| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * uvc_video.c -- USB Video Class driver - Video handling |
| * |
| * Copyright (C) 2005-2010 |
| * Laurent Pinchart (laurent.pinchart@ideasonboard.com) |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/list.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/usb.h> |
| #include <linux/videodev2.h> |
| #include <linux/vmalloc.h> |
| #include <linux/wait.h> |
| #include <linux/atomic.h> |
| #include <asm/unaligned.h> |
| |
| #include <media/v4l2-common.h> |
| |
| #include "uvcvideo.h" |
| |
| /* ------------------------------------------------------------------------ |
| * UVC Controls |
| */ |
| |
| static int __uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit, |
| u8 intfnum, u8 cs, void *data, u16 size, |
| int timeout) |
| { |
| u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE; |
| unsigned int pipe; |
| |
| pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0) |
| : usb_sndctrlpipe(dev->udev, 0); |
| type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT; |
| |
| return usb_control_msg(dev->udev, pipe, query, type, cs << 8, |
| unit << 8 | intfnum, data, size, timeout); |
| } |
| |
| static const char *uvc_query_name(u8 query) |
| { |
| switch (query) { |
| case UVC_SET_CUR: |
| return "SET_CUR"; |
| case UVC_GET_CUR: |
| return "GET_CUR"; |
| case UVC_GET_MIN: |
| return "GET_MIN"; |
| case UVC_GET_MAX: |
| return "GET_MAX"; |
| case UVC_GET_RES: |
| return "GET_RES"; |
| case UVC_GET_LEN: |
| return "GET_LEN"; |
| case UVC_GET_INFO: |
| return "GET_INFO"; |
| case UVC_GET_DEF: |
| return "GET_DEF"; |
| default: |
| return "<invalid>"; |
| } |
| } |
| |
| int uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit, |
| u8 intfnum, u8 cs, void *data, u16 size) |
| { |
| int ret; |
| u8 error; |
| u8 tmp; |
| |
| ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size, |
| UVC_CTRL_CONTROL_TIMEOUT); |
| if (likely(ret == size)) |
| return 0; |
| |
| dev_err(&dev->udev->dev, |
| "Failed to query (%s) UVC control %u on unit %u: %d (exp. %u).\n", |
| uvc_query_name(query), cs, unit, ret, size); |
| |
| if (ret != -EPIPE) |
| return ret; |
| |
| tmp = *(u8 *)data; |
| |
| ret = __uvc_query_ctrl(dev, UVC_GET_CUR, 0, intfnum, |
| UVC_VC_REQUEST_ERROR_CODE_CONTROL, data, 1, |
| UVC_CTRL_CONTROL_TIMEOUT); |
| |
| error = *(u8 *)data; |
| *(u8 *)data = tmp; |
| |
| if (ret != 1) |
| return ret < 0 ? ret : -EPIPE; |
| |
| uvc_dbg(dev, CONTROL, "Control error %u\n", error); |
| |
| switch (error) { |
| case 0: |
| /* Cannot happen - we received a STALL */ |
| return -EPIPE; |
| case 1: /* Not ready */ |
| return -EBUSY; |
| case 2: /* Wrong state */ |
| return -EILSEQ; |
| case 3: /* Power */ |
| return -EREMOTE; |
| case 4: /* Out of range */ |
| return -ERANGE; |
| case 5: /* Invalid unit */ |
| case 6: /* Invalid control */ |
| case 7: /* Invalid Request */ |
| case 8: /* Invalid value within range */ |
| return -EINVAL; |
| default: /* reserved or unknown */ |
| break; |
| } |
| |
| return -EPIPE; |
| } |
| |
| static void uvc_fixup_video_ctrl(struct uvc_streaming *stream, |
| struct uvc_streaming_control *ctrl) |
| { |
| struct uvc_format *format = NULL; |
| struct uvc_frame *frame = NULL; |
| unsigned int i; |
| |
| for (i = 0; i < stream->nformats; ++i) { |
| if (stream->format[i].index == ctrl->bFormatIndex) { |
| format = &stream->format[i]; |
| break; |
| } |
| } |
| |
| if (format == NULL) |
| return; |
| |
| for (i = 0; i < format->nframes; ++i) { |
| if (format->frame[i].bFrameIndex == ctrl->bFrameIndex) { |
| frame = &format->frame[i]; |
| break; |
| } |
| } |
| |
| if (frame == NULL) |
| return; |
| |
| if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) || |
| (ctrl->dwMaxVideoFrameSize == 0 && |
| stream->dev->uvc_version < 0x0110)) |
| ctrl->dwMaxVideoFrameSize = |
| frame->dwMaxVideoFrameBufferSize; |
| |
| /* The "TOSHIBA Web Camera - 5M" Chicony device (04f2:b50b) seems to |
| * compute the bandwidth on 16 bits and erroneously sign-extend it to |
| * 32 bits, resulting in a huge bandwidth value. Detect and fix that |
| * condition by setting the 16 MSBs to 0 when they're all equal to 1. |
| */ |
| if ((ctrl->dwMaxPayloadTransferSize & 0xffff0000) == 0xffff0000) |
| ctrl->dwMaxPayloadTransferSize &= ~0xffff0000; |
| |
| if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) && |
| stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH && |
| stream->intf->num_altsetting > 1) { |
| u32 interval; |
| u32 bandwidth; |
| |
| interval = (ctrl->dwFrameInterval > 100000) |
| ? ctrl->dwFrameInterval |
| : frame->dwFrameInterval[0]; |
| |
| /* Compute a bandwidth estimation by multiplying the frame |
| * size by the number of video frames per second, divide the |
| * result by the number of USB frames (or micro-frames for |
| * high-speed devices) per second and add the UVC header size |
| * (assumed to be 12 bytes long). |
| */ |
| bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp; |
| bandwidth *= 10000000 / interval + 1; |
| bandwidth /= 1000; |
| if (stream->dev->udev->speed == USB_SPEED_HIGH) |
| bandwidth /= 8; |
| bandwidth += 12; |
| |
| /* The bandwidth estimate is too low for many cameras. Don't use |
| * maximum packet sizes lower than 1024 bytes to try and work |
| * around the problem. According to measurements done on two |
| * different camera models, the value is high enough to get most |
| * resolutions working while not preventing two simultaneous |
| * VGA streams at 15 fps. |
| */ |
| bandwidth = max_t(u32, bandwidth, 1024); |
| |
| ctrl->dwMaxPayloadTransferSize = bandwidth; |
| } |
| } |
| |
| static size_t uvc_video_ctrl_size(struct uvc_streaming *stream) |
| { |
| /* |
| * Return the size of the video probe and commit controls, which depends |
| * on the protocol version. |
| */ |
| if (stream->dev->uvc_version < 0x0110) |
| return 26; |
| else if (stream->dev->uvc_version < 0x0150) |
| return 34; |
| else |
| return 48; |
| } |
| |
| static int uvc_get_video_ctrl(struct uvc_streaming *stream, |
| struct uvc_streaming_control *ctrl, int probe, u8 query) |
| { |
| u16 size = uvc_video_ctrl_size(stream); |
| u8 *data; |
| int ret; |
| |
| if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) && |
| query == UVC_GET_DEF) |
| return -EIO; |
| |
| data = kmalloc(size, GFP_KERNEL); |
| if (data == NULL) |
| return -ENOMEM; |
| |
| ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum, |
| probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, |
| size, uvc_timeout_param); |
| |
| if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) { |
| /* Some cameras, mostly based on Bison Electronics chipsets, |
| * answer a GET_MIN or GET_MAX request with the wCompQuality |
| * field only. |
| */ |
| uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non " |
| "compliance - GET_MIN/MAX(PROBE) incorrectly " |
| "supported. Enabling workaround.\n"); |
| memset(ctrl, 0, sizeof(*ctrl)); |
| ctrl->wCompQuality = le16_to_cpup((__le16 *)data); |
| ret = 0; |
| goto out; |
| } else if (query == UVC_GET_DEF && probe == 1 && ret != size) { |
| /* Many cameras don't support the GET_DEF request on their |
| * video probe control. Warn once and return, the caller will |
| * fall back to GET_CUR. |
| */ |
| uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non " |
| "compliance - GET_DEF(PROBE) not supported. " |
| "Enabling workaround.\n"); |
| ret = -EIO; |
| goto out; |
| } else if (ret != size) { |
| dev_err(&stream->intf->dev, |
| "Failed to query (%u) UVC %s control : %d (exp. %u).\n", |
| query, probe ? "probe" : "commit", ret, size); |
| ret = -EIO; |
| goto out; |
| } |
| |
| ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]); |
| ctrl->bFormatIndex = data[2]; |
| ctrl->bFrameIndex = data[3]; |
| ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]); |
| ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]); |
| ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]); |
| ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]); |
| ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]); |
| ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]); |
| ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]); |
| ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]); |
| |
| if (size >= 34) { |
| ctrl->dwClockFrequency = get_unaligned_le32(&data[26]); |
| ctrl->bmFramingInfo = data[30]; |
