|  | /* | 
|  | * kexec.c - kexec system call | 
|  | * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com> | 
|  | * | 
|  | * This source code is licensed under the GNU General Public License, | 
|  | * Version 2.  See the file COPYING for more details. | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt)	"kexec: " fmt | 
|  |  | 
|  | #include <linux/capability.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/kexec.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/reboot.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/hardirq.h> | 
|  | #include <linux/elf.h> | 
|  | #include <linux/elfcore.h> | 
|  | #include <linux/utsname.h> | 
|  | #include <linux/numa.h> | 
|  | #include <linux/suspend.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/freezer.h> | 
|  | #include <linux/pm.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/console.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/syscore_ops.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/hugetlb.h> | 
|  |  | 
|  | #include <asm/page.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/sections.h> | 
|  |  | 
|  | #include <crypto/hash.h> | 
|  | #include <crypto/sha.h> | 
|  |  | 
|  | /* Per cpu memory for storing cpu states in case of system crash. */ | 
|  | note_buf_t __percpu *crash_notes; | 
|  |  | 
|  | /* vmcoreinfo stuff */ | 
|  | static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; | 
|  | u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4]; | 
|  | size_t vmcoreinfo_size; | 
|  | size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data); | 
|  |  | 
|  | /* Flag to indicate we are going to kexec a new kernel */ | 
|  | bool kexec_in_progress = false; | 
|  |  | 
|  | /* | 
|  | * Declare these symbols weak so that if architecture provides a purgatory, | 
|  | * these will be overridden. | 
|  | */ | 
|  | char __weak kexec_purgatory[0]; | 
|  | size_t __weak kexec_purgatory_size = 0; | 
|  |  | 
|  | #ifdef CONFIG_KEXEC_FILE | 
|  | static int kexec_calculate_store_digests(struct kimage *image); | 
|  | #endif | 
|  |  | 
|  | /* Location of the reserved area for the crash kernel */ | 
|  | struct resource crashk_res = { | 
|  | .name  = "Crash kernel", | 
|  | .start = 0, | 
|  | .end   = 0, | 
|  | .flags = IORESOURCE_BUSY | IORESOURCE_MEM | 
|  | }; | 
|  | struct resource crashk_low_res = { | 
|  | .name  = "Crash kernel", | 
|  | .start = 0, | 
|  | .end   = 0, | 
|  | .flags = IORESOURCE_BUSY | IORESOURCE_MEM | 
|  | }; | 
|  |  | 
|  | int kexec_should_crash(struct task_struct *p) | 
|  | { | 
|  | if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When kexec transitions to the new kernel there is a one-to-one | 
|  | * mapping between physical and virtual addresses.  On processors | 
|  | * where you can disable the MMU this is trivial, and easy.  For | 
|  | * others it is still a simple predictable page table to setup. | 
|  | * | 
|  | * In that environment kexec copies the new kernel to its final | 
|  | * resting place.  This means I can only support memory whose | 
|  | * physical address can fit in an unsigned long.  In particular | 
|  | * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. | 
|  | * If the assembly stub has more restrictive requirements | 
|  | * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be | 
|  | * defined more restrictively in <asm/kexec.h>. | 
|  | * | 
|  | * The code for the transition from the current kernel to the | 
|  | * the new kernel is placed in the control_code_buffer, whose size | 
|  | * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single | 
|  | * page of memory is necessary, but some architectures require more. | 
|  | * Because this memory must be identity mapped in the transition from | 
|  | * virtual to physical addresses it must live in the range | 
|  | * 0 - TASK_SIZE, as only the user space mappings are arbitrarily | 
|  | * modifiable. | 
|  | * | 
|  | * The assembly stub in the control code buffer is passed a linked list | 
|  | * of descriptor pages detailing the source pages of the new kernel, | 
|  | * and the destination addresses of those source pages.  As this data | 
|  | * structure is not used in the context of the current OS, it must | 
|  | * be self-contained. | 
|  | * | 
|  | * The code has been made to work with highmem pages and will use a | 
|  | * destination page in its final resting place (if it happens | 
|  | * to allocate it).  The end product of this is that most of the | 
|  | * physical address space, and most of RAM can be used. | 
|  | * | 
|  | * Future directions include: | 
|  | *  - allocating a page table with the control code buffer identity | 
|  | *    mapped, to simplify machine_kexec and make kexec_on_panic more | 
|  | *    reliable. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * KIMAGE_NO_DEST is an impossible destination address..., for | 
|  | * allocating pages whose destination address we do not care about. | 
|  | */ | 
|  | #define KIMAGE_NO_DEST (-1UL) | 
|  |  | 
|  | static int kimage_is_destination_range(struct kimage *image, | 
|  | unsigned long start, unsigned long end); | 
|  | static struct page *kimage_alloc_page(struct kimage *image, | 
|  | gfp_t gfp_mask, | 
|  | unsigned long dest); | 
|  |  | 
|  | static int copy_user_segment_list(struct kimage *image, | 
|  | unsigned long nr_segments, | 
|  | struct kexec_segment __user *segments) | 
|  | { | 
|  | int ret; | 
|  | size_t segment_bytes; | 
|  |  | 
|  | /* Read in the segments */ | 
|  | image->nr_segments = nr_segments; | 
|  | segment_bytes = nr_segments * sizeof(*segments); | 
|  | ret = copy_from_user(image->segment, segments, segment_bytes); | 
|  | if (ret) | 
|  | ret = -EFAULT; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sanity_check_segment_list(struct kimage *image) | 
|  | { | 
|  | int result, i; | 
|  | unsigned long nr_segments = image->nr_segments; | 
|  |  | 
|  | /* | 
|  | * Verify we have good destination addresses.  The caller is | 
|  | * responsible for making certain we don't attempt to load | 
|  | * the new image into invalid or reserved areas of RAM.  This | 
|  | * just verifies it is an address we can use. | 
|  | * | 
|  | * Since the kernel does everything in page size chunks ensure | 
|  | * the destination addresses are page aligned.  Too many | 
|  | * special cases crop of when we don't do this.  The most | 
|  | * insidious is getting overlapping destination addresses | 
|  | * simply because addresses are changed to page size | 
|  | * granularity. | 
|  | */ | 
|  | result = -EADDRNOTAVAIL; | 
|  | for (i = 0; i < nr_segments; i++) { | 
|  | unsigned long mstart, mend; | 
|  |  | 
|  | mstart = image->segment[i].mem; | 
|  | mend   = mstart + image->segment[i].memsz; | 
|  | if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) | 
|  | return result; | 
|  | if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* Verify our destination addresses do not overlap. | 
|  | * If we alloed overlapping destination addresses | 
|  | * through very weird things can happen with no | 
|  | * easy explanation as one segment stops on another. | 
|  | */ | 
|  | result = -EINVAL; | 
|  | for (i = 0; i < nr_segments; i++) { | 
|  | unsigned long mstart, mend; | 
|  | unsigned long j; | 
|  |  | 
|  | mstart = image->segment[i].mem; | 
|  | mend   = mstart + image->segment[i].memsz; | 
|  | for (j = 0; j < i; j++) { | 
|  | unsigned long pstart, pend; | 
|  | pstart = image->segment[j].mem; | 
|  | pend   = pstart + image->segment[j].memsz; | 
|  | /* Do the segments overlap ? */ | 
|  | if ((mend > pstart) && (mstart < pend)) | 
|  | return result; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Ensure our buffer sizes are strictly less than | 
|  | * our memory sizes.  This should always be the case, | 
|  | * and it is easier to check up front than to be surprised | 
|  | * later on. | 
|  | */ | 
|  | result = -EINVAL; | 
|  | for (i = 0; i < nr_segments; i++) { | 
|  | if (image->segment[i].bufsz > image->segment[i].memsz) | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Verify we have good destination addresses.  Normally | 
|  | * the caller is responsible for making certain we don't | 
|  | * attempt to load the new image into invalid or reserved | 
|  | * areas of RAM.  But crash kernels are preloaded into a | 
|  | * reserved area of ram.  We must ensure the addresses | 
|  | * are in the reserved area otherwise preloading the | 
|  | * kernel could corrupt things. | 
|  | */ | 
|  |  | 
|  | if (image->type == KEXEC_TYPE_CRASH) { | 
|  | result = -EADDRNOTAVAIL; | 
|  | for (i = 0; i < nr_segments; i++) { | 
|  | unsigned long mstart, mend; | 
|  |  | 
|  | mstart = image->segment[i].mem; | 
|  | mend = mstart + image->segment[i].memsz - 1; | 
|  | /* Ensure we are within the crash kernel limits */ | 
|  | if ((mstart < crashk_res.start) || | 
|  | (mend > crashk_res.end)) | 
|  | return result; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct kimage *do_kimage_alloc_init(void) | 
|  | { | 
|  | struct kimage *image; | 
|  |  | 
|  | /* Allocate a controlling structure */ | 
|  | image = kzalloc(sizeof(*image), GFP_KERNEL); | 
|  | if (!image) | 
|  | return NULL; | 
|  |  | 
|  | image->head = 0; | 
|  | image->entry = &image->head; | 
|  | image->last_entry = &image->head; | 
|  | image->control_page = ~0; /* By default this does not apply */ | 
|  | image->type = KEXEC_TYPE_DEFAULT; | 
|  |  | 
|  | /* Initialize the list of control pages */ | 
|  | INIT_LIST_HEAD(&image->control_pages); | 
|  |  | 
|  | /* Initialize the list of destination pages */ | 
|  | INIT_LIST_HEAD(&image->dest_pages); | 
|  |  | 
|  | /* Initialize the list of unusable pages */ | 
|  | INIT_LIST_HEAD(&image->unusable_pages); | 
|  |  | 
|  | return image; | 
|  | } | 
|  |  | 
|  | static void kimage_free_page_list(struct list_head *list); | 
|  |  | 
|  | static int kimage_alloc_init(struct kimage **rimage, unsigned long entry, | 
|  | unsigned long nr_segments, | 
|  | struct kexec_segment __user *segments, | 
|  | unsigned long flags) | 
|  | { | 
|  | int ret; | 
|  | struct kimage *image; | 
|  | bool kexec_on_panic = flags & KEXEC_ON_CRASH; | 
|  |  | 
|  | if (kexec_on_panic) { | 
|  | /* Verify we have a valid entry point */ | 
|  | if ((entry < crashk_res.start) || (entry > crashk_res.end)) | 
|  | return -EADDRNOTAVAIL; | 
|  | } | 
|  |  | 
|  | /* Allocate and initialize a controlling structure */ | 
|  | image = do_kimage_alloc_init(); | 
|  | if (!image) | 
|  | return -ENOMEM; | 
|  |  | 
|  | image->start = entry; | 
|  |  | 
|  | ret = copy_user_segment_list(image, nr_segments, segments); | 
|  | if (ret) | 
|  | goto out_free_image; | 
|  |  | 
