| /* |
| * Ceph - scalable distributed file system |
| * |
| * Copyright (C) 2015 Intel Corporation All Rights Reserved |
| * |
| * This is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License version 2.1, as published by the Free Software |
| * Foundation. See file COPYING. |
| * |
| */ |
| |
| #ifdef __KERNEL__ |
| # include <linux/string.h> |
| # include <linux/slab.h> |
| # include <linux/bug.h> |
| # include <linux/kernel.h> |
| # include <linux/crush/crush.h> |
| # include <linux/crush/hash.h> |
| # include <linux/crush/mapper.h> |
| #else |
| # include "crush_compat.h" |
| # include "crush.h" |
| # include "hash.h" |
| # include "mapper.h" |
| #endif |
| #include "crush_ln_table.h" |
| |
| #define dprintk(args...) /* printf(args) */ |
| |
| /* |
| * Implement the core CRUSH mapping algorithm. |
| */ |
| |
| /** |
| * crush_find_rule - find a crush_rule id for a given ruleset, type, and size. |
| * @map: the crush_map |
| * @ruleset: the storage ruleset id (user defined) |
| * @type: storage ruleset type (user defined) |
| * @size: output set size |
| */ |
| int crush_find_rule(const struct crush_map *map, int ruleset, int type, int size) |
| { |
| __u32 i; |
| |
| for (i = 0; i < map->max_rules; i++) { |
| if (map->rules[i] && |
| map->rules[i]->mask.ruleset == ruleset && |
| map->rules[i]->mask.type == type && |
| map->rules[i]->mask.min_size <= size && |
| map->rules[i]->mask.max_size >= size) |
| return i; |
| } |
| return -1; |
| } |
| |
| /* |
| * bucket choose methods |
| * |
| * For each bucket algorithm, we have a "choose" method that, given a |
| * crush input @x and replica position (usually, position in output set) @r, |
| * will produce an item in the bucket. |
| */ |
| |
| /* |
| * Choose based on a random permutation of the bucket. |
| * |
| * We used to use some prime number arithmetic to do this, but it |
| * wasn't very random, and had some other bad behaviors. Instead, we |
| * calculate an actual random permutation of the bucket members. |
| * Since this is expensive, we optimize for the r=0 case, which |
| * captures the vast majority of calls. |
| */ |
| static int bucket_perm_choose(const struct crush_bucket *bucket, |
| struct crush_work_bucket *work, |
| int x, int r) |
| { |
| unsigned int pr = r % bucket->size; |
| unsigned int i, s; |
| |
| /* start a new permutation if @x has changed */ |
| if (work->perm_x != (__u32)x || work->perm_n == 0) { |
| dprintk("bucket %d new x=%d\n", bucket->id, x); |
| work->perm_x = x; |
| |
| /* optimize common r=0 case */ |
| if (pr == 0) { |
| s = crush_hash32_3(bucket->hash, x, bucket->id, 0) % |
| bucket->size; |
| work->perm[0] = s; |
| work->perm_n = 0xffff; /* magic value, see below */ |
| goto out; |
| } |
| |
| for (i = 0; i < bucket->size; i++) |
| work->perm[i] = i; |
| work->perm_n = 0; |
| } else if (work->perm_n == 0xffff) { |
| /* clean up after the r=0 case above */ |
| for (i = 1; i < bucket->size; i++) |
| work->perm[i] = i; |
| work->perm[work->perm[0]] = 0; |
| work->perm_n = 1; |
| } |
| |
| /* calculate permutation up to pr */ |
| for (i = 0; i < work->perm_n; i++) |
| dprintk(" perm_choose have %d: %d\n", i, work->perm[i]); |
| while (work->perm_n <= pr) { |
| unsigned int p = work->perm_n; |
| /* no point in swapping the final entry */ |
| if (p < bucket->size - 1) { |
| i = crush_hash32_3(bucket->hash, x, bucket->id, p) % |
| (bucket->size - p); |
| if (i) { |
| unsigned int t = work->perm[p + i]; |
