blob: 02c46ae33028987341a7f99877bbf314e74703f8 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/memfd.h>
#include <linux/memremap.h>
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/secretmem.h>
#include <linux/sched/signal.h>
#include <linux/rwsem.h>
#include <linux/hugetlb.h>
#include <linux/migrate.h>
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/sched/mm.h>
#include <linux/shmem_fs.h>
#include <asm/mmu_context.h>
#include <asm/tlbflush.h>
#include "internal.h"
struct follow_page_context {
struct dev_pagemap *pgmap;
unsigned int page_mask;
};
static inline void sanity_check_pinned_pages(struct page **pages,
unsigned long npages)
{
if (!IS_ENABLED(CONFIG_DEBUG_VM))
return;
/*
* We only pin anonymous pages if they are exclusive. Once pinned, we
* can no longer turn them possibly shared and PageAnonExclusive() will
* stick around until the page is freed.
*
* We'd like to verify that our pinned anonymous pages are still mapped
* exclusively. The issue with anon THP is that we don't know how
* they are/were mapped when pinning them. However, for anon
* THP we can assume that either the given page (PTE-mapped THP) or
* the head page (PMD-mapped THP) should be PageAnonExclusive(). If
* neither is the case, there is certainly something wrong.
*/
for (; npages; npages--, pages++) {
struct page *page = *pages;
struct folio *folio = page_folio(page);
if (is_zero_page(page) ||
!folio_test_anon(folio))
continue;
if (!folio_test_large(folio) || folio_test_hugetlb(folio))
VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
else
/* Either a PTE-mapped or a PMD-mapped THP. */
VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
!PageAnonExclusive(page), page);
}
}
/*
* Return the folio with ref appropriately incremented,
* or NULL if that failed.
*/
static inline struct folio *try_get_folio(struct page *page, int refs)
{
struct folio *folio;
retry:
folio = page_folio(page);
if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
return NULL;
if (unlikely(!folio_ref_try_add(folio, refs)))
return NULL;
/*
* At this point we have a stable reference to the folio; but it
* could be that between calling page_folio() and the refcount
* increment, the folio was split, in which case we'd end up
* holding a reference on a folio that has nothing to do with the page
* we were given anymore.
* So now that the folio is stable, recheck that the page still
* belongs to this folio.
*/
if (unlikely(page_folio(page) != folio)) {
if (!put_devmap_managed_folio_refs(folio, refs))
folio_put_refs(folio, refs);
goto retry;
}
return folio;
}
static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
{
if (flags & FOLL_PIN) {
if (is_zero_folio(folio))
return;
node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
if (folio_test_large(folio))
atomic_sub(refs, &folio->_pincount);
else
refs *= GUP_PIN_COUNTING_BIAS;
}
if (!put_devmap_managed_folio_refs(folio, refs))
folio_put_refs(folio, refs);
}
/**
* try_grab_folio() - add a folio's refcount by a flag-dependent amount
* @folio: pointer to folio to be grabbed
* @refs: the value to (effectively) add to the folio's refcount
* @flags: gup flags: these are the FOLL_* flag values
*
* This might not do anything at all, depending on the flags argument.
*
* "grab" names in this file mean, "look at flags to decide whether to use
* FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
*
* Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
* time.
*
* Return: 0 for success, or if no action was required (if neither FOLL_PIN
* nor FOLL_GET was set, nothing is done). A negative error code for failure:
*
* -ENOMEM FOLL_GET or FOLL_PIN was set, but the folio could not
* be grabbed.
*
* It is called when we have a stable reference for the folio, typically in
* GUP slow path.
*/
int __must_check try_grab_folio(struct folio *folio, int refs,
unsigned int flags)
{
if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
return -ENOMEM;
if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page)))
return -EREMOTEIO;
if (flags & FOLL_GET)
folio_ref_add(folio, refs);
else if (flags & FOLL_PIN) {
/*
* Don't take a pin on the zero page - it's not going anywhere
* and it is used in a *lot* of places.
*/
if (is_zero_folio(folio))
return 0;
/*
* Increment the normal page refcount field at least once,
* so that the page really is pinned.
*/
if (folio_test_large(folio)) {
folio_ref_add(folio, refs);
atomic_add(refs, &folio->_pincount);
} else {
folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS);
}
node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
}
return 0;
}
/**
* unpin_user_page() - release a dma-pinned page
* @page: pointer to page to be released
*
* Pages that were pinned via pin_user_pages*() must be released via either
* unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
* that such pages can be separately tracked and uniquely handled. In
* particular, interactions with RDMA and filesystems need special handling.
*/
void unpin_user_page(struct page *page)
{
sanity_check_pinned_pages(&page, 1);
gup_put_folio(page_folio(page), 1, FOLL_PIN);
}
EXPORT_SYMBOL(unpin_user_page);
/**
* unpin_folio() - release a dma-pinned folio
* @folio: pointer to folio to be released
*
* Folios that were pinned via memfd_pin_folios() or other similar routines
* must be released either using unpin_folio() or unpin_folios().
*/
void unpin_folio(struct folio *folio)
{
gup_put_folio(folio, 1, FOLL_PIN);
}
EXPORT_SYMBOL_GPL(unpin_folio);
/**
* folio_add_pin - Try to get an additional pin on a pinned folio
* @folio: The folio to be pinned
*
* Get an additional pin on a folio we already have a pin on. Makes no change
* if the folio is a zero_page.
*/
void folio_add_pin(struct folio *folio)
{
if (is_zero_folio(folio))
return;
/*
* Similar to try_grab_folio(): be sure to *also* increment the normal
* page refcount field at least once, so that the page really is
* pinned.
*/
if (folio_test_large(folio)) {
WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
folio_ref_inc(folio);
atomic_inc(&folio->_pincount);
} else {
WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
}
}
static inline struct folio *gup_folio_range_next(struct page *start,
unsigned long npages, unsigned long i, unsigned int *ntails)
{
struct page *next = nth_page(start, i);
struct folio *folio = page_folio(next);
unsigned int nr = 1;
if (folio_test_large(folio))
nr = min_t(unsigned int, npages - i,
folio_nr_pages(folio) - folio_page_idx(folio, next));
*ntails = nr;
return folio;
}
static inline struct folio *gup_folio_next(struct page **list,
unsigned long npages, unsigned long i, unsigned int *ntails)
{
struct folio *folio = page_folio(list[i]);
unsigned int nr;
for (nr = i + 1; nr < npages; nr++) {
if (page_folio(list[nr]) != folio)
break;
}
*ntails = nr - i;
return folio;
}
/**
* unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
* @pages: array of pages to be maybe marked dirty, and definitely released.
* @npages: number of pages in the @pages array.
* @make_dirty: whether to mark the pages dirty
*
* "gup-pinned page" refers to a page that has had one of the get_user_pages()
* variants called on that page.
*
* For each page in the @pages array, make that page (or its head page, if a
* compound page) dirty, if @make_dirty is true, and if the page was previously
* listed as clean. In any case, releases all pages using unpin_user_page(),
* possibly via unpin_user_pages(), for the non-dirty case.
*
* Please see the unpin_user_page() documentation for details.
*
* set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
* required, then the caller should a) verify that this is really correct,
* because _lock() is usually required, and b) hand code it:
* set_page_dirty_lock(), unpin_user_page().
*
*/
void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
bool make_dirty)
{
unsigned long i;
struct folio *folio;
unsigned int nr;
if (!make_dirty) {
unpin_user_pages(pages, npages);
return;
}
sanity_check_pinned_pages(pages, npages);
for (i = 0; i < npages; i += nr) {
folio = gup_folio_next(pages, npages, i, &nr);
/*
* Checking PageDirty at this point may race with
* clear_page_dirty_for_io(), but that's OK. Two key
* cases:
*
* 1) This code sees the page as already dirty, so it
* skips the call to set_page_dirty(). That could happen
* because clear_page_dirty_for_io() called
* folio_mkclean(), followed by set_page_dirty().
* However, now the page is going to get written back,
* which meets the original intention of setting it
* dirty, so all is well: clear_page_dirty_for_io() goes
* on to call TestClearPageDirty(), and write the page
* back.
*
* 2) This code sees the page as clean, so it calls
* set_page_dirty(). The page stays dirty, despite being
* written back, so it gets written back again in the
* next writeback cycle. This is harmless.
*/
if (!folio_test_dirty(folio)) {
folio_lock(folio);
folio_mark_dirty(folio);
folio_unlock(folio);
}
gup_put_folio(folio, nr, FOLL_PIN);
}
}
EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
/**
* unpin_user_page_range_dirty_lock() - release and optionally dirty
* gup-pinned page range
*
* @page: the starting page of a range maybe marked dirty, and definitely released.
* @npages: number of consecutive pages to release.
* @make_dirty: whether to mark the pages dirty
*
* "gup-pinned page range" refers to a range of pages that has had one of the
* pin_user_pages() variants called on that page.
*
* For the page ranges defined by [page .. page+npages], make that range (or
* its head pages, if a compound page) dirty, if @make_dirty is true, and if the
* page range was previously listed as clean.
*
* set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
* required, then the caller should a) verify that this is really correct,
* because _lock() is usually required, and b) hand code it:
* set_page_dirty_lock(), unpin_user_page().
*
*/
void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
bool make_dirty)
{
unsigned long i;
struct folio *folio;
unsigned int nr;
for (i = 0; i < npages; i += nr) {
folio = gup_folio_range_next(page, npages, i, &nr);
if (make_dirty && !folio_test_dirty(folio)) {
folio_lock(folio);
folio_mark_dirty(folio);
folio_unlock(folio);
}
gup_put_folio(folio, nr, FOLL_PIN);
}
}
EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages)
{
unsigned long i;
struct folio *folio;
unsigned int nr;
/*
* Don't perform any sanity checks because we might have raced with
* fork() and some anonymous pages might now actually be shared --
* which is why we're unpinning after all.
*/
for (i = 0; i < npages; i += nr) {
folio = gup_folio_next(pages, npages, i, &nr);
gup_put_folio(folio, nr, FOLL_PIN);
}
}
/**
* unpin_user_pages() - release an array of gup-pinned pages.
* @pages: array of pages to be marked dirty and released.
* @npages: number of pages in the @pages array.
*
* For each page in the @pages array, release the page using unpin_user_page().
*
* Please see the unpin_user_page() documentation for details.
*/
void unpin_user_pages(struct page **pages, unsigned long npages)
{
unsigned long i;
struct folio *folio;
unsigned int nr;
/*
* If this WARN_ON() fires, then the system *might* be leaking pages (by
* leaving them pinned), but probably not. More likely, gup/pup returned
* a hard -ERRNO error to the caller, who erroneously passed it here.
