kern_vm_start(arena); |
| kaddr = kbase + (u32)(vmf->address); |
| |
| guard(mutex)(&arena->lock); |
| page = vmalloc_to_page((void *)kaddr); |
| if (page) |
| /* already have a page vmap-ed */ |
| goto out; |
| |
| if (arena->map.map_flags & BPF_F_SEGV_ON_FAULT) |
| /* User space requested to segfault when page is not allocated by bpf prog */ |
| return VM_FAULT_SIGSEGV; |
| |
| ret = mtree_insert(&arena->mt, vmf->pgoff, MT_ENTRY, GFP_KERNEL); |
| if (ret) |
| return VM_FAULT_SIGSEGV; |
| |
| /* Account into memcg of the process that created bpf_arena */ |
| ret = bpf_map_alloc_pages(map, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 1, &page); |
| if (ret) { |
| mtree_erase(&arena->mt, vmf->pgoff); |
| return VM_FAULT_SIGSEGV; |
| } |
| |
| ret = vm_area_map_pages(arena->kern_vm, kaddr, kaddr + PAGE_SIZE, &page); |
| if (ret) { |
| mtree_erase(&arena->mt, vmf->pgoff); |
| __free_page(page); |
| return VM_FAULT_SIGSEGV; |
| } |
| out: |
| page_ref_add(page, 1); |
| vmf->page = page; |
| return 0; |
| } |
| |
| static const struct vm_operations_struct arena_vm_ops = { |
| .open = arena_vm_open, |
| .close = arena_vm_close, |
| .fault = arena_vm_fault, |
| }; |
| |
| static unsigned long arena_get_unmapped_area(struct file *filp, unsigned long addr, |
| unsigned long len, unsigned long pgoff, |
| unsigned long flags) |
| { |
| struct bpf_map *map = filp->private_data; |
| struct bpf_arena *arena = container_of(map, struct bpf_arena, map); |
| long ret; |
| |
| if (pgoff) |
| return -EINVAL; |
| if (len > SZ_4G) |
| return -E2BIG; |
| |
| /* if user_vm_start was specified at arena creation time */ |
| if (arena->user_vm_start) { |
| if (len > arena->user_vm_end - arena->user_vm_start) |
| return -E2BIG; |
| if (len != arena->user_vm_end - arena->user_vm_start) |
| return -EINVAL; |
| if (addr != arena->user_vm_start) |
| return -EINVAL; |
| } |
| |
| ret = mm_get_unmapped_area(current->mm, filp, addr, len * 2, 0, flags); |
| if (IS_ERR_VALUE(ret)) |
| return ret; |
| if ((ret >> 32) == ((ret + len - 1) >> 32)) |
| return ret; |
| if (WARN_ON_ONCE(arena->user_vm_start)) |
| /* checks at map creation time should prevent this */ |
| return -EFAULT; |
| return round_up(ret, SZ_4G); |
| } |
| |
| static int arena_map_mmap(struct bpf_map *map, struct vm_area_struct *vma) |
| { |
| struct bpf_arena *arena = container_of(map, struct bpf_arena, map); |
| |
| guard(mutex)(&arena->lock); |
| if (arena->user_vm_start && arena->user_vm_start != vma->vm_start) |
| /* |
| * If map_extra was not specified at arena creation time then |
| * 1st user process can do mmap(NULL, ...) to pick user_vm_start |
| * 2nd user process must pass the same addr to mmap(addr, MAP_FIXED..); |
| * or |
| * specify addr in map_extra and |
| * use the same addr later with mmap(addr, MAP_FIXED..); |
| */ |
| return -EBUSY; |
| |
| if (arena->user_vm_end && arena->user_vm_end != vma->vm_end) |
| /* all user processes must have the same size of mmap-ed region */ |
| return -EBUSY; |
| |
| /* Earlier checks should prevent this */ |
| if (WARN_ON_ONCE(vma->vm_end - vma->vm_start > SZ_4G || vma->vm_pgoff)) |
| return -EFAULT; |
| |
| if (remember_vma(arena, vma)) |
| return -ENOMEM; |
| |
| arena->user_vm_start = vma->vm_start; |
| arena->user_vm_end = vma->vm_end; |
| /* |
| * bpf_map_mmap() checks that it's being mmaped as VM_SHARED and |
| * clears VM_MAYEXEC. Set VM_DONTEXPAND as well to avoid |