| work->perm[p + i] = work->perm[p]; |
| work->perm[p] = t; |
| } |
| dprintk(" perm_choose swap %d with %d\n", p, p+i); |
| } |
| work->perm_n++; |
| } |
| for (i = 0; i < bucket->size; i++) |
| dprintk(" perm_choose %d: %d\n", i, work->perm[i]); |
| |
| s = work->perm[pr]; |
| out: |
| dprintk(" perm_choose %d sz=%d x=%d r=%d (%d) s=%d\n", bucket->id, |
| bucket->size, x, r, pr, s); |
| return bucket->items[s]; |
| } |
| |
| /* uniform */ |
| static int bucket_uniform_choose(const struct crush_bucket_uniform *bucket, |
| struct crush_work_bucket *work, int x, int r) |
| { |
| return bucket_perm_choose(&bucket->h, work, x, r); |
| } |
| |
| /* list */ |
| static int bucket_list_choose(const struct crush_bucket_list *bucket, |
| int x, int r) |
| { |
| int i; |
| |
| for (i = bucket->h.size-1; i >= 0; i--) { |
| __u64 w = crush_hash32_4(bucket->h.hash, x, bucket->h.items[i], |
| r, bucket->h.id); |
| w &= 0xffff; |
| dprintk("list_choose i=%d x=%d r=%d item %d weight %x " |
| "sw %x rand %llx", |
| i, x, r, bucket->h.items[i], bucket->item_weights[i], |
| bucket->sum_weights[i], w); |
| w *= bucket->sum_weights[i]; |
| w = w >> 16; |
| /*dprintk(" scaled %llx\n", w);*/ |
| if (w < bucket->item_weights[i]) { |
| return bucket->h.items[i]; |
| } |
| } |
| |
| dprintk("bad list sums for bucket %d\n", bucket->h.id); |
| return bucket->h.items[0]; |
| } |
| |
| |
| /* (binary) tree */ |
| static int height(int n) |
| { |
| int h = 0; |
| while ((n & 1) == 0) { |
| h++; |
| n = n >> 1; |
| } |
| return h; |
| } |
| |
| static int left(int x) |
| { |
| int h = height(x); |
| return x - (1 << (h-1)); |
| } |
| |
| static int right(int x) |
| { |
| int h = height(x); |
| return x + (1 << (h-1)); |
| } |
| |
| static int terminal(int x) |
| { |
| return x & 1; |
| } |
| |
| static int bucket_tree_choose(const struct crush_bucket_tree *bucket, |
| int x, int r) |
| { |
| int n; |
| __u32 w; |
| __u64 t; |
| |
| /* start at root */ |
| n = bucket->num_nodes >> 1; |
| |
| while (!terminal(n)) { |
| int l; |
| /* pick point in [0, w) */ |
| w = bucket->node_weights[n]; |
| t = (__u64)crush_hash32_4(bucket->h.hash, x, n, r, |
| bucket->h.id) * (__u64)w; |
| t = t >> 32; |
| |
| /* descend to the left or right? */ |
| l = left(n); |
| if (t < bucket->node_weights[l]) |
| n = l; |
| else |
| n = right(n); |
| } |
| |
| return bucket->h.items[n >> 1]; |
| } |
| |
| |
| /* straw */ |
| |
| static int bucket_straw_choose(const struct crush_bucket_straw *bucket, |
| int x, int r) |
| { |
| __u32 i; |
| int high = 0; |
| __u64 high_draw = 0; |
| __u64 draw; |
| |
| for (i = 0; i < bucket->h.size; i++) { |
| draw = crush_hash32_3(bucket->h.hash, x, bucket->h.items[i], r); |
| draw &= 0xffff; |
| draw *= bucket->straws[i]; |
| if (i == 0 || draw > high_draw) { |
| high = i; |
| high_draw = draw; |
| } |
| } |
| return bucket->h.items[high]; |
| } |
| |
| /* compute 2^44*log2(input+1) */ |
| static __u64 crush_ln(unsigned int xin) |
| { |
| unsigned int x = xin; |
| int iexpon, index1, index2; |
| __u64 RH, LH, LL, xl64, result; |
| |
| x++; |
| |
| /* normalize input */ |
| iexpon = 15; |
| |
| /* |
| * figure out number of bits we need to shift and |
| * do it in one step instead of iteratively |
| */ |
| if (!(x & 0x18000)) { |
| int bits = __builtin_clz(x & 0x1FFFF) - 16; |
| x <<= bits; |
| iexpon = 15 - bits; |
| } |
| |
| index1 = (x >> 8) << 1; |
| /* RH ~ 2^56/index1 */ |
| RH = __RH_LH_tbl[index1 - 256]; |
| /* LH ~ 2^48 * log2(index1/256) */ |