*/
if (WARN_ON(IS_ERR_VALUE(npages)))
return;
sanity_check_pinned_pages(pages, npages);
for (i = 0; i < npages; i += nr) {
folio = gup_folio_next(pages, npages, i, &nr);
gup_put_folio(folio, nr, FOLL_PIN);
}
}
EXPORT_SYMBOL(unpin_user_pages);
/**
* unpin_user_folio() - release pages of a folio
* @folio: pointer to folio to be released
* @npages: number of pages of same folio
*
* Release npages of the folio
*/
void unpin_user_folio(struct folio *folio, unsigned long npages)
{
gup_put_folio(folio, npages, FOLL_PIN);
}
EXPORT_SYMBOL(unpin_user_folio);
/**
* unpin_folios() - release an array of gup-pinned folios.
* @folios: array of folios to be marked dirty and released.
* @nfolios: number of folios in the @folios array.
*
* For each folio in the @folios array, release the folio using gup_put_folio.
*
* Please see the unpin_folio() documentation for details.
*/
void unpin_folios(struct folio **folios, unsigned long nfolios)
{
unsigned long i = 0, j;
/*
* If this WARN_ON() fires, then the system *might* be leaking folios
* (by leaving them pinned), but probably not. More likely, gup/pup
* returned a hard -ERRNO error to the caller, who erroneously passed
* it here.
*/
if (WARN_ON(IS_ERR_VALUE(nfolios)))
return;
while (i < nfolios) {
for (j = i + 1; j < nfolios; j++)
if (folios[i] != folios[j])
break;
if (folios[i])
gup_put_folio(folios[i], j - i, FOLL_PIN);
i = j;
}
}
EXPORT_SYMBOL_GPL(unpin_folios);
/*
* Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
* lifecycle. Avoid setting the bit unless necessary, or it might cause write
* cache bouncing on large SMP machines for concurrent pinned gups.
*/
static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
{
if (!test_bit(MMF_HAS_PINNED, mm_flags))
set_bit(MMF_HAS_PINNED, mm_flags);
}
#ifdef CONFIG_MMU
#ifdef CONFIG_HAVE_GUP_FAST
static int record_subpages(struct page *page, unsigned long sz,
unsigned long addr, unsigned long end,
struct page **pages)
{
struct page *start_page;
int nr;
start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT);
for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
pages[nr] = nth_page(start_page, nr);
return nr;
}
/**
* try_grab_folio_fast() - Attempt to get or pin a folio in fast path.
* @page: pointer to page to be grabbed
* @refs: the value to (effectively) add to the folio's refcount
* @flags: gup flags: these are the FOLL_* flag values.
*
* "grab" names in this file mean, "look at flags to decide whether to use
* FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
*
* Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
* same time. (That's true throughout the get_user_pages*() and
* pin_user_pages*() APIs.) Cases:
*
* FOLL_GET: folio's refcount will be incremented by @refs.
*
* FOLL_PIN on large folios: folio's refcount will be incremented by
* @refs, and its pincount will be incremented by @refs.
*
* FOLL_PIN on single-page folios: folio's refcount will be incremented by
* @refs * GUP_PIN_COUNTING_BIAS.
*
* Return: The folio containing @page (with refcount appropriately
* incremented) for success, or NULL upon failure. If neither FOLL_GET
* nor FOLL_PIN was set, that's considered failure, and furthermore,
* a likely bug in the caller, so a warning is also emitted.
*
* It uses add ref unless zero to elevate the folio refcount and must be called
* in fast path only.
*/
static struct folio *try_grab_folio_fast(struct page *page, int refs,
unsigned int flags)
{
struct folio *folio;
/* Raise warn if it is not called in fast GUP */
VM_WARN_ON_ONCE(!irqs_disabled());
if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
return NULL;
if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
return NULL;
if (flags & FOLL_GET)
return try_get_folio(page, refs);
/* FOLL_PIN is set */
/*
* Don't take a pin on the zero page - it's not going anywhere
* and it is used in a *lot* of places.
*/
if (is_zero_page(page))
return page_folio(page);
folio = try_get_folio(page, refs);
if (!folio)
return NULL;
/*
* Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
* right zone, so fail and let the caller fall back to the slow
* path.
*/
if (unlikely((flags & FOLL_LONGTERM) &&
!folio_is_longterm_pinnable(folio))) {
if (!put_devmap_managed_folio_refs(folio, refs))
folio_put_refs(folio, refs);
return NULL;
}
/*
* When pinning a large folio, use an exact count to track it.
*
* However, be sure to *also* increment the normal folio
* refcount field at least once, so that the folio really
* is pinned. That's why the refcount from the earlier
* try_get_folio() is left intact.
*/
if (folio_test_large(folio))
atomic_add(refs, &folio->_pincount);
else
folio_ref_add(folio,
refs * (GUP_PIN_COUNTING_BIAS - 1));
/*
* Adjust the pincount before re-checking the PTE for changes.
* This is essentially a smp_mb() and is paired with a memory
* barrier in folio_try_share_anon_rmap_*().
*/
smp_mb__after_atomic();
node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
return folio;
}
#endif /* CONFIG_HAVE_GUP_FAST */
static struct page *no_page_table(struct vm_area_struct *vma,
unsigned int flags, unsigned long address)
{
if (!(flags & FOLL_DUMP))
return NULL;
/*
* When core dumping, we don't want to allocate unnecessary pages or
* page tables. Return error instead of NULL to skip handle_mm_fault,
* then get_dump_page() will return NULL to leave a hole in the dump.
* But we can only make this optimization where a hole would surely
* be zero-filled if handle_mm_fault() actually did handle it.
*/
if (is_vm_hugetlb_page(vma)) {
struct hstate *h = hstate_vma(vma);
if (!hugetlbfs_pagecache_present(h, vma, address))
return ERR_PTR(-EFAULT);
} else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
return ERR_PTR(-EFAULT);
}
return NULL;
}
#ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
static struct page *follow_huge_pud(struct vm_area_struct *vma,
unsigned long addr, pud_t *pudp,
int flags, struct follow_page_context *ctx)
{
struct mm_struct *mm = vma->vm_mm;
struct page *page;
pud_t pud = *pudp;
unsigned long pfn = pud_pfn(pud);
int ret;
assert_spin_locked(pud_lockptr(mm, pudp));
if ((flags & FOLL_WRITE) && !pud_write(pud))
return NULL;
if (!pud_present(pud))
return NULL;
pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
pud_devmap(pud)) {
/*
* device mapped pages can only be returned if the caller
* will manage the page reference count.
*
* At least one of FOLL_GET | FOLL_PIN must be set, so
* assert that here:
*/
if (!(flags & (FOLL_GET | FOLL_PIN)))
return ERR_PTR(-EEXIST);
if (flags & FOLL_TOUCH)
touch_pud(vma, addr, pudp, flags & FOLL_WRITE);
ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap);
if (!ctx->pgmap)
return ERR_PTR(-EFAULT);
}
page = pfn_to_page(pfn);
if (!pud_devmap(pud) && !pud_write(pud) &&
gup_must_unshare(vma, flags, page))
return ERR_PTR(-EMLINK);
ret = try_grab_folio(page_folio(page), 1, flags);
if (ret)
page = ERR_PTR(ret);
else
ctx->page_mask = HPAGE_PUD_NR - 1;
return page;
}
/* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
struct vm_area_struct *vma,
unsigned int flags)
{
/* If the pmd is writable, we can write to the page. */
if (pmd_write(pmd))
return true;
/* Maybe FOLL_FORCE is set to override it? */
if (!(flags & FOLL_FORCE))
return false;
/* But FOLL_FORCE has no effect on shared mappings */
if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
return false;
/* ... or read-only private ones */
if (!(vma->vm_flags & VM_MAYWRITE))
return false;
/* ... or already writable ones that just need to take a write fault */
if (vma->vm_flags & VM_WRITE)
return false;
/*
* See can_change_pte_writable(): we broke COW and could map the page
* writable if we have an exclusive anonymous page ...
*/
if (!page || !PageAnon(page) || !PageAnonExclusive(page))
return false;
/* ... and a write-fault isn't required for other reasons. */
if (pmd_needs_soft_dirty_wp(vma, pmd))
return false;
return !userfaultfd_huge_pmd_wp(vma, pmd);
}
static struct page *follow_huge_pmd(struct vm_area_struct *vma,
unsigned long addr, pmd_t *pmd,
unsigned int flags,
struct follow_page_context *ctx)
{
struct mm_struct *mm = vma->vm_mm;
pmd_t pmdval = *pmd;
struct page *page;
int ret;
assert_spin_locked(pmd_lockptr(mm, pmd));
page = pmd_page(pmdval);
if ((flags & FOLL_WRITE) &&
!can_follow_write_pmd(pmdval, page, vma, flags))
return NULL;
/* Avoid dumping huge zero page */
if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
return ERR_PTR(-EFAULT);
if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
return NULL;
if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
return ERR_PTR(-EMLINK);
VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
!PageAnonExclusive(page), page);
ret = try_grab_folio(page_folio(page), 1, flags);
if (ret)
return ERR_PTR(ret);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ctx->page_mask = HPAGE_PMD_NR - 1;
return page;
}
#else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
static struct page *follow_huge_pud(struct vm_area_struct *vma,
unsigned long addr, pud_t *pudp,
int flags, struct follow_page_context *ctx)
{
return NULL;
}
static struct page *follow_huge_pmd(struct vm_area_struct *vma,
unsigned long addr, pmd_t *pmd,
unsigned int flags,
struct follow_page_context *ctx)
{
return NULL;
}
#endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
pte_t *pte, unsigned int flags)
{
if (flags & FOLL_TOUCH) {
pte_t orig_entry = ptep_get(pte);
pte_t entry = orig_entry;
if (flags & FOLL_WRITE)
entry = pte_mkdirty(entry);
entry = pte_mkyoung(entry);
if (!pte_same(orig_entry, entry)) {
set_pte_at(vma->vm_mm, address, pte, entry);
update_mmu_cache(vma, address, pte);
}
}
/* Proper page table entry exists, but no corresponding struct page */
return -EEXIST;
}
/* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
static inline bool can_follow_write_pte(pte_t pte, struct page *page,
struct vm_area_struct *vma,
unsigned int flags)
{
/* If the pte is writable, we can write to the page. */
if (pte_write(pte))
return true;
/* Maybe FOLL_FORCE is set to override it? */
if (!(flags & FOLL_FORCE))
return false;
/* But FOLL_FORCE has no effect on shared mappings */
if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
return false;
/* ... or read-only private ones */
if (!(vma->vm_flags & VM_MAYWRITE))
return false;
/* ... or already writable ones that just need to take a write fault */
if (vma->vm_flags & VM_WRITE)
return false;
/*
* See can_change_pte_writable(): we broke COW and could map the page
* writable if we have an exclusive anonymous page ...
