| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * This file contains the functions which manage clocksource drivers. |
| * |
| * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com) |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/device.h> |
| #include <linux/clocksource.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */ |
| #include <linux/tick.h> |
| #include <linux/kthread.h> |
| #include <linux/prandom.h> |
| #include <linux/cpu.h> |
| |
| #include "tick-internal.h" |
| #include "timekeeping_internal.h" |
| |
| static noinline u64 cycles_to_nsec_safe(struct clocksource *cs, u64 start, u64 end) |
| { |
| u64 delta = clocksource_delta(end, start, cs->mask); |
| |
| if (likely(delta < cs->max_cycles)) |
| return clocksource_cyc2ns(delta, cs->mult, cs->shift); |
| |
| return mul_u64_u32_shr(delta, cs->mult, cs->shift); |
| } |
| |
| /** |
| * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks |
| * @mult: pointer to mult variable |
| * @shift: pointer to shift variable |
| * @from: frequency to convert from |
| * @to: frequency to convert to |
| * @maxsec: guaranteed runtime conversion range in seconds |
| * |
| * The function evaluates the shift/mult pair for the scaled math |
| * operations of clocksources and clockevents. |
| * |
| * @to and @from are frequency values in HZ. For clock sources @to is |
| * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock |
| * event @to is the counter frequency and @from is NSEC_PER_SEC. |
| * |
| * The @maxsec conversion range argument controls the time frame in |
| * seconds which must be covered by the runtime conversion with the |
| * calculated mult and shift factors. This guarantees that no 64bit |
| * overflow happens when the input value of the conversion is |
| * multiplied with the calculated mult factor. Larger ranges may |
| * reduce the conversion accuracy by choosing smaller mult and shift |
| * factors. |
| */ |
| void |
| clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec) |
| { |
| u64 tmp; |
| u32 sft, sftacc= 32; |
| |
| /* |
| * Calculate the shift factor which is limiting the conversion |
| * range: |
| */ |
| tmp = ((u64)maxsec * from) >> 32; |
| while (tmp) { |
| tmp >>=1; |
| sftacc--; |
| } |
| |
| /* |
| * Find the conversion shift/mult pair which has the best |
| * accuracy and fits the maxsec conversion range: |
| */ |
| for (sft = 32; sft > 0; sft--) { |
| tmp = (u64) to << sft; |
| tmp += from / 2; |
| do_div(tmp, from); |
| if ((tmp >> sftacc) == 0) |
| break; |
| } |
| *mult = tmp; |
| *shift = sft; |
| } |
| EXPORT_SYMBOL_GPL(clocks_calc_mult_shift); |
| |
| /*[Clocksource internal variables]--------- |
| * curr_clocksource: |
| * currently selected clocksource. |
| * suspend_clocksource: |
| * used to calculate the suspend time. |
| * clocksource_list: |
| * linked list with the registered clocksources |
| * clocksource_mutex: |
| * protects manipulations to curr_clocksource and the clocksource_list |
| * override_name: |
| * Name of the user-specified clocksource. |
| */ |
| static struct clocksource *curr_clocksource; |
| static struct clocksource *suspend_clocksource; |
| static LIST_HEAD(clocksource_list); |
| static DEFINE_MUTEX(clocksource_mutex); |
| static char override_name[CS_NAME_LEN]; |
| static int finished_booting; |
| static u64 suspend_start; |
| |
| /* |
| * Interval: 0.5sec. |
| */ |
| #define WATCHDOG_INTERVAL (HZ >> 1) |
| #define WATCHDOG_INTERVAL_MAX_NS ((2 * WATCHDOG_INTERVAL) * (NSEC_PER_SEC / HZ)) |
| |
| /* |
| * Threshold: 0.0312s, when doubled: 0.0625s. |
| */ |
| #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 5) |
| |
| /* |
| * Maximum permissible delay between two readouts of the watchdog |
| * clocksource surrounding a read of the clocksource being validated. |
| * This delay could be due to SMIs, NMIs, or to VCPU preemptions. Used as |
| * a lower bound for cs->uncertainty_margin values when registering clocks. |
| * |
| * The default of 500 parts per million is based on NTP's limits. |
| * If a clocksource is good enough for NTP, it is good enough for us! |
| * |
| * In other words, by default, even if a clocksource is extremely |
| * precise (for example, with a sub-nanosecond period), the maximum |
| * permissible skew between the clocksource watchdog and the clocksource |
| * under test is not permitted to go below the 500ppm minimum defined |
| * by MAX_SKEW_USEC. This 500ppm minimum may be overridden using the |
| * CLOCKSOURCE_WATCHDOG_MAX_SKEW_US Kconfig option. |
| */ |
| #ifdef CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US |
| #define MAX_SKEW_USEC CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US |
| #else |
| #define MAX_SKEW_USEC (125 * WATCHDOG_INTERVAL / HZ) |
| #endif |
| |
| /* |
| * Default for maximum permissible skew when cs->uncertainty_margin is |
| * not specified, and the lower bound even when cs->uncertainty_margin |
| * is specified. This is also the default that is used when registering |
| * clocks with unspecifed cs->uncertainty_margin, so this macro is used |
| * even in CONFIG_CLOCKSOURCE_WATCHDOG=n kernels. |
| */ |
| #define WATCHDOG_MAX_SKEW (MAX_SKEW_USEC * NSEC_PER_USEC) |
| |
| #ifdef CONFIG_CLOCKSOURCE_WATCHDOG |
| static void clocksource_watchdog_work(struct work_struct *work); |
| static void clocksource_select(void); |
| |
| static LIST_HEAD(watchdog_list); |
| static struct clocksource *watchdog; |
| static struct timer_list watchdog_timer; |
| static DECLARE_WORK(watchdog_work, clocksource_watchdog_work); |
| static DEFINE_SPINLOCK(watchdog_lock); |
| static int watchdog_running; |
| static atomic_t watchdog_reset_pending; |
| static int64_t watchdog_max_interval; |
| |
| static inline void clocksource_watchdog_lock(unsigned long *flags) |
| { |
| spin_lock_irqsave(&watchdog_lock, *flags); |
| } |
| |
| static inline void clocksource_watchdog_unlock(unsigned long *flags) |
| { |
| spin_unlock_irqrestore(&watchdog_lock, *flags); |
| } |
| |
| static int clocksource_watchdog_kthread(void *data); |
| static void __clocksource_change_rating(struct clocksource *cs, int rating); |