| LH = __RH_LH_tbl[index1 + 1 - 256]; |
| |
| /* RH*x ~ 2^48 * (2^15 + xf), xf<2^8 */ |
| xl64 = (__s64)x * RH; |
| xl64 >>= 48; |
| |
| result = iexpon; |
| result <<= (12 + 32); |
| |
| index2 = xl64 & 0xff; |
| /* LL ~ 2^48*log2(1.0+index2/2^15) */ |
| LL = __LL_tbl[index2]; |
| |
| LH = LH + LL; |
| |
| LH >>= (48 - 12 - 32); |
| result += LH; |
| |
| return result; |
| } |
| |
| |
| /* |
| * straw2 |
| * |
| * for reference, see: |
| * |
| * https://en.wikipedia.org/wiki/Exponential_distribution#Distribution_of_the_minimum_of_exponential_random_variables |
| * |
| */ |
| |
| static __u32 *get_choose_arg_weights(const struct crush_bucket_straw2 *bucket, |
| const struct crush_choose_arg *arg, |
| int position) |
| { |
| if (!arg || !arg->weight_set) |
| return bucket->item_weights; |
| |
| if (position >= arg->weight_set_size) |
| position = arg->weight_set_size - 1; |
| return arg->weight_set[position].weights; |
| } |
| |
| static __s32 *get_choose_arg_ids(const struct crush_bucket_straw2 *bucket, |
| const struct crush_choose_arg *arg) |
| { |
| if (!arg || !arg->ids) |
| return bucket->h.items; |
| |
| return arg->ids; |
| } |
| |
| static int bucket_straw2_choose(const struct crush_bucket_straw2 *bucket, |
| int x, int r, |
| const struct crush_choose_arg *arg, |
| int position) |
| { |
| unsigned int i, high = 0; |
| unsigned int u; |
| __s64 ln, draw, high_draw = 0; |
| __u32 *weights = get_choose_arg_weights(bucket, arg, position); |
| __s32 *ids = get_choose_arg_ids(bucket, arg); |
| |
| for (i = 0; i < bucket->h.size; i++) { |
| dprintk("weight 0x%x item %d\n", weights[i], ids[i]); |
| if (weights[i]) { |
| u = crush_hash32_3(bucket->h.hash, x, ids[i], r); |
| u &= 0xffff; |
| |
| /* |
| * for some reason slightly less than 0x10000 produces |
| * a slightly more accurate distribution... probably a |
| * rounding effect. |
| * |
| * the natural log lookup table maps [0,0xffff] |
| * (corresponding to real numbers [1/0x10000, 1] to |
| * [0, 0xffffffffffff] (corresponding to real numbers |
| * [-11.090355,0]). |
| */ |
| ln = crush_ln(u) - 0x1000000000000ll; |
| |
| /* |
| * divide by 16.16 fixed-point weight. note |
| * that the ln value is negative, so a larger |
| * weight means a larger (less negative) value |
| * for draw. |
| */ |
| draw = div64_s64(ln, weights[i]); |
| } else { |
| draw = S64_MIN; |
| } |
| |
| if (i == 0 || draw > high_draw) { |
| high = i; |
| high_draw = draw; |
| } |
| } |
| |
| return bucket->h.items[high]; |
| } |
| |
| |
| static int crush_bucket_choose(const struct crush_bucket *in, |
| struct crush_work_bucket *work, |
| int x, int r, |
| const struct crush_choose_arg *arg, |
| int position) |
| { |
| dprintk(" crush_bucket_choose %d x=%d r=%d\n", in->id, x, r); |
| BUG_ON(in->size == 0); |
| switch (in->alg) { |
| case CRUSH_BUCKET_UNIFORM: |
| return bucket_uniform_choose( |
| (const struct crush_bucket_uniform *)in, |
| work, x, r); |
| case CRUSH_BUCKET_LIST: |
| return bucket_list_choose((const struct crush_bucket_list *)in, |
| x, r); |
| case CRUSH_BUCKET_TREE: |
| return bucket_tree_choose((const struct crush_bucket_tree *)in, |
| x, r); |
| case CRUSH_BUCKET_STRAW: |
| return bucket_straw_choose( |
| (const struct crush_bucket_straw *)in, |
| x, r); |
| case CRUSH_BUCKET_STRAW2: |
| return bucket_straw2_choose( |
| (const struct crush_bucket_straw2 *)in, |
| x, r, arg, position); |
| default: |
| dprintk("unknown bucket %d alg %d\n", in->id, in->alg); |