*/
if (!page || !PageAnon(page) || !PageAnonExclusive(page))
return false;
/* ... and a write-fault isn't required for other reasons. */
if (pte_needs_soft_dirty_wp(vma, pte))
return false;
return !userfaultfd_pte_wp(vma, pte);
}
static struct page *follow_page_pte(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmd, unsigned int flags,
struct dev_pagemap **pgmap)
{
struct mm_struct *mm = vma->vm_mm;
struct page *page;
spinlock_t *ptl;
pte_t *ptep, pte;
int ret;
/* FOLL_GET and FOLL_PIN are mutually exclusive. */
if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
(FOLL_PIN | FOLL_GET)))
return ERR_PTR(-EINVAL);
ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
if (!ptep)
return no_page_table(vma, flags, address);
pte = ptep_get(ptep);
if (!pte_present(pte))
goto no_page;
if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
goto no_page;
page = vm_normal_page(vma, address, pte);
/*
* We only care about anon pages in can_follow_write_pte() and don't
* have to worry about pte_devmap() because they are never anon.
*/
if ((flags & FOLL_WRITE) &&
!can_follow_write_pte(pte, page, vma, flags)) {
page = NULL;
goto out;
}
if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
/*
* Only return device mapping pages in the FOLL_GET or FOLL_PIN
* case since they are only valid while holding the pgmap
* reference.
*/
*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
if (*pgmap)
page = pte_page(pte);
else
goto no_page;
} else if (unlikely(!page)) {
if (flags & FOLL_DUMP) {
/* Avoid special (like zero) pages in core dumps */
page = ERR_PTR(-EFAULT);
goto out;
}
if (is_zero_pfn(pte_pfn(pte))) {
page = pte_page(pte);
} else {
ret = follow_pfn_pte(vma, address, ptep, flags);
page = ERR_PTR(ret);
goto out;
}
}
if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
page = ERR_PTR(-EMLINK);
goto out;
}
VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
!PageAnonExclusive(page), page);
/* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */
ret = try_grab_folio(page_folio(page), 1, flags);
if (unlikely(ret)) {
page = ERR_PTR(ret);
goto out;
}
/*
* We need to make the page accessible if and only if we are going
* to access its content (the FOLL_PIN case). Please see
* Documentation/core-api/pin_user_pages.rst for details.
*/
if (flags & FOLL_PIN) {
ret = arch_make_page_accessible(page);
if (ret) {
unpin_user_page(page);
page = ERR_PTR(ret);
goto out;
}
}
if (flags & FOLL_TOUCH) {
if ((flags & FOLL_WRITE) &&
!pte_dirty(pte) && !PageDirty(page))
set_page_dirty(page);
/*
* pte_mkyoung() would be more correct here, but atomic care
* is needed to avoid losing the dirty bit: it is easier to use
* mark_page_accessed().
*/
mark_page_accessed(page);
}
out:
pte_unmap_unlock(ptep, ptl);
return page;
no_page:
pte_unmap_unlock(ptep, ptl);
if (!pte_none(pte))
return NULL;
return no_page_table(vma, flags, address);
}
static struct page *follow_pmd_mask(struct vm_area_struct *vma,
unsigned long address, pud_t *pudp,
unsigned int flags,
struct follow_page_context *ctx)
{
pmd_t *pmd, pmdval;
spinlock_t *ptl;
struct page *page;
struct mm_struct *mm = vma->vm_mm;
pmd = pmd_offset(pudp, address);
pmdval = pmdp_get_lockless(pmd);
if (pmd_none(pmdval))
return no_page_table(vma, flags, address);
if (!pmd_present(pmdval))
return no_page_table(vma, flags, address);
if (pmd_devmap(pmdval)) {
ptl = pmd_lock(mm, pmd);
page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
spin_unlock(ptl);
if (page)
return page;
return no_page_table(vma, flags, address);
}
if (likely(!pmd_leaf(pmdval)))
return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
return no_page_table(vma, flags, address);
ptl = pmd_lock(mm, pmd);
pmdval = *pmd;
if (unlikely(!pmd_present(pmdval))) {
spin_unlock(ptl);
return no_page_table(vma, flags, address);
}
if (unlikely(!pmd_leaf(pmdval))) {
spin_unlock(ptl);
return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
}
if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
spin_unlock(ptl);
split_huge_pmd(vma, pmd, address);
/* If pmd was left empty, stuff a page table in there quickly */
return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
}
page = follow_huge_pmd(vma, address, pmd, flags, ctx);
spin_unlock(ptl);
return page;
}
static struct page *follow_pud_mask(struct vm_area_struct *vma,
unsigned long address, p4d_t *p4dp,
unsigned int flags,
struct follow_page_context *ctx)
{
pud_t *pudp, pud;
spinlock_t *ptl;
struct page *page;
struct mm_struct *mm = vma->vm_mm;
pudp = pud_offset(p4dp, address);
pud = READ_ONCE(*pudp);
if (!pud_present(pud))
return no_page_table(vma, flags, address);
if (pud_leaf(pud)) {
ptl = pud_lock(mm, pudp);
page = follow_huge_pud(vma, address, pudp, flags, ctx);
spin_unlock(ptl);
if (page)
return page;
return no_page_table(vma, flags, address);
}
if (unlikely(pud_bad(pud)))
return no_page_table(vma, flags, address);
return follow_pmd_mask(vma, address, pudp, flags, ctx);
}
static struct page *follow_p4d_mask(struct vm_area_struct *vma,
unsigned long address, pgd_t *pgdp,
unsigned int flags,
struct follow_page_context *ctx)
{
p4d_t *p4dp, p4d;
p4dp = p4d_offset(pgdp, address);
p4d = READ_ONCE(*p4dp);
BUILD_BUG_ON(p4d_leaf(p4d));
if (!p4d_present(p4d) || p4d_bad(p4d))
return no_page_table(vma, flags, address);
return follow_pud_mask(vma, address, p4dp, flags, ctx);
}
/**
* follow_page_mask - look up a page descriptor from a user-virtual address
* @vma: vm_area_struct mapping @address
* @address: virtual address to look up
* @flags: flags modifying lookup behaviour
* @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
* pointer to output page_mask
*
* @flags can have FOLL_ flags set, defined in <linux/mm.h>
*
* When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
* the device's dev_pagemap metadata to avoid repeating expensive lookups.
*
* When getting an anonymous page and the caller has to trigger unsharing
* of a shared anonymous page first, -EMLINK is returned. The caller should
* trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
* relevant with FOLL_PIN and !FOLL_WRITE.
*
* On output, the @ctx->page_mask is set according to the size of the page.
*
* Return: the mapped (struct page *), %NULL if no mapping exists, or
* an error pointer if there is a mapping to something not represented
* by a page descriptor (see also vm_normal_page()).
*/
static struct page *follow_page_mask(struct vm_area_struct *vma,
unsigned long address, unsigned int flags,
struct follow_page_context *ctx)
{
pgd_t *pgd;
struct mm_struct *mm = vma->vm_mm;
struct page *page;
vma_pgtable_walk_begin(vma);
ctx->page_mask = 0;
pgd = pgd_offset(mm, address);
if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
page = no_page_table(vma, flags, address);
else
page = follow_p4d_mask(vma, address, pgd, flags, ctx);
vma_pgtable_walk_end(vma);
return page;
}
struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
unsigned int foll_flags)
{
struct follow_page_context ctx = { NULL };
struct page *page;
if (vma_is_secretmem(vma))
return NULL;
if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
return NULL;
/*
* We never set FOLL_HONOR_NUMA_FAULT because callers don't expect
* to fail on PROT_NONE-mapped pages.
*/
page = follow_page_mask(vma, address, foll_flags, &ctx);
if (ctx.pgmap)
put_dev_pagemap(ctx.pgmap);
return page;
}
static int get_gate_page(struct mm_struct *mm, unsigned long address,
unsigned int gup_flags, struct vm_area_struct **vma,
struct page **page)
{
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
pte_t entry;
int ret = -EFAULT;
/* user gate pages are read-only */
if (gup_flags & FOLL_WRITE)
return -EFAULT;
if (address > TASK_SIZE)
pgd = pgd_offset_k(address);
else
pgd = pgd_offset_gate(mm, address);
if (pgd_none(*pgd))
return -EFAULT;
p4d = p4d_offset(pgd, address);
if (p4d_none(*p4d))
return -EFAULT;
pud = pud_offset(p4d, address);
if (pud_none(*pud))
return -EFAULT;
pmd = pmd_offset(pud, address);
if (!pmd_present(*pmd))
return -EFAULT;
pte = pte_offset_map(pmd, address);
if (!pte)
return -EFAULT;
entry = ptep_get(pte);
if (pte_none(entry))
goto unmap;
*vma = get_gate_vma(mm);
if (!page)
goto out;
*page = vm_normal_page(*vma, address, entry);
if (!*page) {
if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
goto unmap;
*page = pte_page(entry);
}
ret = try_grab_folio(page_folio(*page), 1, gup_flags);
if (unlikely(ret))
goto unmap;
out:
ret = 0;
unmap:
pte_unmap(pte);
return ret;
}
/*
* mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
* FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
* to 0 and -EBUSY returned.
*/
static int faultin_page(struct vm_area_struct *vma,
unsigned long address, unsigned int *flags, bool unshare,
int *locked)
{
unsigned int fault_flags = 0;
vm_fault_t ret;
if (*flags & FOLL_NOFAULT)
return -EFAULT;
if (*flags & FOLL_WRITE)
fault_flags |= FAULT_FLAG_WRITE;
if (*flags & FOLL_REMOTE)
fault_flags |= FAULT_FLAG_REMOTE;
if (*flags & FOLL_UNLOCKABLE) {
fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
/*
* FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
* FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
* That's because some callers may not be prepared to
* handle early exits caused by non-fatal signals.
*/
if (*flags & FOLL_INTERRUPTIBLE)
fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
}
if (*flags & FOLL_NOWAIT)
fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
if (*flags & FOLL_TRIED) {
/*
* Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
* can co-exist
*/
fault_flags |= FAULT_FLAG_TRIED;
}
if (unshare) {
fault_flags |= FAULT_FLAG_UNSHARE;
/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
}
ret = handle_mm_fault(vma, address, fault_flags, NULL);
if (ret & VM_FAULT_COMPLETED) {
/*
* With FAULT_FLAG_RETRY_NOWAIT we'll never release the
* mmap lock in the page fault handler. Sanity check this.
*/
WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
*locked = 0;
/*
* We should do the same as VM_FAULT_RETRY, but let's not
* return -EBUSY since that's not reflecting the reality of
* what has happened - we've just fully completed a page
* fault, with the mmap lock released. Use -EAGAIN to show
* that we want to take the mmap lock _again_.
*/
return -EAGAIN;
}
if (ret & VM_FAULT_ERROR) {
int err = vm_fault_to_errno(ret, *flags);
if (err)
return err;
BUG();
}
if (ret & VM_FAULT_RETRY) {
if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
*locked = 0;
return -EBUSY;
}
return 0;
}
/*
* Writing to file-backed mappings which require folio dirty tracking using GUP
* is a fundamentally broken operation, as kernel write access to GUP mappings
* do not adhere to the semantics expected by a file system.
*
* Consider the following scenario:-
*
* 1. A folio is written to via GUP which write-faults the memory, notifying
* the file system and dirtying the folio.