| |
| static void clocksource_watchdog_work(struct work_struct *work) |
| { |
| /* |
| * We cannot directly run clocksource_watchdog_kthread() here, because |
| * clocksource_select() calls timekeeping_notify() which uses |
| * stop_machine(). One cannot use stop_machine() from a workqueue() due |
| * lock inversions wrt CPU hotplug. |
| * |
| * Also, we only ever run this work once or twice during the lifetime |
| * of the kernel, so there is no point in creating a more permanent |
| * kthread for this. |
| * |
| * If kthread_run fails the next watchdog scan over the |
| * watchdog_list will find the unstable clock again. |
| */ |
| kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog"); |
| } |
| |
| static void __clocksource_unstable(struct clocksource *cs) |
| { |
| cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG); |
| cs->flags |= CLOCK_SOURCE_UNSTABLE; |
| |
| /* |
| * If the clocksource is registered clocksource_watchdog_kthread() will |
| * re-rate and re-select. |
| */ |
| if (list_empty(&cs->list)) { |
| cs->rating = 0; |
| return; |
| } |
| |
| if (cs->mark_unstable) |
| cs->mark_unstable(cs); |
| |
| /* kick clocksource_watchdog_kthread() */ |
| if (finished_booting) |
| schedule_work(&watchdog_work); |
| } |
| |
| /** |
| * clocksource_mark_unstable - mark clocksource unstable via watchdog |
| * @cs: clocksource to be marked unstable |
| * |
| * This function is called by the x86 TSC code to mark clocksources as unstable; |
| * it defers demotion and re-selection to a kthread. |
| */ |
| void clocksource_mark_unstable(struct clocksource *cs) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&watchdog_lock, flags); |
| if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) { |
| if (!list_empty(&cs->list) && list_empty(&cs->wd_list)) |
| list_add(&cs->wd_list, &watchdog_list); |
| __clocksource_unstable(cs); |
| } |
| spin_unlock_irqrestore(&watchdog_lock, flags); |
| } |
| |
| static int verify_n_cpus = 8; |
| module_param(verify_n_cpus, int, 0644); |
| |
| enum wd_read_status { |
| WD_READ_SUCCESS, |
| WD_READ_UNSTABLE, |
| WD_READ_SKIP |
| }; |
| |
| static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow) |
| { |
| int64_t md = 2 * watchdog->uncertainty_margin; |
| unsigned int nretries, max_retries; |
| int64_t wd_delay, wd_seq_delay; |
| u64 wd_end, wd_end2; |
| |
| max_retries = clocksource_get_max_watchdog_retry(); |
| for (nretries = 0; nretries <= max_retries; nretries++) { |
| local_irq_disable(); |
| *wdnow = watchdog->read(watchdog); |
| *csnow = cs->read(cs); |
| wd_end = watchdog->read(watchdog); |
| wd_end2 = watchdog->read(watchdog); |
| local_irq_enable(); |
| |
| wd_delay = cycles_to_nsec_safe(watchdog, *wdnow, wd_end); |
| if (wd_delay <= md + cs->uncertainty_margin) { |
| if (nretries > 1 && nretries >= max_retries) { |
| pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n", |
| smp_processor_id(), watchdog->name, nretries); |
| } |
| return WD_READ_SUCCESS; |
| } |
| |
| /* |
| * Now compute delay in consecutive watchdog read to see if |
| * there is too much external interferences that cause |
| * significant delay in reading both clocksource and watchdog. |
| * |
| * If consecutive WD read-back delay > md, report |
| * system busy, reinit the watchdog and skip the current |
| * watchdog test. |
| */ |
| wd_seq_delay = cycles_to_nsec_safe(watchdog, wd_end, wd_end2); |
| if (wd_seq_delay > md) |
| goto skip_test; |
| } |
| |
| pr_warn("timekeeping watchdog on CPU%d: wd-%s-wd excessive read-back delay of %lldns vs. limit of %ldns, wd-wd read-back delay only %lldns, attempt %d, marking %s unstable\n", |
| smp_processor_id(), cs->name, wd_delay, WATCHDOG_MAX_SKEW, wd_seq_delay, nretries, cs->name); |
| return WD_READ_UNSTABLE; |
| |
| skip_test: |
| pr_info("timekeeping watchdog on CPU%d: %s wd-wd read-back delay of %lldns\n", |
| smp_processor_id(), watchdog->name, wd_seq_delay); |
| pr_info("wd-%s-wd read-back delay of %lldns, clock-skew test skipped!\n", |
| cs->name, wd_delay); |
| return WD_READ_SKIP; |
| } |
| |
| static u64 csnow_mid; |
| static cpumask_t cpus_ahead; |
| static cpumask_t cpus_behind; |
| static cpumask_t cpus_chosen; |
| |
| static void clocksource_verify_choose_cpus(void) |
| { |
| int cpu, i, n = verify_n_cpus; |
| |
| if (n < 0) { |
| /* Check all of the CPUs. */ |
| cpumask_copy(&cpus_chosen, cpu_online_mask); |
| cpumask_clear_cpu(smp_processor_id(), &cpus_chosen); |
| return; |
| } |
| |
| /* If no checking desired, or no other CPU to check, leave. */ |
| cpumask_clear(&cpus_chosen); |
| if (n == 0 || num_online_cpus() <= 1) |
| return; |
| |
| /* Make sure to select at least one CPU other than the current CPU. */ |
| cpu = cpumask_first(cpu_online_mask); |
| if (cpu == smp_processor_id()) |
| cpu = cpumask_next(cpu, cpu_online_mask); |
| if (WARN_ON_ONCE(cpu >= nr_cpu_ids)) |
| return; |
| cpumask_set_cpu(cpu, &cpus_chosen); |
| |
| /* Force a sane value for the boot parameter. */ |
| if (n > nr_cpu_ids) |
| n = nr_cpu_ids; |
| |
| /* |
| * Randomly select the specified number of CPUs. If the same |
| * CPU is selected multiple times, that CPU is checked only once, |
| * and no replacement CPU is selected. This gracefully handles |
| * situations where verify_n_cpus is greater than the number of |
| * CPUs that are currently online. |
| */ |
| for (i = 1; i < n; i++) { |
| cpu = get_random_u32_below(nr_cpu_ids); |
| cpu = cpumask_next(cpu - 1, cpu_online_mask); |
| if (cpu >= nr_cpu_ids) |
| cpu = cpumask_first(cpu_online_mask); |
| if (!WARN_ON_ONCE(cpu >= nr_cpu_ids)) |
| cpumask_set_cpu(cpu, &cpus_chosen); |
| } |
| |
| /* Don't verify ourselves. */ |
| cpumask_clear_cpu(smp_processor_id(), &cpus_chosen); |
| } |
| |
| static void clocksource_verify_one_cpu(void *csin) |
| { |
| struct clocksource *cs = (struct clocksource *)csin; |
| |
| csnow_mid = cs->read(cs); |
| } |
| |
| void clocksource_verify_percpu(struct clocksource *cs) |
| { |
| int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX; |
| u64 csnow_begin, csnow_end; |
| int cpu, testcpu; |