| return in->items[0]; |
| } |
| } |
| |
| /* |
| * true if device is marked "out" (failed, fully offloaded) |
| * of the cluster |
| */ |
| static int is_out(const struct crush_map *map, |
| const __u32 *weight, int weight_max, |
| int item, int x) |
| { |
| if (item >= weight_max) |
| return 1; |
| if (weight[item] >= 0x10000) |
| return 0; |
| if (weight[item] == 0) |
| return 1; |
| if ((crush_hash32_2(CRUSH_HASH_RJENKINS1, x, item) & 0xffff) |
| < weight[item]) |
| return 0; |
| return 1; |
| } |
| |
| /** |
| * crush_choose_firstn - choose numrep distinct items of given type |
| * @map: the crush_map |
| * @work: working space initialized by crush_init_workspace() |
| * @bucket: the bucket we are choose an item from |
| * @weight: weight vector (for map leaves) |
| * @weight_max: size of weight vector |
| * @x: crush input value |
| * @numrep: the number of items to choose |
| * @type: the type of item to choose |
| * @out: pointer to output vector |
| * @outpos: our position in that vector |
| * @out_size: size of the out vector |
| * @tries: number of attempts to make |
| * @recurse_tries: number of attempts to have recursive chooseleaf make |
| * @local_retries: localized retries |
| * @local_fallback_retries: localized fallback retries |
| * @recurse_to_leaf: true if we want one device under each item of given type (chooseleaf instead of choose) |
| * @stable: stable mode starts rep=0 in the recursive call for all replicas |
| * @vary_r: pass r to recursive calls |
| * @out2: second output vector for leaf items (if @recurse_to_leaf) |
| * @parent_r: r value passed from the parent |
| * @choose_args: weights and ids for each known bucket |
| */ |
| static int crush_choose_firstn(const struct crush_map *map, |
| struct crush_work *work, |
| const struct crush_bucket *bucket, |
| const __u32 *weight, int weight_max, |
| int x, int numrep, int type, |
| int *out, int outpos, |
| int out_size, |
| unsigned int tries, |
| unsigned int recurse_tries, |
| unsigned int local_retries, |
| unsigned int local_fallback_retries, |
| int recurse_to_leaf, |
| unsigned int vary_r, |
| unsigned int stable, |
| int *out2, |
| int parent_r, |
| const struct crush_choose_arg *choose_args) |
| { |
| int rep; |
| unsigned int ftotal, flocal; |
| int retry_descent, retry_bucket, skip_rep; |
| const struct crush_bucket *in = bucket; |
| int r; |
| int i; |
| int item = 0; |
| int itemtype; |
| int collide, reject; |
| int count = out_size; |
| |
| dprintk("CHOOSE%s bucket %d x %d outpos %d numrep %d tries %d recurse_tries %d local_retries %d local_fallback_retries %d parent_r %d stable %d\n", |
| recurse_to_leaf ? "_LEAF" : "", |
| bucket->id, x, outpos, numrep, |
| tries, recurse_tries, local_retries, local_fallback_retries, |
| parent_r, stable); |
| |
| for (rep = stable ? 0 : outpos; rep < numrep && count > 0 ; rep++) { |
| /* keep trying until we get a non-out, non-colliding item */ |
| ftotal = 0; |
| skip_rep = 0; |
| do { |
| retry_descent = 0; |
| in = bucket; /* initial bucket */ |
| |
| /* choose through intervening buckets */ |
| flocal = 0; |
| do { |
| collide = 0; |
| retry_bucket = 0; |
| r = rep + parent_r; |
| /* r' = r + f_total */ |
| r += ftotal; |
| |
| /* bucket choose */ |
| if (in->size == 0) { |
| reject = 1; |
| goto reject; |
| } |
| if (local_fallback_retries > 0 && |
| flocal >= (in->size>>1) && |
| flocal > local_fallback_retries) |
| item = bucket_perm_choose( |
| in, work->work[-1-in->id], |