| ctrl->bPreferedVersion = data[31]; |
| ctrl->bMinVersion = data[32]; |
| ctrl->bMaxVersion = data[33]; |
| } else { |
| ctrl->dwClockFrequency = stream->dev->clock_frequency; |
| ctrl->bmFramingInfo = 0; |
| ctrl->bPreferedVersion = 0; |
| ctrl->bMinVersion = 0; |
| ctrl->bMaxVersion = 0; |
| } |
| |
| /* Some broken devices return null or wrong dwMaxVideoFrameSize and |
| * dwMaxPayloadTransferSize fields. Try to get the value from the |
| * format and frame descriptors. |
| */ |
| uvc_fixup_video_ctrl(stream, ctrl); |
| ret = 0; |
| |
| out: |
| kfree(data); |
| return ret; |
| } |
| |
| static int uvc_set_video_ctrl(struct uvc_streaming *stream, |
| struct uvc_streaming_control *ctrl, int probe) |
| { |
| u16 size = uvc_video_ctrl_size(stream); |
| u8 *data; |
| int ret; |
| |
| data = kzalloc(size, GFP_KERNEL); |
| if (data == NULL) |
| return -ENOMEM; |
| |
| *(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint); |
| data[2] = ctrl->bFormatIndex; |
| data[3] = ctrl->bFrameIndex; |
| *(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval); |
| *(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate); |
| *(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate); |
| *(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality); |
| *(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize); |
| *(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay); |
| put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]); |
| put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]); |
| |
| if (size >= 34) { |
| put_unaligned_le32(ctrl->dwClockFrequency, &data[26]); |
| data[30] = ctrl->bmFramingInfo; |
| data[31] = ctrl->bPreferedVersion; |
| data[32] = ctrl->bMinVersion; |
| data[33] = ctrl->bMaxVersion; |
| } |
| |
| ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum, |
| probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, |
| size, uvc_timeout_param); |
| if (ret != size) { |
| dev_err(&stream->intf->dev, |
| "Failed to set UVC %s control : %d (exp. %u).\n", |
| probe ? "probe" : "commit", ret, size); |
| ret = -EIO; |
| } |
| |
| kfree(data); |
| return ret; |
| } |
| |
| int uvc_probe_video(struct uvc_streaming *stream, |
| struct uvc_streaming_control *probe) |
| { |
| struct uvc_streaming_control probe_min, probe_max; |
| u16 bandwidth; |
| unsigned int i; |
| int ret; |
| |
| /* Perform probing. The device should adjust the requested values |
| * according to its capabilities. However, some devices, namely the |
| * first generation UVC Logitech webcams, don't implement the Video |
| * Probe control properly, and just return the needed bandwidth. For |
| * that reason, if the needed bandwidth exceeds the maximum available |
| * bandwidth, try to lower the quality. |
| */ |
| ret = uvc_set_video_ctrl(stream, probe, 1); |
| if (ret < 0) |
| goto done; |
| |
| /* Get the minimum and maximum values for compression settings. */ |
| if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) { |
| ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN); |
| if (ret < 0) |
| goto done; |
| ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX); |
| if (ret < 0) |
| goto done; |
| |
| probe->wCompQuality = probe_max.wCompQuality; |
| } |
| |
| for (i = 0; i < 2; ++i) { |
| ret = uvc_set_video_ctrl(stream, probe, 1); |
| if (ret < 0) |
| goto done; |
| ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); |
| if (ret < 0) |
| goto done; |
| |
| if (stream->intf->num_altsetting == 1) |
| break; |
| |
| bandwidth = probe->dwMaxPayloadTransferSize; |
| if (bandwidth <= stream->maxpsize) |
| break; |
| |
| if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) { |
| ret = -ENOSPC; |
| goto done; |
| } |
| |
| /* TODO: negotiate compression parameters */ |
| probe->wKeyFrameRate = probe_min.wKeyFrameRate; |
| probe->wPFrameRate = probe_min.wPFrameRate; |
| probe->wCompQuality = probe_max.wCompQuality; |
| probe->wCompWindowSize = probe_min.wCompWindowSize; |
| } |
| |
| done: |
| return ret; |
| } |
| |
| static int uvc_commit_video(struct uvc_streaming *stream, |
| struct uvc_streaming_control *probe) |
| { |
| return uvc_set_video_ctrl(stream, probe, 0); |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * Clocks and timestamps |
| */ |
| |
| static inline ktime_t uvc_video_get_time(void) |
| { |
| if (uvc_clock_param == CLOCK_MONOTONIC) |
| return ktime_get(); |
| else |
| return ktime_get_real(); |
| } |
| |
| static void |
| uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf, |
| const u8 *data, int len) |
| { |
| struct uvc_clock_sample *sample; |
| unsigned int header_size; |
| bool has_pts = false; |
| bool has_scr = false; |
| unsigned long flags; |
| ktime_t time; |
| u16 host_sof; |
| u16 dev_sof; |
| |
| switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { |
| case UVC_STREAM_PTS | UVC_STREAM_SCR: |
| header_size = 12; |
| has_pts = true; |
| has_scr = true; |
| break; |
| case UVC_STREAM_PTS: |
| header_size = 6; |
| has_pts = true; |
| break; |
| case UVC_STREAM_SCR: |
| header_size = 8; |
| has_scr = true; |
| break; |
| default: |
| header_size = 2; |
| break; |
| } |
| |
| /* Check for invalid headers. */ |
| if (len < header_size) |
| return; |
| |
| /* Extract the timestamps: |
| * |
| * - store the frame PTS in the buffer structure |
| * - if the SCR field is present, retrieve the host SOF counter and |
| * kernel timestamps and store them with the SCR STC and SOF fields |
| * in the ring buffer |
| */ |
| if (has_pts && buf != NULL) |
| buf->pts = get_unaligned_le32(&data[2]); |
| |
| if (!has_scr) |
| return; |
| |
| /* To limit the amount of data, drop SCRs with an SOF identical to the |
| * previous one. |
| */ |
| dev_sof = get_unaligned_le16(&data[header_size - 2]); |
| if (dev_sof == stream->clock.last_sof) |
| return; |
| |
| stream->clock.last_sof = dev_sof; |
| |
| host_sof = usb_get_current_frame_number(stream->dev->udev); |
| time = uvc_video_get_time(); |
| |
| /* The UVC specification allows device implementations that can't obtain |
| * the USB frame number to keep their own frame counters as long as they |
| * match the size and frequency of the frame number associated with USB |
| * SOF tokens. The SOF values sent by such devices differ from the USB |
| * SOF tokens by a fixed offset that needs to be estimated and accounted |
| * for to make timestamp recovery as accurate as possible. |
| * |
| * The offset is estimated the first time a device SOF value is received |
| * as the difference between the host and device SOF values. As the two |
| * SOF values can differ slightly due to transmission delays, consider |
| * that the offset is null if the difference is not higher than 10 ms |
| * (negative differences can not happen and are thus considered as an |
| * offset). The video commit control wDelay field should be used to |
| * compute a dynamic threshold instead of using a fixed 10 ms value, but |
| * devices don't report reliable wDelay values. |
| * |
| * See uvc_video_clock_host_sof() for an explanation regarding why only |
| * the 8 LSBs of the delta are kept. |
| */ |
| if (stream->clock.sof_offset == (u16)-1) { |
| u16 delta_sof = (host_sof - dev_sof) & 255; |
| if (delta_sof >= 10) |
| stream->clock.sof_offset = delta_sof; |
| else |
| stream->clock.sof_offset = 0; |
| } |
| |
| dev_sof = (dev_sof + stream->clock.sof_offset) & 2047; |
| |
| spin_lock_irqsave(&stream->clock.lock, flags); |
| |
| sample = &stream->clock.samples[stream->clock.head]; |
| sample->dev_stc = get_unaligned_le32(&data[header_size - 6]); |
| sample->dev_sof = dev_sof; |
| sample->host_sof = host_sof; |
| sample->host_time = time; |
| |
| /* Update the sliding window head and count. */ |
| stream->clock.head = (stream->clock.head + 1) % stream->clock.size; |
| |
| if (stream->clock.count < stream->clock.size) |
| stream->clock.count++; |
| |
| spin_unlock_irqrestore(&stream->clock.lock, flags); |
| } |
| |
| static void uvc_video_clock_reset(struct uvc_streaming *stream) |
| { |
| struct uvc_clock *clock = &stream->clock; |
| |
| clock->head = 0; |
| clock->count = 0; |
| clock->last_sof = -1; |
| clock->sof_offset = -1; |
| } |
| |
| static int uvc_video_clock_init(struct uvc_streaming *stream) |
| { |
| struct uvc_clock *clock = &stream->clock; |
| |
| spin_lock_init(&clock->lock); |
| clock->size = 32; |
| |
| clock->samples = kmalloc_array(clock->size, sizeof(*clock->samples), |
| GFP_KERNEL); |