* 2. Later, writeback is triggered, resulting in the folio being cleaned and
* the PTE being marked read-only.
* 3. The GUP caller writes to the folio, as it is mapped read/write via the
* direct mapping.
* 4. The GUP caller, now done with the page, unpins it and sets it dirty
* (though it does not have to).
*
* This results in both data being written to a folio without writenotify, and
* the folio being dirtied unexpectedly (if the caller decides to do so).
*/
static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
unsigned long gup_flags)
{
/*
* If we aren't pinning then no problematic write can occur. A long term
* pin is the most egregious case so this is the case we disallow.
*/
if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
(FOLL_PIN | FOLL_LONGTERM))
return true;
/*
* If the VMA does not require dirty tracking then no problematic write
* can occur either.
*/
return !vma_needs_dirty_tracking(vma);
}
static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
{
vm_flags_t vm_flags = vma->vm_flags;
int write = (gup_flags & FOLL_WRITE);
int foreign = (gup_flags & FOLL_REMOTE);
bool vma_anon = vma_is_anonymous(vma);
if (vm_flags & (VM_IO | VM_PFNMAP))
return -EFAULT;
if ((gup_flags & FOLL_ANON) && !vma_anon)
return -EFAULT;
if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
return -EOPNOTSUPP;
if (vma_is_secretmem(vma))
return -EFAULT;
if (write) {
if (!vma_anon &&
!writable_file_mapping_allowed(vma, gup_flags))
return -EFAULT;
if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
if (!(gup_flags & FOLL_FORCE))
return -EFAULT;
/* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
if (is_vm_hugetlb_page(vma))
return -EFAULT;
/*
* We used to let the write,force case do COW in a
* VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
* set a breakpoint in a read-only mapping of an
* executable, without corrupting the file (yet only
* when that file had been opened for writing!).
* Anon pages in shared mappings are surprising: now
* just reject it.
*/
if (!is_cow_mapping(vm_flags))
return -EFAULT;
}
} else if (!(vm_flags & VM_READ)) {
if (!(gup_flags & FOLL_FORCE))
return -EFAULT;
/*
* Is there actually any vma we can reach here which does not
* have VM_MAYREAD set?
*/
if (!(vm_flags & VM_MAYREAD))
return -EFAULT;
}
/*
* gups are always data accesses, not instruction
* fetches, so execute=false here
*/
if (!arch_vma_access_permitted(vma, write, false, foreign))
return -EFAULT;
return 0;
}
/*
* This is "vma_lookup()", but with a warning if we would have
* historically expanded the stack in the GUP code.
*/
static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
unsigned long addr)
{
#ifdef CONFIG_STACK_GROWSUP
return vma_lookup(mm, addr);
#else
static volatile unsigned long next_warn;
struct vm_area_struct *vma;
unsigned long now, next;
vma = find_vma(mm, addr);
if (!vma || (addr >= vma->vm_start))
return vma;
/* Only warn for half-way relevant accesses */
if (!(vma->vm_flags & VM_GROWSDOWN))
return NULL;
if (vma->vm_start - addr > 65536)
return NULL;
/* Let's not warn more than once an hour.. */
now = jiffies; next = next_warn;
if (next && time_before(now, next))
return NULL;
next_warn = now + 60*60*HZ;
/* Let people know things may have changed. */
pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
current->comm, task_pid_nr(current),
vma->vm_start, vma->vm_end, addr);
dump_stack();
return NULL;
#endif
}
/**
* __get_user_pages() - pin user pages in memory
* @mm: mm_struct of target mm
* @start: starting user address
* @nr_pages: number of pages from start to pin
* @gup_flags: flags modifying pin behaviour
* @pages: array that receives pointers to the pages pinned.
* Should be at least nr_pages long. Or NULL, if caller
* only intends to ensure the pages are faulted in.
* @locked: whether we're still with the mmap_lock held
*
* Returns either number of pages pinned (which may be less than the
* number requested), or an error. Details about the return value:
*
* -- If nr_pages is 0, returns 0.
* -- If nr_pages is >0, but no pages were pinned, returns -errno.
* -- If nr_pages is >0, and some pages were pinned, returns the number of
* pages pinned. Again, this may be less than nr_pages.
* -- 0 return value is possible when the fault would need to be retried.
*
* The caller is responsible for releasing returned @pages, via put_page().
*
* Must be called with mmap_lock held. It may be released. See below.
*
* __get_user_pages walks a process's page tables and takes a reference to
* each struct page that each user address corresponds to at a given
* instant. That is, it takes the page that would be accessed if a user
* thread accesses the given user virtual address at that instant.
*
* This does not guarantee that the page exists in the user mappings when
* __get_user_pages returns, and there may even be a completely different
* page there in some cases (eg. if mmapped pagecache has been invalidated
* and subsequently re-faulted). However it does guarantee that the page
* won't be freed completely. And mostly callers simply care that the page
* contains data that was valid *at some point in time*. Typically, an IO
* or similar operation cannot guarantee anything stronger anyway because
* locks can't be held over the syscall boundary.
*
* If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
* the page is written to, set_page_dirty (or set_page_dirty_lock, as
* appropriate) must be called after the page is finished with, and
* before put_page is called.
*
* If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
* be released. If this happens *@locked will be set to 0 on return.
*
* A caller using such a combination of @gup_flags must therefore hold the
* mmap_lock for reading only, and recognize when it's been released. Otherwise,
* it must be held for either reading or writing and will not be released.
*
* In most cases, get_user_pages or get_user_pages_fast should be used
* instead of __get_user_pages. __get_user_pages should be used only if
* you need some special @gup_flags.
*/
static long __get_user_pages(struct mm_struct *mm,
unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
int *locked)
{
long ret = 0, i = 0;
struct vm_area_struct *vma = NULL;
struct follow_page_context ctx = { NULL };
if (!nr_pages)
return 0;
start = untagged_addr_remote(mm, start);
VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
do {
struct page *page;
unsigned int foll_flags = gup_flags;
unsigned int page_increm;
/* first iteration or cross vma bound */
if (!vma || start >= vma->vm_end) {
/*
* MADV_POPULATE_(READ|WRITE) wants to handle VMA
* lookups+error reporting differently.
*/
if (gup_flags & FOLL_MADV_POPULATE) {
vma = vma_lookup(mm, start);
if (!vma) {
ret = -ENOMEM;
goto out;
}
if (check_vma_flags(vma, gup_flags)) {
ret = -EINVAL;
goto out;
}
goto retry;
}
vma = gup_vma_lookup(mm, start);
if (!vma && in_gate_area(mm, start)) {
ret = get_gate_page(mm, start & PAGE_MASK,
gup_flags, &vma,
pages ? &page : NULL);
if (ret)
goto out;
ctx.page_mask = 0;
goto next_page;
}
if (!vma) {
ret = -EFAULT;
goto out;
}
ret = check_vma_flags(vma, gup_flags);
if (ret)
goto out;
}
retry:
/*
* If we have a pending SIGKILL, don't keep faulting pages and
* potentially allocating memory.
*/
if (fatal_signal_pending(current)) {
ret = -EINTR;
goto out;
}
cond_resched();
page = follow_page_mask(vma, start, foll_flags, &ctx);
if (!page || PTR_ERR(page) == -EMLINK) {
ret = faultin_page(vma, start, &foll_flags,
PTR_ERR(page) == -EMLINK, locked);
switch (ret) {
case 0:
goto retry;
case -EBUSY:
case -EAGAIN:
ret = 0;
fallthrough;
case -EFAULT:
case -ENOMEM:
case -EHWPOISON:
goto out;
}
BUG();
} else if (PTR_ERR(page) == -EEXIST) {
/*
* Proper page table entry exists, but no corresponding
* struct page. If the caller expects **pages to be
* filled in, bail out now, because that can't be done
* for this page.
*/
if (pages) {
ret = PTR_ERR(page);
goto out;
}
} else if (IS_ERR(page)) {
ret = PTR_ERR(page);
goto out;
}
next_page:
page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
if (page_increm > nr_pages)
page_increm = nr_pages;
if (pages) {
struct page *subpage;
unsigned int j;
/*
* This must be a large folio (and doesn't need to
* be the whole folio; it can be part of it), do
* the refcount work for all the subpages too.
*
* NOTE: here the page may not be the head page
* e.g. when start addr is not thp-size aligned.
* try_grab_folio() should have taken care of tail
* pages.
*/
if (page_increm > 1) {
struct folio *folio = page_folio(page);
/*
* Since we already hold refcount on the
* large folio, this should never fail.
*/
if (try_grab_folio(folio, page_increm - 1,
foll_flags)) {
/*
* Release the 1st page ref if the
* folio is problematic, fail hard.
*/
gup_put_folio(folio, 1,
foll_flags);
ret = -EFAULT;
goto out;
}
}
for (j = 0; j < page_increm; j++) {
subpage = nth_page(page, j);
pages[i + j] = subpage;
flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
flush_dcache_page(subpage);
}
}
i += page_increm;
start += page_increm * PAGE_SIZE;
nr_pages -= page_increm;
} while (nr_pages);
out:
if (ctx.pgmap)
put_dev_pagemap(ctx.pgmap);
return i ? i : ret;
}
static bool vma_permits_fault(struct vm_area_struct *vma,
unsigned int fault_flags)
{
bool write = !!(fault_flags & FAULT_FLAG_WRITE);
bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
if (!(vm_flags & vma->vm_flags))
return false;
/*
* The architecture might have a hardware protection
* mechanism other than read/write that can deny access.
*
* gup always represents data access, not instruction
* fetches, so execute=false here:
*/
if (!arch_vma_access_permitted(vma, write, false, foreign))
return false;
return true;
}
/**
* fixup_user_fault() - manually resolve a user page fault
* @mm: mm_struct of target mm
* @address: user address
* @fault_flags:flags to pass down to handle_mm_fault()
* @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
* does not allow retry. If NULL, the caller must guarantee
* that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
*
* This is meant to be called in the specific scenario where for locking reasons
* we try to access user memory in atomic context (within a pagefault_disable()
* section), this returns -EFAULT, and we want to resolve the user fault before
* trying again.
*
* Typically this is meant to be used by the futex code.
*
* The main difference with get_user_pages() is that this function will
* unconditionally call handle_mm_fault() which will in turn perform all the
* necessary SW fixup of the dirty and young bits in the PTE, while
* get_user_pages() only guarantees to update these in the struct page.
*
* This is important for some architectures where those bits also gate the
* access permission to the page because they are maintained in software. On
* such architectures, gup() will not be enough to make a subsequent access
* succeed.
*
* This function will not return with an unlocked mmap_lock. So it has not the
* same semantics wrt the @mm->mmap_lock as does filemap_fault().