|  | ret = sanity_check_segment_list(image); | 
|  | if (ret) | 
|  | goto out_free_image; | 
|  |  | 
|  | /* Enable the special crash kernel control page allocation policy. */ | 
|  | if (kexec_on_panic) { | 
|  | image->control_page = crashk_res.start; | 
|  | image->type = KEXEC_TYPE_CRASH; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find a location for the control code buffer, and add it | 
|  | * the vector of segments so that it's pages will also be | 
|  | * counted as destination pages. | 
|  | */ | 
|  | ret = -ENOMEM; | 
|  | image->control_code_page = kimage_alloc_control_pages(image, | 
|  | get_order(KEXEC_CONTROL_PAGE_SIZE)); | 
|  | if (!image->control_code_page) { | 
|  | pr_err("Could not allocate control_code_buffer\n"); | 
|  | goto out_free_image; | 
|  | } | 
|  |  | 
|  | if (!kexec_on_panic) { | 
|  | image->swap_page = kimage_alloc_control_pages(image, 0); | 
|  | if (!image->swap_page) { | 
|  | pr_err("Could not allocate swap buffer\n"); | 
|  | goto out_free_control_pages; | 
|  | } | 
|  | } | 
|  |  | 
|  | *rimage = image; | 
|  | return 0; | 
|  | out_free_control_pages: | 
|  | kimage_free_page_list(&image->control_pages); | 
|  | out_free_image: | 
|  | kfree(image); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KEXEC_FILE | 
|  | static int copy_file_from_fd(int fd, void **buf, unsigned long *buf_len) | 
|  | { | 
|  | struct fd f = fdget(fd); | 
|  | int ret; | 
|  | struct kstat stat; | 
|  | loff_t pos; | 
|  | ssize_t bytes = 0; | 
|  |  | 
|  | if (!f.file) | 
|  | return -EBADF; | 
|  |  | 
|  | ret = vfs_getattr(&f.file->f_path, &stat); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (stat.size > INT_MAX) { | 
|  | ret = -EFBIG; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Don't hand 0 to vmalloc, it whines. */ | 
|  | if (stat.size == 0) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | *buf = vmalloc(stat.size); | 
|  | if (!*buf) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | pos = 0; | 
|  | while (pos < stat.size) { | 
|  | bytes = kernel_read(f.file, pos, (char *)(*buf) + pos, | 
|  | stat.size - pos); | 
|  | if (bytes < 0) { | 
|  | vfree(*buf); | 
|  | ret = bytes; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (bytes == 0) | 
|  | break; | 
|  | pos += bytes; | 
|  | } | 
|  |  | 
|  | if (pos != stat.size) { | 
|  | ret = -EBADF; | 
|  | vfree(*buf); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | *buf_len = pos; | 
|  | out: | 
|  | fdput(f); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Architectures can provide this probe function */ | 
|  | int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf, | 
|  | unsigned long buf_len) | 
|  | { | 
|  | return -ENOEXEC; | 
|  | } | 
|  |  | 
|  | void * __weak arch_kexec_kernel_image_load(struct kimage *image) | 
|  | { | 
|  | return ERR_PTR(-ENOEXEC); | 
|  | } | 
|  |  | 
|  | void __weak arch_kimage_file_post_load_cleanup(struct kimage *image) | 
|  | { | 
|  | } | 
|  |  | 
|  | int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf, | 
|  | unsigned long buf_len) | 
|  | { | 
|  | return -EKEYREJECTED; | 
|  | } | 
|  |  | 
|  | /* Apply relocations of type RELA */ | 
|  | int __weak | 
|  | arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs, | 
|  | unsigned int relsec) | 
|  | { | 
|  | pr_err("RELA relocation unsupported.\n"); | 
|  | return -ENOEXEC; | 
|  | } | 
|  |  | 
|  | /* Apply relocations of type REL */ | 
|  | int __weak | 
|  | arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs, | 
|  | unsigned int relsec) | 
|  | { | 
|  | pr_err("REL relocation unsupported.\n"); | 
|  | return -ENOEXEC; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free up memory used by kernel, initrd, and comand line. This is temporary | 
|  | * memory allocation which is not needed any more after these buffers have | 
|  | * been loaded into separate segments and have been copied elsewhere. | 
|  | */ | 
|  | static void kimage_file_post_load_cleanup(struct kimage *image) | 
|  | { | 
|  | struct purgatory_info *pi = &image->purgatory_info; | 
|  |  | 
|  | vfree(image->kernel_buf); | 
|  | image->kernel_buf = NULL; | 
|  |  | 
|  | vfree(image->initrd_buf); | 
|  | image->initrd_buf = NULL; | 
|  |  | 
|  | kfree(image->cmdline_buf); | 
|  | image->cmdline_buf = NULL; | 
|  |  | 
|  | vfree(pi->purgatory_buf); | 
|  | pi->purgatory_buf = NULL; | 
|  |  | 
|  | vfree(pi->sechdrs); | 
|  | pi->sechdrs = NULL; | 
|  |  | 
|  | /* See if architecture has anything to cleanup post load */ | 
|  | arch_kimage_file_post_load_cleanup(image); | 
|  |  | 
|  | /* | 
|  | * Above call should have called into bootloader to free up | 
|  | * any data stored in kimage->image_loader_data. It should | 
|  | * be ok now to free it up. | 
|  | */ | 
|  | kfree(image->image_loader_data); | 
|  | image->image_loader_data = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In file mode list of segments is prepared by kernel. Copy relevant | 
|  | * data from user space, do error checking, prepare segment list | 
|  | */ | 
|  | static int | 
|  | kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd, | 
|  | const char __user *cmdline_ptr, | 
|  | unsigned long cmdline_len, unsigned flags) | 
|  | { | 
|  | int ret = 0; | 
|  | void *ldata; | 
|  |  | 
|  | ret = copy_file_from_fd(kernel_fd, &image->kernel_buf, | 
|  | &image->kernel_buf_len); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Call arch image probe handlers */ | 
|  | ret = arch_kexec_kernel_image_probe(image, image->kernel_buf, | 
|  | image->kernel_buf_len); | 
|  |  | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | #ifdef CONFIG_KEXEC_VERIFY_SIG | 
|  | ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf, | 
|  | image->kernel_buf_len); | 
|  | if (ret) { | 
|  | pr_debug("kernel signature verification failed.\n"); | 
|  | goto out; | 
|  | } | 
|  | pr_debug("kernel signature verification successful.\n"); | 
|  | #endif | 
|  | /* It is possible that there no initramfs is being loaded */ | 
|  | if (!(flags & KEXEC_FILE_NO_INITRAMFS)) { | 
|  | ret = copy_file_from_fd(initrd_fd, &image->initrd_buf, | 
|  | &image->initrd_buf_len); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (cmdline_len) { | 
|  | image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL); | 
|  | if (!image->cmdline_buf) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = copy_from_user(image->cmdline_buf, cmdline_ptr, | 
|  | cmdline_len); | 
|  | if (ret) { | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | image->cmdline_buf_len = cmdline_len; | 
|  |  | 
|  | /* command line should be a string with last byte null */ | 
|  | if (image->cmdline_buf[cmdline_len - 1] != '\0') { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Call arch image load handlers */ | 
|  | ldata = arch_kexec_kernel_image_load(image); | 
|  |  | 
|  | if (IS_ERR(ldata)) { | 
|  | ret = PTR_ERR(ldata); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | image->image_loader_data = ldata; | 
|  | out: | 
|  | /* In case of error, free up all allocated memory in this function */ | 
|  | if (ret) | 
|  | kimage_file_post_load_cleanup(image); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | kimage_file_alloc_init(struct kimage **rimage, int kernel_fd, | 
|  | int initrd_fd, const char __user *cmdline_ptr, | 
|  | unsigned long cmdline_len, unsigned long flags) | 
|  | { | 
|  | int ret; | 
|  | struct kimage *image; | 
|  | bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH; | 
|  |  | 
|  | image = do_kimage_alloc_init(); | 
|  | if (!image) | 
|  | return -ENOMEM; | 
|  |  | 
|  | image->file_mode = 1; | 
|  |  | 
|  | if (kexec_on_panic) { | 
|  | /* Enable special crash kernel control page alloc policy. */ | 
|  | image->control_page = crashk_res.start; | 
|  | image->type = KEXEC_TYPE_CRASH; | 
|  | } | 
|  |  | 
|  | ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd, | 
|  | cmdline_ptr, cmdline_len, flags); | 
|  | if (ret) | 
|  | goto out_free_image; | 
|  |  | 
|  | ret = sanity_check_segment_list(image); | 
|  | if (ret) | 
|  | goto out_free_post_load_bufs; | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | image->control_code_page = kimage_alloc_control_pages(image, | 
|  | get_order(KEXEC_CONTROL_PAGE_SIZE)); | 
|  | if (!image->control_code_page) { | 
|  | pr_err("Could not allocate control_code_buffer\n"); | 
|  | goto out_free_post_load_bufs; | 
|  | } | 
|  |  | 
|  | if (!kexec_on_panic) { | 
|  | image->swap_page = kimage_alloc_control_pages(image, 0); | 
|  | if (!image->swap_page) { | 
|  | pr_err(KERN_ERR "Could not allocate swap buffer\n"); | 
|  | goto out_free_control_pages; | 
|  | } | 
|  | } | 
|  |  | 
|  | *rimage = image; | 
|  | return 0; | 
|  | out_free_control_pages: | 
|  | kimage_free_page_list(&image->control_pages); | 
|  | out_free_post_load_bufs: | 
|  | kimage_file_post_load_cleanup(image); | 
|  | out_free_image: | 
|  | kfree(image); | 
|  | return ret; | 
|  | } | 
|  | #else /* CONFIG_KEXEC_FILE */ | 
|  | static inline void kimage_file_post_load_cleanup(struct kimage *image) { } | 
|  | #endif /* CONFIG_KEXEC_FILE */ | 
|  |  | 
|  | static int kimage_is_destination_range(struct kimage *image, | 
|  | unsigned long start, | 
|  | unsigned long end) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | for (i = 0; i < image->nr_segments; i++) { | 
|  | unsigned long mstart, mend; | 
|  |  | 
|  | mstart = image->segment[i].mem; | 
|  | mend = mstart + image->segment[i].memsz; | 
|  | if ((end > mstart) && (start < mend)) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) | 
|  | { | 
|  | struct page *pages; | 
|  |  | 
|  | pages = alloc_pages(gfp_mask, order); | 
|  | if (pages) { | 
|  | unsigned int count, i; | 
|  | pages->mapping = NULL; | 
|  | set_page_private(pages, order); | 
|  | count = 1 << order; | 
|  | for (i = 0; i < count; i++) | 
|  | SetPageReserved(pages + i); | 
|  | } | 
|  |  | 
|  | return pages; | 
|  | } | 
|  |  | 
|  | static void kimage_free_pages(struct page *page) | 
|  | { | 
|  | unsigned int order, count, i; | 
|  |  | 
|  | order = page_private(page); | 
|  | count = 1 << order; | 
|  | for (i = 0; i < count; i++) | 
|  | ClearPageReserved(page + i); | 
|  | __free_pages(page, order); | 
|  | } | 
|  |  | 
|  | static void kimage_free_page_list(struct list_head *list) | 
|  | { | 
|  | struct list_head *pos, *next; | 
|  |  | 
|  | list_for_each_safe(pos, next, list) { | 
|  | struct page *page; | 
|  |  | 
|  | page = list_entry(pos, struct page, lru); | 
|  | list_del(&page->lru); | 
|  | kimage_free_pages(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct page *kimage_alloc_normal_control_pages(struct kimage *image, | 
|  | unsigned int order) | 
|  | { | 