| s64 delta; |
| |
| if (verify_n_cpus == 0) |
| return; |
| cpumask_clear(&cpus_ahead); |
| cpumask_clear(&cpus_behind); |
| cpus_read_lock(); |
| preempt_disable(); |
| clocksource_verify_choose_cpus(); |
| if (cpumask_empty(&cpus_chosen)) { |
| preempt_enable(); |
| cpus_read_unlock(); |
| pr_warn("Not enough CPUs to check clocksource '%s'.\n", cs->name); |
| return; |
| } |
| testcpu = smp_processor_id(); |
| pr_warn("Checking clocksource %s synchronization from CPU %d to CPUs %*pbl.\n", cs->name, testcpu, cpumask_pr_args(&cpus_chosen)); |
| for_each_cpu(cpu, &cpus_chosen) { |
| if (cpu == testcpu) |
| continue; |
| csnow_begin = cs->read(cs); |
| smp_call_function_single(cpu, clocksource_verify_one_cpu, cs, 1); |
| csnow_end = cs->read(cs); |
| delta = (s64)((csnow_mid - csnow_begin) & cs->mask); |
| if (delta < 0) |
| cpumask_set_cpu(cpu, &cpus_behind); |
| delta = (csnow_end - csnow_mid) & cs->mask; |
| if (delta < 0) |
| cpumask_set_cpu(cpu, &cpus_ahead); |
| cs_nsec = cycles_to_nsec_safe(cs, csnow_begin, csnow_end); |
| if (cs_nsec > cs_nsec_max) |
| cs_nsec_max = cs_nsec; |
| if (cs_nsec < cs_nsec_min) |
| cs_nsec_min = cs_nsec; |
| } |
| preempt_enable(); |
| cpus_read_unlock(); |
| if (!cpumask_empty(&cpus_ahead)) |
| pr_warn(" CPUs %*pbl ahead of CPU %d for clocksource %s.\n", |
| cpumask_pr_args(&cpus_ahead), testcpu, cs->name); |
| if (!cpumask_empty(&cpus_behind)) |
| pr_warn(" CPUs %*pbl behind CPU %d for clocksource %s.\n", |
| cpumask_pr_args(&cpus_behind), testcpu, cs->name); |
| if (!cpumask_empty(&cpus_ahead) || !cpumask_empty(&cpus_behind)) |
| pr_warn(" CPU %d check durations %lldns - %lldns for clocksource %s.\n", |
| testcpu, cs_nsec_min, cs_nsec_max, cs->name); |
| } |
| EXPORT_SYMBOL_GPL(clocksource_verify_percpu); |
| |
| static inline void clocksource_reset_watchdog(void) |
| { |
| struct clocksource *cs; |
| |
| list_for_each_entry(cs, &watchdog_list, wd_list) |
| cs->flags &= ~CLOCK_SOURCE_WATCHDOG; |
| } |
| |
| |
| static void clocksource_watchdog(struct timer_list *unused) |
| { |
| int64_t wd_nsec, cs_nsec, interval; |
| u64 csnow, wdnow, cslast, wdlast; |
| int next_cpu, reset_pending; |
| struct clocksource *cs; |
| enum wd_read_status read_ret; |
| unsigned long extra_wait = 0; |
| u32 md; |
| |
| spin_lock(&watchdog_lock); |
| if (!watchdog_running) |
| goto out; |
| |
| reset_pending = atomic_read(&watchdog_reset_pending); |
| |
| list_for_each_entry(cs, &watchdog_list, wd_list) { |
| |
| /* Clocksource already marked unstable? */ |
| if (cs->flags & CLOCK_SOURCE_UNSTABLE) { |
| if (finished_booting) |
| schedule_work(&watchdog_work); |
| continue; |
| } |
| |
| read_ret = cs_watchdog_read(cs, &csnow, &wdnow); |
| |
| if (read_ret == WD_READ_UNSTABLE) { |
| /* Clock readout unreliable, so give it up. */ |
| __clocksource_unstable(cs); |
| continue; |
| } |
| |
| /* |
| * When WD_READ_SKIP is returned, it means the system is likely |
| * under very heavy load, where the latency of reading |
| * watchdog/clocksource is very big, and affect the accuracy of |
| * watchdog check. So give system some space and suspend the |
| * watchdog check for 5 minutes. |
| */ |
| if (read_ret == WD_READ_SKIP) { |
| /* |
| * As the watchdog timer will be suspended, and |
| * cs->last could keep unchanged for 5 minutes, reset |
| * the counters. |
| */ |
| clocksource_reset_watchdog(); |
| extra_wait = HZ * 300; |
| break; |
| } |
| |
| /* Clocksource initialized ? */ |
| if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) || |
| atomic_read(&watchdog_reset_pending)) { |
| cs->flags |= CLOCK_SOURCE_WATCHDOG; |
| cs->wd_last = wdnow; |
| cs->cs_last = csnow; |
| continue; |
| } |
| |
| wd_nsec = cycles_to_nsec_safe(watchdog, cs->wd_last, wdnow); |
| cs_nsec = cycles_to_nsec_safe(cs, cs->cs_last, csnow); |
| wdlast = cs->wd_last; /* save these in case we print them */ |
| cslast = cs->cs_last; |
| cs->cs_last = csnow; |
| cs->wd_last = wdnow; |
| |
| if (atomic_read(&watchdog_reset_pending)) |
| continue; |
| |
| /* |
| * The processing of timer softirqs can get delayed (usually |
| * on account of ksoftirqd not getting to run in a timely |
| * manner), which causes the watchdog interval to stretch. |
| * Skew detection may fail for longer watchdog intervals |
| * on account of fixed margins being used. |
| * Some clocksources, e.g. acpi_pm, cannot tolerate |
| * watchdog intervals longer than a few seconds. |
| */ |
| interval = max(cs_nsec, wd_nsec); |
| if (unlikely(interval > WATCHDOG_INTERVAL_MAX_NS)) { |
| if (system_state > SYSTEM_SCHEDULING && |
| interval > 2 * watchdog_max_interval) { |
| watchdog_max_interval = interval; |
| pr_warn("Long readout interval, skipping watchdog check: cs_nsec: %lld wd_nsec: %lld\n", |
| cs_nsec, wd_nsec); |
| } |
| watchdog_timer.expires = jiffies; |
| continue; |
| } |
| |
| /* Check the deviation from the watchdog clocksource. */ |
| md = cs->uncertainty_margin + watchdog->uncertainty_margin; |
| if (abs(cs_nsec - wd_nsec) > md) { |
| s64 cs_wd_msec; |
| s64 wd_msec; |
| u32 wd_rem; |
| |
| pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n", |
| smp_processor_id(), cs->name); |
| pr_warn(" '%s' wd_nsec: %lld wd_now: %llx wd_last: %llx mask: %llx\n", |
| watchdog->name, wd_nsec, wdnow, wdlast, watchdog->mask); |
| pr_warn(" '%s' cs_nsec: %lld cs_now: %llx cs_last: %llx mask: %llx\n", |
| cs->name, cs_nsec, csnow, cslast, cs->mask); |
| cs_wd_msec = div_s64_rem(cs_nsec - wd_nsec, 1000 * 1000, &wd_rem); |
| wd_msec = div_s64_rem(wd_nsec, 1000 * 1000, &wd_rem); |
| pr_warn(" Clocksource '%s' skewed %lld ns (%lld ms) over watchdog '%s' interval of %lld ns (%lld ms)\n", |
| cs->name, cs_nsec - wd_nsec, cs_wd_msec, watchdog->name, wd_nsec, wd_msec); |
| if (curr_clocksource == cs) |
| pr_warn(" '%s' is current clocksource.\n", cs->name); |
| else if (curr_clocksource) |
| pr_warn(" '%s' (not '%s') is current clocksource.\n", curr_clocksource->name, cs->name); |
| else |
| pr_warn(" No current clocksource.\n"); |
| __clocksource_unstable(cs); |
| continue; |
| } |
| |