| * potential change of user_vm_start. |
| */ |
| vm_flags_set(vma, VM_DONTEXPAND); |
| vma->vm_ops = &arena_vm_ops; |
| return 0; |
| } |
| |
| static int arena_map_direct_value_addr(const struct bpf_map *map, u64 *imm, u32 off) |
| { |
| struct bpf_arena *arena = container_of(map, struct bpf_arena, map); |
| |
| if ((u64)off > arena->user_vm_end - arena->user_vm_start) |
| return -ERANGE; |
| *imm = (unsigned long)arena->user_vm_start; |
| return 0; |
| } |
| |
| BTF_ID_LIST_SINGLE(bpf_arena_map_btf_ids, struct, bpf_arena) |
| const struct bpf_map_ops arena_map_ops = { |
| .map_meta_equal = bpf_map_meta_equal, |
| .map_alloc = arena_map_alloc, |
| .map_free = arena_map_free, |
| .map_direct_value_addr = arena_map_direct_value_addr, |
| .map_mmap = arena_map_mmap, |
| .map_get_unmapped_area = arena_get_unmapped_area, |
| .map_get_next_key = arena_map_get_next_key, |
| .map_push_elem = arena_map_push_elem, |
| .map_peek_elem = arena_map_peek_elem, |
| .map_pop_elem = arena_map_pop_elem, |
| .map_lookup_elem = arena_map_lookup_elem, |
| .map_update_elem = arena_map_update_elem, |
| .map_delete_elem = arena_map_delete_elem, |
| .map_check_btf = arena_map_check_btf, |
| .map_mem_usage = arena_map_mem_usage, |
| .map_btf_id = &bpf_arena_map_btf_ids[0], |
| }; |
| |
| static u64 clear_lo32(u64 val) |
| { |
| return val & ~(u64)~0U; |
| } |
| |
| /* |
| * Allocate pages and vmap them into kernel vmalloc area. |
| * Later the pages will be mmaped into user space vma. |
| */ |
| static long arena_alloc_pages(struct bpf_arena *arena, long uaddr, long page_cnt, int node_id) |
| { |
| /* user_vm_end/start are fixed before bpf prog runs */ |
| long page_cnt_max = (arena->user_vm_end - arena->user_vm_start) >> PAGE_SHIFT; |
| u64 kern_vm_start = bpf_arena_get_kern_vm_start(arena); |
| struct page **pages; |
| long pgoff = 0; |
| u32 uaddr32; |
| int ret, i; |
| |
| if (page_cnt > page_cnt_max) |
| return 0; |
| |
| if (uaddr) { |
| if (uaddr & ~PAGE_MASK) |
| return 0; |
| pgoff = compute_pgoff(arena, uaddr); |
| if (pgoff > page_cnt_max - page_cnt) |
| /* requested address will be outside of user VMA */ |
| return 0; |
| } |
| |
| /* zeroing is needed, since alloc_pages_bulk_array() only fills in non-zero entries */ |
| pages = kvcalloc(page_cnt, sizeof(struct page *), GFP_KERNEL); |
| if (!pages) |
| return 0; |
| |
| guard(mutex)(&arena->lock); |
| |
| if (uaddr) |
| ret = mtree_insert_range(&arena->mt, pgoff, pgoff + page_cnt - 1, |
| MT_ENTRY, GFP_KERNEL); |
| else |
| ret = mtree_alloc_range(&arena->mt, &pgoff, MT_ENTRY, |
| page_cnt, 0, page_cnt_max - 1, GFP_KERNEL); |
| if (ret) |
| goto out_free_pages; |
| |
| ret = bpf_map_alloc_pages(&arena->map, GFP_KERNEL | __GFP_ZERO, |
| node_id, page_cnt, pages); |
| if (ret) |
| goto out; |
| |
| uaddr32 = (u32)(arena->user_vm_start + pgoff * PAGE_SIZE); |
| /* Earlier checks made sure that uaddr32 + page_cnt * PAGE_SIZE - 1 |
| * will not overflow 32-bit. Lower 32-bit need to represent |
| * contiguous user address range. |
| * Map these pages at kern_vm_start base. |
| * kern_vm_start + uaddr32 + page_cnt * PAGE_SIZE - 1 can overflow |
| * lower 32-bit and it's ok. |
| */ |
| ret = vm_area_map_pages(arena->kern_vm, kern_vm_start + uaddr32, |
| kern_vm_start + uaddr32 + page_cnt * PAGE_SIZE, pages); |
| if (ret) { |
| for (i = 0; i < page_cnt; i++) |
| __free_page(pages[i]); |
| goto out; |