| x, r); |
| else |
| item = crush_bucket_choose( |
| in, work->work[-1-in->id], |
| x, r, |
| (choose_args ? |
| &choose_args[-1-in->id] : NULL), |
| outpos); |
| if (item >= map->max_devices) { |
| dprintk(" bad item %d\n", item); |
| skip_rep = 1; |
| break; |
| } |
| |
| /* desired type? */ |
| if (item < 0) |
| itemtype = map->buckets[-1-item]->type; |
| else |
| itemtype = 0; |
| dprintk(" item %d type %d\n", item, itemtype); |
| |
| /* keep going? */ |
| if (itemtype != type) { |
| if (item >= 0 || |
| (-1-item) >= map->max_buckets) { |
| dprintk(" bad item type %d\n", type); |
| skip_rep = 1; |
| break; |
| } |
| in = map->buckets[-1-item]; |
| retry_bucket = 1; |
| continue; |
| } |
| |
| /* collision? */ |
| for (i = 0; i < outpos; i++) { |
| if (out[i] == item) { |
| collide = 1; |
| break; |
| } |
| } |
| |
| reject = 0; |
| if (!collide && recurse_to_leaf) { |
| if (item < 0) { |
| int sub_r; |
| if (vary_r) |
| sub_r = r >> (vary_r-1); |
| else |
| sub_r = 0; |
| if (crush_choose_firstn( |
| map, |
| work, |
| map->buckets[-1-item], |
| weight, weight_max, |
| x, stable ? 1 : outpos+1, 0, |
| out2, outpos, count, |
| recurse_tries, 0, |
| local_retries, |
| local_fallback_retries, |
| 0, |
| vary_r, |
| stable, |
| NULL, |
| sub_r, |
| choose_args) <= outpos) |
| /* didn't get leaf */ |
| reject = 1; |
| } else { |
| /* we already have a leaf! */ |
| out2[outpos] = item; |
| } |
| } |
| |
| if (!reject && !collide) { |
| /* out? */ |
| if (itemtype == 0) |
| reject = is_out(map, weight, |
| weight_max, |
| item, x); |
| } |
| |
| reject: |
| if (reject || collide) { |
| ftotal++; |
| flocal++; |
| |
| if (collide && flocal <= local_retries) |
| /* retry locally a few times */ |
| retry_bucket = 1; |
| else if (local_fallback_retries > 0 && |
| flocal <= in->size + local_fallback_retries) |
| /* exhaustive bucket search */ |
| retry_bucket = 1; |
| else if (ftotal < tries) |
| /* then retry descent */ |
| retry_descent = 1; |
| else |
| /* else give up */ |
| skip_rep = 1; |
| dprintk(" reject %d collide %d " |
| "ftotal %u flocal %u\n", |
| reject, collide, ftotal, |
| flocal); |
| } |
| } while (retry_bucket); |
| } while (retry_descent); |
| |
| if (skip_rep) { |
| dprintk("skip rep\n"); |
| continue; |
| } |
| |
| dprintk("CHOOSE got %d\n", item); |
| out[outpos] = item; |
| outpos++; |
| count--; |
| #ifndef __KERNEL__ |
| if (map->choose_tries && ftotal <= map->choose_total_tries) |
| map->choose_tries[ftotal]++; |
| #endif |
| } |
| |
| dprintk("CHOOSE returns %d\n", outpos); |
| return outpos; |
| } |
| |
| |
| /* |
| * crush_choose_indep: alternative breadth-first positionally stable mapping |
| */ |
| static void crush_choose_indep(const struct crush_map *map, |
| struct crush_work *work, |
| const struct crush_bucket *bucket, |
| const __u32 *weight, int weight_max, |
| int x, int left, int numrep, int type, |
| int *out, int outpos, |
| unsigned int tries, |
| unsigned int recurse_tries, |
| int recurse_to_leaf, |
| int *out2, |
| int parent_r, |
| const struct crush_choose_arg *choose_args) |
| { |
| const struct crush_bucket *in = bucket; |
| int endpos = outpos + left; |
| int rep; |
| unsigned int ftotal; |
| int r; |
| int i; |
| int item = 0; |
| int itemtype; |
| int collide; |
| |
| dprintk("CHOOSE%s INDEP bucket %d x %d outpos %d numrep %d\n", recurse_to_leaf ? "_LEAF" : "", |
| bucket->id, x, outpos, numrep); |
| |
| /* initially my result is undefined */ |