| if (cs == curr_clocksource && cs->tick_stable) |
| cs->tick_stable(cs); |
| |
| if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && |
| (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) && |
| (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) { |
| /* Mark it valid for high-res. */ |
| cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; |
| |
| /* |
| * clocksource_done_booting() will sort it if |
| * finished_booting is not set yet. |
| */ |
| if (!finished_booting) |
| continue; |
| |
| /* |
| * If this is not the current clocksource let |
| * the watchdog thread reselect it. Due to the |
| * change to high res this clocksource might |
| * be preferred now. If it is the current |
| * clocksource let the tick code know about |
| * that change. |
| */ |
| if (cs != curr_clocksource) { |
| cs->flags |= CLOCK_SOURCE_RESELECT; |
| schedule_work(&watchdog_work); |
| } else { |
| tick_clock_notify(); |
| } |
| } |
| } |
| |
| /* |
| * We only clear the watchdog_reset_pending, when we did a |
| * full cycle through all clocksources. |
| */ |
| if (reset_pending) |
| atomic_dec(&watchdog_reset_pending); |
| |
| /* |
| * Cycle through CPUs to check if the CPUs stay synchronized |
| * to each other. |
| */ |
| next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask); |
| if (next_cpu >= nr_cpu_ids) |
| next_cpu = cpumask_first(cpu_online_mask); |
| |
| /* |
| * Arm timer if not already pending: could race with concurrent |
| * pair clocksource_stop_watchdog() clocksource_start_watchdog(). |
| */ |
| if (!timer_pending(&watchdog_timer)) { |
| watchdog_timer.expires += WATCHDOG_INTERVAL + extra_wait; |
| add_timer_on(&watchdog_timer, next_cpu); |
| } |
| out: |
| spin_unlock(&watchdog_lock); |
| } |
| |
| static inline void clocksource_start_watchdog(void) |
| { |
| if (watchdog_running || !watchdog || list_empty(&watchdog_list)) |
| return; |
| timer_setup(&watchdog_timer, clocksource_watchdog, 0); |
| watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL; |
| add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask)); |
| watchdog_running = 1; |
| } |
| |
| static inline void clocksource_stop_watchdog(void) |
| { |
| if (!watchdog_running || (watchdog && !list_empty(&watchdog_list))) |
| return; |
| del_timer(&watchdog_timer); |
| watchdog_running = 0; |
| } |
| |
| static void clocksource_resume_watchdog(void) |
| { |
| atomic_inc(&watchdog_reset_pending); |
| } |
| |
| static void clocksource_enqueue_watchdog(struct clocksource *cs) |
| { |
| INIT_LIST_HEAD(&cs->wd_list); |
| |
| if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { |
| /* cs is a clocksource to be watched. */ |
| list_add(&cs->wd_list, &watchdog_list); |
| cs->flags &= ~CLOCK_SOURCE_WATCHDOG; |
| } else { |
| /* cs is a watchdog. */ |
| if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) |
| cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; |
| } |
| } |
| |
| static void clocksource_select_watchdog(bool fallback) |
| { |
| struct clocksource *cs, *old_wd; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&watchdog_lock, flags); |
| /* save current watchdog */ |
| old_wd = watchdog; |
| if (fallback) |
| watchdog = NULL; |
| |
| list_for_each_entry(cs, &clocksource_list, list) { |
| /* cs is a clocksource to be watched. */ |
| if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) |
| continue; |
| |
| /* Skip current if we were requested for a fallback. */ |
| if (fallback && cs == old_wd) |
| continue; |
| |
| /* Pick the best watchdog. */ |
| if (!watchdog || cs->rating > watchdog->rating) |
| watchdog = cs; |
| } |
| /* If we failed to find a fallback restore the old one. */ |
| if (!watchdog) |
| watchdog = old_wd; |
| |
| /* If we changed the watchdog we need to reset cycles. */ |
| if (watchdog != old_wd) |
| clocksource_reset_watchdog(); |
| |
| /* Check if the watchdog timer needs to be started. */ |
| clocksource_start_watchdog(); |
| spin_unlock_irqrestore(&watchdog_lock, flags); |
| } |
| |
| static void clocksource_dequeue_watchdog(struct clocksource *cs) |
| { |
| if (cs != watchdog) { |
| if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { |
| /* cs is a watched clocksource. */ |
| list_del_init(&cs->wd_list); |
| /* Check if the watchdog timer needs to be stopped. */ |
| clocksource_stop_watchdog(); |
| } |
| } |
| } |
| |
| static int __clocksource_watchdog_kthread(void) |
| { |
| struct clocksource *cs, *tmp; |
| unsigned long flags; |
| int select = 0; |
| |
| /* Do any required per-CPU skew verification. */ |
| if (curr_clocksource && |
| curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE && |
| curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU) |
| clocksource_verify_percpu(curr_clocksource); |
| |
| spin_lock_irqsave(&watchdog_lock, flags); |
| list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) { |
| if (cs->flags & CLOCK_SOURCE_UNSTABLE) { |
| list_del_init(&cs->wd_list); |
| __clocksource_change_rating(cs, 0); |
| select = 1; |
| } |
| if (cs->flags & CLOCK_SOURCE_RESELECT) { |
| cs->flags &= ~CLOCK_SOURCE_RESELECT; |
| select = 1; |
| } |
| } |
| /* Check if the watchdog timer needs to be stopped. */ |
| clocksource_stop_watchdog(); |
| spin_unlock_irqrestore(&watchdog_lock, flags); |
| |
| return select; |
| } |
| |
| static int clocksource_watchdog_kthread(void *data) |
| { |
| mutex_lock(&clocksource_mutex); |
| if (__clocksource_watchdog_kthread()) |
| clocksource_select(); |
| mutex_unlock(&clocksource_mutex); |
| return 0; |
| } |
| |
| static bool clocksource_is_watchdog(struct clocksource *cs) |
| { |
| return cs == watchdog; |
| } |
| |
| #else /* CONFIG_CLOCKSOURCE_WATCHDOG */ |
| |
| static void clocksource_enqueue_watchdog(struct clocksource *cs) |
| { |
| if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) |
| cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; |
| } |
| |
| static void clocksource_select_watchdog(bool fallback) { } |
| static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { } |
| static inline void clocksource_resume_watchdog(void) { } |
