| /* |
| * SPDX-License-Identifier: GPL-2.0 |
| * |
| * Copyright © 2018 Intel Corporation |
| */ |
| |
| #include <linux/sort.h> |
| |
| #include "i915_selftest.h" |
| #include "intel_gpu_commands.h" |
| #include "intel_gt_clock_utils.h" |
| #include "selftest_engine.h" |
| #include "selftest_engine_heartbeat.h" |
| #include "selftests/igt_atomic.h" |
| #include "selftests/igt_flush_test.h" |
| #include "selftests/igt_spinner.h" |
| |
| #define COUNT 5 |
| |
| static int cmp_u64(const void *A, const void *B) |
| { |
| const u64 *a = A, *b = B; |
| |
| return *a - *b; |
| } |
| |
| static u64 trifilter(u64 *a) |
| { |
| sort(a, COUNT, sizeof(*a), cmp_u64, NULL); |
| return (a[1] + 2 * a[2] + a[3]) >> 2; |
| } |
| |
| static u32 *emit_wait(u32 *cs, u32 offset, int op, u32 value) |
| { |
| *cs++ = MI_SEMAPHORE_WAIT | |
| MI_SEMAPHORE_GLOBAL_GTT | |
| MI_SEMAPHORE_POLL | |
| op; |
| *cs++ = value; |
| *cs++ = offset; |
| *cs++ = 0; |
| |
| return cs; |
| } |
| |
| static u32 *emit_store(u32 *cs, u32 offset, u32 value) |
| { |
| *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; |
| *cs++ = offset; |
| *cs++ = 0; |
| *cs++ = value; |
| |
| return cs; |
| } |
| |
| static u32 *emit_srm(u32 *cs, i915_reg_t reg, u32 offset) |
| { |
| *cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT; |
| *cs++ = i915_mmio_reg_offset(reg); |
| *cs++ = offset; |
| *cs++ = 0; |
| |
| return cs; |
| } |
| |
| static void write_semaphore(u32 *x, u32 value) |
| { |
| WRITE_ONCE(*x, value); |
| wmb(); |
| } |
| |
| static int __measure_timestamps(struct intel_context *ce, |
| u64 *dt, u64 *d_ring, u64 *d_ctx) |
| { |
| struct intel_engine_cs *engine = ce->engine; |
| u32 *sema = memset32(engine->status_page.addr + 1000, 0, 5); |
| u32 offset = i915_ggtt_offset(engine->status_page.vma); |
| struct i915_request *rq; |
| u32 *cs; |
| |
| rq = intel_context_create_request(ce); |
| if (IS_ERR(rq)) |
| return PTR_ERR(rq); |
| |
| cs = intel_ring_begin(rq, 28); |
| if (IS_ERR(cs)) { |
| i915_request_add(rq); |
| return PTR_ERR(cs); |
| } |
| |
| /* Signal & wait for start */ |
| cs = emit_store(cs, offset + 4008, 1); |
| cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_NEQ_SDD, 1); |
| |
| cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4000); |
| cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4004); |
| |
| /* Busy wait */ |
| cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_EQ_SDD, 1); |
| |
| cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4016); |
| cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4012); |
| |
| intel_ring_advance(rq, cs); |
| i915_request_get(rq); |
| i915_request_add(rq); |
| intel_engine_flush_submission(engine); |
| |
| /* Wait for the request to start executing, that then waits for us */ |
| while (READ_ONCE(sema[2]) == 0) |
| cpu_relax(); |
| |
| /* Run the request for a 100us, sampling timestamps before/after */ |
| preempt_disable(); |
| *dt = local_clock(); |
| write_semaphore(&sema[2], 0); |
| udelay(100); |
| *dt = local_clock() - *dt; |
| write_semaphore(&sema[2], 1); |
| preempt_enable(); |
| |
| if (i915_request_wait(rq, 0, HZ / 2) < 0) { |
| i915_request_put(rq); |
| return -ETIME; |
| } |
| i915_request_put(rq); |
| |
| pr_debug("%s CTX_TIMESTAMP: [%x, %x], RING_TIMESTAMP: [%x, %x]\n", |