*/
int fixup_user_fault(struct mm_struct *mm,
unsigned long address, unsigned int fault_flags,
bool *unlocked)
{
struct vm_area_struct *vma;
vm_fault_t ret;
address = untagged_addr_remote(mm, address);
if (unlocked)
fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
retry:
vma = gup_vma_lookup(mm, address);
if (!vma)
return -EFAULT;
if (!vma_permits_fault(vma, fault_flags))
return -EFAULT;
if ((fault_flags & FAULT_FLAG_KILLABLE) &&
fatal_signal_pending(current))
return -EINTR;
ret = handle_mm_fault(vma, address, fault_flags, NULL);
if (ret & VM_FAULT_COMPLETED) {
/*
* NOTE: it's a pity that we need to retake the lock here
* to pair with the unlock() in the callers. Ideally we
* could tell the callers so they do not need to unlock.
*/
mmap_read_lock(mm);
*unlocked = true;
return 0;
}
if (ret & VM_FAULT_ERROR) {
int err = vm_fault_to_errno(ret, 0);
if (err)
return err;
BUG();
}
if (ret & VM_FAULT_RETRY) {
mmap_read_lock(mm);
*unlocked = true;
fault_flags |= FAULT_FLAG_TRIED;
goto retry;
}
return 0;
}
EXPORT_SYMBOL_GPL(fixup_user_fault);
/*
* GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
* specified, it'll also respond to generic signals. The caller of GUP
* that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
*/
static bool gup_signal_pending(unsigned int flags)
{
if (fatal_signal_pending(current))
return true;
if (!(flags & FOLL_INTERRUPTIBLE))
return false;
return signal_pending(current);
}
/*
* Locking: (*locked == 1) means that the mmap_lock has already been acquired by
* the caller. This function may drop the mmap_lock. If it does so, then it will
* set (*locked = 0).
*
* (*locked == 0) means that the caller expects this function to acquire and
* drop the mmap_lock. Therefore, the value of *locked will still be zero when
* the function returns, even though it may have changed temporarily during
* function execution.
*
* Please note that this function, unlike __get_user_pages(), will not return 0
* for nr_pages > 0, unless FOLL_NOWAIT is used.
*/
static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
unsigned long start,
unsigned long nr_pages,
struct page **pages,
int *locked,
unsigned int flags)
{
long ret, pages_done;
bool must_unlock = false;
if (!nr_pages)
return 0;
/*
* The internal caller expects GUP to manage the lock internally and the
* lock must be released when this returns.
*/
if (!*locked) {
if (mmap_read_lock_killable(mm))
return -EAGAIN;
must_unlock = true;
*locked = 1;
}
else
mmap_assert_locked(mm);
if (flags & FOLL_PIN)
mm_set_has_pinned_flag(&mm->flags);
/*
* FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
* is to set FOLL_GET if the caller wants pages[] filled in (but has
* carelessly failed to specify FOLL_GET), so keep doing that, but only
* for FOLL_GET, not for the newer FOLL_PIN.
*
* FOLL_PIN always expects pages to be non-null, but no need to assert
* that here, as any failures will be obvious enough.
*/
if (pages && !(flags & FOLL_PIN))
flags |= FOLL_GET;
pages_done = 0;
for (;;) {
ret = __get_user_pages(mm, start, nr_pages, flags, pages,
locked);
if (!(flags & FOLL_UNLOCKABLE)) {
/* VM_FAULT_RETRY couldn't trigger, bypass */
pages_done = ret;
break;
}
/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
if (!*locked) {
BUG_ON(ret < 0);
BUG_ON(ret >= nr_pages);
}
if (ret > 0) {
nr_pages -= ret;
pages_done += ret;
if (!nr_pages)
break;
}
if (*locked) {
/*
* VM_FAULT_RETRY didn't trigger or it was a
* FOLL_NOWAIT.
*/
if (!pages_done)
pages_done = ret;
break;
}
/*
* VM_FAULT_RETRY triggered, so seek to the faulting offset.
* For the prefault case (!pages) we only update counts.
*/
if (likely(pages))
pages += ret;
start += ret << PAGE_SHIFT;
/* The lock was temporarily dropped, so we must unlock later */
must_unlock = true;
retry:
/*
* Repeat on the address that fired VM_FAULT_RETRY
* with both FAULT_FLAG_ALLOW_RETRY and
* FAULT_FLAG_TRIED. Note that GUP can be interrupted
* by fatal signals of even common signals, depending on
* the caller's request. So we need to check it before we
* start trying again otherwise it can loop forever.
*/
if (gup_signal_pending(flags)) {
if (!pages_done)
pages_done = -EINTR;
break;
}
ret = mmap_read_lock_killable(mm);
if (ret) {
BUG_ON(ret > 0);
if (!pages_done)
pages_done = ret;
break;
}
*locked = 1;
ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
pages, locked);
if (!*locked) {
/* Continue to retry until we succeeded */
BUG_ON(ret != 0);
goto retry;
}
if (ret != 1) {
BUG_ON(ret > 1);
if (!pages_done)
pages_done = ret;
break;
}
nr_pages--;
pages_done++;
if (!nr_pages)
break;
if (likely(pages))
pages++;
start += PAGE_SIZE;
}
if (must_unlock && *locked) {
/*
* We either temporarily dropped the lock, or the caller
* requested that we both acquire and drop the lock. Either way,
* we must now unlock, and notify the caller of that state.
*/
mmap_read_unlock(mm);
*locked = 0;
}
/*
* Failing to pin anything implies something has gone wrong (except when
* FOLL_NOWAIT is specified).
*/
if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
return -EFAULT;
return pages_done;
}
/**
* populate_vma_page_range() - populate a range of pages in the vma.
* @vma: target vma
* @start: start address
* @end: end address
* @locked: whether the mmap_lock is still held
*
* This takes care of mlocking the pages too if VM_LOCKED is set.
*
* Return either number of pages pinned in the vma, or a negative error
* code on error.
*
* vma->vm_mm->mmap_lock must be held.
*
* If @locked is NULL, it may be held for read or write and will
* be unperturbed.
*
* If @locked is non-NULL, it must held for read only and may be
* released. If it's released, *@locked will be set to 0.
*/
long populate_vma_page_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end, int *locked)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long nr_pages = (end - start) / PAGE_SIZE;
int local_locked = 1;
int gup_flags;
long ret;
VM_BUG_ON(!PAGE_ALIGNED(start));
VM_BUG_ON(!PAGE_ALIGNED(end));
VM_BUG_ON_VMA(start < vma->vm_start, vma);
VM_BUG_ON_VMA(end > vma->vm_end, vma);
mmap_assert_locked(mm);
/*
* Rightly or wrongly, the VM_LOCKONFAULT case has never used
* faultin_page() to break COW, so it has no work to do here.
*/
if (vma->vm_flags & VM_LOCKONFAULT)
return nr_pages;
/* ... similarly, we've never faulted in PROT_NONE pages */
if (!vma_is_accessible(vma))
return -EFAULT;
gup_flags = FOLL_TOUCH;
/*
* We want to touch writable mappings with a write fault in order
* to break COW, except for shared mappings because these don't COW
* and we would not want to dirty them for nothing.
*
* Otherwise, do a read fault, and use FOLL_FORCE in case it's not
* readable (ie write-only or executable).
*/
if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
gup_flags |= FOLL_WRITE;
else
gup_flags |= FOLL_FORCE;
if (locked)
gup_flags |= FOLL_UNLOCKABLE;
/*
* We made sure addr is within a VMA, so the following will
* not result in a stack expansion that recurses back here.
*/
ret = __get_user_pages(mm, start, nr_pages, gup_flags,
NULL, locked ? locked : &local_locked);
lru_add_drain();
return ret;
}
/*
* faultin_page_range() - populate (prefault) page tables inside the
* given range readable/writable
*
* This takes care of mlocking the pages, too, if VM_LOCKED is set.
*
* @mm: the mm to populate page tables in
* @start: start address
* @end: end address
* @write: whether to prefault readable or writable
* @locked: whether the mmap_lock is still held
*
* Returns either number of processed pages in the MM, or a negative error
* code on error (see __get_user_pages()). Note that this function reports
* errors related to VMAs, such as incompatible mappings, as expected by
* MADV_POPULATE_(READ|WRITE).
*
* The range must be page-aligned.
*
* mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
*/
long faultin_page_range(struct mm_struct *mm, unsigned long start,
unsigned long end, bool write, int *locked)
{
unsigned long nr_pages = (end - start) / PAGE_SIZE;
int gup_flags;
long ret;
VM_BUG_ON(!PAGE_ALIGNED(start));
VM_BUG_ON(!PAGE_ALIGNED(end));
mmap_assert_locked(mm);
/*
* FOLL_TOUCH: Mark page accessed and thereby young; will also mark
* the page dirty with FOLL_WRITE -- which doesn't make a
* difference with !FOLL_FORCE, because the page is writable
* in the page table.
* FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
* a poisoned page.
* !FOLL_FORCE: Require proper access permissions.
*/
gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
FOLL_MADV_POPULATE;
if (write)
gup_flags |= FOLL_WRITE;
ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
gup_flags);
lru_add_drain();
return ret;
}
/*
* __mm_populate - populate and/or mlock pages within a range of address space.
*
* This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
* flags. VMAs must be already marked with the desired vm_flags, and
* mmap_lock must not be held.
*/
int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
{
struct mm_struct *mm = current->mm;
unsigned long end, nstart, nend;
struct vm_area_struct *vma = NULL;
int locked = 0;
long ret = 0;
end = start + len;
for (nstart = start; nstart < end; nstart = nend) {
/*
* We want to fault in pages for [nstart; end) address range.
* Find first corresponding VMA.
*/
if (!locked) {
locked = 1;
mmap_read_lock(mm);
vma = find_vma_intersection(mm, nstart, end);
} else if (nstart >= vma->vm_end)
vma = find_vma_intersection(mm, vma->vm_end, end);
if (!vma)
break;
/*
* Set [nstart; nend) to intersection of desired address
* range with the first VMA. Also, skip undesirable VMA types.
*/
nend = min(end, vma->vm_end);
if (vma->vm_flags & (VM_IO | VM_PFNMAP))
continue;
if (nstart < vma->vm_start)
nstart = vma->vm_start;
/*
* Now fault in a range of pages. populate_vma_page_range()
* double checks the vma flags, so that it won't mlock pages
* if the vma was already munlocked.
*/
ret = populate_vma_page_range(vma, nstart, nend, &locked);
if (ret < 0) {
if (ignore_errors) {
ret = 0;
continue; /* continue at next VMA */
}
break;
}
nend = nstart + ret * PAGE_SIZE;
ret = 0;
}
if (locked)
mmap_read_unlock(mm);
return ret; /* 0 or negative error code */
}
#else /* CONFIG_MMU */
static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
unsigned long nr_pages, struct page **pages,
int *locked, unsigned int foll_flags)
{
struct vm_area_struct *vma;
bool must_unlock = false;
unsigned long vm_flags;
long i;
if (!nr_pages)
return 0;
/*
* The internal caller expects GUP to manage the lock internally and the
* lock must be released when this returns.
*/
if (!*locked) {
if (mmap_read_lock_killable(mm))
return -EAGAIN;
must_unlock = true;
*locked = 1;
}
/* calculate required read or write permissions.