| if (clock->samples == NULL) |
| return -ENOMEM; |
| |
| uvc_video_clock_reset(stream); |
| |
| return 0; |
| } |
| |
| static void uvc_video_clock_cleanup(struct uvc_streaming *stream) |
| { |
| kfree(stream->clock.samples); |
| stream->clock.samples = NULL; |
| } |
| |
| /* |
| * uvc_video_clock_host_sof - Return the host SOF value for a clock sample |
| * |
| * Host SOF counters reported by usb_get_current_frame_number() usually don't |
| * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame |
| * schedule window. They can be limited to 8, 9 or 10 bits depending on the host |
| * controller and its configuration. |
| * |
| * We thus need to recover the SOF value corresponding to the host frame number. |
| * As the device and host frame numbers are sampled in a short interval, the |
| * difference between their values should be equal to a small delta plus an |
| * integer multiple of 256 caused by the host frame number limited precision. |
| * |
| * To obtain the recovered host SOF value, compute the small delta by masking |
| * the high bits of the host frame counter and device SOF difference and add it |
| * to the device SOF value. |
| */ |
| static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample) |
| { |
| /* The delta value can be negative. */ |
| s8 delta_sof; |
| |
| delta_sof = (sample->host_sof - sample->dev_sof) & 255; |
| |
| return (sample->dev_sof + delta_sof) & 2047; |
| } |
| |
| /* |
| * uvc_video_clock_update - Update the buffer timestamp |
| * |
| * This function converts the buffer PTS timestamp to the host clock domain by |
| * going through the USB SOF clock domain and stores the result in the V4L2 |
| * buffer timestamp field. |
| * |
| * The relationship between the device clock and the host clock isn't known. |
| * However, the device and the host share the common USB SOF clock which can be |
| * used to recover that relationship. |
| * |
| * The relationship between the device clock and the USB SOF clock is considered |
| * to be linear over the clock samples sliding window and is given by |
| * |
| * SOF = m * PTS + p |
| * |
| * Several methods to compute the slope (m) and intercept (p) can be used. As |
| * the clock drift should be small compared to the sliding window size, we |
| * assume that the line that goes through the points at both ends of the window |
| * is a good approximation. Naming those points P1 and P2, we get |
| * |
| * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS |
| * + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) |
| * |
| * or |
| * |
| * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) (1) |
| * |
| * to avoid losing precision in the division. Similarly, the host timestamp is |
| * computed with |
| * |
| * TS = ((TS2 - TS1) * SOF + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1) (2) |
| * |
| * SOF values are coded on 11 bits by USB. We extend their precision with 16 |
| * decimal bits, leading to a 11.16 coding. |
| * |
| * TODO: To avoid surprises with device clock values, PTS/STC timestamps should |
| * be normalized using the nominal device clock frequency reported through the |
| * UVC descriptors. |
| * |
| * Both the PTS/STC and SOF counters roll over, after a fixed but device |
| * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the |
| * sliding window size is smaller than the rollover period, differences computed |
| * on unsigned integers will produce the correct result. However, the p term in |
| * the linear relations will be miscomputed. |
| * |
| * To fix the issue, we subtract a constant from the PTS and STC values to bring |
| * PTS to half the 32 bit STC range. The sliding window STC values then fit into |
| * the 32 bit range without any rollover. |
| * |
| * Similarly, we add 2048 to the device SOF values to make sure that the SOF |
| * computed by (1) will never be smaller than 0. This offset is then compensated |
| * by adding 2048 to the SOF values used in (2). However, this doesn't prevent |
| * rollovers between (1) and (2): the SOF value computed by (1) can be slightly |
| * lower than 4096, and the host SOF counters can have rolled over to 2048. This |
| * case is handled by subtracting 2048 from the SOF value if it exceeds the host |
| * SOF value at the end of the sliding window. |
| * |
| * Finally we subtract a constant from the host timestamps to bring the first |
| * timestamp of the sliding window to 1s. |
| */ |
| void uvc_video_clock_update(struct uvc_streaming *stream, |
| struct vb2_v4l2_buffer *vbuf, |
| struct uvc_buffer *buf) |
| { |
| struct uvc_clock *clock = &stream->clock; |
| struct uvc_clock_sample *first; |
| struct uvc_clock_sample *last; |
| unsigned long flags; |
| u64 timestamp; |
| u32 delta_stc; |
| u32 y1, y2; |
| u32 x1, x2; |
| u32 mean; |
| u32 sof; |
| u64 y; |
| |
| if (!uvc_hw_timestamps_param) |
| return; |
| |
| /* |
| * We will get called from __vb2_queue_cancel() if there are buffers |
| * done but not dequeued by the user, but the sample array has already |
| * been released at that time. Just bail out in that case. |
| */ |
| if (!clock->samples) |
| return; |
| |
| spin_lock_irqsave(&clock->lock, flags); |
| |
| if (clock->count < clock->size) |
| goto done; |
| |
| first = &clock->samples[clock->head]; |
| last = &clock->samples[(clock->head - 1) % clock->size]; |
| |
| /* First step, PTS to SOF conversion. */ |
| delta_stc = buf->pts - (1UL << 31); |
| x1 = first->dev_stc - delta_stc; |
| x2 = last->dev_stc - delta_stc; |
| if (x1 == x2) |
| goto done; |
| |
| y1 = (first->dev_sof + 2048) << 16; |
| y2 = (last->dev_sof + 2048) << 16; |
| if (y2 < y1) |
| y2 += 2048 << 16; |
| |
| y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2 |
| - (u64)y2 * (u64)x1; |
| y = div_u64(y, x2 - x1); |
| |
| sof = y; |
| |
| uvc_dbg(stream->dev, CLOCK, |
| "%s: PTS %u y %llu.%06llu SOF %u.%06llu (x1 %u x2 %u y1 %u y2 %u SOF offset %u)\n", |
| stream->dev->name, buf->pts, |
| y >> 16, div_u64((y & 0xffff) * 1000000, 65536), |
| sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), |
| x1, x2, y1, y2, clock->sof_offset); |
| |
| /* Second step, SOF to host clock conversion. */ |
| x1 = (uvc_video_clock_host_sof(first) + 2048) << 16; |
| x2 = (uvc_video_clock_host_sof(last) + 2048) << 16; |
| if (x2 < x1) |
| x2 += 2048 << 16; |
| if (x1 == x2) |
| goto done; |
| |
| y1 = NSEC_PER_SEC; |
| y2 = (u32)ktime_to_ns(ktime_sub(last->host_time, first->host_time)) + y1; |
| |
| /* Interpolated and host SOF timestamps can wrap around at slightly |
| * different times. Handle this by adding or removing 2048 to or from |
| * the computed SOF value to keep it close to the SOF samples mean |
| * value. |
| */ |
| mean = (x1 + x2) / 2; |
| if (mean - (1024 << 16) > sof) |
| sof += 2048 << 16; |
| else if (sof > mean + (1024 << 16)) |
| sof -= 2048 << 16; |
| |
| y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2 |
| - (u64)y2 * (u64)x1; |
| y = div_u64(y, x2 - x1); |
| |
| timestamp = ktime_to_ns(first->host_time) + y - y1; |
| |
| uvc_dbg(stream->dev, CLOCK, |
| "%s: SOF %u.%06llu y %llu ts %llu buf ts %llu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %u)\n", |
| stream->dev->name, |
| sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), |
| y, timestamp, vbuf->vb2_buf.timestamp, |
| x1, first->host_sof, first->dev_sof, |
| x2, last->host_sof, last->dev_sof, y1, y2); |
| |
| /* Update the V4L2 buffer. */ |
| vbuf->vb2_buf.timestamp = timestamp; |
| |
| done: |
| spin_unlock_irqrestore(&clock->lock, flags); |
| } |
| |
| /* ------------------------------------------------------------------------ |
| * Stream statistics |
| */ |
| |
| static void uvc_video_stats_decode(struct uvc_streaming *stream, |
| const u8 *data, int len) |
| { |
| unsigned int header_size; |
| bool has_pts = false; |
| bool has_scr = false; |
| u16 scr_sof; |
| u32 scr_stc; |
| u32 pts; |
| |
| if (stream->stats.stream.nb_frames == 0 && |
| stream->stats.frame.nb_packets == 0) |
| stream->stats.stream.start_ts = ktime_get(); |
| |
| switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { |
| case UVC_STREAM_PTS | UVC_STREAM_SCR: |
| header_size = 12; |
| has_pts = true; |
| has_scr = true; |
| break; |
| case UVC_STREAM_PTS: |
| header_size = 6; |
| has_pts = true; |
| break; |
| case UVC_STREAM_SCR: |
| header_size = 8; |
| has_scr = true; |
| break; |
| default: |
| header_size = 2; |
| break; |