| static inline int __clocksource_watchdog_kthread(void) { return 0; } |
| static bool clocksource_is_watchdog(struct clocksource *cs) { return false; } |
| void clocksource_mark_unstable(struct clocksource *cs) { } |
| |
| static inline void clocksource_watchdog_lock(unsigned long *flags) { } |
| static inline void clocksource_watchdog_unlock(unsigned long *flags) { } |
| |
| #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */ |
| |
| static bool clocksource_is_suspend(struct clocksource *cs) |
| { |
| return cs == suspend_clocksource; |
| } |
| |
| static void __clocksource_suspend_select(struct clocksource *cs) |
| { |
| /* |
| * Skip the clocksource which will be stopped in suspend state. |
| */ |
| if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP)) |
| return; |
| |
| /* |
| * The nonstop clocksource can be selected as the suspend clocksource to |
| * calculate the suspend time, so it should not supply suspend/resume |
| * interfaces to suspend the nonstop clocksource when system suspends. |
| */ |
| if (cs->suspend || cs->resume) { |
| pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n", |
| cs->name); |
| } |
| |
| /* Pick the best rating. */ |
| if (!suspend_clocksource || cs->rating > suspend_clocksource->rating) |
| suspend_clocksource = cs; |
| } |
| |
| /** |
| * clocksource_suspend_select - Select the best clocksource for suspend timing |
| * @fallback: if select a fallback clocksource |
| */ |
| static void clocksource_suspend_select(bool fallback) |
| { |
| struct clocksource *cs, *old_suspend; |
| |
| old_suspend = suspend_clocksource; |
| if (fallback) |
| suspend_clocksource = NULL; |
| |
| list_for_each_entry(cs, &clocksource_list, list) { |
| /* Skip current if we were requested for a fallback. */ |
| if (fallback && cs == old_suspend) |
| continue; |
| |
| __clocksource_suspend_select(cs); |
| } |
| } |
| |
| /** |
| * clocksource_start_suspend_timing - Start measuring the suspend timing |
| * @cs: current clocksource from timekeeping |
| * @start_cycles: current cycles from timekeeping |
| * |
| * This function will save the start cycle values of suspend timer to calculate |
| * the suspend time when resuming system. |
| * |
| * This function is called late in the suspend process from timekeeping_suspend(), |
| * that means processes are frozen, non-boot cpus and interrupts are disabled |
| * now. It is therefore possible to start the suspend timer without taking the |
| * clocksource mutex. |
| */ |
| void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles) |
| { |
| if (!suspend_clocksource) |
| return; |
| |
| /* |
| * If current clocksource is the suspend timer, we should use the |
| * tkr_mono.cycle_last value as suspend_start to avoid same reading |
| * from suspend timer. |
| */ |
| if (clocksource_is_suspend(cs)) { |
| suspend_start = start_cycles; |
| return; |
| } |
| |
| if (suspend_clocksource->enable && |
| suspend_clocksource->enable(suspend_clocksource)) { |
| pr_warn_once("Failed to enable the non-suspend-able clocksource.\n"); |
| return; |
| } |
| |
| suspend_start = suspend_clocksource->read(suspend_clocksource); |
| } |
| |
| /** |
| * clocksource_stop_suspend_timing - Stop measuring the suspend timing |
| * @cs: current clocksource from timekeeping |
| * @cycle_now: current cycles from timekeeping |
| * |
| * This function will calculate the suspend time from suspend timer. |
| * |
| * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource. |
| * |
| * This function is called early in the resume process from timekeeping_resume(), |
| * that means there is only one cpu, no processes are running and the interrupts |
| * are disabled. It is therefore possible to stop the suspend timer without |
| * taking the clocksource mutex. |
| */ |
| u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now) |
| { |
| u64 now, nsec = 0; |
| |
| if (!suspend_clocksource) |
| return 0; |
| |
| /* |
| * If current clocksource is the suspend timer, we should use the |
| * tkr_mono.cycle_last value from timekeeping as current cycle to |
| * avoid same reading from suspend timer. |
| */ |
| if (clocksource_is_suspend(cs)) |
| now = cycle_now; |
| else |
| now = suspend_clocksource->read(suspend_clocksource); |
| |
| if (now > suspend_start) |
| nsec = cycles_to_nsec_safe(suspend_clocksource, suspend_start, now); |
| |
| /* |
| * Disable the suspend timer to save power if current clocksource is |
| * not the suspend timer. |
| */ |
| if (!clocksource_is_suspend(cs) && suspend_clocksource->disable) |
| suspend_clocksource->disable(suspend_clocksource); |
| |
| return nsec; |
| } |
| |
| /** |
| * clocksource_suspend - suspend the clocksource(s) |
| */ |
| void clocksource_suspend(void) |
| { |
| struct clocksource *cs; |
| |
| list_for_each_entry_reverse(cs, &clocksource_list, list) |
| if (cs->suspend) |
| cs->suspend(cs); |
| } |
| |
| /** |
| * clocksource_resume - resume the clocksource(s) |
| */ |
| void clocksource_resume(void) |
| { |
| struct clocksource *cs; |
| |
| list_for_each_entry(cs, &clocksource_list, list) |
| if (cs->resume) |
| cs->resume(cs); |
| |
| clocksource_resume_watchdog(); |
| } |
| |
| /** |
| * clocksource_touch_watchdog - Update watchdog |
| * |
| * Update the watchdog after exception contexts such as kgdb so as not |
| * to incorrectly trip the watchdog. This might fail when the kernel |
| * was stopped in code which holds watchdog_lock. |
| */ |
| void clocksource_touch_watchdog(void) |
| { |
| clocksource_resume_watchdog(); |
| } |
| |
| /** |
| * clocksource_max_adjustment- Returns max adjustment amount |
| * @cs: Pointer to clocksource |
| * |
| */ |
| static u32 clocksource_max_adjustment(struct clocksource *cs) |
| { |
| u64 ret; |
| /* |
| * We won't try to correct for more than 11% adjustments (110,000 ppm), |
| */ |
| ret = (u64)cs->mult * 11; |
| do_div(ret,100); |
| return (u32)ret; |
| } |
| |
| /** |
| * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted |
| * @mult: cycle to nanosecond multiplier |
| * @shift: cycle to nanosecond divisor (power of two) |
| * @maxadj: maximum adjustment value to mult (~11%) |