|  | /* Control pages are special, they are the intermediaries | 
|  | * that are needed while we copy the rest of the pages | 
|  | * to their final resting place.  As such they must | 
|  | * not conflict with either the destination addresses | 
|  | * or memory the kernel is already using. | 
|  | * | 
|  | * The only case where we really need more than one of | 
|  | * these are for architectures where we cannot disable | 
|  | * the MMU and must instead generate an identity mapped | 
|  | * page table for all of the memory. | 
|  | * | 
|  | * At worst this runs in O(N) of the image size. | 
|  | */ | 
|  | struct list_head extra_pages; | 
|  | struct page *pages; | 
|  | unsigned int count; | 
|  |  | 
|  | count = 1 << order; | 
|  | INIT_LIST_HEAD(&extra_pages); | 
|  |  | 
|  | /* Loop while I can allocate a page and the page allocated | 
|  | * is a destination page. | 
|  | */ | 
|  | do { | 
|  | unsigned long pfn, epfn, addr, eaddr; | 
|  |  | 
|  | pages = kimage_alloc_pages(GFP_KERNEL, order); | 
|  | if (!pages) | 
|  | break; | 
|  | pfn   = page_to_pfn(pages); | 
|  | epfn  = pfn + count; | 
|  | addr  = pfn << PAGE_SHIFT; | 
|  | eaddr = epfn << PAGE_SHIFT; | 
|  | if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || | 
|  | kimage_is_destination_range(image, addr, eaddr)) { | 
|  | list_add(&pages->lru, &extra_pages); | 
|  | pages = NULL; | 
|  | } | 
|  | } while (!pages); | 
|  |  | 
|  | if (pages) { | 
|  | /* Remember the allocated page... */ | 
|  | list_add(&pages->lru, &image->control_pages); | 
|  |  | 
|  | /* Because the page is already in it's destination | 
|  | * location we will never allocate another page at | 
|  | * that address.  Therefore kimage_alloc_pages | 
|  | * will not return it (again) and we don't need | 
|  | * to give it an entry in image->segment[]. | 
|  | */ | 
|  | } | 
|  | /* Deal with the destination pages I have inadvertently allocated. | 
|  | * | 
|  | * Ideally I would convert multi-page allocations into single | 
|  | * page allocations, and add everything to image->dest_pages. | 
|  | * | 
|  | * For now it is simpler to just free the pages. | 
|  | */ | 
|  | kimage_free_page_list(&extra_pages); | 
|  |  | 
|  | return pages; | 
|  | } | 
|  |  | 
|  | static struct page *kimage_alloc_crash_control_pages(struct kimage *image, | 
|  | unsigned int order) | 
|  | { | 
|  | /* Control pages are special, they are the intermediaries | 
|  | * that are needed while we copy the rest of the pages | 
|  | * to their final resting place.  As such they must | 
|  | * not conflict with either the destination addresses | 
|  | * or memory the kernel is already using. | 
|  | * | 
|  | * Control pages are also the only pags we must allocate | 
|  | * when loading a crash kernel.  All of the other pages | 
|  | * are specified by the segments and we just memcpy | 
|  | * into them directly. | 
|  | * | 
|  | * The only case where we really need more than one of | 
|  | * these are for architectures where we cannot disable | 
|  | * the MMU and must instead generate an identity mapped | 
|  | * page table for all of the memory. | 
|  | * | 
|  | * Given the low demand this implements a very simple | 
|  | * allocator that finds the first hole of the appropriate | 
|  | * size in the reserved memory region, and allocates all | 
|  | * of the memory up to and including the hole. | 
|  | */ | 
|  | unsigned long hole_start, hole_end, size; | 
|  | struct page *pages; | 
|  |  | 
|  | pages = NULL; | 
|  | size = (1 << order) << PAGE_SHIFT; | 
|  | hole_start = (image->control_page + (size - 1)) & ~(size - 1); | 
|  | hole_end   = hole_start + size - 1; | 
|  | while (hole_end <= crashk_res.end) { | 
|  | unsigned long i; | 
|  |  | 
|  | if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) | 
|  | break; | 
|  | /* See if I overlap any of the segments */ | 
|  | for (i = 0; i < image->nr_segments; i++) { | 
|  | unsigned long mstart, mend; | 
|  |  | 
|  | mstart = image->segment[i].mem; | 
|  | mend   = mstart + image->segment[i].memsz - 1; | 
|  | if ((hole_end >= mstart) && (hole_start <= mend)) { | 
|  | /* Advance the hole to the end of the segment */ | 
|  | hole_start = (mend + (size - 1)) & ~(size - 1); | 
|  | hole_end   = hole_start + size - 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* If I don't overlap any segments I have found my hole! */ | 
|  | if (i == image->nr_segments) { | 
|  | pages = pfn_to_page(hole_start >> PAGE_SHIFT); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (pages) | 
|  | image->control_page = hole_end; | 
|  |  | 
|  | return pages; | 
|  | } | 
|  |  | 
|  |  | 
|  | struct page *kimage_alloc_control_pages(struct kimage *image, | 
|  | unsigned int order) | 
|  | { | 
|  | struct page *pages = NULL; | 
|  |  | 
|  | switch (image->type) { | 
|  | case KEXEC_TYPE_DEFAULT: | 
|  | pages = kimage_alloc_normal_control_pages(image, order); | 
|  | break; | 
|  | case KEXEC_TYPE_CRASH: | 
|  | pages = kimage_alloc_crash_control_pages(image, order); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return pages; | 
|  | } | 
|  |  | 
|  | static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) | 
|  | { | 
|  | if (*image->entry != 0) | 
|  | image->entry++; | 
|  |  | 
|  | if (image->entry == image->last_entry) { | 
|  | kimage_entry_t *ind_page; | 
|  | struct page *page; | 
|  |  | 
|  | page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ind_page = page_address(page); | 
|  | *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION; | 
|  | image->entry = ind_page; | 
|  | image->last_entry = ind_page + | 
|  | ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); | 
|  | } | 
|  | *image->entry = entry; | 
|  | image->entry++; | 
|  | *image->entry = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kimage_set_destination(struct kimage *image, | 
|  | unsigned long destination) | 
|  | { | 
|  | int result; | 
|  |  | 
|  | destination &= PAGE_MASK; | 
|  | result = kimage_add_entry(image, destination | IND_DESTINATION); | 
|  | if (result == 0) | 
|  | image->destination = destination; | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int kimage_add_page(struct kimage *image, unsigned long page) | 
|  | { | 
|  | int result; | 
|  |  | 
|  | page &= PAGE_MASK; | 
|  | result = kimage_add_entry(image, page | IND_SOURCE); | 
|  | if (result == 0) | 
|  | image->destination += PAGE_SIZE; | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void kimage_free_extra_pages(struct kimage *image) | 
|  | { | 
|  | /* Walk through and free any extra destination pages I may have */ | 
|  | kimage_free_page_list(&image->dest_pages); | 
|  |  | 
|  | /* Walk through and free any unusable pages I have cached */ | 
|  | kimage_free_page_list(&image->unusable_pages); | 
|  |  | 
|  | } | 
|  | static void kimage_terminate(struct kimage *image) | 
|  | { | 
|  | if (*image->entry != 0) | 
|  | image->entry++; | 
|  |  | 
|  | *image->entry = IND_DONE; | 
|  | } | 
|  |  | 
|  | #define for_each_kimage_entry(image, ptr, entry) \ | 
|  | for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ | 
|  | ptr = (entry & IND_INDIRECTION) ? \ | 
|  | phys_to_virt((entry & PAGE_MASK)) : ptr + 1) | 
|  |  | 
|  | static void kimage_free_entry(kimage_entry_t entry) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | page = pfn_to_page(entry >> PAGE_SHIFT); | 
|  | kimage_free_pages(page); | 
|  | } | 
|  |  | 
|  | static void kimage_free(struct kimage *image) | 
|  | { | 
|  | kimage_entry_t *ptr, entry; | 
|  | kimage_entry_t ind = 0; | 
|  |  | 
|  | if (!image) | 
|  | return; | 
|  |  | 
|  | kimage_free_extra_pages(image); | 
|  | for_each_kimage_entry(image, ptr, entry) { | 
|  | if (entry & IND_INDIRECTION) { | 
|  | /* Free the previous indirection page */ | 
|  | if (ind & IND_INDIRECTION) | 
|  | kimage_free_entry(ind); | 
|  | /* Save this indirection page until we are | 
|  | * done with it. | 
|  | */ | 
|  | ind = entry; | 
|  | } else if (entry & IND_SOURCE) | 
|  | kimage_free_entry(entry); | 
|  | } | 
|  | /* Free the final indirection page */ | 
|  | if (ind & IND_INDIRECTION) | 
|  | kimage_free_entry(ind); | 
|  |  | 
|  | /* Handle any machine specific cleanup */ | 
|  | machine_kexec_cleanup(image); | 
|  |  | 
|  | /* Free the kexec control pages... */ | 
|  | kimage_free_page_list(&image->control_pages); | 
|  |  | 
|  | /* | 
|  | * Free up any temporary buffers allocated. This might hit if | 
|  | * error occurred much later after buffer allocation. | 
|  | */ | 
|  | if (image->file_mode) | 
|  | kimage_file_post_load_cleanup(image); | 
|  |  | 
|  | kfree(image); | 
|  | } | 
|  |  | 
|  | static kimage_entry_t *kimage_dst_used(struct kimage *image, | 
|  | unsigned long page) | 
|  | { | 
|  | kimage_entry_t *ptr, entry; | 
|  | unsigned long destination = 0; | 
|  |  | 
|  | for_each_kimage_entry(image, ptr, entry) { | 
|  | if (entry & IND_DESTINATION) | 
|  | destination = entry & PAGE_MASK; | 
|  | else if (entry & IND_SOURCE) { | 
|  | if (page == destination) | 
|  | return ptr; | 
|  | destination += PAGE_SIZE; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct page *kimage_alloc_page(struct kimage *image, | 
|  | gfp_t gfp_mask, | 
|  | unsigned long destination) | 
|  | { | 
|  | /* | 
|  | * Here we implement safeguards to ensure that a source page | 
|  | * is not copied to its destination page before the data on | 
|  | * the destination page is no longer useful. | 
|  | * | 
|  | * To do this we maintain the invariant that a source page is | 
|  | * either its own destination page, or it is not a | 
|  | * destination page at all. | 
|  | * | 
|  | * That is slightly stronger than required, but the proof | 
|  | * that no problems will not occur is trivial, and the | 
|  | * implementation is simply to verify. | 
|  | * | 
|  | * When allocating all pages normally this algorithm will run | 
|  | * in O(N) time, but in the worst case it will run in O(N^2) | 
|  | * time.   If the runtime is a problem the data structures can | 
|  | * be fixed. | 
|  | */ | 
|  | struct page *page; | 
|  | unsigned long addr; | 
|  |  | 
|  | /* | 
|  | * Walk through the list of destination pages, and see if I | 
|  | * have a match. | 
|  | */ | 
|  | list_for_each_entry(page, &image->dest_pages, lru) { | 
|  | addr = page_to_pfn(page) << PAGE_SHIFT; | 
|  | if (addr == destination) { | 
|  | list_del(&page->lru); | 
|  | return page; | 
|  | } | 
|  | } | 
|  | page = NULL; | 
|  | while (1) { | 
|  | kimage_entry_t *old; | 
|  |  | 
|  | /* Allocate a page, if we run out of memory give up */ | 
|  | page = kimage_alloc_pages(gfp_mask, 0); | 
|  | if (!page) | 
|  | return NULL; | 
|  | /* If the page cannot be used file it away */ | 