| } |
| |
| /* Check for invalid headers. */ |
| if (len < header_size || data[0] < header_size) { |
| stream->stats.frame.nb_invalid++; |
| return; |
| } |
| |
| /* Extract the timestamps. */ |
| if (has_pts) |
| pts = get_unaligned_le32(&data[2]); |
| |
| if (has_scr) { |
| scr_stc = get_unaligned_le32(&data[header_size - 6]); |
| scr_sof = get_unaligned_le16(&data[header_size - 2]); |
| } |
| |
| /* Is PTS constant through the whole frame ? */ |
| if (has_pts && stream->stats.frame.nb_pts) { |
| if (stream->stats.frame.pts != pts) { |
| stream->stats.frame.nb_pts_diffs++; |
| stream->stats.frame.last_pts_diff = |
| stream->stats.frame.nb_packets; |
| } |
| } |
| |
| if (has_pts) { |
| stream->stats.frame.nb_pts++; |
| stream->stats.frame.pts = pts; |
| } |
| |
| /* Do all frames have a PTS in their first non-empty packet, or before |
| * their first empty packet ? |
| */ |
| if (stream->stats.frame.size == 0) { |
| if (len > header_size) |
| stream->stats.frame.has_initial_pts = has_pts; |
| if (len == header_size && has_pts) |
| stream->stats.frame.has_early_pts = true; |
| } |
| |
| /* Do the SCR.STC and SCR.SOF fields vary through the frame ? */ |
| if (has_scr && stream->stats.frame.nb_scr) { |
| if (stream->stats.frame.scr_stc != scr_stc) |
| stream->stats.frame.nb_scr_diffs++; |
| } |
| |
| if (has_scr) { |
| /* Expand the SOF counter to 32 bits and store its value. */ |
| if (stream->stats.stream.nb_frames > 0 || |
| stream->stats.frame.nb_scr > 0) |
| stream->stats.stream.scr_sof_count += |
| (scr_sof - stream->stats.stream.scr_sof) % 2048; |
| stream->stats.stream.scr_sof = scr_sof; |
| |
| stream->stats.frame.nb_scr++; |
| stream->stats.frame.scr_stc = scr_stc; |
| stream->stats.frame.scr_sof = scr_sof; |
| |
| if (scr_sof < stream->stats.stream.min_sof) |
| stream->stats.stream.min_sof = scr_sof; |
| if (scr_sof > stream->stats.stream.max_sof) |
| stream->stats.stream.max_sof = scr_sof; |
| } |
| |
| /* Record the first non-empty packet number. */ |
| if (stream->stats.frame.size == 0 && len > header_size) |
| stream->stats.frame.first_data = stream->stats.frame.nb_packets; |
| |
| /* Update the frame size. */ |
| stream->stats.frame.size += len - header_size; |
| |
| /* Update the packets counters. */ |
| stream->stats.frame.nb_packets++; |
| if (len <= header_size) |
| stream->stats.frame.nb_empty++; |
| |
| if (data[1] & UVC_STREAM_ERR) |
| stream->stats.frame.nb_errors++; |
| } |
| |
| static void uvc_video_stats_update(struct uvc_streaming *stream) |
| { |
| struct uvc_stats_frame *frame = &stream->stats.frame; |
| |
| uvc_dbg(stream->dev, STATS, |
| "frame %u stats: %u/%u/%u packets, %u/%u/%u pts (%searly %sinitial), %u/%u scr, last pts/stc/sof %u/%u/%u\n", |
| stream->sequence, frame->first_data, |
| frame->nb_packets - frame->nb_empty, frame->nb_packets, |
| frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts, |
| frame->has_early_pts ? "" : "!", |
| frame->has_initial_pts ? "" : "!", |
| frame->nb_scr_diffs, frame->nb_scr, |
| frame->pts, frame->scr_stc, frame->scr_sof); |
| |
| stream->stats.stream.nb_frames++; |
| stream->stats.stream.nb_packets += stream->stats.frame.nb_packets; |
| stream->stats.stream.nb_empty += stream->stats.frame.nb_empty; |
| stream->stats.stream.nb_errors += stream->stats.frame.nb_errors; |
| stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid; |
| |
| if (frame->has_early_pts) |
| stream->stats.stream.nb_pts_early++; |
| if (frame->has_initial_pts) |
| stream->stats.stream.nb_pts_initial++; |
| if (frame->last_pts_diff <= frame->first_data) |
| stream->stats.stream.nb_pts_constant++; |
| if (frame->nb_scr >= frame->nb_packets - frame->nb_empty) |
| stream->stats.stream.nb_scr_count_ok++; |
| if (frame->nb_scr_diffs + 1 == frame->nb_scr) |
| stream->stats.stream.nb_scr_diffs_ok++; |
| |
| memset(&stream->stats.frame, 0, sizeof(stream->stats.frame)); |
| } |
| |
| size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf, |
| size_t size) |
| { |
| unsigned int scr_sof_freq; |
| unsigned int duration; |
| size_t count = 0; |
| |
| /* Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF |
| * frequency this will not overflow before more than 1h. |
| */ |
| duration = ktime_ms_delta(stream->stats.stream.stop_ts, |
| stream->stats.stream.start_ts); |
| if (duration != 0) |
| scr_sof_freq = stream->stats.stream.scr_sof_count * 1000 |
| / duration; |
| else |
| scr_sof_freq = 0; |
| |
| count += scnprintf(buf + count, size - count, |
| "frames: %u\npackets: %u\nempty: %u\n" |
| "errors: %u\ninvalid: %u\n", |
| stream->stats.stream.nb_frames, |
| stream->stats.stream.nb_packets, |
| stream->stats.stream.nb_empty, |
| stream->stats.stream.nb_errors, |
| stream->stats.stream.nb_invalid); |
| count += scnprintf(buf + count, size - count, |
| "pts: %u early, %u initial, %u ok\n", |
| stream->stats.stream.nb_pts_early, |
| stream->stats.stream.nb_pts_initial, |
| stream->stats.stream.nb_pts_constant); |
| count += scnprintf(buf + count, size - count, |
| "scr: %u count ok, %u diff ok\n", |
| stream->stats.stream.nb_scr_count_ok, |
| stream->stats.stream.nb_scr_diffs_ok); |
| count += scnprintf(buf + count, size - count, |
| "sof: %u <= sof <= %u, freq %u.%03u kHz\n", |
| stream->stats.stream.min_sof, |
| stream->stats.stream.max_sof, |
| scr_sof_freq / 1000, scr_sof_freq % 1000); |
| |
| return count; |
| } |
| |
| static void uvc_video_stats_start(struct uvc_streaming *stream) |
| { |
| memset(&stream->stats, 0, sizeof(stream->stats)); |
| stream->stats.stream.min_sof = 2048; |
| } |
| |
| static void uvc_video_stats_stop(struct uvc_streaming *stream) |
| { |
| stream->stats.stream.stop_ts = ktime_get(); |
| } |
| |
| /* ------------------------------------------------------------------------ |
| * Video codecs |
| */ |
| |
| /* Video payload decoding is handled by uvc_video_decode_start(), |
| * uvc_video_decode_data() and uvc_video_decode_end(). |
| * |
| * uvc_video_decode_start is called with URB data at the start of a bulk or |
| * isochronous payload. It processes header data and returns the header size |
| * in bytes if successful. If an error occurs, it returns a negative error |
| * code. The following error codes have special meanings. |
| * |
| * - EAGAIN informs the caller that the current video buffer should be marked |
| * as done, and that the function should be called again with the same data |
| * and a new video buffer. This is used when end of frame conditions can be |
| * reliably detected at the beginning of the next frame only. |
| * |
| * If an error other than -EAGAIN is returned, the caller will drop the current |
| * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be |
| * made until the next payload. -ENODATA can be used to drop the current |
| * payload if no other error code is appropriate. |
| * |
| * uvc_video_decode_data is called for every URB with URB data. It copies the |
| * data to the video buffer. |
| * |
| * uvc_video_decode_end is called with header data at the end of a bulk or |
| * isochronous payload. It performs any additional header data processing and |
| * returns 0 or a negative error code if an error occurred. As header data have |
| * already been processed by uvc_video_decode_start, this functions isn't |
| * required to perform sanity checks a second time. |
| * |
| * For isochronous transfers where a payload is always transferred in a single |
| * URB, the three functions will be called in a row. |
| * |
| * To let the decoder process header data and update its internal state even |
| * when no video buffer is available, uvc_video_decode_start must be prepared |
| * to be called with a NULL buf parameter. uvc_video_decode_data and |
| * uvc_video_decode_end will never be called with a NULL buffer. |
| */ |
| static int uvc_video_decode_start(struct uvc_streaming *stream, |
| struct uvc_buffer *buf, const u8 *data, int len) |
| { |
| u8 fid; |
| |
| /* Sanity checks: |
| * - packet must be at least 2 bytes long |
| * - bHeaderLength value must be at least 2 bytes (see above) |
| * - bHeaderLength value can't be larger than the packet size. |
| */ |
| if (len < 2 || data[0] < 2 || data[0] > len) { |
| stream->stats.frame.nb_invalid++; |
| return -EINVAL; |
| } |
| |
| fid = data[1] & UVC_STREAM_FID; |
| |
| /* Increase the sequence number regardless of any buffer states, so |
| * that discontinuous sequence numbers always indicate lost frames. |