| engine->name, sema[1], sema[3], sema[0], sema[4]); |
| |
| *d_ctx = sema[3] - sema[1]; |
| *d_ring = sema[4] - sema[0]; |
| return 0; |
| } |
| |
| static int __live_engine_timestamps(struct intel_engine_cs *engine) |
| { |
| u64 s_ring[COUNT], s_ctx[COUNT], st[COUNT], d_ring, d_ctx, dt; |
| struct intel_context *ce; |
| int i, err = 0; |
| |
| ce = intel_context_create(engine); |
| if (IS_ERR(ce)) |
| return PTR_ERR(ce); |
| |
| for (i = 0; i < COUNT; i++) { |
| err = __measure_timestamps(ce, &st[i], &s_ring[i], &s_ctx[i]); |
| if (err) |
| break; |
| } |
| intel_context_put(ce); |
| if (err) |
| return err; |
| |
| dt = trifilter(st); |
| d_ring = trifilter(s_ring); |
| d_ctx = trifilter(s_ctx); |
| |
| pr_info("%s elapsed:%lldns, CTX_TIMESTAMP:%lldns, RING_TIMESTAMP:%lldns\n", |
| engine->name, dt, |
| intel_gt_clock_interval_to_ns(engine->gt, d_ctx), |
| intel_gt_clock_interval_to_ns(engine->gt, d_ring)); |
| |
| d_ring = intel_gt_clock_interval_to_ns(engine->gt, d_ring); |
| if (3 * dt > 4 * d_ring || 4 * dt < 3 * d_ring) { |
| pr_err("%s Mismatch between ring timestamp and walltime!\n", |
| engine->name); |
| return -EINVAL; |
| } |
| |
| d_ring = trifilter(s_ring); |
| d_ctx = trifilter(s_ctx); |
| |
| d_ctx *= engine->gt->clock_frequency; |
| if (IS_ICELAKE(engine->i915)) |
| d_ring *= 12500000; /* Fixed 80ns for icl ctx timestamp? */ |
| else |
| d_ring *= engine->gt->clock_frequency; |
| |
| if (3 * d_ctx > 4 * d_ring || 4 * d_ctx < 3 * d_ring) { |
| pr_err("%s Mismatch between ring and context timestamps!\n", |
| engine->name); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int live_engine_timestamps(void *arg) |
| { |
| struct intel_gt *gt = arg; |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| /* |
| * Check that CS_TIMESTAMP / CTX_TIMESTAMP are in sync, i.e. share |
| * the same CS clock. |
| */ |
| |
| if (INTEL_GEN(gt->i915) < 8) |
| return 0; |
| |
| for_each_engine(engine, gt, id) { |
| int err; |
| |
| st_engine_heartbeat_disable(engine); |
| err = __live_engine_timestamps(engine); |
| st_engine_heartbeat_enable(engine); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static int live_engine_busy_stats(void *arg) |
| { |
| struct intel_gt *gt = arg; |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| struct igt_spinner spin; |
| int err = 0; |
| |
| /* |
| * Check that if an engine supports busy-stats, they tell the truth. |
| */ |
| |
| if (igt_spinner_init(&spin, gt)) |
| return -ENOMEM; |
| |
| GEM_BUG_ON(intel_gt_pm_is_awake(gt)); |
| for_each_engine(engine, gt, id) { |
| struct i915_request *rq; |
| ktime_t de, dt; |
| ktime_t t[2]; |
| |
| if (!intel_engine_supports_stats(engine)) |
| continue; |
| |
| if (!intel_engine_can_store_dword(engine)) |
| continue; |
| |
| if (intel_gt_pm_wait_for_idle(gt)) { |
| err = -EBUSY; |
| break; |
| } |
| |
| st_engine_heartbeat_disable(engine); |
| |
| ENGINE_TRACE(engine, "measuring idle time\n"); |
| preempt_disable(); |
| de = intel_engine_get_busy_time(engine, &t[0]); |
| udelay(100); |
| de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de); |
| preempt_enable(); |
| dt = ktime_sub(t[1], t[0]); |
| if (de < 0 || de > 10) { |
| pr_err("%s: reported %lldns [%d%%] busyness while sleeping [for %lldns]\n", |
| engine->name, |