|  | if (page_to_pfn(page) > | 
|  | (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { | 
|  | list_add(&page->lru, &image->unusable_pages); | 
|  | continue; | 
|  | } | 
|  | addr = page_to_pfn(page) << PAGE_SHIFT; | 
|  |  | 
|  | /* If it is the destination page we want use it */ | 
|  | if (addr == destination) | 
|  | break; | 
|  |  | 
|  | /* If the page is not a destination page use it */ | 
|  | if (!kimage_is_destination_range(image, addr, | 
|  | addr + PAGE_SIZE)) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * I know that the page is someones destination page. | 
|  | * See if there is already a source page for this | 
|  | * destination page.  And if so swap the source pages. | 
|  | */ | 
|  | old = kimage_dst_used(image, addr); | 
|  | if (old) { | 
|  | /* If so move it */ | 
|  | unsigned long old_addr; | 
|  | struct page *old_page; | 
|  |  | 
|  | old_addr = *old & PAGE_MASK; | 
|  | old_page = pfn_to_page(old_addr >> PAGE_SHIFT); | 
|  | copy_highpage(page, old_page); | 
|  | *old = addr | (*old & ~PAGE_MASK); | 
|  |  | 
|  | /* The old page I have found cannot be a | 
|  | * destination page, so return it if it's | 
|  | * gfp_flags honor the ones passed in. | 
|  | */ | 
|  | if (!(gfp_mask & __GFP_HIGHMEM) && | 
|  | PageHighMem(old_page)) { | 
|  | kimage_free_pages(old_page); | 
|  | continue; | 
|  | } | 
|  | addr = old_addr; | 
|  | page = old_page; | 
|  | break; | 
|  | } else { | 
|  | /* Place the page on the destination list I | 
|  | * will use it later. | 
|  | */ | 
|  | list_add(&page->lru, &image->dest_pages); | 
|  | } | 
|  | } | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static int kimage_load_normal_segment(struct kimage *image, | 
|  | struct kexec_segment *segment) | 
|  | { | 
|  | unsigned long maddr; | 
|  | size_t ubytes, mbytes; | 
|  | int result; | 
|  | unsigned char __user *buf = NULL; | 
|  | unsigned char *kbuf = NULL; | 
|  |  | 
|  | result = 0; | 
|  | if (image->file_mode) | 
|  | kbuf = segment->kbuf; | 
|  | else | 
|  | buf = segment->buf; | 
|  | ubytes = segment->bufsz; | 
|  | mbytes = segment->memsz; | 
|  | maddr = segment->mem; | 
|  |  | 
|  | result = kimage_set_destination(image, maddr); | 
|  | if (result < 0) | 
|  | goto out; | 
|  |  | 
|  | while (mbytes) { | 
|  | struct page *page; | 
|  | char *ptr; | 
|  | size_t uchunk, mchunk; | 
|  |  | 
|  | page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); | 
|  | if (!page) { | 
|  | result  = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | result = kimage_add_page(image, page_to_pfn(page) | 
|  | << PAGE_SHIFT); | 
|  | if (result < 0) | 
|  | goto out; | 
|  |  | 
|  | ptr = kmap(page); | 
|  | /* Start with a clear page */ | 
|  | clear_page(ptr); | 
|  | ptr += maddr & ~PAGE_MASK; | 
|  | mchunk = min_t(size_t, mbytes, | 
|  | PAGE_SIZE - (maddr & ~PAGE_MASK)); | 
|  | uchunk = min(ubytes, mchunk); | 
|  |  | 
|  | /* For file based kexec, source pages are in kernel memory */ | 
|  | if (image->file_mode) | 
|  | memcpy(ptr, kbuf, uchunk); | 
|  | else | 
|  | result = copy_from_user(ptr, buf, uchunk); | 
|  | kunmap(page); | 
|  | if (result) { | 
|  | result = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | ubytes -= uchunk; | 
|  | maddr  += mchunk; | 
|  | if (image->file_mode) | 
|  | kbuf += mchunk; | 
|  | else | 
|  | buf += mchunk; | 
|  | mbytes -= mchunk; | 
|  | } | 
|  | out: | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static int kimage_load_crash_segment(struct kimage *image, | 
|  | struct kexec_segment *segment) | 
|  | { | 
|  | /* For crash dumps kernels we simply copy the data from | 
|  | * user space to it's destination. | 
|  | * We do things a page at a time for the sake of kmap. | 
|  | */ | 
|  | unsigned long maddr; | 
|  | size_t ubytes, mbytes; | 
|  | int result; | 
|  | unsigned char __user *buf = NULL; | 
|  | unsigned char *kbuf = NULL; | 
|  |  | 
|  | result = 0; | 
|  | if (image->file_mode) | 
|  | kbuf = segment->kbuf; | 
|  | else | 
|  | buf = segment->buf; | 
|  | ubytes = segment->bufsz; | 
|  | mbytes = segment->memsz; | 
|  | maddr = segment->mem; | 
|  | while (mbytes) { | 
|  | struct page *page; | 
|  | char *ptr; | 
|  | size_t uchunk, mchunk; | 
|  |  | 
|  | page = pfn_to_page(maddr >> PAGE_SHIFT); | 
|  | if (!page) { | 
|  | result  = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | ptr = kmap(page); | 
|  | ptr += maddr & ~PAGE_MASK; | 
|  | mchunk = min_t(size_t, mbytes, | 
|  | PAGE_SIZE - (maddr & ~PAGE_MASK)); | 
|  | uchunk = min(ubytes, mchunk); | 
|  | if (mchunk > uchunk) { | 
|  | /* Zero the trailing part of the page */ | 
|  | memset(ptr + uchunk, 0, mchunk - uchunk); | 
|  | } | 
|  |  | 
|  | /* For file based kexec, source pages are in kernel memory */ | 
|  | if (image->file_mode) | 
|  | memcpy(ptr, kbuf, uchunk); | 
|  | else | 
|  | result = copy_from_user(ptr, buf, uchunk); | 
|  | kexec_flush_icache_page(page); | 
|  | kunmap(page); | 
|  | if (result) { | 
|  | result = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | ubytes -= uchunk; | 
|  | maddr  += mchunk; | 
|  | if (image->file_mode) | 
|  | kbuf += mchunk; | 
|  | else | 
|  | buf += mchunk; | 
|  | mbytes -= mchunk; | 
|  | } | 
|  | out: | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static int kimage_load_segment(struct kimage *image, | 
|  | struct kexec_segment *segment) | 
|  | { | 
|  | int result = -ENOMEM; | 
|  |  | 
|  | switch (image->type) { | 
|  | case KEXEC_TYPE_DEFAULT: | 
|  | result = kimage_load_normal_segment(image, segment); | 
|  | break; | 
|  | case KEXEC_TYPE_CRASH: | 
|  | result = kimage_load_crash_segment(image, segment); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Exec Kernel system call: for obvious reasons only root may call it. | 
|  | * | 
|  | * This call breaks up into three pieces. | 
|  | * - A generic part which loads the new kernel from the current | 
|  | *   address space, and very carefully places the data in the | 
|  | *   allocated pages. | 
|  | * | 
|  | * - A generic part that interacts with the kernel and tells all of | 
|  | *   the devices to shut down.  Preventing on-going dmas, and placing | 
|  | *   the devices in a consistent state so a later kernel can | 
|  | *   reinitialize them. | 
|  | * | 
|  | * - A machine specific part that includes the syscall number | 
|  | *   and then copies the image to it's final destination.  And | 
|  | *   jumps into the image at entry. | 
|  | * | 
|  | * kexec does not sync, or unmount filesystems so if you need | 
|  | * that to happen you need to do that yourself. | 
|  | */ | 
|  | struct kimage *kexec_image; | 
|  | struct kimage *kexec_crash_image; | 
|  | int kexec_load_disabled; | 
|  |  | 
|  | static DEFINE_MUTEX(kexec_mutex); | 
|  |  | 
|  | SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments, | 
|  | struct kexec_segment __user *, segments, unsigned long, flags) | 
|  | { | 
|  | struct kimage **dest_image, *image; | 
|  | int result; | 
|  |  | 
|  | /* We only trust the superuser with rebooting the system. */ | 
|  | if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) | 
|  | return -EPERM; | 
|  |  | 
|  | /* | 
|  | * Verify we have a legal set of flags | 
|  | * This leaves us room for future extensions. | 
|  | */ | 
|  | if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Verify we are on the appropriate architecture */ | 
|  | if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && | 
|  | ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Put an artificial cap on the number | 
|  | * of segments passed to kexec_load. | 
|  | */ | 
|  | if (nr_segments > KEXEC_SEGMENT_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | image = NULL; | 
|  | result = 0; | 
|  |  | 
|  | /* Because we write directly to the reserved memory | 
|  | * region when loading crash kernels we need a mutex here to | 
|  | * prevent multiple crash  kernels from attempting to load | 
|  | * simultaneously, and to prevent a crash kernel from loading | 
|  | * over the top of a in use crash kernel. | 
|  | * | 
|  | * KISS: always take the mutex. | 
|  | */ | 
|  | if (!mutex_trylock(&kexec_mutex)) | 
|  | return -EBUSY; | 
|  |  | 
|  | dest_image = &kexec_image; | 
|  | if (flags & KEXEC_ON_CRASH) | 
|  | dest_image = &kexec_crash_image; | 
|  | if (nr_segments > 0) { | 
|  | unsigned long i; | 
|  |  | 
|  | /* Loading another kernel to reboot into */ | 
|  | if ((flags & KEXEC_ON_CRASH) == 0) | 
|  | result = kimage_alloc_init(&image, entry, nr_segments, | 
|  | segments, flags); | 
|  | /* Loading another kernel to switch to if this one crashes */ | 
|  | else if (flags & KEXEC_ON_CRASH) { | 
|  | /* Free any current crash dump kernel before | 
|  | * we corrupt it. | 
|  | */ | 
|  | kimage_free(xchg(&kexec_crash_image, NULL)); | 
|  | result = kimage_alloc_init(&image, entry, nr_segments, | 
|  | segments, flags); | 
|  | crash_map_reserved_pages(); | 
|  | } | 
|  | if (result) | 
|  | goto out; | 
|  |  | 
|  | if (flags & KEXEC_PRESERVE_CONTEXT) | 
|  | image->preserve_context = 1; | 
|  | result = machine_kexec_prepare(image); | 
|  | if (result) | 
|  | goto out; | 
|  |  | 
|  | for (i = 0; i < nr_segments; i++) { | 
|  | result = kimage_load_segment(image, &image->segment[i]); | 
|  | if (result) | 
|  | goto out; | 
|  | } | 
|  | kimage_terminate(image); | 
|  | if (flags & KEXEC_ON_CRASH) | 
|  | crash_unmap_reserved_pages(); | 
|  | } | 
|  | /* Install the new kernel, and  Uninstall the old */ | 
|  | image = xchg(dest_image, image); | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&kexec_mutex); | 
|  | kimage_free(image); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add and remove page tables for crashkernel memory | 
|  | * | 
|  | * Provide an empty default implementation here -- architecture | 
|  | * code may override this | 
|  | */ | 
|  | void __weak crash_map_reserved_pages(void) | 
|  | {} | 
|  |  | 
|  | void __weak crash_unmap_reserved_pages(void) | 
|  | {} | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  | COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry, | 
|  | compat_ulong_t, nr_segments, | 
|  | struct compat_kexec_segment __user *, segments, | 
|  | compat_ulong_t, flags) | 
|  | { | 
|  | struct compat_kexec_segment in; | 
|  | struct kexec_segment out, __user *ksegments; | 
|  | unsigned long i, result; | 
|  |  | 
|  | /* Don't allow clients that don't understand the native | 
|  | * architecture to do anything. | 
|  | */ | 
|  | if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (nr_segments > KEXEC_SEGMENT_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | ksegments = compat_alloc_user_space(nr_segments * sizeof(out)); | 
|  | for (i = 0; i < nr_segments; i++) { | 