| */ |
| if (stream->last_fid != fid) { |
| stream->sequence++; |
| if (stream->sequence) |
| uvc_video_stats_update(stream); |
| } |
| |
| uvc_video_clock_decode(stream, buf, data, len); |
| uvc_video_stats_decode(stream, data, len); |
| |
| /* Store the payload FID bit and return immediately when the buffer is |
| * NULL. |
| */ |
| if (buf == NULL) { |
| stream->last_fid = fid; |
| return -ENODATA; |
| } |
| |
| /* Mark the buffer as bad if the error bit is set. */ |
| if (data[1] & UVC_STREAM_ERR) { |
| uvc_dbg(stream->dev, FRAME, |
| "Marking buffer as bad (error bit set)\n"); |
| buf->error = 1; |
| } |
| |
| /* Synchronize to the input stream by waiting for the FID bit to be |
| * toggled when the the buffer state is not UVC_BUF_STATE_ACTIVE. |
| * stream->last_fid is initialized to -1, so the first isochronous |
| * frame will always be in sync. |
| * |
| * If the device doesn't toggle the FID bit, invert stream->last_fid |
| * when the EOF bit is set to force synchronisation on the next packet. |
| */ |
| if (buf->state != UVC_BUF_STATE_ACTIVE) { |
| if (fid == stream->last_fid) { |
| uvc_dbg(stream->dev, FRAME, |
| "Dropping payload (out of sync)\n"); |
| if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) && |
| (data[1] & UVC_STREAM_EOF)) |
| stream->last_fid ^= UVC_STREAM_FID; |
| return -ENODATA; |
| } |
| |
| buf->buf.field = V4L2_FIELD_NONE; |
| buf->buf.sequence = stream->sequence; |
| buf->buf.vb2_buf.timestamp = ktime_to_ns(uvc_video_get_time()); |
| |
| /* TODO: Handle PTS and SCR. */ |
| buf->state = UVC_BUF_STATE_ACTIVE; |
| } |
| |
| /* Mark the buffer as done if we're at the beginning of a new frame. |
| * End of frame detection is better implemented by checking the EOF |
| * bit (FID bit toggling is delayed by one frame compared to the EOF |
| * bit), but some devices don't set the bit at end of frame (and the |
| * last payload can be lost anyway). We thus must check if the FID has |
| * been toggled. |
| * |
| * stream->last_fid is initialized to -1, so the first isochronous |
| * frame will never trigger an end of frame detection. |
| * |
| * Empty buffers (bytesused == 0) don't trigger end of frame detection |
| * as it doesn't make sense to return an empty buffer. This also |
| * avoids detecting end of frame conditions at FID toggling if the |
| * previous payload had the EOF bit set. |
| */ |
| if (fid != stream->last_fid && buf->bytesused != 0) { |
| uvc_dbg(stream->dev, FRAME, |
| "Frame complete (FID bit toggled)\n"); |
| buf->state = UVC_BUF_STATE_READY; |
| return -EAGAIN; |
| } |
| |
| stream->last_fid = fid; |
| |
| return data[0]; |
| } |
| |
| /* |
| * uvc_video_decode_data_work: Asynchronous memcpy processing |
| * |
| * Copy URB data to video buffers in process context, releasing buffer |
| * references and requeuing the URB when done. |
| */ |
| static void uvc_video_copy_data_work(struct work_struct *work) |
| { |
| struct uvc_urb *uvc_urb = container_of(work, struct uvc_urb, work); |
| unsigned int i; |
| int ret; |
| |
| for (i = 0; i < uvc_urb->async_operations; i++) { |
| struct uvc_copy_op *op = &uvc_urb->copy_operations[i]; |
| |
| memcpy(op->dst, op->src, op->len); |
| |
| /* Release reference taken on this buffer. */ |
| uvc_queue_buffer_release(op->buf); |
| } |
| |
| ret = usb_submit_urb(uvc_urb->urb, GFP_KERNEL); |
| if (ret < 0) |
| dev_err(&uvc_urb->stream->intf->dev, |
| "Failed to resubmit video URB (%d).\n", ret); |
| } |
| |
| static void uvc_video_decode_data(struct uvc_urb *uvc_urb, |
| struct uvc_buffer *buf, const u8 *data, int len) |
| { |
| unsigned int active_op = uvc_urb->async_operations; |
| struct uvc_copy_op *op = &uvc_urb->copy_operations[active_op]; |
| unsigned int maxlen; |
| |
| if (len <= 0) |
| return; |
| |
| maxlen = buf->length - buf->bytesused; |
| |
| /* Take a buffer reference for async work. */ |
| kref_get(&buf->ref); |
| |
| op->buf = buf; |
| op->src = data; |
| op->dst = buf->mem + buf->bytesused; |
| op->len = min_t(unsigned int, len, maxlen); |
| |
| buf->bytesused += op->len; |
| |
| /* Complete the current frame if the buffer size was exceeded. */ |
| if (len > maxlen) { |
| uvc_dbg(uvc_urb->stream->dev, FRAME, |
| "Frame complete (overflow)\n"); |
| buf->error = 1; |
| buf->state = UVC_BUF_STATE_READY; |
| } |
| |
| uvc_urb->async_operations++; |
| } |
| |
| static void uvc_video_decode_end(struct uvc_streaming *stream, |
| struct uvc_buffer *buf, const u8 *data, int len) |
| { |
| /* Mark the buffer as done if the EOF marker is set. */ |
| if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) { |
| uvc_dbg(stream->dev, FRAME, "Frame complete (EOF found)\n"); |
| if (data[0] == len) |
| uvc_dbg(stream->dev, FRAME, "EOF in empty payload\n"); |
| buf->state = UVC_BUF_STATE_READY; |
| if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) |
| stream->last_fid ^= UVC_STREAM_FID; |
| } |
| } |
| |
| /* Video payload encoding is handled by uvc_video_encode_header() and |
| * uvc_video_encode_data(). Only bulk transfers are currently supported. |
| * |
| * uvc_video_encode_header is called at the start of a payload. It adds header |
| * data to the transfer buffer and returns the header size. As the only known |
| * UVC output device transfers a whole frame in a single payload, the EOF bit |
| * is always set in the header. |
| * |
| * uvc_video_encode_data is called for every URB and copies the data from the |
| * video buffer to the transfer buffer. |
| */ |
| static int uvc_video_encode_header(struct uvc_streaming *stream, |
| struct uvc_buffer *buf, u8 *data, int len) |
| { |
| data[0] = 2; /* Header length */ |
| data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF |
| | (stream->last_fid & UVC_STREAM_FID); |
| return 2; |
| } |
| |
| static int uvc_video_encode_data(struct uvc_streaming *stream, |
| struct uvc_buffer *buf, u8 *data, int len) |
| { |
| struct uvc_video_queue *queue = &stream->queue; |
| unsigned int nbytes; |
| void *mem; |
| |
| /* Copy video data to the URB buffer. */ |
| mem = buf->mem + queue->buf_used; |
| nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used); |
| nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size, |
| nbytes); |
| memcpy(data, mem, nbytes); |
| |
| queue->buf_used += nbytes; |
| |
| return nbytes; |
| } |
| |
| /* ------------------------------------------------------------------------ |
| * Metadata |
| */ |
| |
| /* |
| * Additionally to the payload headers we also want to provide the user with USB |
| * Frame Numbers and system time values. The resulting buffer is thus composed |
| * of blocks, containing a 64-bit timestamp in nanoseconds, a 16-bit USB Frame |
| * Number, and a copy of the payload header. |
| * |
| * Ideally we want to capture all payload headers for each frame. However, their |
| * number is unknown and unbound. We thus drop headers that contain no vendor |
| * data and that either contain no SCR value or an SCR value identical to the |
| * previous header. |
| */ |
| static void uvc_video_decode_meta(struct uvc_streaming *stream, |
| struct uvc_buffer *meta_buf, |
| const u8 *mem, unsigned int length) |
| { |
| struct uvc_meta_buf *meta; |
| size_t len_std = 2; |
| bool has_pts, has_scr; |
| unsigned long flags; |
| unsigned int sof; |
| ktime_t time; |
| const u8 *scr; |
| |
| if (!meta_buf || length == 2) |
| return; |
| |
| if (meta_buf->length - meta_buf->bytesused < |
| length + sizeof(meta->ns) + sizeof(meta->sof)) { |
| meta_buf->error = 1; |
| return; |
| } |
| |
| has_pts = mem[1] & UVC_STREAM_PTS; |
| has_scr = mem[1] & UVC_STREAM_SCR; |
| |
| if (has_pts) { |
| len_std += 4; |
| scr = mem + 6; |
| } else { |
| scr = mem + 2; |
| } |
| |
| if (has_scr) |
| len_std += 6; |
| |
| if (stream->meta.format == V4L2_META_FMT_UVC) |
| length = len_std; |
| |
| if (length == len_std && (!has_scr || |
| !memcmp(scr, stream->clock.last_scr, 6))) |
| return; |
| |
| meta = (struct uvc_meta_buf *)((u8 *)meta_buf->mem + meta_buf->bytesused); |
| local_irq_save(flags); |
| time = uvc_video_get_time(); |
| sof = usb_get_current_frame_number(stream->dev->udev); |
| local_irq_restore(flags); |
| put_unaligned(ktime_to_ns(time), &meta->ns); |
| put_unaligned(sof, &meta->sof); |
| |
| if (has_scr) |
| memcpy(stream->clock.last_scr, scr, 6); |
| |
| memcpy(&meta->length, mem, length); |
| meta_buf->bytesused += length + sizeof(meta->ns) + sizeof(meta->sof); |