* If FOLL_FORCE is set, we only require the "MAY" flags.
*/
vm_flags = (foll_flags & FOLL_WRITE) ?
(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
vm_flags &= (foll_flags & FOLL_FORCE) ?
(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
for (i = 0; i < nr_pages; i++) {
vma = find_vma(mm, start);
if (!vma)
break;
/* protect what we can, including chardevs */
if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
!(vm_flags & vma->vm_flags))
break;
if (pages) {
pages[i] = virt_to_page((void *)start);
if (pages[i])
get_page(pages[i]);
}
start = (start + PAGE_SIZE) & PAGE_MASK;
}
if (must_unlock && *locked) {
mmap_read_unlock(mm);
*locked = 0;
}
return i ? : -EFAULT;
}
#endif /* !CONFIG_MMU */
/**
* fault_in_writeable - fault in userspace address range for writing
* @uaddr: start of address range
* @size: size of address range
*
* Returns the number of bytes not faulted in (like copy_to_user() and
* copy_from_user()).
*/
size_t fault_in_writeable(char __user *uaddr, size_t size)
{
char __user *start = uaddr, *end;
if (unlikely(size == 0))
return 0;
if (!user_write_access_begin(uaddr, size))
return size;
if (!PAGE_ALIGNED(uaddr)) {
unsafe_put_user(0, uaddr, out);
uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
}
end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
if (unlikely(end < start))
end = NULL;
while (uaddr != end) {
unsafe_put_user(0, uaddr, out);
uaddr += PAGE_SIZE;
}
out:
user_write_access_end();
if (size > uaddr - start)
return size - (uaddr - start);
return 0;
}
EXPORT_SYMBOL(fault_in_writeable);
/**
* fault_in_subpage_writeable - fault in an address range for writing
* @uaddr: start of address range
* @size: size of address range
*
* Fault in a user address range for writing while checking for permissions at
* sub-page granularity (e.g. arm64 MTE). This function should be used when
* the caller cannot guarantee forward progress of a copy_to_user() loop.
*
* Returns the number of bytes not faulted in (like copy_to_user() and
* copy_from_user()).
*/
size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
{
size_t faulted_in;
/*
* Attempt faulting in at page granularity first for page table
* permission checking. The arch-specific probe_subpage_writeable()
* functions may not check for this.
*/
faulted_in = size - fault_in_writeable(uaddr, size);
if (faulted_in)
faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
return size - faulted_in;
}
EXPORT_SYMBOL(fault_in_subpage_writeable);
/*
* fault_in_safe_writeable - fault in an address range for writing
* @uaddr: start of address range
* @size: length of address range
*
* Faults in an address range for writing. This is primarily useful when we
* already know that some or all of the pages in the address range aren't in
* memory.
*
* Unlike fault_in_writeable(), this function is non-destructive.
*
* Note that we don't pin or otherwise hold the pages referenced that we fault
* in. There's no guarantee that they'll stay in memory for any duration of
* time.
*
* Returns the number of bytes not faulted in, like copy_to_user() and
* copy_from_user().
*/
size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
{
unsigned long start = (unsigned long)uaddr, end;
struct mm_struct *mm = current->mm;
bool unlocked = false;
if (unlikely(size == 0))
return 0;
end = PAGE_ALIGN(start + size);
if (end < start)
end = 0;
mmap_read_lock(mm);
do {
if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
break;
start = (start + PAGE_SIZE) & PAGE_MASK;
} while (start != end);
mmap_read_unlock(mm);
if (size > (unsigned long)uaddr - start)
return size - ((unsigned long)uaddr - start);
return 0;
}
EXPORT_SYMBOL(fault_in_safe_writeable);
/**
* fault_in_readable - fault in userspace address range for reading
* @uaddr: start of user address range
* @size: size of user address range
*
* Returns the number of bytes not faulted in (like copy_to_user() and
* copy_from_user()).
*/
size_t fault_in_readable(const char __user *uaddr, size_t size)
{
const char __user *start = uaddr, *end;
volatile char c;
if (unlikely(size == 0))
return 0;
if (!user_read_access_begin(uaddr, size))
return size;
if (!PAGE_ALIGNED(uaddr)) {
unsafe_get_user(c, uaddr, out);
uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
}
end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
if (unlikely(end < start))
end = NULL;
while (uaddr != end) {
unsafe_get_user(c, uaddr, out);
uaddr += PAGE_SIZE;
}
out:
user_read_access_end();
(void)c;
if (size > uaddr - start)
return size - (uaddr - start);
return 0;
}
EXPORT_SYMBOL(fault_in_readable);
/**
* get_dump_page() - pin user page in memory while writing it to core dump
* @addr: user address
*
* Returns struct page pointer of user page pinned for dump,
* to be freed afterwards by put_page().
*
* Returns NULL on any kind of failure - a hole must then be inserted into
* the corefile, to preserve alignment with its headers; and also returns
* NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
* allowing a hole to be left in the corefile to save disk space.
*
* Called without mmap_lock (takes and releases the mmap_lock by itself).
*/
#ifdef CONFIG_ELF_CORE
struct page *get_dump_page(unsigned long addr)
{
struct page *page;
int locked = 0;
int ret;
ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
FOLL_FORCE | FOLL_DUMP | FOLL_GET);
return (ret == 1) ? page : NULL;
}
#endif /* CONFIG_ELF_CORE */
#ifdef CONFIG_MIGRATION
/*
* Returns the number of collected folios. Return value is always >= 0.
*/
static unsigned long collect_longterm_unpinnable_folios(
struct list_head *movable_folio_list,
unsigned long nr_folios,
struct folio **folios)
{
unsigned long i, collected = 0;
struct folio *prev_folio = NULL;
bool drain_allow = true;
for (i = 0; i < nr_folios; i++) {
struct folio *folio = folios[i];
if (folio == prev_folio)
continue;
prev_folio = folio;
if (folio_is_longterm_pinnable(folio))
continue;
collected++;
if (folio_is_device_coherent(folio))
continue;
if (folio_test_hugetlb(folio)) {
isolate_hugetlb(folio, movable_folio_list);
continue;
}
if (!folio_test_lru(folio) && drain_allow) {
lru_add_drain_all();
drain_allow = false;
}
if (!folio_isolate_lru(folio))
continue;
list_add_tail(&folio->lru, movable_folio_list);
node_stat_mod_folio(folio,
NR_ISOLATED_ANON + folio_is_file_lru(folio),
folio_nr_pages(folio));
}
return collected;
}
/*
* Unpins all folios and migrates device coherent folios and movable_folio_list.
* Returns -EAGAIN if all folios were successfully migrated or -errno for
* failure (or partial success).
*/
static int migrate_longterm_unpinnable_folios(
struct list_head *movable_folio_list,
unsigned long nr_folios,
struct folio **folios)
{
int ret;
unsigned long i;
for (i = 0; i < nr_folios; i++) {
struct folio *folio = folios[i];
if (folio_is_device_coherent(folio)) {
/*
* Migration will fail if the folio is pinned, so
* convert the pin on the source folio to a normal
* reference.
*/
folios[i] = NULL;
folio_get(folio);
gup_put_folio(folio, 1, FOLL_PIN);
if (migrate_device_coherent_page(&folio->page)) {
ret = -EBUSY;
goto err;
}
continue;
}
/*
* We can't migrate folios with unexpected references, so drop
* the reference obtained by __get_user_pages_locked().
* Migrating folios have been added to movable_folio_list after
* calling folio_isolate_lru() which takes a reference so the
* folio won't be freed if it's migrating.
*/
unpin_folio(folios[i]);
folios[i] = NULL;
}
if (!list_empty(movable_folio_list)) {
struct migration_target_control mtc = {
.nid = NUMA_NO_NODE,
.gfp_mask = GFP_USER | __GFP_NOWARN,
.reason = MR_LONGTERM_PIN,
};
if (migrate_pages(movable_folio_list, alloc_migration_target,
NULL, (unsigned long)&mtc, MIGRATE_SYNC,
MR_LONGTERM_PIN, NULL)) {
ret = -ENOMEM;
goto err;
}
}
putback_movable_pages(movable_folio_list);
return -EAGAIN;
err:
unpin_folios(folios, nr_folios);
putback_movable_pages(movable_folio_list);
return ret;
}
/*
* Check whether all folios are *allowed* to be pinned indefinitely (longterm).
* Rather confusingly, all folios in the range are required to be pinned via
* FOLL_PIN, before calling this routine.
*
* If any folios in the range are not allowed to be pinned, then this routine
* will migrate those folios away, unpin all the folios in the range and return
* -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
* call this routine again.
*
* If an error other than -EAGAIN occurs, this indicates a migration failure.
* The caller should give up, and propagate the error back up the call stack.
*
* If everything is OK and all folios in the range are allowed to be pinned,
* then this routine leaves all folios pinned and returns zero for success.
*/
static long check_and_migrate_movable_folios(unsigned long nr_folios,
struct folio **folios)
{
unsigned long collected;
LIST_HEAD(movable_folio_list);
collected = collect_longterm_unpinnable_folios(&movable_folio_list,
nr_folios, folios);
if (!collected)
return 0;
return migrate_longterm_unpinnable_folios(&movable_folio_list,
nr_folios, folios);
}
/*
* This routine just converts all the pages in the @pages array to folios and
* calls check_and_migrate_movable_folios() to do the heavy lifting.
*
* Please see the check_and_migrate_movable_folios() documentation for details.
*/
static long check_and_migrate_movable_pages(unsigned long nr_pages,
struct page **pages)
{
struct folio **folios;
long i, ret;
folios = kmalloc_array(nr_pages, sizeof(*folios), GFP_KERNEL);
if (!folios)
return -ENOMEM;
for (i = 0; i < nr_pages; i++)
folios[i] = page_folio(pages[i]);
ret = check_and_migrate_movable_folios(nr_pages, folios);
kfree(folios);
return ret;
}
#else
static long check_and_migrate_movable_pages(unsigned long nr_pages,
struct page **pages)
{
return 0;
}
static long check_and_migrate_movable_folios(unsigned long nr_folios,
struct folio **folios)
{
return 0;
}
#endif /* CONFIG_MIGRATION */
/*
* __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
* allows us to process the FOLL_LONGTERM flag.
*/
static long __gup_longterm_locked(struct mm_struct *mm,
unsigned long start,
unsigned long nr_pages,
struct page **pages,
int *locked,
unsigned int gup_flags)
{
unsigned int flags;
long rc, nr_pinned_pages;
if (!(gup_flags & FOLL_LONGTERM))
return __get_user_pages_locked(mm, start, nr_pages, pages,
locked, gup_flags);
flags = memalloc_pin_save();
do {
nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
pages, locked,
gup_flags);
if (nr_pinned_pages <= 0) {
rc = nr_pinned_pages;
break;
}
/* FOLL_LONGTERM implies FOLL_PIN */
rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
} while (rc == -EAGAIN);
memalloc_pin_restore(flags);
return rc ? rc : nr_pinned_pages;
}
/*
* Check that the given flags are valid for the exported gup/pup interface, and
* update them with the required flags that the caller must have set.