|  | result = copy_from_user(&in, &segments[i], sizeof(in)); | 
|  | if (result) | 
|  | return -EFAULT; | 
|  |  | 
|  | out.buf   = compat_ptr(in.buf); | 
|  | out.bufsz = in.bufsz; | 
|  | out.mem   = in.mem; | 
|  | out.memsz = in.memsz; | 
|  |  | 
|  | result = copy_to_user(&ksegments[i], &out, sizeof(out)); | 
|  | if (result) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | return sys_kexec_load(entry, nr_segments, ksegments, flags); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_KEXEC_FILE | 
|  | SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd, | 
|  | unsigned long, cmdline_len, const char __user *, cmdline_ptr, | 
|  | unsigned long, flags) | 
|  | { | 
|  | int ret = 0, i; | 
|  | struct kimage **dest_image, *image; | 
|  |  | 
|  | /* We only trust the superuser with rebooting the system. */ | 
|  | if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) | 
|  | return -EPERM; | 
|  |  | 
|  | /* Make sure we have a legal set of flags */ | 
|  | if (flags != (flags & KEXEC_FILE_FLAGS)) | 
|  | return -EINVAL; | 
|  |  | 
|  | image = NULL; | 
|  |  | 
|  | if (!mutex_trylock(&kexec_mutex)) | 
|  | return -EBUSY; | 
|  |  | 
|  | dest_image = &kexec_image; | 
|  | if (flags & KEXEC_FILE_ON_CRASH) | 
|  | dest_image = &kexec_crash_image; | 
|  |  | 
|  | if (flags & KEXEC_FILE_UNLOAD) | 
|  | goto exchange; | 
|  |  | 
|  | /* | 
|  | * In case of crash, new kernel gets loaded in reserved region. It is | 
|  | * same memory where old crash kernel might be loaded. Free any | 
|  | * current crash dump kernel before we corrupt it. | 
|  | */ | 
|  | if (flags & KEXEC_FILE_ON_CRASH) | 
|  | kimage_free(xchg(&kexec_crash_image, NULL)); | 
|  |  | 
|  | ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr, | 
|  | cmdline_len, flags); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = machine_kexec_prepare(image); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = kexec_calculate_store_digests(image); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | for (i = 0; i < image->nr_segments; i++) { | 
|  | struct kexec_segment *ksegment; | 
|  |  | 
|  | ksegment = &image->segment[i]; | 
|  | pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n", | 
|  | i, ksegment->buf, ksegment->bufsz, ksegment->mem, | 
|  | ksegment->memsz); | 
|  |  | 
|  | ret = kimage_load_segment(image, &image->segment[i]); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | kimage_terminate(image); | 
|  |  | 
|  | /* | 
|  | * Free up any temporary buffers allocated which are not needed | 
|  | * after image has been loaded | 
|  | */ | 
|  | kimage_file_post_load_cleanup(image); | 
|  | exchange: | 
|  | image = xchg(dest_image, image); | 
|  | out: | 
|  | mutex_unlock(&kexec_mutex); | 
|  | kimage_free(image); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_KEXEC_FILE */ | 
|  |  | 
|  | void crash_kexec(struct pt_regs *regs) | 
|  | { | 
|  | /* Take the kexec_mutex here to prevent sys_kexec_load | 
|  | * running on one cpu from replacing the crash kernel | 
|  | * we are using after a panic on a different cpu. | 
|  | * | 
|  | * If the crash kernel was not located in a fixed area | 
|  | * of memory the xchg(&kexec_crash_image) would be | 
|  | * sufficient.  But since I reuse the memory... | 
|  | */ | 
|  | if (mutex_trylock(&kexec_mutex)) { | 
|  | if (kexec_crash_image) { | 
|  | struct pt_regs fixed_regs; | 
|  |  | 
|  | crash_setup_regs(&fixed_regs, regs); | 
|  | crash_save_vmcoreinfo(); | 
|  | machine_crash_shutdown(&fixed_regs); | 
|  | machine_kexec(kexec_crash_image); | 
|  | } | 
|  | mutex_unlock(&kexec_mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t crash_get_memory_size(void) | 
|  | { | 
|  | size_t size = 0; | 
|  | mutex_lock(&kexec_mutex); | 
|  | if (crashk_res.end != crashk_res.start) | 
|  | size = resource_size(&crashk_res); | 
|  | mutex_unlock(&kexec_mutex); | 
|  | return size; | 
|  | } | 
|  |  | 
|  | void __weak crash_free_reserved_phys_range(unsigned long begin, | 
|  | unsigned long end) | 
|  | { | 
|  | unsigned long addr; | 
|  |  | 
|  | for (addr = begin; addr < end; addr += PAGE_SIZE) | 
|  | free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT)); | 
|  | } | 
|  |  | 
|  | int crash_shrink_memory(unsigned long new_size) | 
|  | { | 
|  | int ret = 0; | 
|  | unsigned long start, end; | 
|  | unsigned long old_size; | 
|  | struct resource *ram_res; | 
|  |  | 
|  | mutex_lock(&kexec_mutex); | 
|  |  | 
|  | if (kexec_crash_image) { | 
|  | ret = -ENOENT; | 
|  | goto unlock; | 
|  | } | 
|  | start = crashk_res.start; | 
|  | end = crashk_res.end; | 
|  | old_size = (end == 0) ? 0 : end - start + 1; | 
|  | if (new_size >= old_size) { | 
|  | ret = (new_size == old_size) ? 0 : -EINVAL; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); | 
|  | if (!ram_res) { | 
|  | ret = -ENOMEM; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | start = roundup(start, KEXEC_CRASH_MEM_ALIGN); | 
|  | end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN); | 
|  |  | 
|  | crash_map_reserved_pages(); | 
|  | crash_free_reserved_phys_range(end, crashk_res.end); | 
|  |  | 
|  | if ((start == end) && (crashk_res.parent != NULL)) | 
|  | release_resource(&crashk_res); | 
|  |  | 
|  | ram_res->start = end; | 
|  | ram_res->end = crashk_res.end; | 
|  | ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM; | 
|  | ram_res->name = "System RAM"; | 
|  |  | 
|  | crashk_res.end = end - 1; | 
|  |  | 
|  | insert_resource(&iomem_resource, ram_res); | 
|  | crash_unmap_reserved_pages(); | 
|  |  | 
|  | unlock: | 
|  | mutex_unlock(&kexec_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data, | 
|  | size_t data_len) | 
|  | { | 
|  | struct elf_note note; | 
|  |  | 
|  | note.n_namesz = strlen(name) + 1; | 
|  | note.n_descsz = data_len; | 
|  | note.n_type   = type; | 
|  | memcpy(buf, ¬e, sizeof(note)); | 
|  | buf += (sizeof(note) + 3)/4; | 
|  | memcpy(buf, name, note.n_namesz); | 
|  | buf += (note.n_namesz + 3)/4; | 
|  | memcpy(buf, data, note.n_descsz); | 
|  | buf += (note.n_descsz + 3)/4; | 
|  |  | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | static void final_note(u32 *buf) | 
|  | { | 
|  | struct elf_note note; | 
|  |  | 
|  | note.n_namesz = 0; | 
|  | note.n_descsz = 0; | 
|  | note.n_type   = 0; | 
|  | memcpy(buf, ¬e, sizeof(note)); | 
|  | } | 
|  |  | 
|  | void crash_save_cpu(struct pt_regs *regs, int cpu) | 
|  | { | 
|  | struct elf_prstatus prstatus; | 
|  | u32 *buf; | 
|  |  | 
|  | if ((cpu < 0) || (cpu >= nr_cpu_ids)) | 
|  | return; | 
|  |  | 
|  | /* Using ELF notes here is opportunistic. | 
|  | * I need a well defined structure format | 
|  | * for the data I pass, and I need tags | 
|  | * on the data to indicate what information I have | 
|  | * squirrelled away.  ELF notes happen to provide | 
|  | * all of that, so there is no need to invent something new. | 
|  | */ | 
|  | buf = (u32 *)per_cpu_ptr(crash_notes, cpu); | 
|  | if (!buf) | 
|  | return; | 
|  | memset(&prstatus, 0, sizeof(prstatus)); | 
|  | prstatus.pr_pid = current->pid; | 
|  | elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); | 
|  | buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, | 
|  | &prstatus, sizeof(prstatus)); | 
|  | final_note(buf); | 
|  | } | 
|  |  | 
|  | static int __init crash_notes_memory_init(void) | 
|  | { | 
|  | /* Allocate memory for saving cpu registers. */ | 
|  | crash_notes = alloc_percpu(note_buf_t); | 
|  | if (!crash_notes) { | 
|  | pr_warn("Kexec: Memory allocation for saving cpu register states failed\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | subsys_initcall(crash_notes_memory_init); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * parsing the "crashkernel" commandline | 
|  | * | 
|  | * this code is intended to be called from architecture specific code | 
|  | */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * This function parses command lines in the format | 
|  | * | 
|  | *   crashkernel=ramsize-range:size[,...][@offset] | 
|  | * | 
|  | * The function returns 0 on success and -EINVAL on failure. | 
|  | */ | 
|  | static int __init parse_crashkernel_mem(char *cmdline, | 
|  | unsigned long long system_ram, | 
|  | unsigned long long *crash_size, | 
|  | unsigned long long *crash_base) | 
|  | { | 
|  | char *cur = cmdline, *tmp; | 
|  |  | 
|  | /* for each entry of the comma-separated list */ | 
|  | do { | 
|  | unsigned long long start, end = ULLONG_MAX, size; | 
|  |  | 
|  | /* get the start of the range */ | 
|  | start = memparse(cur, &tmp); | 
|  | if (cur == tmp) { | 
|  | pr_warn("crashkernel: Memory value expected\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | cur = tmp; | 
|  | if (*cur != '-') { | 
|  | pr_warn("crashkernel: '-' expected\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | cur++; | 
|  |  | 
|  | /* if no ':' is here, than we read the end */ | 
|  | if (*cur != ':') { | 
|  | end = memparse(cur, &tmp); | 
|  | if (cur == tmp) { | 
|  | pr_warn("crashkernel: Memory value expected\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | cur = tmp; | 
|  | if (end <= start) { | 
|  | pr_warn("crashkernel: end <= start\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (*cur != ':') { | 
|  | pr_warn("crashkernel: ':' expected\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | cur++; | 
|  |  | 
|  | size = memparse(cur, &tmp); | 
|  | if (cur == tmp) { | 
|  | pr_warn("Memory value expected\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | cur = tmp; | 
|  | if (size >= system_ram) { | 
|  | pr_warn("crashkernel: invalid size\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* match ? */ | 
|  | if (system_ram >= start && system_ram < end) { | 
|  | *crash_size = size; | 
|  | break; | 
|  | } | 
|  | } while (*cur++ == ','); | 
|  |  | 
|  | if (*crash_size > 0) { | 
|  | while (*cur && *cur != ' ' && *cur != '@') | 
|  | cur++; | 
|  | if (*cur == '@') { | 
|  | cur++; | 
|  | *crash_base = memparse(cur, &tmp); | 
|  | if (cur == tmp) { | 
|  | pr_warn("Memory value expected after '@'\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * That function parses "simple" (old) crashkernel command lines like | 
|  | * | 
|  | *	crashkernel=size[@offset] | 
|  | * | 
|  | * It returns 0 on success and -EINVAL on failure. | 
|  | */ | 
|  | static int __init parse_crashkernel_simple(char *cmdline, | 
|  | unsigned long long *crash_size, | 
|  | unsigned long long *crash_base) | 
|  | { | 
|  | char *cur = cmdline; | 
|  |  | 
|  | *crash_size = memparse(cmdline, &cur); | 
|  | if (cmdline == cur) { | 
|  | pr_warn("crashkernel: memory value expected\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (*cur == '@') | 