| for (rep = outpos; rep < endpos; rep++) { |
| out[rep] = CRUSH_ITEM_UNDEF; |
| if (out2) |
| out2[rep] = CRUSH_ITEM_UNDEF; |
| } |
| |
| for (ftotal = 0; left > 0 && ftotal < tries; ftotal++) { |
| #ifdef DEBUG_INDEP |
| if (out2 && ftotal) { |
| dprintk("%u %d a: ", ftotal, left); |
| for (rep = outpos; rep < endpos; rep++) { |
| dprintk(" %d", out[rep]); |
| } |
| dprintk("\n"); |
| dprintk("%u %d b: ", ftotal, left); |
| for (rep = outpos; rep < endpos; rep++) { |
| dprintk(" %d", out2[rep]); |
| } |
| dprintk("\n"); |
| } |
| #endif |
| for (rep = outpos; rep < endpos; rep++) { |
| if (out[rep] != CRUSH_ITEM_UNDEF) |
| continue; |
| |
| in = bucket; /* initial bucket */ |
| |
| /* choose through intervening buckets */ |
| for (;;) { |
| /* note: we base the choice on the position |
| * even in the nested call. that means that |
| * if the first layer chooses the same bucket |
| * in a different position, we will tend to |
| * choose a different item in that bucket. |
| * this will involve more devices in data |
| * movement and tend to distribute the load. |
| */ |
| r = rep + parent_r; |
| |
| /* be careful */ |
| if (in->alg == CRUSH_BUCKET_UNIFORM && |
| in->size % numrep == 0) |
| /* r'=r+(n+1)*f_total */ |
| r += (numrep+1) * ftotal; |
| else |
| /* r' = r + n*f_total */ |
| r += numrep * ftotal; |
| |
| /* bucket choose */ |
| if (in->size == 0) { |
| dprintk(" empty bucket\n"); |
| break; |
| } |
| |
| item = crush_bucket_choose( |
| in, work->work[-1-in->id], |
| x, r, |
| (choose_args ? |
| &choose_args[-1-in->id] : NULL), |
| outpos); |
| if (item >= map->max_devices) { |
| dprintk(" bad item %d\n", item); |
| out[rep] = CRUSH_ITEM_NONE; |
| if (out2) |
| out2[rep] = CRUSH_ITEM_NONE; |
| left--; |
| break; |
| } |
| |
| /* desired type? */ |
| if (item < 0) |
| itemtype = map->buckets[-1-item]->type; |
| else |
| itemtype = 0; |
| dprintk(" item %d type %d\n", item, itemtype); |
| |
| /* keep going? */ |
| if (itemtype != type) { |
| if (item >= 0 || |
| (-1-item) >= map->max_buckets) { |
| dprintk(" bad item type %d\n", type); |
| out[rep] = CRUSH_ITEM_NONE; |
| if (out2) |
| out2[rep] = |
| CRUSH_ITEM_NONE; |
| left--; |
| break; |
| } |
| in = map->buckets[-1-item]; |
| continue; |
| } |
| |
| /* collision? */ |
| collide = 0; |
| for (i = outpos; i < endpos; i++) { |
| if (out[i] == item) { |
| collide = 1; |
| break; |
| } |
| } |
| if (collide) |
| break; |
| |
| if (recurse_to_leaf) { |
| if (item < 0) { |
| crush_choose_indep( |
| map, |
| work, |
| map->buckets[-1-item], |
| weight, weight_max, |
| x, 1, numrep, 0, |
| out2, rep, |
| recurse_tries, 0, |
| 0, NULL, r, |
| choose_args); |
| if (out2[rep] == CRUSH_ITEM_NONE) { |
| /* placed nothing; no leaf */ |
| break; |
| } |
| } else { |
| /* we already have a leaf! */ |
| out2[rep] = item; |
| } |
| } |
| |
| /* out? */ |
| if (itemtype == 0 && |
| is_out(map, weight, weight_max, item, x)) |
| break; |
| |
| /* yay! */ |
| out[rep] = item; |
| left--; |
| break; |
| } |
| } |
| } |
| for (rep = outpos; rep < endpos; rep++) { |
| if (out[rep] == CRUSH_ITEM_UNDEF) { |
| out[rep] = CRUSH_ITEM_NONE; |
| } |
| if (out2 && out2[rep] == CRUSH_ITEM_UNDEF) { |
| out2[rep] = CRUSH_ITEM_NONE; |
| } |
| } |
| #ifndef __KERNEL__ |
| if (map->choose_tries && ftotal <= map->choose_total_tries) |
| map->choose_tries[ftotal]++; |
| #endif |
| #ifdef DEBUG_INDEP |
| if (out2) { |
| dprintk("%u %d a: ", ftotal, left); |
| for (rep = outpos; rep < endpos; rep++) { |