*/
static bool is_valid_gup_args(struct page **pages, int *locked,
unsigned int *gup_flags_p, unsigned int to_set)
{
unsigned int gup_flags = *gup_flags_p;
/*
* These flags not allowed to be specified externally to the gup
* interfaces:
* - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
* - FOLL_REMOTE is internal only and used on follow_page()
* - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
*/
if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
return false;
gup_flags |= to_set;
if (locked) {
/* At the external interface locked must be set */
if (WARN_ON_ONCE(*locked != 1))
return false;
gup_flags |= FOLL_UNLOCKABLE;
}
/* FOLL_GET and FOLL_PIN are mutually exclusive. */
if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
(FOLL_PIN | FOLL_GET)))
return false;
/* LONGTERM can only be specified when pinning */
if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
return false;
/* Pages input must be given if using GET/PIN */
if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
return false;
/* We want to allow the pgmap to be hot-unplugged at all times */
if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
(gup_flags & FOLL_PCI_P2PDMA)))
return false;
*gup_flags_p = gup_flags;
return true;
}
#ifdef CONFIG_MMU
/**
* get_user_pages_remote() - pin user pages in memory
* @mm: mm_struct of target mm
* @start: starting user address
* @nr_pages: number of pages from start to pin
* @gup_flags: flags modifying lookup behaviour
* @pages: array that receives pointers to the pages pinned.
* Should be at least nr_pages long. Or NULL, if caller
* only intends to ensure the pages are faulted in.
* @locked: pointer to lock flag indicating whether lock is held and
* subsequently whether VM_FAULT_RETRY functionality can be
* utilised. Lock must initially be held.
*
* Returns either number of pages pinned (which may be less than the
* number requested), or an error. Details about the return value:
*
* -- If nr_pages is 0, returns 0.
* -- If nr_pages is >0, but no pages were pinned, returns -errno.
* -- If nr_pages is >0, and some pages were pinned, returns the number of
* pages pinned. Again, this may be less than nr_pages.
*
* The caller is responsible for releasing returned @pages, via put_page().
*
* Must be called with mmap_lock held for read or write.
*
* get_user_pages_remote walks a process's page tables and takes a reference
* to each struct page that each user address corresponds to at a given
* instant. That is, it takes the page that would be accessed if a user
* thread accesses the given user virtual address at that instant.
*
* This does not guarantee that the page exists in the user mappings when
* get_user_pages_remote returns, and there may even be a completely different
* page there in some cases (eg. if mmapped pagecache has been invalidated
* and subsequently re-faulted). However it does guarantee that the page
* won't be freed completely. And mostly callers simply care that the page
* contains data that was valid *at some point in time*. Typically, an IO
* or similar operation cannot guarantee anything stronger anyway because
* locks can't be held over the syscall boundary.
*
* If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
* is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
* be called after the page is finished with, and before put_page is called.
*
* get_user_pages_remote is typically used for fewer-copy IO operations,
* to get a handle on the memory by some means other than accesses
* via the user virtual addresses. The pages may be submitted for
* DMA to devices or accessed via their kernel linear mapping (via the
* kmap APIs). Care should be taken to use the correct cache flushing APIs.
*
* See also get_user_pages_fast, for performance critical applications.
*
* get_user_pages_remote should be phased out in favor of
* get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
* should use get_user_pages_remote because it cannot pass
* FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
*/
long get_user_pages_remote(struct mm_struct *mm,
unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
int *locked)
{
int local_locked = 1;
if (!is_valid_gup_args(pages, locked, &gup_flags,
FOLL_TOUCH | FOLL_REMOTE))
return -EINVAL;
return __get_user_pages_locked(mm, start, nr_pages, pages,
locked ? locked : &local_locked,
gup_flags);
}
EXPORT_SYMBOL(get_user_pages_remote);
#else /* CONFIG_MMU */
long get_user_pages_remote(struct mm_struct *mm,
unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
int *locked)
{
return 0;
}
#endif /* !CONFIG_MMU */
/**
* get_user_pages() - pin user pages in memory
* @start: starting user address
* @nr_pages: number of pages from start to pin
* @gup_flags: flags modifying lookup behaviour
* @pages: array that receives pointers to the pages pinned.
* Should be at least nr_pages long. Or NULL, if caller
* only intends to ensure the pages are faulted in.
*
* This is the same as get_user_pages_remote(), just with a less-flexible
* calling convention where we assume that the mm being operated on belongs to
* the current task, and doesn't allow passing of a locked parameter. We also
* obviously don't pass FOLL_REMOTE in here.
*/
long get_user_pages(unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages)
{
int locked = 1;
if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
return -EINVAL;
return __get_user_pages_locked(current->mm, start, nr_pages, pages,
&locked, gup_flags);
}
EXPORT_SYMBOL(get_user_pages);
/*
* get_user_pages_unlocked() is suitable to replace the form:
*
* mmap_read_lock(mm);
* get_user_pages(mm, ..., pages, NULL);
* mmap_read_unlock(mm);
*
* with:
*
* get_user_pages_unlocked(mm, ..., pages);
*
* It is functionally equivalent to get_user_pages_fast so
* get_user_pages_fast should be used instead if specific gup_flags
* (e.g. FOLL_FORCE) are not required.
*/
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
struct page **pages, unsigned int gup_flags)
{
int locked = 0;
if (!is_valid_gup_args(pages, NULL, &gup_flags,
FOLL_TOUCH | FOLL_UNLOCKABLE))
return -EINVAL;
return __get_user_pages_locked(current->mm, start, nr_pages, pages,
&locked, gup_flags);
}
EXPORT_SYMBOL(get_user_pages_unlocked);
/*
* GUP-fast
*
* get_user_pages_fast attempts to pin user pages by walking the page
* tables directly and avoids taking locks. Thus the walker needs to be
* protected from page table pages being freed from under it, and should
* block any THP splits.
*
* One way to achieve this is to have the walker disable interrupts, and
* rely on IPIs from the TLB flushing code blocking before the page table
* pages are freed. This is unsuitable for architectures that do not need
* to broadcast an IPI when invalidating TLBs.
*
* Another way to achieve this is to batch up page table containing pages
* belonging to more than one mm_user, then rcu_sched a callback to free those
* pages. Disabling interrupts will allow the gup_fast() walker to both block
* the rcu_sched callback, and an IPI that we broadcast for splitting THPs
* (which is a relatively rare event). The code below adopts this strategy.
*
* Before activating this code, please be aware that the following assumptions
* are currently made:
*
* *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
* free pages containing page tables or TLB flushing requires IPI broadcast.
*
* *) ptes can be read atomically by the architecture.
*
* *) access_ok is sufficient to validate userspace address ranges.
*
* The last two assumptions can be relaxed by the addition of helper functions.
*
* This code is based heavily on the PowerPC implementation by Nick Piggin.
*/
#ifdef CONFIG_HAVE_GUP_FAST
/*
* Used in the GUP-fast path to determine whether GUP is permitted to work on
* a specific folio.
*
* This call assumes the caller has pinned the folio, that the lowest page table
* level still points to this folio, and that interrupts have been disabled.
*
* GUP-fast must reject all secretmem folios.
*
* Writing to pinned file-backed dirty tracked folios is inherently problematic
* (see comment describing the writable_file_mapping_allowed() function). We
* therefore try to avoid the most egregious case of a long-term mapping doing
* so.
*
* This function cannot be as thorough as that one as the VMA is not available
* in the fast path, so instead we whitelist known good cases and if in doubt,
* fall back to the slow path.
*/
static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
{
bool reject_file_backed = false;
struct address_space *mapping;
bool check_secretmem = false;
unsigned long mapping_flags;
/*
* If we aren't pinning then no problematic write can occur. A long term
* pin is the most egregious case so this is the one we disallow.
*/
if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
(FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
reject_file_backed = true;
/* We hold a folio reference, so we can safely access folio fields. */
/* secretmem folios are always order-0 folios. */
if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
check_secretmem = true;
if (!reject_file_backed && !check_secretmem)
return true;
if (WARN_ON_ONCE(folio_test_slab(folio)))
return false;
/* hugetlb neither requires dirty-tracking nor can be secretmem. */
if (folio_test_hugetlb(folio))
return true;
/*
* GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
* cannot proceed, which means no actions performed under RCU can
* proceed either.
*
* inodes and thus their mappings are freed under RCU, which means the
* mapping cannot be freed beneath us and thus we can safely dereference
* it.
*/
lockdep_assert_irqs_disabled();
/*
* However, there may be operations which _alter_ the mapping, so ensure
* we read it once and only once.
*/
mapping = READ_ONCE(folio->mapping);
/*
* The mapping may have been truncated, in any case we cannot determine
* if this mapping is safe - fall back to slow path to determine how to
* proceed.
*/
if (!mapping)
return false;
/* Anonymous folios pose no problem. */
mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
if (mapping_flags)
return mapping_flags & PAGE_MAPPING_ANON;
/*
* At this point, we know the mapping is non-null and points to an
* address_space object.
*/
if (check_secretmem && secretmem_mapping(mapping))
return false;
/* The only remaining allowed file system is shmem. */
return !reject_file_backed || shmem_mapping(mapping);
}
static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start,
unsigned int flags, struct page **pages)
{
while ((*nr) - nr_start) {
struct folio *folio = page_folio(pages[--(*nr)]);
folio_clear_referenced(folio);
gup_put_folio(folio, 1, flags);
}
}
#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
/*
* GUP-fast relies on pte change detection to avoid concurrent pgtable
* operations.
*
* To pin the page, GUP-fast needs to do below in order:
* (1) pin the page (by prefetching pte), then (2) check pte not changed.
*
* For the rest of pgtable operations where pgtable updates can be racy
* with GUP-fast, we need to do (1) clear pte, then (2) check whether page
* is pinned.
*
* Above will work for all pte-level operations, including THP split.
*
* For THP collapse, it's a bit more complicated because GUP-fast may be
* walking a pgtable page that is being freed (pte is still valid but pmd
* can be cleared already). To avoid race in such condition, we need to
* also check pmd here to make sure pmd doesn't change (corresponds to
* pmdp_collapse_flush() in the THP collapse code path).
*/
static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
unsigned long end, unsigned int flags, struct page **pages,
int *nr)
{
struct dev_pagemap *pgmap = NULL;
int nr_start = *nr, ret = 0;
pte_t *ptep, *ptem;
ptem = ptep = pte_offset_map(&pmd, addr);
if (!ptep)
return 0;
do {
pte_t pte = ptep_get_lockless(ptep);
struct page *page;
struct folio *folio;
/*
* Always fallback to ordinary GUP on PROT_NONE-mapped pages:
* pte_access_permitted() better should reject these pages
* either way: otherwise, GUP-fast might succeed in
* cases where ordinary GUP would fail due to VMA access
* permissions.