|  | *crash_base = memparse(cur+1, &cur); | 
|  | else if (*cur != ' ' && *cur != '\0') { | 
|  | pr_warn("crashkernel: unrecognized char\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define SUFFIX_HIGH 0 | 
|  | #define SUFFIX_LOW  1 | 
|  | #define SUFFIX_NULL 2 | 
|  | static __initdata char *suffix_tbl[] = { | 
|  | [SUFFIX_HIGH] = ",high", | 
|  | [SUFFIX_LOW]  = ",low", | 
|  | [SUFFIX_NULL] = NULL, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * That function parses "suffix"  crashkernel command lines like | 
|  | * | 
|  | *	crashkernel=size,[high|low] | 
|  | * | 
|  | * It returns 0 on success and -EINVAL on failure. | 
|  | */ | 
|  | static int __init parse_crashkernel_suffix(char *cmdline, | 
|  | unsigned long long	*crash_size, | 
|  | const char *suffix) | 
|  | { | 
|  | char *cur = cmdline; | 
|  |  | 
|  | *crash_size = memparse(cmdline, &cur); | 
|  | if (cmdline == cur) { | 
|  | pr_warn("crashkernel: memory value expected\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* check with suffix */ | 
|  | if (strncmp(cur, suffix, strlen(suffix))) { | 
|  | pr_warn("crashkernel: unrecognized char\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | cur += strlen(suffix); | 
|  | if (*cur != ' ' && *cur != '\0') { | 
|  | pr_warn("crashkernel: unrecognized char\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static __init char *get_last_crashkernel(char *cmdline, | 
|  | const char *name, | 
|  | const char *suffix) | 
|  | { | 
|  | char *p = cmdline, *ck_cmdline = NULL; | 
|  |  | 
|  | /* find crashkernel and use the last one if there are more */ | 
|  | p = strstr(p, name); | 
|  | while (p) { | 
|  | char *end_p = strchr(p, ' '); | 
|  | char *q; | 
|  |  | 
|  | if (!end_p) | 
|  | end_p = p + strlen(p); | 
|  |  | 
|  | if (!suffix) { | 
|  | int i; | 
|  |  | 
|  | /* skip the one with any known suffix */ | 
|  | for (i = 0; suffix_tbl[i]; i++) { | 
|  | q = end_p - strlen(suffix_tbl[i]); | 
|  | if (!strncmp(q, suffix_tbl[i], | 
|  | strlen(suffix_tbl[i]))) | 
|  | goto next; | 
|  | } | 
|  | ck_cmdline = p; | 
|  | } else { | 
|  | q = end_p - strlen(suffix); | 
|  | if (!strncmp(q, suffix, strlen(suffix))) | 
|  | ck_cmdline = p; | 
|  | } | 
|  | next: | 
|  | p = strstr(p+1, name); | 
|  | } | 
|  |  | 
|  | if (!ck_cmdline) | 
|  | return NULL; | 
|  |  | 
|  | return ck_cmdline; | 
|  | } | 
|  |  | 
|  | static int __init __parse_crashkernel(char *cmdline, | 
|  | unsigned long long system_ram, | 
|  | unsigned long long *crash_size, | 
|  | unsigned long long *crash_base, | 
|  | const char *name, | 
|  | const char *suffix) | 
|  | { | 
|  | char	*first_colon, *first_space; | 
|  | char	*ck_cmdline; | 
|  |  | 
|  | BUG_ON(!crash_size || !crash_base); | 
|  | *crash_size = 0; | 
|  | *crash_base = 0; | 
|  |  | 
|  | ck_cmdline = get_last_crashkernel(cmdline, name, suffix); | 
|  |  | 
|  | if (!ck_cmdline) | 
|  | return -EINVAL; | 
|  |  | 
|  | ck_cmdline += strlen(name); | 
|  |  | 
|  | if (suffix) | 
|  | return parse_crashkernel_suffix(ck_cmdline, crash_size, | 
|  | suffix); | 
|  | /* | 
|  | * if the commandline contains a ':', then that's the extended | 
|  | * syntax -- if not, it must be the classic syntax | 
|  | */ | 
|  | first_colon = strchr(ck_cmdline, ':'); | 
|  | first_space = strchr(ck_cmdline, ' '); | 
|  | if (first_colon && (!first_space || first_colon < first_space)) | 
|  | return parse_crashkernel_mem(ck_cmdline, system_ram, | 
|  | crash_size, crash_base); | 
|  |  | 
|  | return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * That function is the entry point for command line parsing and should be | 
|  | * called from the arch-specific code. | 
|  | */ | 
|  | int __init parse_crashkernel(char *cmdline, | 
|  | unsigned long long system_ram, | 
|  | unsigned long long *crash_size, | 
|  | unsigned long long *crash_base) | 
|  | { | 
|  | return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, | 
|  | "crashkernel=", NULL); | 
|  | } | 
|  |  | 
|  | int __init parse_crashkernel_high(char *cmdline, | 
|  | unsigned long long system_ram, | 
|  | unsigned long long *crash_size, | 
|  | unsigned long long *crash_base) | 
|  | { | 
|  | return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, | 
|  | "crashkernel=", suffix_tbl[SUFFIX_HIGH]); | 
|  | } | 
|  |  | 
|  | int __init parse_crashkernel_low(char *cmdline, | 
|  | unsigned long long system_ram, | 
|  | unsigned long long *crash_size, | 
|  | unsigned long long *crash_base) | 
|  | { | 
|  | return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, | 
|  | "crashkernel=", suffix_tbl[SUFFIX_LOW]); | 
|  | } | 
|  |  | 
|  | static void update_vmcoreinfo_note(void) | 
|  | { | 
|  | u32 *buf = vmcoreinfo_note; | 
|  |  | 
|  | if (!vmcoreinfo_size) | 
|  | return; | 
|  | buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data, | 
|  | vmcoreinfo_size); | 
|  | final_note(buf); | 
|  | } | 
|  |  | 
|  | void crash_save_vmcoreinfo(void) | 
|  | { | 
|  | vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds()); | 
|  | update_vmcoreinfo_note(); | 
|  | } | 
|  |  | 
|  | void vmcoreinfo_append_str(const char *fmt, ...) | 
|  | { | 
|  | va_list args; | 
|  | char buf[0x50]; | 
|  | size_t r; | 
|  |  | 
|  | va_start(args, fmt); | 
|  | r = vscnprintf(buf, sizeof(buf), fmt, args); | 
|  | va_end(args); | 
|  |  | 
|  | r = min(r, vmcoreinfo_max_size - vmcoreinfo_size); | 
|  |  | 
|  | memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r); | 
|  |  | 
|  | vmcoreinfo_size += r; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * provide an empty default implementation here -- architecture | 
|  | * code may override this | 
|  | */ | 
|  | void __weak arch_crash_save_vmcoreinfo(void) | 
|  | {} | 
|  |  | 
|  | unsigned long __weak paddr_vmcoreinfo_note(void) | 
|  | { | 
|  | return __pa((unsigned long)(char *)&vmcoreinfo_note); | 
|  | } | 
|  |  | 
|  | static int __init crash_save_vmcoreinfo_init(void) | 
|  | { | 
|  | VMCOREINFO_OSRELEASE(init_uts_ns.name.release); | 
|  | VMCOREINFO_PAGESIZE(PAGE_SIZE); | 
|  |  | 
|  | VMCOREINFO_SYMBOL(init_uts_ns); | 
|  | VMCOREINFO_SYMBOL(node_online_map); | 
|  | #ifdef CONFIG_MMU | 
|  | VMCOREINFO_SYMBOL(swapper_pg_dir); | 
|  | #endif | 
|  | VMCOREINFO_SYMBOL(_stext); | 
|  | VMCOREINFO_SYMBOL(vmap_area_list); | 
|  |  | 
|  | #ifndef CONFIG_NEED_MULTIPLE_NODES | 
|  | VMCOREINFO_SYMBOL(mem_map); | 
|  | VMCOREINFO_SYMBOL(contig_page_data); | 
|  | #endif | 
|  | #ifdef CONFIG_SPARSEMEM | 
|  | VMCOREINFO_SYMBOL(mem_section); | 
|  | VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS); | 
|  | VMCOREINFO_STRUCT_SIZE(mem_section); | 
|  | VMCOREINFO_OFFSET(mem_section, section_mem_map); | 
|  | #endif | 
|  | VMCOREINFO_STRUCT_SIZE(page); | 
|  | VMCOREINFO_STRUCT_SIZE(pglist_data); | 
|  | VMCOREINFO_STRUCT_SIZE(zone); | 
|  | VMCOREINFO_STRUCT_SIZE(free_area); | 
|  | VMCOREINFO_STRUCT_SIZE(list_head); | 
|  | VMCOREINFO_SIZE(nodemask_t); | 
|  | VMCOREINFO_OFFSET(page, flags); | 
|  | VMCOREINFO_OFFSET(page, _count); | 
|  | VMCOREINFO_OFFSET(page, mapping); | 
|  | VMCOREINFO_OFFSET(page, lru); | 
|  | VMCOREINFO_OFFSET(page, _mapcount); | 
|  | VMCOREINFO_OFFSET(page, private); | 
|  | VMCOREINFO_OFFSET(pglist_data, node_zones); | 
|  | VMCOREINFO_OFFSET(pglist_data, nr_zones); | 
|  | #ifdef CONFIG_FLAT_NODE_MEM_MAP | 
|  | VMCOREINFO_OFFSET(pglist_data, node_mem_map); | 
|  | #endif | 
|  | VMCOREINFO_OFFSET(pglist_data, node_start_pfn); | 
|  | VMCOREINFO_OFFSET(pglist_data, node_spanned_pages); | 
|  | VMCOREINFO_OFFSET(pglist_data, node_id); | 
|  | VMCOREINFO_OFFSET(zone, free_area); | 
|  | VMCOREINFO_OFFSET(zone, vm_stat); | 
|  | VMCOREINFO_OFFSET(zone, spanned_pages); | 
|  | VMCOREINFO_OFFSET(free_area, free_list); | 
|  | VMCOREINFO_OFFSET(list_head, next); | 
|  | VMCOREINFO_OFFSET(list_head, prev); | 
|  | VMCOREINFO_OFFSET(vmap_area, va_start); | 
|  | VMCOREINFO_OFFSET(vmap_area, list); | 
|  | VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER); | 
|  | log_buf_kexec_setup(); | 
|  | VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES); | 
|  | VMCOREINFO_NUMBER(NR_FREE_PAGES); | 
|  | VMCOREINFO_NUMBER(PG_lru); | 
|  | VMCOREINFO_NUMBER(PG_private); | 
|  | VMCOREINFO_NUMBER(PG_swapcache); | 
|  | VMCOREINFO_NUMBER(PG_slab); | 
|  | #ifdef CONFIG_MEMORY_FAILURE | 
|  | VMCOREINFO_NUMBER(PG_hwpoison); | 
|  | #endif | 
|  | VMCOREINFO_NUMBER(PG_head_mask); | 
|  | VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE); | 
|  | #ifdef CONFIG_HUGETLBFS | 
|  | VMCOREINFO_SYMBOL(free_huge_page); | 
|  | #endif | 
|  |  | 
|  | arch_crash_save_vmcoreinfo(); | 
|  | update_vmcoreinfo_note(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | subsys_initcall(crash_save_vmcoreinfo_init); | 
|  |  | 
|  | #ifdef CONFIG_KEXEC_FILE | 
|  | static int locate_mem_hole_top_down(unsigned long start, unsigned long end, | 
|  | struct kexec_buf *kbuf) | 
|  | { | 
|  | struct kimage *image = kbuf->image; | 
|  | unsigned long temp_start, temp_end; | 
|  |  | 
|  | temp_end = min(end, kbuf->buf_max); | 
|  | temp_start = temp_end - kbuf->memsz; | 
|  |  | 
|  | do { | 
|  | /* align down start */ | 
|  | temp_start = temp_start & (~(kbuf->buf_align - 1)); | 
|  |  | 
|  | if (temp_start < start || temp_start < kbuf->buf_min) | 
|  | return 0; | 
|  |  | 
|  | temp_end = temp_start + kbuf->memsz - 1; | 
|  |  | 
|  | /* | 
|  | * Make sure this does not conflict with any of existing | 
|  | * segments | 
|  | */ | 
|  | if (kimage_is_destination_range(image, temp_start, temp_end)) { | 
|  | temp_start = temp_start - PAGE_SIZE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* We found a suitable memory range */ | 
|  | break; | 
|  | } while (1); | 
|  |  | 
|  | /* If we are here, we found a suitable memory range */ | 
|  | kbuf->mem = temp_start; | 
|  |  | 
|  | /* Success, stop navigating through remaining System RAM ranges */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end, | 
|  | struct kexec_buf *kbuf) | 
|  | { | 
|  | struct kimage *image = kbuf->image; | 
|  | unsigned long temp_start, temp_end; | 
|  |  | 
|  | temp_start = max(start, kbuf->buf_min); | 
|  |  | 
|  | do { | 
|  | temp_start = ALIGN(temp_start, kbuf->buf_align); | 
|  | temp_end = temp_start + kbuf->memsz - 1; | 
|  |  | 
|  | if (temp_end > end || temp_end > kbuf->buf_max) | 
|  | return 0; | 
|  | /* | 
|  | * Make sure this does not conflict with any of existing | 
|  | * segments | 
|  | */ | 
|  | if (kimage_is_destination_range(image, temp_start, temp_end)) { | 
|  | temp_start = temp_start + PAGE_SIZE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* We found a suitable memory range */ | 
|  | break; | 
|  | } while (1); | 
|  |  | 