| |
| uvc_dbg(stream->dev, FRAME, |
| "%s(): t-sys %lluns, SOF %u, len %u, flags 0x%x, PTS %u, STC %u frame SOF %u\n", |
| __func__, ktime_to_ns(time), meta->sof, meta->length, |
| meta->flags, |
| has_pts ? *(u32 *)meta->buf : 0, |
| has_scr ? *(u32 *)scr : 0, |
| has_scr ? *(u32 *)(scr + 4) & 0x7ff : 0); |
| } |
| |
| /* ------------------------------------------------------------------------ |
| * URB handling |
| */ |
| |
| /* |
| * Set error flag for incomplete buffer. |
| */ |
| static void uvc_video_validate_buffer(const struct uvc_streaming *stream, |
| struct uvc_buffer *buf) |
| { |
| if (stream->ctrl.dwMaxVideoFrameSize != buf->bytesused && |
| !(stream->cur_format->flags & UVC_FMT_FLAG_COMPRESSED)) |
| buf->error = 1; |
| } |
| |
| /* |
| * Completion handler for video URBs. |
| */ |
| |
| static void uvc_video_next_buffers(struct uvc_streaming *stream, |
| struct uvc_buffer **video_buf, struct uvc_buffer **meta_buf) |
| { |
| uvc_video_validate_buffer(stream, *video_buf); |
| |
| if (*meta_buf) { |
| struct vb2_v4l2_buffer *vb2_meta = &(*meta_buf)->buf; |
| const struct vb2_v4l2_buffer *vb2_video = &(*video_buf)->buf; |
| |
| vb2_meta->sequence = vb2_video->sequence; |
| vb2_meta->field = vb2_video->field; |
| vb2_meta->vb2_buf.timestamp = vb2_video->vb2_buf.timestamp; |
| |
| (*meta_buf)->state = UVC_BUF_STATE_READY; |
| if (!(*meta_buf)->error) |
| (*meta_buf)->error = (*video_buf)->error; |
| *meta_buf = uvc_queue_next_buffer(&stream->meta.queue, |
| *meta_buf); |
| } |
| *video_buf = uvc_queue_next_buffer(&stream->queue, *video_buf); |
| } |
| |
| static void uvc_video_decode_isoc(struct uvc_urb *uvc_urb, |
| struct uvc_buffer *buf, struct uvc_buffer *meta_buf) |
| { |
| struct urb *urb = uvc_urb->urb; |
| struct uvc_streaming *stream = uvc_urb->stream; |
| u8 *mem; |
| int ret, i; |
| |
| for (i = 0; i < urb->number_of_packets; ++i) { |
| if (urb->iso_frame_desc[i].status < 0) { |
| uvc_dbg(stream->dev, FRAME, |
| "USB isochronous frame lost (%d)\n", |
| urb->iso_frame_desc[i].status); |
| /* Mark the buffer as faulty. */ |
| if (buf != NULL) |
| buf->error = 1; |
| continue; |
| } |
| |
| /* Decode the payload header. */ |
| mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset; |
| do { |
| ret = uvc_video_decode_start(stream, buf, mem, |
| urb->iso_frame_desc[i].actual_length); |
| if (ret == -EAGAIN) |
| uvc_video_next_buffers(stream, &buf, &meta_buf); |
| } while (ret == -EAGAIN); |
| |
| if (ret < 0) |
| continue; |
| |
| uvc_video_decode_meta(stream, meta_buf, mem, ret); |
| |
| /* Decode the payload data. */ |
| uvc_video_decode_data(uvc_urb, buf, mem + ret, |
| urb->iso_frame_desc[i].actual_length - ret); |
| |
| /* Process the header again. */ |
| uvc_video_decode_end(stream, buf, mem, |
| urb->iso_frame_desc[i].actual_length); |
| |
| if (buf->state == UVC_BUF_STATE_READY) |
| uvc_video_next_buffers(stream, &buf, &meta_buf); |
| } |
| } |
| |
| static void uvc_video_decode_bulk(struct uvc_urb *uvc_urb, |
| struct uvc_buffer *buf, struct uvc_buffer *meta_buf) |
| { |
| struct urb *urb = uvc_urb->urb; |
| struct uvc_streaming *stream = uvc_urb->stream; |
| u8 *mem; |
| int len, ret; |
| |
| /* |
| * Ignore ZLPs if they're not part of a frame, otherwise process them |
| * to trigger the end of payload detection. |
| */ |
| if (urb->actual_length == 0 && stream->bulk.header_size == 0) |
| return; |
| |
| mem = urb->transfer_buffer; |
| len = urb->actual_length; |
| stream->bulk.payload_size += len; |
| |
| /* If the URB is the first of its payload, decode and save the |
| * header. |
| */ |
| if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) { |
| do { |
| ret = uvc_video_decode_start(stream, buf, mem, len); |
| if (ret == -EAGAIN) |
| uvc_video_next_buffers(stream, &buf, &meta_buf); |
| } while (ret == -EAGAIN); |
| |
| /* If an error occurred skip the rest of the payload. */ |
| if (ret < 0 || buf == NULL) { |
| stream->bulk.skip_payload = 1; |
| } else { |
| memcpy(stream->bulk.header, mem, ret); |
| stream->bulk.header_size = ret; |
| |
| uvc_video_decode_meta(stream, meta_buf, mem, ret); |
| |
| mem += ret; |
| len -= ret; |
| } |
| } |
| |
| /* The buffer queue might have been cancelled while a bulk transfer |
| * was in progress, so we can reach here with buf equal to NULL. Make |
| * sure buf is never dereferenced if NULL. |
| */ |
| |
| /* Prepare video data for processing. */ |
| if (!stream->bulk.skip_payload && buf != NULL) |
| uvc_video_decode_data(uvc_urb, buf, mem, len); |
| |
| /* Detect the payload end by a URB smaller than the maximum size (or |
| * a payload size equal to the maximum) and process the header again. |
| */ |
| if (urb->actual_length < urb->transfer_buffer_length || |
| stream->bulk.payload_size >= stream->bulk.max_payload_size) { |
| if (!stream->bulk.skip_payload && buf != NULL) { |
| uvc_video_decode_end(stream, buf, stream->bulk.header, |
| stream->bulk.payload_size); |
| if (buf->state == UVC_BUF_STATE_READY) |
| uvc_video_next_buffers(stream, &buf, &meta_buf); |
| } |
| |
| stream->bulk.header_size = 0; |
| stream->bulk.skip_payload = 0; |
| stream->bulk.payload_size = 0; |
| } |
| } |
| |
| static void uvc_video_encode_bulk(struct uvc_urb *uvc_urb, |
| struct uvc_buffer *buf, struct uvc_buffer *meta_buf) |
| { |
| struct urb *urb = uvc_urb->urb; |
| struct uvc_streaming *stream = uvc_urb->stream; |
| |
| u8 *mem = urb->transfer_buffer; |
| int len = stream->urb_size, ret; |
| |
| if (buf == NULL) { |
| urb->transfer_buffer_length = 0; |
| return; |
| } |
| |
| /* If the URB is the first of its payload, add the header. */ |
| if (stream->bulk.header_size == 0) { |
| ret = uvc_video_encode_header(stream, buf, mem, len); |
| stream->bulk.header_size = ret; |
| stream->bulk.payload_size += ret; |
| mem += ret; |
| len -= ret; |
| } |
| |
| /* Process video data. */ |
| ret = uvc_video_encode_data(stream, buf, mem, len); |
| |
| stream->bulk.payload_size += ret; |
| len -= ret; |
| |
| if (buf->bytesused == stream->queue.buf_used || |
| stream->bulk.payload_size == stream->bulk.max_payload_size) { |
| if (buf->bytesused == stream->queue.buf_used) { |
| stream->queue.buf_used = 0; |
| buf->state = UVC_BUF_STATE_READY; |
| buf->buf.sequence = ++stream->sequence; |
| uvc_queue_next_buffer(&stream->queue, buf); |
| stream->last_fid ^= UVC_STREAM_FID; |
| } |
| |
| stream->bulk.header_size = 0; |
| stream->bulk.payload_size = 0; |
| } |
| |
| urb->transfer_buffer_length = stream->urb_size - len; |
| } |
| |
| static void uvc_video_complete(struct urb *urb) |
| { |
| struct uvc_urb *uvc_urb = urb->context; |
| struct uvc_streaming *stream = uvc_urb->stream; |
| struct uvc_video_queue *queue = &stream->queue; |
| struct uvc_video_queue *qmeta = &stream->meta.queue; |
| struct vb2_queue *vb2_qmeta = stream->meta.vdev.queue; |
| struct uvc_buffer *buf = NULL; |
| struct uvc_buffer *buf_meta = NULL; |
| unsigned long flags; |
| int ret; |
| |
| switch (urb->status) { |
| case 0: |
| break; |
| |
| default: |
| dev_warn(&stream->intf->dev, |
| "Non-zero status (%d) in video completion handler.\n", |
| urb->status); |
| fallthrough; |
| case -ENOENT: /* usb_poison_urb() called. */ |
| if (stream->frozen) |
| return; |
| fallthrough; |
| case -ECONNRESET: /* usb_unlink_urb() called. */ |
| case -ESHUTDOWN: /* The endpoint is being disabled. */ |
| uvc_queue_cancel(queue, urb->status == -ESHUTDOWN); |
| if (vb2_qmeta) |
| uvc_queue_cancel(qmeta, urb->status == -ESHUTDOWN); |
| return; |
| } |
| |
| buf = uvc_queue_get_current_buffer(queue); |
| |
| if (vb2_qmeta) { |
| spin_lock_irqsave(&qmeta->irqlock, flags); |
| if (!list_empty(&qmeta->irqqueue)) |
| buf_meta = list_first_entry(&qmeta->irqqueue, |
| struct uvc_buffer, queue); |
| spin_unlock_irqrestore(&qmeta->irqlock, flags); |
| } |
| |
| /* Re-initialise the URB async work. */ |
| uvc_urb->async_operations = 0; |
| |
| /* |
| * Process the URB headers, and optionally queue expensive memcpy tasks |
| * to be deferred to a work queue. |
| */ |
| stream->decode(uvc_urb, buf, buf_meta); |
| |
| /* If no async work is needed, resubmit the URB immediately. */ |
| if (!uvc_urb->async_operations) { |
| ret = usb_submit_urb(uvc_urb->urb, GFP_ATOMIC); |
| if (ret < 0) |
| dev_err(&stream->intf->dev, |
| "Failed to resubmit video URB (%d).\n", ret); |
| return; |
| } |
| |
| queue_work(stream->async_wq, &uvc_urb->work); |