| * @mask: bitmask for two's complement subtraction of non 64 bit counters |
| * @max_cyc: maximum cycle value before potential overflow (does not include |
| * any safety margin) |
| * |
| * NOTE: This function includes a safety margin of 50%, in other words, we |
| * return half the number of nanoseconds the hardware counter can technically |
| * cover. This is done so that we can potentially detect problems caused by |
| * delayed timers or bad hardware, which might result in time intervals that |
| * are larger than what the math used can handle without overflows. |
| */ |
| u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc) |
| { |
| u64 max_nsecs, max_cycles; |
| |
| /* |
| * Calculate the maximum number of cycles that we can pass to the |
| * cyc2ns() function without overflowing a 64-bit result. |
| */ |
| max_cycles = ULLONG_MAX; |
| do_div(max_cycles, mult+maxadj); |
| |
| /* |
| * The actual maximum number of cycles we can defer the clocksource is |
| * determined by the minimum of max_cycles and mask. |
| * Note: Here we subtract the maxadj to make sure we don't sleep for |
| * too long if there's a large negative adjustment. |
| */ |
| max_cycles = min(max_cycles, mask); |
| max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift); |
| |
| /* return the max_cycles value as well if requested */ |
| if (max_cyc) |
| *max_cyc = max_cycles; |
| |
| /* Return 50% of the actual maximum, so we can detect bad values */ |
| max_nsecs >>= 1; |
| |
| return max_nsecs; |
| } |
| |
| /** |
| * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles |
| * @cs: Pointer to clocksource to be updated |
| * |
| */ |
| static inline void clocksource_update_max_deferment(struct clocksource *cs) |
| { |
| cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift, |
| cs->maxadj, cs->mask, |
| &cs->max_cycles); |
| } |
| |
| static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur) |
| { |
| struct clocksource *cs; |
| |
| if (!finished_booting || list_empty(&clocksource_list)) |
| return NULL; |
| |
| /* |
| * We pick the clocksource with the highest rating. If oneshot |
| * mode is active, we pick the highres valid clocksource with |
| * the best rating. |
| */ |
| list_for_each_entry(cs, &clocksource_list, list) { |
| if (skipcur && cs == curr_clocksource) |
| continue; |
| if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES)) |
| continue; |
| return cs; |
| } |
| return NULL; |
| } |
| |
| static void __clocksource_select(bool skipcur) |
| { |
| bool oneshot = tick_oneshot_mode_active(); |
| struct clocksource *best, *cs; |
| |
| /* Find the best suitable clocksource */ |
| best = clocksource_find_best(oneshot, skipcur); |
| if (!best) |
| return; |
| |
| if (!strlen(override_name)) |
| goto found; |
| |
| /* Check for the override clocksource. */ |
| list_for_each_entry(cs, &clocksource_list, list) { |
| if (skipcur && cs == curr_clocksource) |
| continue; |
| if (strcmp(cs->name, override_name) != 0) |
| continue; |
| /* |
| * Check to make sure we don't switch to a non-highres |
| * capable clocksource if the tick code is in oneshot |
| * mode (highres or nohz) |
| */ |
| if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) { |
| /* Override clocksource cannot be used. */ |
| if (cs->flags & CLOCK_SOURCE_UNSTABLE) { |
| pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n", |
| cs->name); |
| override_name[0] = 0; |
| } else { |
| /* |
| * The override cannot be currently verified. |
| * Deferring to let the watchdog check. |
| */ |
| pr_info("Override clocksource %s is not currently HRT compatible - deferring\n", |
| cs->name); |
| } |
| } else |
| /* Override clocksource can be used. */ |
| best = cs; |
| break; |
| } |
| |
| found: |
| if (curr_clocksource != best && !timekeeping_notify(best)) { |
| pr_info("Switched to clocksource %s\n", best->name); |
| curr_clocksource = best; |
| } |
| } |
| |
| /** |
| * clocksource_select - Select the best clocksource available |
| * |
| * Private function. Must hold clocksource_mutex when called. |
| * |
| * Select the clocksource with the best rating, or the clocksource, |
| * which is selected by userspace override. |
| */ |
| static void clocksource_select(void) |
| { |
| __clocksource_select(false); |
| } |
| |
| static void clocksource_select_fallback(void) |
| { |
| __clocksource_select(true); |
| } |
| |
| /* |
| * clocksource_done_booting - Called near the end of core bootup |
| * |
| * Hack to avoid lots of clocksource churn at boot time. |
| * We use fs_initcall because we want this to start before |
| * device_initcall but after subsys_initcall. |
| */ |
| static int __init clocksource_done_booting(void) |
| { |
| mutex_lock(&clocksource_mutex); |
| curr_clocksource = clocksource_default_clock(); |
| finished_booting = 1; |
| /* |
| * Run the watchdog first to eliminate unstable clock sources |
| */ |
| __clocksource_watchdog_kthread(); |
| clocksource_select(); |
| mutex_unlock(&clocksource_mutex); |
| return 0; |
| } |
| fs_initcall(clocksource_done_booting); |
| |
| /* |
| * Enqueue the clocksource sorted by rating |
| */ |
| static void clocksource_enqueue(struct clocksource *cs) |
| { |
| struct list_head *entry = &clocksource_list; |
| struct clocksource *tmp; |
| |
| list_for_each_entry(tmp, &clocksource_list, list) { |
| /* Keep track of the place, where to insert */ |
| if (tmp->rating < cs->rating) |
| break; |
| entry = &tmp->list; |
| } |
| list_add(&cs->list, entry); |
| } |
| |
| /** |
| * __clocksource_update_freq_scale - Used update clocksource with new freq |
| * @cs: clocksource to be registered |
| * @scale: Scale factor multiplied against freq to get clocksource hz |
| * @freq: clocksource frequency (cycles per second) divided by scale |
| * |
| * This should only be called from the clocksource->enable() method. |
| * |
| * This *SHOULD NOT* be called directly! Please use the |
| * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper |
| * functions. |
| */ |
| void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq) |
| { |
| u64 sec; |
| |