|  | /* If we are here, we found a suitable memory range */ | 
|  | kbuf->mem = temp_start; | 
|  |  | 
|  | /* Success, stop navigating through remaining System RAM ranges */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int locate_mem_hole_callback(u64 start, u64 end, void *arg) | 
|  | { | 
|  | struct kexec_buf *kbuf = (struct kexec_buf *)arg; | 
|  | unsigned long sz = end - start + 1; | 
|  |  | 
|  | /* Returning 0 will take to next memory range */ | 
|  | if (sz < kbuf->memsz) | 
|  | return 0; | 
|  |  | 
|  | if (end < kbuf->buf_min || start > kbuf->buf_max) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Allocate memory top down with-in ram range. Otherwise bottom up | 
|  | * allocation. | 
|  | */ | 
|  | if (kbuf->top_down) | 
|  | return locate_mem_hole_top_down(start, end, kbuf); | 
|  | return locate_mem_hole_bottom_up(start, end, kbuf); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper function for placing a buffer in a kexec segment. This assumes | 
|  | * that kexec_mutex is held. | 
|  | */ | 
|  | int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz, | 
|  | unsigned long memsz, unsigned long buf_align, | 
|  | unsigned long buf_min, unsigned long buf_max, | 
|  | bool top_down, unsigned long *load_addr) | 
|  | { | 
|  |  | 
|  | struct kexec_segment *ksegment; | 
|  | struct kexec_buf buf, *kbuf; | 
|  | int ret; | 
|  |  | 
|  | /* Currently adding segment this way is allowed only in file mode */ | 
|  | if (!image->file_mode) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (image->nr_segments >= KEXEC_SEGMENT_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Make sure we are not trying to add buffer after allocating | 
|  | * control pages. All segments need to be placed first before | 
|  | * any control pages are allocated. As control page allocation | 
|  | * logic goes through list of segments to make sure there are | 
|  | * no destination overlaps. | 
|  | */ | 
|  | if (!list_empty(&image->control_pages)) { | 
|  | WARN_ON(1); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | memset(&buf, 0, sizeof(struct kexec_buf)); | 
|  | kbuf = &buf; | 
|  | kbuf->image = image; | 
|  | kbuf->buffer = buffer; | 
|  | kbuf->bufsz = bufsz; | 
|  |  | 
|  | kbuf->memsz = ALIGN(memsz, PAGE_SIZE); | 
|  | kbuf->buf_align = max(buf_align, PAGE_SIZE); | 
|  | kbuf->buf_min = buf_min; | 
|  | kbuf->buf_max = buf_max; | 
|  | kbuf->top_down = top_down; | 
|  |  | 
|  | /* Walk the RAM ranges and allocate a suitable range for the buffer */ | 
|  | if (image->type == KEXEC_TYPE_CRASH) | 
|  | ret = walk_iomem_res("Crash kernel", | 
|  | IORESOURCE_MEM | IORESOURCE_BUSY, | 
|  | crashk_res.start, crashk_res.end, kbuf, | 
|  | locate_mem_hole_callback); | 
|  | else | 
|  | ret = walk_system_ram_res(0, -1, kbuf, | 
|  | locate_mem_hole_callback); | 
|  | if (ret != 1) { | 
|  | /* A suitable memory range could not be found for buffer */ | 
|  | return -EADDRNOTAVAIL; | 
|  | } | 
|  |  | 
|  | /* Found a suitable memory range */ | 
|  | ksegment = &image->segment[image->nr_segments]; | 
|  | ksegment->kbuf = kbuf->buffer; | 
|  | ksegment->bufsz = kbuf->bufsz; | 
|  | ksegment->mem = kbuf->mem; | 
|  | ksegment->memsz = kbuf->memsz; | 
|  | image->nr_segments++; | 
|  | *load_addr = ksegment->mem; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Calculate and store the digest of segments */ | 
|  | static int kexec_calculate_store_digests(struct kimage *image) | 
|  | { | 
|  | struct crypto_shash *tfm; | 
|  | struct shash_desc *desc; | 
|  | int ret = 0, i, j, zero_buf_sz, sha_region_sz; | 
|  | size_t desc_size, nullsz; | 
|  | char *digest; | 
|  | void *zero_buf; | 
|  | struct kexec_sha_region *sha_regions; | 
|  | struct purgatory_info *pi = &image->purgatory_info; | 
|  |  | 
|  | zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT); | 
|  | zero_buf_sz = PAGE_SIZE; | 
|  |  | 
|  | tfm = crypto_alloc_shash("sha256", 0, 0); | 
|  | if (IS_ERR(tfm)) { | 
|  | ret = PTR_ERR(tfm); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | desc_size = crypto_shash_descsize(tfm) + sizeof(*desc); | 
|  | desc = kzalloc(desc_size, GFP_KERNEL); | 
|  | if (!desc) { | 
|  | ret = -ENOMEM; | 
|  | goto out_free_tfm; | 
|  | } | 
|  |  | 
|  | sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region); | 
|  | sha_regions = vzalloc(sha_region_sz); | 
|  | if (!sha_regions) | 
|  | goto out_free_desc; | 
|  |  | 
|  | desc->tfm   = tfm; | 
|  | desc->flags = 0; | 
|  |  | 
|  | ret = crypto_shash_init(desc); | 
|  | if (ret < 0) | 
|  | goto out_free_sha_regions; | 
|  |  | 
|  | digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL); | 
|  | if (!digest) { | 
|  | ret = -ENOMEM; | 
|  | goto out_free_sha_regions; | 
|  | } | 
|  |  | 
|  | for (j = i = 0; i < image->nr_segments; i++) { | 
|  | struct kexec_segment *ksegment; | 
|  |  | 
|  | ksegment = &image->segment[i]; | 
|  | /* | 
|  | * Skip purgatory as it will be modified once we put digest | 
|  | * info in purgatory. | 
|  | */ | 
|  | if (ksegment->kbuf == pi->purgatory_buf) | 
|  | continue; | 
|  |  | 
|  | ret = crypto_shash_update(desc, ksegment->kbuf, | 
|  | ksegment->bufsz); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Assume rest of the buffer is filled with zero and | 
|  | * update digest accordingly. | 
|  | */ | 
|  | nullsz = ksegment->memsz - ksegment->bufsz; | 
|  | while (nullsz) { | 
|  | unsigned long bytes = nullsz; | 
|  |  | 
|  | if (bytes > zero_buf_sz) | 
|  | bytes = zero_buf_sz; | 
|  | ret = crypto_shash_update(desc, zero_buf, bytes); | 
|  | if (ret) | 
|  | break; | 
|  | nullsz -= bytes; | 
|  | } | 
|  |  | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | sha_regions[j].start = ksegment->mem; | 
|  | sha_regions[j].len = ksegment->memsz; | 
|  | j++; | 
|  | } | 
|  |  | 
|  | if (!ret) { | 
|  | ret = crypto_shash_final(desc, digest); | 
|  | if (ret) | 
|  | goto out_free_digest; | 
|  | ret = kexec_purgatory_get_set_symbol(image, "sha_regions", | 
|  | sha_regions, sha_region_sz, 0); | 
|  | if (ret) | 
|  | goto out_free_digest; | 
|  |  | 
|  | ret = kexec_purgatory_get_set_symbol(image, "sha256_digest", | 
|  | digest, SHA256_DIGEST_SIZE, 0); | 
|  | if (ret) | 
|  | goto out_free_digest; | 
|  | } | 
|  |  | 
|  | out_free_digest: | 
|  | kfree(digest); | 
|  | out_free_sha_regions: | 
|  | vfree(sha_regions); | 
|  | out_free_desc: | 
|  | kfree(desc); | 
|  | out_free_tfm: | 
|  | kfree(tfm); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Actually load purgatory. Lot of code taken from kexec-tools */ | 
|  | static int __kexec_load_purgatory(struct kimage *image, unsigned long min, | 
|  | unsigned long max, int top_down) | 
|  | { | 
|  | struct purgatory_info *pi = &image->purgatory_info; | 
|  | unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad; | 
|  | unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset; | 
|  | unsigned char *buf_addr, *src; | 
|  | int i, ret = 0, entry_sidx = -1; | 
|  | const Elf_Shdr *sechdrs_c; | 
|  | Elf_Shdr *sechdrs = NULL; | 
|  | void *purgatory_buf = NULL; | 
|  |  | 
|  | /* | 
|  | * sechdrs_c points to section headers in purgatory and are read | 
|  | * only. No modifications allowed. | 
|  | */ | 
|  | sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff; | 
|  |  | 
|  | /* | 
|  | * We can not modify sechdrs_c[] and its fields. It is read only. | 
|  | * Copy it over to a local copy where one can store some temporary | 
|  | * data and free it at the end. We need to modify ->sh_addr and | 
|  | * ->sh_offset fields to keep track of permanent and temporary | 
|  | * locations of sections. | 
|  | */ | 
|  | sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr)); | 
|  | if (!sechdrs) | 
|  | return -ENOMEM; | 
|  |  | 
|  | memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr)); | 
|  |  | 
|  | /* | 
|  | * We seem to have multiple copies of sections. First copy is which | 
|  | * is embedded in kernel in read only section. Some of these sections | 
|  | * will be copied to a temporary buffer and relocated. And these | 
|  | * sections will finally be copied to their final destination at | 
|  | * segment load time. | 
|  | * | 
|  | * Use ->sh_offset to reflect section address in memory. It will | 
|  | * point to original read only copy if section is not allocatable. | 
|  | * Otherwise it will point to temporary copy which will be relocated. | 
|  | * | 
|  | * Use ->sh_addr to contain final address of the section where it | 
|  | * will go during execution time. | 
|  | */ | 
|  | for (i = 0; i < pi->ehdr->e_shnum; i++) { | 
|  | if (sechdrs[i].sh_type == SHT_NOBITS) | 
|  | continue; | 
|  |  | 
|  | sechdrs[i].sh_offset = (unsigned long)pi->ehdr + | 
|  | sechdrs[i].sh_offset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Identify entry point section and make entry relative to section | 
|  | * start. | 
|  | */ | 
|  | entry = pi->ehdr->e_entry; | 
|  | for (i = 0; i < pi->ehdr->e_shnum; i++) { | 
|  | if (!(sechdrs[i].sh_flags & SHF_ALLOC)) | 
|  | continue; | 
|  |  | 
|  | if (!(sechdrs[i].sh_flags & SHF_EXECINSTR)) | 
|  | continue; | 
|  |  | 
|  | /* Make entry section relative */ | 
|  | if (sechdrs[i].sh_addr <= pi->ehdr->e_entry && | 
|  | ((sechdrs[i].sh_addr + sechdrs[i].sh_size) > | 
|  | pi->ehdr->e_entry)) { | 
|  | entry_sidx = i; | 
|  | entry -= sechdrs[i].sh_addr; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Determine how much memory is needed to load relocatable object. */ | 
|  | buf_align = 1; | 
|  | bss_align = 1; | 
|  | buf_sz = 0; | 
|  | bss_sz = 0; | 
|  |  | 
|  | for (i = 0; i < pi->ehdr->e_shnum; i++) { | 
|  | if (!(sechdrs[i].sh_flags & SHF_ALLOC)) | 
|  | continue; | 
|  |  | 
|  | align = sechdrs[i].sh_addralign; | 
|  | if (sechdrs[i].sh_type != SHT_NOBITS) { | 
|  | if (buf_align < align) | 
|  | buf_align = align; | 
|  | buf_sz = ALIGN(buf_sz, align); | 
|  | buf_sz += sechdrs[i].sh_size; | 
|  | } else { | 
|  | /* bss section */ | 
|  | if (bss_align < align) | 
|  | bss_align = align; | 
|  | bss_sz = ALIGN(bss_sz, align); | 
|  | bss_sz += sechdrs[i].sh_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Determine the bss padding required to align bss properly */ | 
|  | bss_pad = 0; | 
|  | if (buf_sz & (bss_align - 1)) | 
|  | bss_pad = bss_align - (buf_sz & (bss_align - 1)); | 
|  |  | 
|  | memsz = buf_sz + bss_pad + bss_sz; | 
|  |  | 
|  | /* Allocate buffer for purgatory */ | 
|  | purgatory_buf = vzalloc(buf_sz); | 
|  | if (!purgatory_buf) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (buf_align < bss_align) | 
|  | buf_align = bss_align; | 
|  |  | 
|  | /* Add buffer to segment list */ | 
|  | ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz, | 