| } |
| |
| /* |
| * Free transfer buffers. |
| */ |
| static void uvc_free_urb_buffers(struct uvc_streaming *stream) |
| { |
| struct uvc_urb *uvc_urb; |
| |
| for_each_uvc_urb(uvc_urb, stream) { |
| if (!uvc_urb->buffer) |
| continue; |
| |
| #ifndef CONFIG_DMA_NONCOHERENT |
| usb_free_coherent(stream->dev->udev, stream->urb_size, |
| uvc_urb->buffer, uvc_urb->dma); |
| #else |
| kfree(uvc_urb->buffer); |
| #endif |
| uvc_urb->buffer = NULL; |
| } |
| |
| stream->urb_size = 0; |
| } |
| |
| /* |
| * Allocate transfer buffers. This function can be called with buffers |
| * already allocated when resuming from suspend, in which case it will |
| * return without touching the buffers. |
| * |
| * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the |
| * system is too low on memory try successively smaller numbers of packets |
| * until allocation succeeds. |
| * |
| * Return the number of allocated packets on success or 0 when out of memory. |
| */ |
| static int uvc_alloc_urb_buffers(struct uvc_streaming *stream, |
| unsigned int size, unsigned int psize, gfp_t gfp_flags) |
| { |
| unsigned int npackets; |
| unsigned int i; |
| |
| /* Buffers are already allocated, bail out. */ |
| if (stream->urb_size) |
| return stream->urb_size / psize; |
| |
| /* Compute the number of packets. Bulk endpoints might transfer UVC |
| * payloads across multiple URBs. |
| */ |
| npackets = DIV_ROUND_UP(size, psize); |
| if (npackets > UVC_MAX_PACKETS) |
| npackets = UVC_MAX_PACKETS; |
| |
| /* Retry allocations until one succeed. */ |
| for (; npackets > 1; npackets /= 2) { |
| for (i = 0; i < UVC_URBS; ++i) { |
| struct uvc_urb *uvc_urb = &stream->uvc_urb[i]; |
| |
| stream->urb_size = psize * npackets; |
| #ifndef CONFIG_DMA_NONCOHERENT |
| uvc_urb->buffer = usb_alloc_coherent( |
| stream->dev->udev, stream->urb_size, |
| gfp_flags | __GFP_NOWARN, &uvc_urb->dma); |
| #else |
| uvc_urb->buffer = |
| kmalloc(stream->urb_size, gfp_flags | __GFP_NOWARN); |
| #endif |
| if (!uvc_urb->buffer) { |
| uvc_free_urb_buffers(stream); |
| break; |
| } |
| |
| uvc_urb->stream = stream; |
| } |
| |
| if (i == UVC_URBS) { |
| uvc_dbg(stream->dev, VIDEO, |
| "Allocated %u URB buffers of %ux%u bytes each\n", |
| UVC_URBS, npackets, psize); |
| return npackets; |
| } |
| } |
| |
| uvc_dbg(stream->dev, VIDEO, |
| "Failed to allocate URB buffers (%u bytes per packet)\n", |
| psize); |
| return 0; |
| } |
| |
| /* |
| * Uninitialize isochronous/bulk URBs and free transfer buffers. |
| */ |
| static void uvc_video_stop_transfer(struct uvc_streaming *stream, |
| int free_buffers) |
| { |
| struct uvc_urb *uvc_urb; |
| |
| uvc_video_stats_stop(stream); |
| |
| /* |
| * We must poison the URBs rather than kill them to ensure that even |
| * after the completion handler returns, any asynchronous workqueues |
| * will be prevented from resubmitting the URBs. |
| */ |
| for_each_uvc_urb(uvc_urb, stream) |
| usb_poison_urb(uvc_urb->urb); |
| |
| flush_workqueue(stream->async_wq); |
| |
| for_each_uvc_urb(uvc_urb, stream) { |
| usb_free_urb(uvc_urb->urb); |
| uvc_urb->urb = NULL; |
| } |
| |
| if (free_buffers) |
| uvc_free_urb_buffers(stream); |
| } |
| |
| /* |
| * Compute the maximum number of bytes per interval for an endpoint. |
| */ |
| static unsigned int uvc_endpoint_max_bpi(struct usb_device *dev, |
| struct usb_host_endpoint *ep) |
| { |
| u16 psize; |
| u16 mult; |
| |
| switch (dev->speed) { |
| case USB_SPEED_SUPER: |
| case USB_SPEED_SUPER_PLUS: |
| return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); |
| case USB_SPEED_HIGH: |
| psize = usb_endpoint_maxp(&ep->desc); |
| mult = usb_endpoint_maxp_mult(&ep->desc); |
| return psize * mult; |
| case USB_SPEED_WIRELESS: |
| psize = usb_endpoint_maxp(&ep->desc); |
| return psize; |
| default: |
| psize = usb_endpoint_maxp(&ep->desc); |
| return psize; |
| } |
| } |
| |
| /* |
| * Initialize isochronous URBs and allocate transfer buffers. The packet size |
| * is given by the endpoint. |
| */ |
| static int uvc_init_video_isoc(struct uvc_streaming *stream, |
| struct usb_host_endpoint *ep, gfp_t gfp_flags) |
| { |
| struct urb *urb; |
| struct uvc_urb *uvc_urb; |
| unsigned int npackets, i; |
| u16 psize; |
| u32 size; |
| |
| psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); |
| size = stream->ctrl.dwMaxVideoFrameSize; |
| |
| npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); |
| if (npackets == 0) |
| return -ENOMEM; |
| |
| size = npackets * psize; |
| |
| for_each_uvc_urb(uvc_urb, stream) { |
| urb = usb_alloc_urb(npackets, gfp_flags); |
| if (urb == NULL) { |
| uvc_video_stop_transfer(stream, 1); |
| return -ENOMEM; |
| } |
| |
| urb->dev = stream->dev->udev; |
| urb->context = uvc_urb; |
| urb->pipe = usb_rcvisocpipe(stream->dev->udev, |
| ep->desc.bEndpointAddress); |
| #ifndef CONFIG_DMA_NONCOHERENT |
| urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP; |
| urb->transfer_dma = uvc_urb->dma; |
| #else |
| urb->transfer_flags = URB_ISO_ASAP; |
| #endif |
| urb->interval = ep->desc.bInterval; |
| urb->transfer_buffer = uvc_urb->buffer; |
| urb->complete = uvc_video_complete; |
| urb->number_of_packets = npackets; |
| urb->transfer_buffer_length = size; |
| |
| for (i = 0; i < npackets; ++i) { |
| urb->iso_frame_desc[i].offset = i * psize; |
| urb->iso_frame_desc[i].length = psize; |
| } |
| |
| uvc_urb->urb = urb; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Initialize bulk URBs and allocate transfer buffers. The packet size is |
| * given by the endpoint. |
| */ |
| static int uvc_init_video_bulk(struct uvc_streaming *stream, |
| struct usb_host_endpoint *ep, gfp_t gfp_flags) |
| { |
| struct urb *urb; |
| struct uvc_urb *uvc_urb; |
| unsigned int npackets, pipe; |
| u16 psize; |
| u32 size; |
| |
| psize = usb_endpoint_maxp(&ep->desc); |
| size = stream->ctrl.dwMaxPayloadTransferSize; |
| stream->bulk.max_payload_size = size; |
| |
| npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); |
| if (npackets == 0) |
| return -ENOMEM; |
| |
| size = npackets * psize; |
| |
| if (usb_endpoint_dir_in(&ep->desc)) |
| pipe = usb_rcvbulkpipe(stream->dev->udev, |
| ep->desc.bEndpointAddress); |
| else |
| pipe = usb_sndbulkpipe(stream->dev->udev, |
| ep->desc.bEndpointAddress); |
| |
| if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) |
| size = 0; |
| |
| for_each_uvc_urb(uvc_urb, stream) { |
| urb = usb_alloc_urb(0, gfp_flags); |
| if (urb == NULL) { |
| uvc_video_stop_transfer(stream, 1); |
| return -ENOMEM; |
| } |
| |
| usb_fill_bulk_urb(urb, stream->dev->udev, pipe, uvc_urb->buffer, |
| size, uvc_video_complete, uvc_urb); |
| #ifndef CONFIG_DMA_NONCOHERENT |
| urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; |
| urb->transfer_dma = uvc_urb->dma; |
| #endif |
| |
| uvc_urb->urb = urb; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Initialize isochronous/bulk URBs and allocate transfer buffers. |
| */ |
| static int uvc_video_start_transfer(struct uvc_streaming *stream, |
| gfp_t gfp_flags) |
| { |
| struct usb_interface *intf = stream->intf; |
| struct usb_host_endpoint *ep; |
| struct uvc_urb *uvc_urb; |
| unsigned int i; |
| int ret; |
| |
| stream->sequence = -1; |
| stream->last_fid = -1; |
| stream->bulk.header_size = 0; |
| stream->bulk.skip_payload = 0; |
| stream->bulk.payload_size = 0; |
| |
| uvc_video_stats_start(stream); |
| |
| if (intf->num_altsetting > 1) { |
| struct usb_host_endpoint *best_ep = NULL; |
| unsigned int best_psize = UINT_MAX; |
| unsigned int bandwidth; |
| unsigned int altsetting; |
| int intfnum = stream->intfnum; |
| |
| /* Isochronous endpoint, select the alternate setting. */ |
| bandwidth = stream->ctrl.dwMaxPayloadTransferSize; |
| |
| if (bandwidth == 0) { |
| uvc_dbg(stream->dev, VIDEO, |
| "Device requested null bandwidth, defaulting to lowest\n"); |
| bandwidth = 1; |
| } else { |
| uvc_dbg(stream->dev, VIDEO, |
| "Device requested %u B/frame bandwidth\n", |
| bandwidth); |
| } |
| |
| for (i = 0; i < intf->num_altsetting; ++i) { |
| struct usb_host_interface *alts; |
| unsigned int psize; |
| |
| alts = &intf->altsetting[i]; |
| ep = uvc_find_endpoint(alts, |
| stream->header.bEndpointAddress); |
| if (ep == NULL) |
| continue; |
| |
| /* Check if the bandwidth is high enough. */ |
| psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); |
| if (psize >= bandwidth && psize <= best_psize) { |
| altsetting = alts->desc.bAlternateSetting; |