| dprintk(" %d", out[rep]); |
| } |
| dprintk("\n"); |
| dprintk("%u %d b: ", ftotal, left); |
| for (rep = outpos; rep < endpos; rep++) { |
| dprintk(" %d", out2[rep]); |
| } |
| dprintk("\n"); |
| } |
| #endif |
| } |
| |
| |
| /* |
| * This takes a chunk of memory and sets it up to be a shiny new |
| * working area for a CRUSH placement computation. It must be called |
| * on any newly allocated memory before passing it in to |
| * crush_do_rule. It may be used repeatedly after that, so long as the |
| * map has not changed. If the map /has/ changed, you must make sure |
| * the working size is no smaller than what was allocated and re-run |
| * crush_init_workspace. |
| * |
| * If you do retain the working space between calls to crush, make it |
| * thread-local. |
| */ |
| void crush_init_workspace(const struct crush_map *map, void *v) |
| { |
| struct crush_work *w = v; |
| __s32 b; |
| |
| /* |
| * We work by moving through the available space and setting |
| * values and pointers as we go. |
| * |
| * It's a bit like Forth's use of the 'allot' word since we |
| * set the pointer first and then reserve the space for it to |
| * point to by incrementing the point. |
| */ |
| v += sizeof(struct crush_work); |
| w->work = v; |
| v += map->max_buckets * sizeof(struct crush_work_bucket *); |
| for (b = 0; b < map->max_buckets; ++b) { |
| if (!map->buckets[b]) |
| continue; |
| |
| w->work[b] = v; |
| switch (map->buckets[b]->alg) { |
| default: |
| v += sizeof(struct crush_work_bucket); |
| break; |
| } |
| w->work[b]->perm_x = 0; |
| w->work[b]->perm_n = 0; |
| w->work[b]->perm = v; |
| v += map->buckets[b]->size * sizeof(__u32); |
| } |
| BUG_ON(v - (void *)w != map->working_size); |
| } |
| |
| /** |
| * crush_do_rule - calculate a mapping with the given input and rule |
| * @map: the crush_map |
| * @ruleno: the rule id |
| * @x: hash input |
| * @result: pointer to result vector |
| * @result_max: maximum result size |
| * @weight: weight vector (for map leaves) |
| * @weight_max: size of weight vector |
| * @cwin: pointer to at least crush_work_size() bytes of memory |
| * @choose_args: weights and ids for each known bucket |
| */ |
| int crush_do_rule(const struct crush_map *map, |
| int ruleno, int x, int *result, int result_max, |
| const __u32 *weight, int weight_max, |
| void *cwin, const struct crush_choose_arg *choose_args) |
| { |
| int result_len; |
| struct crush_work *cw = cwin; |
| int *a = cwin + map->working_size; |
| int *b = a + result_max; |
| int *c = b + result_max; |
| int *w = a; |
| int *o = b; |
| int recurse_to_leaf; |
| int wsize = 0; |
| int osize; |
| const struct crush_rule *rule; |
| __u32 step; |
| int i, j; |
| int numrep; |
| int out_size; |
| /* |
| * the original choose_total_tries value was off by one (it |
| * counted "retries" and not "tries"). add one. |
| */ |
| int choose_tries = map->choose_total_tries + 1; |
| int choose_leaf_tries = 0; |
| /* |
| * the local tries values were counted as "retries", though, |
| * and need no adjustment |
| */ |
| int choose_local_retries = map->choose_local_tries; |
| int choose_local_fallback_retries = map->choose_local_fallback_tries; |
| |
| int vary_r = map->chooseleaf_vary_r; |
| int stable = map->chooseleaf_stable; |
| |
| if ((__u32)ruleno >= map->max_rules) { |
| dprintk(" bad ruleno %d\n", ruleno); |
| return 0; |
| } |
| |
| rule = map->rules[ruleno]; |
| result_len = 0; |
| |
| for (step = 0; step < rule->len; step++) { |