| /* |
| * Default clocksources are *special* and self-define their mult/shift. |
| * But, you're not special, so you should specify a freq value. |
| */ |
| if (freq) { |
| /* |
| * Calc the maximum number of seconds which we can run before |
| * wrapping around. For clocksources which have a mask > 32-bit |
| * we need to limit the max sleep time to have a good |
| * conversion precision. 10 minutes is still a reasonable |
| * amount. That results in a shift value of 24 for a |
| * clocksource with mask >= 40-bit and f >= 4GHz. That maps to |
| * ~ 0.06ppm granularity for NTP. |
| */ |
| sec = cs->mask; |
| do_div(sec, freq); |
| do_div(sec, scale); |
| if (!sec) |
| sec = 1; |
| else if (sec > 600 && cs->mask > UINT_MAX) |
| sec = 600; |
| |
| clocks_calc_mult_shift(&cs->mult, &cs->shift, freq, |
| NSEC_PER_SEC / scale, sec * scale); |
| } |
| |
| /* |
| * If the uncertainty margin is not specified, calculate it. If |
| * both scale and freq are non-zero, calculate the clock period, but |
| * bound below at 2*WATCHDOG_MAX_SKEW, that is, 500ppm by default. |
| * However, if either of scale or freq is zero, be very conservative |
| * and take the tens-of-milliseconds WATCHDOG_THRESHOLD value |
| * for the uncertainty margin. Allow stupidly small uncertainty |
| * margins to be specified by the caller for testing purposes, |
| * but warn to discourage production use of this capability. |
| * |
| * Bottom line: The sum of the uncertainty margins of the |
| * watchdog clocksource and the clocksource under test will be at |
| * least 500ppm by default. For more information, please see the |
| * comment preceding CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US above. |
| */ |
| if (scale && freq && !cs->uncertainty_margin) { |
| cs->uncertainty_margin = NSEC_PER_SEC / (scale * freq); |
| if (cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW) |
| cs->uncertainty_margin = 2 * WATCHDOG_MAX_SKEW; |
| } else if (!cs->uncertainty_margin) { |
| cs->uncertainty_margin = WATCHDOG_THRESHOLD; |
| } |
| WARN_ON_ONCE(cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW); |
| |
| /* |
| * Ensure clocksources that have large 'mult' values don't overflow |
| * when adjusted. |
| */ |
| cs->maxadj = clocksource_max_adjustment(cs); |
| while (freq && ((cs->mult + cs->maxadj < cs->mult) |
| || (cs->mult - cs->maxadj > cs->mult))) { |
| cs->mult >>= 1; |
| cs->shift--; |
| cs->maxadj = clocksource_max_adjustment(cs); |
| } |
| |
| /* |
| * Only warn for *special* clocksources that self-define |
| * their mult/shift values and don't specify a freq. |
| */ |
| WARN_ONCE(cs->mult + cs->maxadj < cs->mult, |
| "timekeeping: Clocksource %s might overflow on 11%% adjustment\n", |
| cs->name); |
| |
| clocksource_update_max_deferment(cs); |
| |
| pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n", |
| cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns); |
| } |
| EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale); |
| |
| /** |
| * __clocksource_register_scale - Used to install new clocksources |
| * @cs: clocksource to be registered |
| * @scale: Scale factor multiplied against freq to get clocksource hz |
| * @freq: clocksource frequency (cycles per second) divided by scale |
| * |
| * Returns -EBUSY if registration fails, zero otherwise. |
| * |
| * This *SHOULD NOT* be called directly! Please use the |
| * clocksource_register_hz() or clocksource_register_khz helper functions. |
| */ |
| int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq) |
| { |
| unsigned long flags; |
| |
| clocksource_arch_init(cs); |
| |
| if (WARN_ON_ONCE((unsigned int)cs->id >= CSID_MAX)) |
| cs->id = CSID_GENERIC; |
| if (cs->vdso_clock_mode < 0 || |
| cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) { |
| pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n", |
| cs->name, cs->vdso_clock_mode); |
| cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE; |
| } |
| |
| /* Initialize mult/shift and max_idle_ns */ |
| __clocksource_update_freq_scale(cs, scale, freq); |
| |
| /* Add clocksource to the clocksource list */ |
| mutex_lock(&clocksource_mutex); |
| |
| clocksource_watchdog_lock(&flags); |
| clocksource_enqueue(cs); |
| clocksource_enqueue_watchdog(cs); |
| clocksource_watchdog_unlock(&flags); |
| |
| clocksource_select(); |
| clocksource_select_watchdog(false); |
| __clocksource_suspend_select(cs); |
| mutex_unlock(&clocksource_mutex); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(__clocksource_register_scale); |
| |
| static void __clocksource_change_rating(struct clocksource *cs, int rating) |
| { |
| list_del(&cs->list); |
| cs->rating = rating; |
| clocksource_enqueue(cs); |
| } |
| |
| /** |
| * clocksource_change_rating - Change the rating of a registered clocksource |
| * @cs: clocksource to be changed |
| * @rating: new rating |
| */ |
| void clocksource_change_rating(struct clocksource *cs, int rating) |
| { |
| unsigned long flags; |
| |
| mutex_lock(&clocksource_mutex); |
| clocksource_watchdog_lock(&flags); |
| __clocksource_change_rating(cs, rating); |
| clocksource_watchdog_unlock(&flags); |
| |
| clocksource_select(); |
| clocksource_select_watchdog(false); |
| clocksource_suspend_select(false); |
| mutex_unlock(&clocksource_mutex); |
| } |
| EXPORT_SYMBOL(clocksource_change_rating); |
| |
| /* |
| * Unbind clocksource @cs. Called with clocksource_mutex held |
| */ |
| static int clocksource_unbind(struct clocksource *cs) |
| { |
| unsigned long flags; |
| |
| if (clocksource_is_watchdog(cs)) { |
| /* Select and try to install a replacement watchdog. */ |
| clocksource_select_watchdog(true); |
| if (clocksource_is_watchdog(cs)) |
| return -EBUSY; |
| } |
| |
| if (cs == curr_clocksource) { |
| /* Select and try to install a replacement clock source */ |
| clocksource_select_fallback(); |
| if (curr_clocksource == cs) |
| return -EBUSY; |
| } |
| |
| if (clocksource_is_suspend(cs)) { |
| /* |
| * Select and try to install a replacement suspend clocksource. |
| * If no replacement suspend clocksource, we will just let the |