|  | buf_align, min, max, top_down, | 
|  | &pi->purgatory_load_addr); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | /* Load SHF_ALLOC sections */ | 
|  | buf_addr = purgatory_buf; | 
|  | load_addr = curr_load_addr = pi->purgatory_load_addr; | 
|  | bss_addr = load_addr + buf_sz + bss_pad; | 
|  |  | 
|  | for (i = 0; i < pi->ehdr->e_shnum; i++) { | 
|  | if (!(sechdrs[i].sh_flags & SHF_ALLOC)) | 
|  | continue; | 
|  |  | 
|  | align = sechdrs[i].sh_addralign; | 
|  | if (sechdrs[i].sh_type != SHT_NOBITS) { | 
|  | curr_load_addr = ALIGN(curr_load_addr, align); | 
|  | offset = curr_load_addr - load_addr; | 
|  | /* We already modifed ->sh_offset to keep src addr */ | 
|  | src = (char *) sechdrs[i].sh_offset; | 
|  | memcpy(buf_addr + offset, src, sechdrs[i].sh_size); | 
|  |  | 
|  | /* Store load address and source address of section */ | 
|  | sechdrs[i].sh_addr = curr_load_addr; | 
|  |  | 
|  | /* | 
|  | * This section got copied to temporary buffer. Update | 
|  | * ->sh_offset accordingly. | 
|  | */ | 
|  | sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset); | 
|  |  | 
|  | /* Advance to the next address */ | 
|  | curr_load_addr += sechdrs[i].sh_size; | 
|  | } else { | 
|  | bss_addr = ALIGN(bss_addr, align); | 
|  | sechdrs[i].sh_addr = bss_addr; | 
|  | bss_addr += sechdrs[i].sh_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Update entry point based on load address of text section */ | 
|  | if (entry_sidx >= 0) | 
|  | entry += sechdrs[entry_sidx].sh_addr; | 
|  |  | 
|  | /* Make kernel jump to purgatory after shutdown */ | 
|  | image->start = entry; | 
|  |  | 
|  | /* Used later to get/set symbol values */ | 
|  | pi->sechdrs = sechdrs; | 
|  |  | 
|  | /* | 
|  | * Used later to identify which section is purgatory and skip it | 
|  | * from checksumming. | 
|  | */ | 
|  | pi->purgatory_buf = purgatory_buf; | 
|  | return ret; | 
|  | out: | 
|  | vfree(sechdrs); | 
|  | vfree(purgatory_buf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int kexec_apply_relocations(struct kimage *image) | 
|  | { | 
|  | int i, ret; | 
|  | struct purgatory_info *pi = &image->purgatory_info; | 
|  | Elf_Shdr *sechdrs = pi->sechdrs; | 
|  |  | 
|  | /* Apply relocations */ | 
|  | for (i = 0; i < pi->ehdr->e_shnum; i++) { | 
|  | Elf_Shdr *section, *symtab; | 
|  |  | 
|  | if (sechdrs[i].sh_type != SHT_RELA && | 
|  | sechdrs[i].sh_type != SHT_REL) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * For section of type SHT_RELA/SHT_REL, | 
|  | * ->sh_link contains section header index of associated | 
|  | * symbol table. And ->sh_info contains section header | 
|  | * index of section to which relocations apply. | 
|  | */ | 
|  | if (sechdrs[i].sh_info >= pi->ehdr->e_shnum || | 
|  | sechdrs[i].sh_link >= pi->ehdr->e_shnum) | 
|  | return -ENOEXEC; | 
|  |  | 
|  | section = &sechdrs[sechdrs[i].sh_info]; | 
|  | symtab = &sechdrs[sechdrs[i].sh_link]; | 
|  |  | 
|  | if (!(section->sh_flags & SHF_ALLOC)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * symtab->sh_link contain section header index of associated | 
|  | * string table. | 
|  | */ | 
|  | if (symtab->sh_link >= pi->ehdr->e_shnum) | 
|  | /* Invalid section number? */ | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Respective archicture needs to provide support for applying | 
|  | * relocations of type SHT_RELA/SHT_REL. | 
|  | */ | 
|  | if (sechdrs[i].sh_type == SHT_RELA) | 
|  | ret = arch_kexec_apply_relocations_add(pi->ehdr, | 
|  | sechdrs, i); | 
|  | else if (sechdrs[i].sh_type == SHT_REL) | 
|  | ret = arch_kexec_apply_relocations(pi->ehdr, | 
|  | sechdrs, i); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Load relocatable purgatory object and relocate it appropriately */ | 
|  | int kexec_load_purgatory(struct kimage *image, unsigned long min, | 
|  | unsigned long max, int top_down, | 
|  | unsigned long *load_addr) | 
|  | { | 
|  | struct purgatory_info *pi = &image->purgatory_info; | 
|  | int ret; | 
|  |  | 
|  | if (kexec_purgatory_size <= 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (kexec_purgatory_size < sizeof(Elf_Ehdr)) | 
|  | return -ENOEXEC; | 
|  |  | 
|  | pi->ehdr = (Elf_Ehdr *)kexec_purgatory; | 
|  |  | 
|  | if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0 | 
|  | || pi->ehdr->e_type != ET_REL | 
|  | || !elf_check_arch(pi->ehdr) | 
|  | || pi->ehdr->e_shentsize != sizeof(Elf_Shdr)) | 
|  | return -ENOEXEC; | 
|  |  | 
|  | if (pi->ehdr->e_shoff >= kexec_purgatory_size | 
|  | || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) > | 
|  | kexec_purgatory_size - pi->ehdr->e_shoff)) | 
|  | return -ENOEXEC; | 
|  |  | 
|  | ret = __kexec_load_purgatory(image, min, max, top_down); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = kexec_apply_relocations(image); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | *load_addr = pi->purgatory_load_addr; | 
|  | return 0; | 
|  | out: | 
|  | vfree(pi->sechdrs); | 
|  | vfree(pi->purgatory_buf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi, | 
|  | const char *name) | 
|  | { | 
|  | Elf_Sym *syms; | 
|  | Elf_Shdr *sechdrs; | 
|  | Elf_Ehdr *ehdr; | 
|  | int i, k; | 
|  | const char *strtab; | 
|  |  | 
|  | if (!pi->sechdrs || !pi->ehdr) | 
|  | return NULL; | 
|  |  | 
|  | sechdrs = pi->sechdrs; | 
|  | ehdr = pi->ehdr; | 
|  |  | 
|  | for (i = 0; i < ehdr->e_shnum; i++) { | 
|  | if (sechdrs[i].sh_type != SHT_SYMTAB) | 
|  | continue; | 
|  |  | 
|  | if (sechdrs[i].sh_link >= ehdr->e_shnum) | 
|  | /* Invalid strtab section number */ | 
|  | continue; | 
|  | strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset; | 
|  | syms = (Elf_Sym *)sechdrs[i].sh_offset; | 
|  |  | 
|  | /* Go through symbols for a match */ | 
|  | for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) { | 
|  | if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL) | 
|  | continue; | 
|  |  | 
|  | if (strcmp(strtab + syms[k].st_name, name) != 0) | 
|  | continue; | 
|  |  | 
|  | if (syms[k].st_shndx == SHN_UNDEF || | 
|  | syms[k].st_shndx >= ehdr->e_shnum) { | 
|  | pr_debug("Symbol: %s has bad section index %d.\n", | 
|  | name, syms[k].st_shndx); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Found the symbol we are looking for */ | 
|  | return &syms[k]; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name) | 
|  | { | 
|  | struct purgatory_info *pi = &image->purgatory_info; | 
|  | Elf_Sym *sym; | 
|  | Elf_Shdr *sechdr; | 
|  |  | 
|  | sym = kexec_purgatory_find_symbol(pi, name); | 
|  | if (!sym) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | sechdr = &pi->sechdrs[sym->st_shndx]; | 
|  |  | 
|  | /* | 
|  | * Returns the address where symbol will finally be loaded after | 
|  | * kexec_load_segment() | 
|  | */ | 
|  | return (void *)(sechdr->sh_addr + sym->st_value); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get or set value of a symbol. If "get_value" is true, symbol value is | 
|  | * returned in buf otherwise symbol value is set based on value in buf. | 
|  | */ | 
|  | int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name, | 
|  | void *buf, unsigned int size, bool get_value) | 
|  | { | 
|  | Elf_Sym *sym; | 
|  | Elf_Shdr *sechdrs; | 
|  | struct purgatory_info *pi = &image->purgatory_info; | 
|  | char *sym_buf; | 
|  |  | 
|  | sym = kexec_purgatory_find_symbol(pi, name); | 
|  | if (!sym) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (sym->st_size != size) { | 
|  | pr_err("symbol %s size mismatch: expected %lu actual %u\n", | 
|  | name, (unsigned long)sym->st_size, size); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | sechdrs = pi->sechdrs; | 
|  |  | 
|  | if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) { | 
|  | pr_err("symbol %s is in a bss section. Cannot %s\n", name, | 
|  | get_value ? "get" : "set"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset + | 
|  | sym->st_value; | 
|  |  | 
|  | if (get_value) | 
|  | memcpy((void *)buf, sym_buf, size); | 
|  | else | 
|  | memcpy((void *)sym_buf, buf, size); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_KEXEC_FILE */ | 
|  |  | 
|  | /* | 
|  | * Move into place and start executing a preloaded standalone | 
|  | * executable.  If nothing was preloaded return an error. | 
|  | */ | 
|  | int kernel_kexec(void) | 
|  | { | 
|  | int error = 0; | 
|  |  | 
|  | if (!mutex_trylock(&kexec_mutex)) | 
|  | return -EBUSY; | 
|  | if (!kexec_image) { | 
|  | error = -EINVAL; | 
|  | goto Unlock; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KEXEC_JUMP | 
|  | if (kexec_image->preserve_context) { | 
|  | lock_system_sleep(); | 
|  | pm_prepare_console(); | 
|  | error = freeze_processes(); | 
|  | if (error) { | 
|  | error = -EBUSY; | 
|  | goto Restore_console; | 
|  | } | 
|  | suspend_console(); | 
|  | error = dpm_suspend_start(PMSG_FREEZE); | 
|  | if (error) | 
|  | goto Resume_console; | 
|  | /* At this point, dpm_suspend_start() has been called, | 
|  | * but *not* dpm_suspend_end(). We *must* call | 
|  | * dpm_suspend_end() now.  Otherwise, drivers for | 
|  | * some devices (e.g. interrupt controllers) become | 
|  | * desynchronized with the actual state of the | 
|  | * hardware at resume time, and evil weirdness ensues. | 
|  | */ | 
|  | error = dpm_suspend_end(PMSG_FREEZE); | 
|  | if (error) | 
|  | goto Resume_devices; | 
|  | error = disable_nonboot_cpus(); | 
|  | if (error) | 
|  | goto Enable_cpus; | 
|  | local_irq_disable(); | 
|  | error = syscore_suspend(); | 
|  | if (error) | 
|  | goto Enable_irqs; | 
|  | } else | 
|  | #endif | 
|  | { | 
|  | kexec_in_progress = true; | 
|  | kernel_restart_prepare(NULL); | 
|  | migrate_to_reboot_cpu(); | 
|  |  | 
|  | /* | 
|  | * migrate_to_reboot_cpu() disables CPU hotplug assuming that | 
|  | * no further code needs to use CPU hotplug (which is true in | 
|  | * the reboot case). However, the kexec path depends on using | 
|  | * CPU hotplug again; so re-enable it here. | 
|  | */ | 
|  | cpu_hotplug_enable(); | 
|  | pr_emerg("Starting new kernel\n"); | 
|  | machine_shutdown(); | 
|  | } | 
|  |  | 
|  | machine_kexec(kexec_image); | 
|  |  | 
|  | #ifdef CONFIG_KEXEC_JUMP | 
|  | if (kexec_image->preserve_context) { | 
|  | syscore_resume(); | 
|  | Enable_irqs: | 
|  | local_irq_enable(); | 
|  | Enable_cpus: | 
|  | enable_nonboot_cpus(); | 
|  | dpm_resume_start(PMSG_RESTORE); | 
|  | Resume_devices: | 
|  | dpm_resume_end(PMSG_RESTORE); | 
|  | Resume_console: | 
|  | resume_console(); | 
|  | thaw_processes(); | 
|  | Restore_console: | 
|  | pm_restore_console(); | 
|  | unlock_system_sleep(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | Unlock: | 
|  | mutex_unlock(&kexec_mutex); | 
|  | return error; | 
|  | } |