| int firstn = 0; |
| const struct crush_rule_step *curstep = &rule->steps[step]; |
| |
| switch (curstep->op) { |
| case CRUSH_RULE_TAKE: |
| if ((curstep->arg1 >= 0 && |
| curstep->arg1 < map->max_devices) || |
| (-1-curstep->arg1 >= 0 && |
| -1-curstep->arg1 < map->max_buckets && |
| map->buckets[-1-curstep->arg1])) { |
| w[0] = curstep->arg1; |
| wsize = 1; |
| } else { |
| dprintk(" bad take value %d\n", curstep->arg1); |
| } |
| break; |
| |
| case CRUSH_RULE_SET_CHOOSE_TRIES: |
| if (curstep->arg1 > 0) |
| choose_tries = curstep->arg1; |
| break; |
| |
| case CRUSH_RULE_SET_CHOOSELEAF_TRIES: |
| if (curstep->arg1 > 0) |
| choose_leaf_tries = curstep->arg1; |
| break; |
| |
| case CRUSH_RULE_SET_CHOOSE_LOCAL_TRIES: |
| if (curstep->arg1 >= 0) |
| choose_local_retries = curstep->arg1; |
| break; |
| |
| case CRUSH_RULE_SET_CHOOSE_LOCAL_FALLBACK_TRIES: |
| if (curstep->arg1 >= 0) |
| choose_local_fallback_retries = curstep->arg1; |
| break; |
| |
| case CRUSH_RULE_SET_CHOOSELEAF_VARY_R: |
| if (curstep->arg1 >= 0) |
| vary_r = curstep->arg1; |
| break; |
| |
| case CRUSH_RULE_SET_CHOOSELEAF_STABLE: |
| if (curstep->arg1 >= 0) |
| stable = curstep->arg1; |
| break; |
| |
| case CRUSH_RULE_CHOOSELEAF_FIRSTN: |
| case CRUSH_RULE_CHOOSE_FIRSTN: |
| firstn = 1; |
| fallthrough; |
| case CRUSH_RULE_CHOOSELEAF_INDEP: |
| case CRUSH_RULE_CHOOSE_INDEP: |
| if (wsize == 0) |
| break; |
| |
| recurse_to_leaf = |
| curstep->op == |
| CRUSH_RULE_CHOOSELEAF_FIRSTN || |
| curstep->op == |
| CRUSH_RULE_CHOOSELEAF_INDEP; |
| |
| /* reset output */ |
| osize = 0; |
| |
| for (i = 0; i < wsize; i++) { |
| int bno; |
| numrep = curstep->arg1; |
| if (numrep <= 0) { |
| numrep += result_max; |
| if (numrep <= 0) |
| continue; |
| } |
| j = 0; |
| /* make sure bucket id is valid */ |
| bno = -1 - w[i]; |
| if (bno < 0 || bno >= map->max_buckets) { |
| /* w[i] is probably CRUSH_ITEM_NONE */ |
| dprintk(" bad w[i] %d\n", w[i]); |
| continue; |
| } |
| if (firstn) { |
| int recurse_tries; |
| if (choose_leaf_tries) |
| recurse_tries = |
| choose_leaf_tries; |
| else if (map->chooseleaf_descend_once) |
| recurse_tries = 1; |
| else |
| recurse_tries = choose_tries; |
| osize += crush_choose_firstn( |
| map, |
| cw, |
| map->buckets[bno], |
| weight, weight_max, |
| x, numrep, |
| curstep->arg2, |
| o+osize, j, |
| result_max-osize, |
| choose_tries, |
| recurse_tries, |
| choose_local_retries, |
| choose_local_fallback_retries, |
| recurse_to_leaf, |
| vary_r, |
| stable, |
| c+osize, |
| 0, |
| choose_args); |
| } else { |
| out_size = ((numrep < (result_max-osize)) ? |
| numrep : (result_max-osize)); |
| crush_choose_indep( |
| map, |
| cw, |
| map->buckets[bno], |
| weight, weight_max, |
| x, out_size, numrep, |
| curstep->arg2, |
| o+osize, j, |
| choose_tries, |
| choose_leaf_tries ? |
| choose_leaf_tries : 1, |
| recurse_to_leaf, |
| c+osize, |
| 0, |
| choose_args); |
| osize += out_size; |
| } |
| } |
| |
| if (recurse_to_leaf) |
| /* copy final _leaf_ values to output set */ |
| memcpy(o, c, osize*sizeof(*o)); |
| |
| /* swap o and w arrays */ |
| swap(o, w); |
| wsize = osize; |
| break; |
| |
| |
| case CRUSH_RULE_EMIT: |
| for (i = 0; i < wsize && result_len < result_max; i++) { |
| result[result_len] = w[i]; |
| result_len++; |
| } |
| wsize = 0; |
| break; |
| |
| default: |
| dprintk(" unknown op %d at step %d\n", |
| curstep->op, step); |
| break; |
| } |
| } |
| |
| return result_len; |
| } |