| * clocksource go and have no suspend clocksource. |
| */ |
| clocksource_suspend_select(true); |
| } |
| |
| clocksource_watchdog_lock(&flags); |
| clocksource_dequeue_watchdog(cs); |
| list_del_init(&cs->list); |
| clocksource_watchdog_unlock(&flags); |
| |
| return 0; |
| } |
| |
| /** |
| * clocksource_unregister - remove a registered clocksource |
| * @cs: clocksource to be unregistered |
| */ |
| int clocksource_unregister(struct clocksource *cs) |
| { |
| int ret = 0; |
| |
| mutex_lock(&clocksource_mutex); |
| if (!list_empty(&cs->list)) |
| ret = clocksource_unbind(cs); |
| mutex_unlock(&clocksource_mutex); |
| return ret; |
| } |
| EXPORT_SYMBOL(clocksource_unregister); |
| |
| #ifdef CONFIG_SYSFS |
| /** |
| * current_clocksource_show - sysfs interface for current clocksource |
| * @dev: unused |
| * @attr: unused |
| * @buf: char buffer to be filled with clocksource list |
| * |
| * Provides sysfs interface for listing current clocksource. |
| */ |
| static ssize_t current_clocksource_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| ssize_t count = 0; |
| |
| mutex_lock(&clocksource_mutex); |
| count = sysfs_emit(buf, "%s\n", curr_clocksource->name); |
| mutex_unlock(&clocksource_mutex); |
| |
| return count; |
| } |
| |
| ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt) |
| { |
| size_t ret = cnt; |
| |
| /* strings from sysfs write are not 0 terminated! */ |
| if (!cnt || cnt >= CS_NAME_LEN) |
| return -EINVAL; |
| |
| /* strip of \n: */ |
| if (buf[cnt-1] == '\n') |
| cnt--; |
| if (cnt > 0) |
| memcpy(dst, buf, cnt); |
| dst[cnt] = 0; |
| return ret; |
| } |
| |
| /** |
| * current_clocksource_store - interface for manually overriding clocksource |
| * @dev: unused |
| * @attr: unused |
| * @buf: name of override clocksource |
| * @count: length of buffer |
| * |
| * Takes input from sysfs interface for manually overriding the default |
| * clocksource selection. |
| */ |
| static ssize_t current_clocksource_store(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| ssize_t ret; |
| |
| mutex_lock(&clocksource_mutex); |
| |
| ret = sysfs_get_uname(buf, override_name, count); |
| if (ret >= 0) |
| clocksource_select(); |
| |
| mutex_unlock(&clocksource_mutex); |
| |
| return ret; |
| } |
| static DEVICE_ATTR_RW(current_clocksource); |
| |
| /** |
| * unbind_clocksource_store - interface for manually unbinding clocksource |
| * @dev: unused |
| * @attr: unused |
| * @buf: unused |
| * @count: length of buffer |
| * |
| * Takes input from sysfs interface for manually unbinding a clocksource. |
| */ |
| static ssize_t unbind_clocksource_store(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct clocksource *cs; |
| char name[CS_NAME_LEN]; |
| ssize_t ret; |
| |
| ret = sysfs_get_uname(buf, name, count); |
| if (ret < 0) |
| return ret; |
| |
| ret = -ENODEV; |
| mutex_lock(&clocksource_mutex); |
| list_for_each_entry(cs, &clocksource_list, list) { |
| if (strcmp(cs->name, name)) |
| continue; |
| ret = clocksource_unbind(cs); |
| break; |
| } |
| mutex_unlock(&clocksource_mutex); |
| |
| return ret ? ret : count; |
| } |
| static DEVICE_ATTR_WO(unbind_clocksource); |
| |
| /** |
| * available_clocksource_show - sysfs interface for listing clocksource |
| * @dev: unused |
| * @attr: unused |
| * @buf: char buffer to be filled with clocksource list |
| * |
| * Provides sysfs interface for listing registered clocksources |
| */ |
| static ssize_t available_clocksource_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct clocksource *src; |
| ssize_t count = 0; |
| |
| mutex_lock(&clocksource_mutex); |
| list_for_each_entry(src, &clocksource_list, list) { |
| /* |
| * Don't show non-HRES clocksource if the tick code is |
| * in one shot mode (highres=on or nohz=on) |
| */ |
| if (!tick_oneshot_mode_active() || |
| (src->flags & CLOCK_SOURCE_VALID_FOR_HRES)) |
| count += snprintf(buf + count, |
| max((ssize_t)PAGE_SIZE - count, (ssize_t)0), |
| "%s ", src->name); |
| } |
| mutex_unlock(&clocksource_mutex); |
| |
| count += snprintf(buf + count, |
| max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n"); |
| |
| return count; |
| } |
| static DEVICE_ATTR_RO(available_clocksource); |
| |
| static struct attribute *clocksource_attrs[] = { |
| &dev_attr_current_clocksource.attr, |
| &dev_attr_unbind_clocksource.attr, |
| &dev_attr_available_clocksource.attr, |
| NULL |
| }; |
| ATTRIBUTE_GROUPS(clocksource); |
| |
| static const struct bus_type clocksource_subsys = { |
| .name = "clocksource", |
| .dev_name = "clocksource", |
| }; |
| |
| static struct device device_clocksource = { |
| .id = 0, |
| .bus = &clocksource_subsys, |
| .groups = clocksource_groups, |
| }; |
| |
| static int __init init_clocksource_sysfs(void) |
| { |
| int error = subsys_system_register(&clocksource_subsys, NULL); |
| |
| if (!error) |
| error = device_register(&device_clocksource); |
| |
| return error; |
| } |
| |
| device_initcall(init_clocksource_sysfs); |
| #endif /* CONFIG_SYSFS */ |
| |
| /** |
| * boot_override_clocksource - boot clock override |
| * @str: override name |
| * |
| * Takes a clocksource= boot argument and uses it |
| * as the clocksource override name. |
| */ |
| static int __init boot_override_clocksource(char* str) |
| { |
| mutex_lock(&clocksource_mutex); |
| if (str) |
| strscpy(override_name, str, sizeof(override_name)); |
| mutex_unlock(&clocksource_mutex); |
| return 1; |
| } |
| |
| __setup("clocksource=", boot_override_clocksource); |
| |
| /** |
| * boot_override_clock - Compatibility layer for deprecated boot option |
| * @str: override name |
| * |
| * DEPRECATED! Takes a clock= boot argument and uses it |
| * as the clocksource override name |
| */ |
| static int __init boot_override_clock(char* str) |
| { |
| if (!strcmp(str, "pmtmr")) { |
| pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n"); |
| return boot_override_clocksource("acpi_pm"); |
| } |
| pr_warn("clock= boot option is deprecated - use clocksource=xyz\n"); |
| return boot_override_clocksource(str); |
| } |
| |
| __setup("clock=", boot_override_clock); |