| de, (int)div64_u64(100 * de, dt), dt); |
| GEM_TRACE_DUMP(); |
| err = -EINVAL; |
| goto end; |
| } |
| |
| /* 100% busy */ |
| rq = igt_spinner_create_request(&spin, |
| engine->kernel_context, |
| MI_NOOP); |
| if (IS_ERR(rq)) { |
| err = PTR_ERR(rq); |
| goto end; |
| } |
| i915_request_add(rq); |
| |
| if (!igt_wait_for_spinner(&spin, rq)) { |
| intel_gt_set_wedged(engine->gt); |
| err = -ETIME; |
| goto end; |
| } |
| |
| ENGINE_TRACE(engine, "measuring busy time\n"); |
| preempt_disable(); |
| de = intel_engine_get_busy_time(engine, &t[0]); |
| udelay(100); |
| de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de); |
| preempt_enable(); |
| dt = ktime_sub(t[1], t[0]); |
| if (100 * de < 95 * dt || 95 * de > 100 * dt) { |
| pr_err("%s: reported %lldns [%d%%] busyness while spinning [for %lldns]\n", |
| engine->name, |
| de, (int)div64_u64(100 * de, dt), dt); |
| GEM_TRACE_DUMP(); |
| err = -EINVAL; |
| goto end; |
| } |
| |
| end: |
| st_engine_heartbeat_enable(engine); |
| igt_spinner_end(&spin); |
| if (igt_flush_test(gt->i915)) |
| err = -EIO; |
| if (err) |
| break; |
| } |
| |
| igt_spinner_fini(&spin); |
| if (igt_flush_test(gt->i915)) |
| err = -EIO; |
| return err; |
| } |
| |
| static int live_engine_pm(void *arg) |
| { |
| struct intel_gt *gt = arg; |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| /* |
| * Check we can call intel_engine_pm_put from any context. No |
| * failures are reported directly, but if we mess up lockdep should |
| * tell us. |
| */ |
| if (intel_gt_pm_wait_for_idle(gt)) { |
| pr_err("Unable to flush GT pm before test\n"); |
| return -EBUSY; |
| } |
| |
| GEM_BUG_ON(intel_gt_pm_is_awake(gt)); |
| for_each_engine(engine, gt, id) { |
| const typeof(*igt_atomic_phases) *p; |
| |
| for (p = igt_atomic_phases; p->name; p++) { |
| /* |
| * Acquisition is always synchronous, except if we |
| * know that the engine is already awake, in which |
| * case we should use intel_engine_pm_get_if_awake() |
| * to atomically grab the wakeref. |
| * |
| * In practice, |
| * intel_engine_pm_get(); |
| * intel_engine_pm_put(); |
| * occurs in one thread, while simultaneously |
| * intel_engine_pm_get_if_awake(); |
| * intel_engine_pm_put(); |
| * occurs from atomic context in another. |
| */ |
| GEM_BUG_ON(intel_engine_pm_is_awake(engine)); |
| intel_engine_pm_get(engine); |
| |
| p->critical_section_begin(); |
| if (!intel_engine_pm_get_if_awake(engine)) |
| pr_err("intel_engine_pm_get_if_awake(%s) failed under %s\n", |
| engine->name, p->name); |
| else |
| intel_engine_pm_put_async(engine); |
| intel_engine_pm_put_async(engine); |
| p->critical_section_end(); |
| |
| intel_engine_pm_flush(engine); |
| |
| if (intel_engine_pm_is_awake(engine)) { |
| pr_err("%s is still awake after flushing pm\n", |
| engine->name); |
| return -EINVAL; |
| } |
| |
| /* gt wakeref is async (deferred to workqueue) */ |
| if (intel_gt_pm_wait_for_idle(gt)) { |
| pr_err("GT failed to idle\n"); |
| return -EINVAL; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| int live_engine_pm_selftests(struct intel_gt *gt) |
| { |
| static const struct i915_subtest tests[] = { |
| SUBTEST(live_engine_timestamps), |
| SUBTEST(live_engine_busy_stats), |
| SUBTEST(live_engine_pm), |
| }; |
| |
| return intel_gt_live_subtests(tests, gt); |
| } |