| } |
| kvfree(pages); |
| return clear_lo32(arena->user_vm_start) + uaddr32; |
| out: |
| mtree_erase(&arena->mt, pgoff); |
| out_free_pages: |
| kvfree(pages); |
| return 0; |
| } |
| |
| /* |
| * If page is present in vmalloc area, unmap it from vmalloc area, |
| * unmap it from all user space vma-s, |
| * and free it. |
| */ |
| static void zap_pages(struct bpf_arena *arena, long uaddr, long page_cnt) |
| { |
| struct vma_list *vml; |
| |
| list_for_each_entry(vml, &arena->vma_list, head) |
| zap_page_range_single(vml->vma, uaddr, |
| PAGE_SIZE * page_cnt, NULL); |
| } |
| |
| static void arena_free_pages(struct bpf_arena *arena, long uaddr, long page_cnt) |
| { |
| u64 full_uaddr, uaddr_end; |
| long kaddr, pgoff, i; |
| struct page *page; |
| |
| /* only aligned lower 32-bit are relevant */ |
| uaddr = (u32)uaddr; |
| uaddr &= PAGE_MASK; |
| full_uaddr = clear_lo32(arena->user_vm_start) + uaddr; |
| uaddr_end = min(arena->user_vm_end, full_uaddr + (page_cnt << PAGE_SHIFT)); |
| if (full_uaddr >= uaddr_end) |
| return; |
| |
| page_cnt = (uaddr_end - full_uaddr) >> PAGE_SHIFT; |
| |
| guard(mutex)(&arena->lock); |
| |
| pgoff = compute_pgoff(arena, uaddr); |
| /* clear range */ |
| mtree_store_range(&arena->mt, pgoff, pgoff + page_cnt - 1, NULL, GFP_KERNEL); |
| |
| if (page_cnt > 1) |
| /* bulk zap if multiple pages being freed */ |
| zap_pages(arena, full_uaddr, page_cnt); |
| |
| kaddr = bpf_arena_get_kern_vm_start(arena) + uaddr; |
| for (i = 0; i < page_cnt; i++, kaddr += PAGE_SIZE, full_uaddr += PAGE_SIZE) { |
| page = vmalloc_to_page((void *)kaddr); |
| if (!page) |
| continue; |
| if (page_cnt == 1 && page_mapped(page)) /* mapped by some user process */ |
| /* Optimization for the common case of page_cnt==1: |
| * If page wasn't mapped into some user vma there |
| * is no need to call zap_pages which is slow. When |
| * page_cnt is big it's faster to do the batched zap. |
| */ |
| zap_pages(arena, full_uaddr, 1); |
| vm_area_unmap_pages(arena->kern_vm, kaddr, kaddr + PAGE_SIZE); |
| __free_page(page); |
| } |
| } |
| |
| __bpf_kfunc_start_defs(); |
| |
| __bpf_kfunc void *bpf_arena_alloc_pages(void *p__map, void *addr__ign, u32 page_cnt, |
| int node_id, u64 flags) |
| { |
| struct bpf_map *map = p__map; |
| struct bpf_arena *arena = container_of(map, struct bpf_arena, map); |
| |
| if (map->map_type != BPF_MAP_TYPE_ARENA || flags || !page_cnt) |
| return NULL; |
| |
| return (void *)arena_alloc_pages(arena, (long)addr__ign, page_cnt, node_id); |
| } |
| |
| __bpf_kfunc void bpf_arena_free_pages(void *p__map, void *ptr__ign, u32 page_cnt) |
| { |
| struct bpf_map *map = p__map; |
| struct bpf_arena *arena = container_of(map, struct bpf_arena, map); |
| |
| if (map->map_type != BPF_MAP_TYPE_ARENA || !page_cnt || !ptr__ign) |
| return; |
| arena_free_pages(arena, (long)ptr__ign, page_cnt); |
| } |
| __bpf_kfunc_end_defs(); |
| |
| BTF_KFUNCS_START(arena_kfuncs) |
| BTF_ID_FLAGS(func, bpf_arena_alloc_pages, KF_TRUSTED_ARGS | KF_SLEEPABLE) |
| BTF_ID_FLAGS(func, bpf_arena_free_pages, KF_TRUSTED_ARGS | KF_SLEEPABLE) |
| BTF_KFUNCS_END(arena_kfuncs) |
| |
| static const struct btf_kfunc_id_set common_kfunc_set = { |
| .owner = THIS_MODULE, |
| .set = &arena_kfuncs, |
| }; |
| |
| static int __init kfunc_init(void) |
| { |
| return register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set); |
| } |
| late_initcall(kfunc_init); |