| best_psize = psize; |
| best_ep = ep; |
| } |
| } |
| |
| if (best_ep == NULL) { |
| uvc_dbg(stream->dev, VIDEO, |
| "No fast enough alt setting for requested bandwidth\n"); |
| return -EIO; |
| } |
| |
| uvc_dbg(stream->dev, VIDEO, |
| "Selecting alternate setting %u (%u B/frame bandwidth)\n", |
| altsetting, best_psize); |
| |
| ret = usb_set_interface(stream->dev->udev, intfnum, altsetting); |
| if (ret < 0) |
| return ret; |
| |
| ret = uvc_init_video_isoc(stream, best_ep, gfp_flags); |
| } else { |
| /* Bulk endpoint, proceed to URB initialization. */ |
| ep = uvc_find_endpoint(&intf->altsetting[0], |
| stream->header.bEndpointAddress); |
| if (ep == NULL) |
| return -EIO; |
| |
| ret = uvc_init_video_bulk(stream, ep, gfp_flags); |
| } |
| |
| if (ret < 0) |
| return ret; |
| |
| /* Submit the URBs. */ |
| for_each_uvc_urb(uvc_urb, stream) { |
| ret = usb_submit_urb(uvc_urb->urb, gfp_flags); |
| if (ret < 0) { |
| dev_err(&stream->intf->dev, |
| "Failed to submit URB %u (%d).\n", |
| uvc_urb_index(uvc_urb), ret); |
| uvc_video_stop_transfer(stream, 1); |
| return ret; |
| } |
| } |
| |
| /* The Logitech C920 temporarily forgets that it should not be adjusting |
| * Exposure Absolute during init so restore controls to stored values. |
| */ |
| if (stream->dev->quirks & UVC_QUIRK_RESTORE_CTRLS_ON_INIT) |
| uvc_ctrl_restore_values(stream->dev); |
| |
| return 0; |
| } |
| |
| /* -------------------------------------------------------------------------- |
| * Suspend/resume |
| */ |
| |
| /* |
| * Stop streaming without disabling the video queue. |
| * |
| * To let userspace applications resume without trouble, we must not touch the |
| * video buffers in any way. We mark the device as frozen to make sure the URB |
| * completion handler won't try to cancel the queue when we kill the URBs. |
| */ |
| int uvc_video_suspend(struct uvc_streaming *stream) |
| { |
| if (!uvc_queue_streaming(&stream->queue)) |
| return 0; |
| |
| stream->frozen = 1; |
| uvc_video_stop_transfer(stream, 0); |
| usb_set_interface(stream->dev->udev, stream->intfnum, 0); |
| return 0; |
| } |
| |
| /* |
| * Reconfigure the video interface and restart streaming if it was enabled |
| * before suspend. |
| * |
| * If an error occurs, disable the video queue. This will wake all pending |
| * buffers, making sure userspace applications are notified of the problem |
| * instead of waiting forever. |
| */ |
| int uvc_video_resume(struct uvc_streaming *stream, int reset) |
| { |
| int ret; |
| |
| /* If the bus has been reset on resume, set the alternate setting to 0. |
| * This should be the default value, but some devices crash or otherwise |
| * misbehave if they don't receive a SET_INTERFACE request before any |
| * other video control request. |
| */ |
| if (reset) |
| usb_set_interface(stream->dev->udev, stream->intfnum, 0); |
| |
| stream->frozen = 0; |
| |
| uvc_video_clock_reset(stream); |
| |
| if (!uvc_queue_streaming(&stream->queue)) |
| return 0; |
| |
| ret = uvc_commit_video(stream, &stream->ctrl); |
| if (ret < 0) |
| return ret; |
| |
| return uvc_video_start_transfer(stream, GFP_NOIO); |
| } |
| |
| /* ------------------------------------------------------------------------ |
| * Video device |
| */ |
| |
| /* |
| * Initialize the UVC video device by switching to alternate setting 0 and |
| * retrieve the default format. |
| * |
| * Some cameras (namely the Fuji Finepix) set the format and frame |
| * indexes to zero. The UVC standard doesn't clearly make this a spec |
| * violation, so try to silently fix the values if possible. |
| * |
| * This function is called before registering the device with V4L. |
| */ |
| int uvc_video_init(struct uvc_streaming *stream) |
| { |
| struct uvc_streaming_control *probe = &stream->ctrl; |
| struct uvc_format *format = NULL; |
| struct uvc_frame *frame = NULL; |
| struct uvc_urb *uvc_urb; |
| unsigned int i; |
| int ret; |
| |
| if (stream->nformats == 0) { |
| dev_info(&stream->intf->dev, |
| "No supported video formats found.\n"); |
| return -EINVAL; |
| } |
| |
| atomic_set(&stream->active, 0); |
| |
| /* Alternate setting 0 should be the default, yet the XBox Live Vision |
| * Cam (and possibly other devices) crash or otherwise misbehave if |
| * they don't receive a SET_INTERFACE request before any other video |
| * control request. |
| */ |
| usb_set_interface(stream->dev->udev, stream->intfnum, 0); |
| |
| /* Set the streaming probe control with default streaming parameters |
| * retrieved from the device. Webcams that don't support GET_DEF |
| * requests on the probe control will just keep their current streaming |
| * parameters. |
| */ |
| if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0) |
| uvc_set_video_ctrl(stream, probe, 1); |
| |
| /* Initialize the streaming parameters with the probe control current |
| * value. This makes sure SET_CUR requests on the streaming commit |
| * control will always use values retrieved from a successful GET_CUR |
| * request on the probe control, as required by the UVC specification. |
| */ |
| ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); |
| if (ret < 0) |
| return ret; |
| |
| /* Check if the default format descriptor exists. Use the first |
| * available format otherwise. |
| */ |
| for (i = stream->nformats; i > 0; --i) { |
| format = &stream->format[i-1]; |
| if (format->index == probe->bFormatIndex) |
| break; |
| } |
| |
| if (format->nframes == 0) { |
| dev_info(&stream->intf->dev, |
| "No frame descriptor found for the default format.\n"); |
| return -EINVAL; |
| } |
| |
| /* Zero bFrameIndex might be correct. Stream-based formats (including |
| * MPEG-2 TS and DV) do not support frames but have a dummy frame |
| * descriptor with bFrameIndex set to zero. If the default frame |
| * descriptor is not found, use the first available frame. |
| */ |
| for (i = format->nframes; i > 0; --i) { |
| frame = &format->frame[i-1]; |
| if (frame->bFrameIndex == probe->bFrameIndex) |
| break; |
| } |
| |
| probe->bFormatIndex = format->index; |
| probe->bFrameIndex = frame->bFrameIndex; |
| |
| stream->def_format = format; |
| stream->cur_format = format; |
| stream->cur_frame = frame; |
| |
| /* Select the video decoding function */ |
| if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) { |
| if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT) |
| stream->decode = uvc_video_decode_isight; |
| else if (stream->intf->num_altsetting > 1) |
| stream->decode = uvc_video_decode_isoc; |
| else |
| stream->decode = uvc_video_decode_bulk; |
| } else { |
| if (stream->intf->num_altsetting == 1) |
| stream->decode = uvc_video_encode_bulk; |
| else { |
| dev_info(&stream->intf->dev, |
| "Isochronous endpoints are not supported for video output devices.\n"); |
| return -EINVAL; |
| } |
| } |
| |
| /* Prepare asynchronous work items. */ |
| for_each_uvc_urb(uvc_urb, stream) |
| INIT_WORK(&uvc_urb->work, uvc_video_copy_data_work); |
| |
| return 0; |
| } |
| |
| int uvc_video_start_streaming(struct uvc_streaming *stream) |
| { |
| int ret; |
| |
| ret = uvc_video_clock_init(stream); |
| if (ret < 0) |
| return ret; |
| |
| /* Commit the streaming parameters. */ |
| ret = uvc_commit_video(stream, &stream->ctrl); |
| if (ret < 0) |
| goto error_commit; |
| |
| ret = uvc_video_start_transfer(stream, GFP_KERNEL); |
| if (ret < 0) |
| goto error_video; |
| |
| return 0; |
| |
| error_video: |
| usb_set_interface(stream->dev->udev, stream->intfnum, 0); |
| error_commit: |
| uvc_video_clock_cleanup(stream); |
| |
| return ret; |
| } |
| |
| void uvc_video_stop_streaming(struct uvc_streaming *stream) |
| { |
| uvc_video_stop_transfer(stream, 1); |
| |
| if (stream->intf->num_altsetting > 1) { |
| usb_set_interface(stream->dev->udev, stream->intfnum, 0); |
| } else { |
| /* UVC doesn't specify how to inform a bulk-based device |
| * when the video stream is stopped. Windows sends a |
| * CLEAR_FEATURE(HALT) request to the video streaming |
| * bulk endpoint, mimic the same behaviour. |
| */ |
| unsigned int epnum = stream->header.bEndpointAddress |
| & USB_ENDPOINT_NUMBER_MASK; |
| unsigned int dir = stream->header.bEndpointAddress |
| & USB_ENDPOINT_DIR_MASK; |
| unsigned int pipe; |
| |
| pipe = usb_sndbulkpipe(stream->dev->udev, epnum) | dir; |
| usb_clear_halt(stream->dev->udev, pipe); |
| } |
| |
| uvc_video_clock_cleanup(stream); |
| } |