*/
if (pte_protnone(pte))
goto pte_unmap;
if (!pte_access_permitted(pte, flags & FOLL_WRITE))
goto pte_unmap;
if (pte_devmap(pte)) {
if (unlikely(flags & FOLL_LONGTERM))
goto pte_unmap;
pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
if (unlikely(!pgmap)) {
gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
goto pte_unmap;
}
} else if (pte_special(pte))
goto pte_unmap;
VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
page = pte_page(pte);
folio = try_grab_folio_fast(page, 1, flags);
if (!folio)
goto pte_unmap;
if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
gup_put_folio(folio, 1, flags);
goto pte_unmap;
}
if (!gup_fast_folio_allowed(folio, flags)) {
gup_put_folio(folio, 1, flags);
goto pte_unmap;
}
if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
gup_put_folio(folio, 1, flags);
goto pte_unmap;
}
/*
* We need to make the page accessible if and only if we are
* going to access its content (the FOLL_PIN case). Please
* see Documentation/core-api/pin_user_pages.rst for
* details.
*/
if (flags & FOLL_PIN) {
ret = arch_make_page_accessible(page);
if (ret) {
gup_put_folio(folio, 1, flags);
goto pte_unmap;
}
}
folio_set_referenced(folio);
pages[*nr] = page;
(*nr)++;
} while (ptep++, addr += PAGE_SIZE, addr != end);
ret = 1;
pte_unmap:
if (pgmap)
put_dev_pagemap(pgmap);
pte_unmap(ptem);
return ret;
}
#else
/*
* If we can't determine whether or not a pte is special, then fail immediately
* for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
* to be special.
*
* For a futex to be placed on a THP tail page, get_futex_key requires a
* get_user_pages_fast_only implementation that can pin pages. Thus it's still
* useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
*/
static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
unsigned long end, unsigned int flags, struct page **pages,
int *nr)
{
return 0;
}
#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr,
unsigned long end, unsigned int flags, struct page **pages, int *nr)
{
int nr_start = *nr;
struct dev_pagemap *pgmap = NULL;
do {
struct folio *folio;
struct page *page = pfn_to_page(pfn);
pgmap = get_dev_pagemap(pfn, pgmap);
if (unlikely(!pgmap)) {
gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
break;
}
if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
break;
}
folio = try_grab_folio_fast(page, 1, flags);
if (!folio) {
gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
break;
}
folio_set_referenced(folio);
pages[*nr] = page;
(*nr)++;
pfn++;
} while (addr += PAGE_SIZE, addr != end);
put_dev_pagemap(pgmap);
return addr == end;
}
static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
unsigned long end, unsigned int flags, struct page **pages,
int *nr)
{
unsigned long fault_pfn;
int nr_start = *nr;
fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
return 0;
if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
return 0;
}
return 1;
}
static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
unsigned long end, unsigned int flags, struct page **pages,
int *nr)
{
unsigned long fault_pfn;
int nr_start = *nr;
fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
return 0;
if (unlikely(pud_val(orig) != pud_val(*pudp))) {
gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
return 0;
}
return 1;
}
#else
static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
unsigned long end, unsigned int flags, struct page **pages,
int *nr)
{
BUILD_BUG();
return 0;
}
static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr,
unsigned long end, unsigned int flags, struct page **pages,
int *nr)
{
BUILD_BUG();
return 0;
}
#endif
static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
unsigned long end, unsigned int flags, struct page **pages,
int *nr)
{
struct page *page;
struct folio *folio;
int refs;
if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
return 0;
if (pmd_devmap(orig)) {
if (unlikely(flags & FOLL_LONGTERM))
return 0;
return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags,
pages, nr);
}
page = pmd_page(orig);
refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr);
folio = try_grab_folio_fast(page, refs, flags);
if (!folio)
return 0;
if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
gup_put_folio(folio, refs, flags);
return 0;
}
if (!gup_fast_folio_allowed(folio, flags)) {
gup_put_folio(folio, refs, flags);
return 0;
}
if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
gup_put_folio(folio, refs, flags);
return 0;
}
*nr += refs;
folio_set_referenced(folio);
return 1;
}
static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
unsigned long end, unsigned int flags, struct page **pages,
int *nr)
{
struct page *page;
struct folio *folio;
int refs;
if (!pud_access_permitted(orig, flags & FOLL_WRITE))
return 0;
if (pud_devmap(orig)) {
if (unlikely(flags & FOLL_LONGTERM))
return 0;
return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags,
pages, nr);
}
page = pud_page(orig);
refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr);
folio = try_grab_folio_fast(page, refs, flags);
if (!folio)
return 0;
if (unlikely(pud_val(orig) != pud_val(*pudp))) {
gup_put_folio(folio, refs, flags);
return 0;
}
if (!gup_fast_folio_allowed(folio, flags)) {
gup_put_folio(folio, refs, flags);
return 0;
}
if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
gup_put_folio(folio, refs, flags);
return 0;
}
*nr += refs;
folio_set_referenced(folio);
return 1;
}
static int gup_fast_pgd_leaf(pgd_t orig, pgd_t *pgdp, unsigned long addr,
unsigned long end, unsigned int flags, struct page **pages,
int *nr)
{
int refs;
struct page *page;
struct folio *folio;
if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
return 0;
BUILD_BUG_ON(pgd_devmap(orig));
page = pgd_page(orig);
refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr);
folio = try_grab_folio_fast(page, refs, flags);
if (!folio)
return 0;
if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
gup_put_folio(folio, refs, flags);
return 0;
}
if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
gup_put_folio(folio, refs, flags);
return 0;
}
if (!gup_fast_folio_allowed(folio, flags)) {
gup_put_folio(folio, refs, flags);
return 0;
}
*nr += refs;
folio_set_referenced(folio);
return 1;
}
static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
unsigned long end, unsigned int flags, struct page **pages,
int *nr)
{
unsigned long next;
pmd_t *pmdp;
pmdp = pmd_offset_lockless(pudp, pud, addr);
do {
pmd_t pmd = pmdp_get_lockless(pmdp);
next = pmd_addr_end(addr, end);
if (!pmd_present(pmd))
return 0;
if (unlikely(pmd_leaf(pmd))) {
/* See gup_fast_pte_range() */
if (pmd_protnone(pmd))
return 0;
if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags,
pages, nr))
return 0;
} else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags,
pages, nr))
return 0;
} while (pmdp++, addr = next, addr != end);
return 1;
}
static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr,
unsigned long end, unsigned int flags, struct page **pages,
int *nr)
{
unsigned long next;
pud_t *pudp;
pudp = pud_offset_lockless(p4dp, p4d, addr);
do {
pud_t pud = READ_ONCE(*pudp);
next = pud_addr_end(addr, end);
if (unlikely(!pud_present(pud)))
return 0;
if (unlikely(pud_leaf(pud))) {
if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags,
pages, nr))
return 0;
} else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags,
pages, nr))
return 0;
} while (pudp++, addr = next, addr != end);
return 1;
}
static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
unsigned long end, unsigned int flags, struct page **pages,
int *nr)
{
unsigned long next;
p4d_t *p4dp;
p4dp = p4d_offset_lockless(pgdp, pgd, addr);
do {
p4d_t p4d = READ_ONCE(*p4dp);
next = p4d_addr_end(addr, end);
if (!p4d_present(p4d))
return 0;
BUILD_BUG_ON(p4d_leaf(p4d));
if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags,
pages, nr))
return 0;
} while (p4dp++, addr = next, addr != end);
return 1;
}
static void gup_fast_pgd_range(unsigned long addr, unsigned long end,
unsigned int flags, struct page **pages, int *nr)
{
unsigned long next;
pgd_t *pgdp;
pgdp = pgd_offset(current->mm, addr);
do {
pgd_t pgd = READ_ONCE(*pgdp);
next = pgd_addr_end(addr, end);
if (pgd_none(pgd))
return;
if (unlikely(pgd_leaf(pgd))) {
if (!gup_fast_pgd_leaf(pgd, pgdp, addr, next, flags,
pages, nr))
return;
} else if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags,
pages, nr))
return;
} while (pgdp++, addr = next, addr != end);
}
#else
static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end,
unsigned int flags, struct page **pages, int *nr)
{
}
#endif /* CONFIG_HAVE_GUP_FAST */
#ifndef gup_fast_permitted
/*
* Check if it's allowed to use get_user_pages_fast_only() for the range, or
* we need to fall back to the slow version:
*/
static bool gup_fast_permitted(unsigned long start, unsigned long end)
{
return true;
}
#endif
static unsigned long gup_fast(unsigned long start, unsigned long end,
unsigned int gup_flags, struct page **pages)
{
unsigned long flags;
int nr_pinned = 0;
unsigned seq;
if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) ||
!gup_fast_permitted(start, end))
return 0;
if (gup_flags & FOLL_PIN) {
seq = raw_read_seqcount(&current->mm->write_protect_seq);
if (seq & 1)
return 0;
}
/*
* Disable interrupts. The nested form is used, in order to allow full,
* general purpose use of this routine.
*
* With interrupts disabled, we block page table pages from being freed
* from under us. See struct mmu_table_batch comments in
* include/asm-generic/tlb.h for more details.
*
* We do not adopt an rcu_read_lock() here as we also want to block IPIs
* that come from THPs splitting.
*/
local_irq_save(flags);
gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned);
local_irq_restore(flags);
/*
* When pinning pages for DMA there could be a concurrent write protect
* from fork() via copy_page_range(), in this case always fail GUP-fast.
*/
if (gup_flags & FOLL_PIN) {
if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
gup_fast_unpin_user_pages(pages, nr_pinned);
return 0;
} else {
sanity_check_pinned_pages(pages, nr_pinned);
}
}
return nr_pinned;
}
static int gup_fast_fallback(unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages)
{
unsigned long len, end;
unsigned long nr_pinned;
int locked = 0;
int ret;
if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
FOLL_FORCE | FOLL_PIN | FOLL_GET |
FOLL_FAST_ONLY | FOLL_NOFAULT |
FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
return -EINVAL;
if (gup_flags & FOLL_PIN)
mm_set_has_pinned_flag(&current->mm->flags);
if (!(gup_flags & FOLL_FAST_ONLY))
might_lock_read(&current->mm->mmap_lock);
start = untagged_addr(start) & PAGE_MASK;
len = nr_pages << PAGE_SHIFT;
if (check_add_overflow(start, len, &end))
return -EOVERFLOW;
if (end > TASK_SIZE_MAX)
return -EFAULT;
if (unlikely(!access_ok((void __user *)start, len)))
return -EFAULT;
nr_pinned = gup_fast(start, end, gup_flags, pages);
if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
return nr_pinned;
/* Slow path: try to get the remaining pages with get_user_pages */
start += nr_pinned << PAGE_SHIFT;
pages += nr_pinned;
ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
pages, &locked,
gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
if (ret < 0) {
/*
* The caller has to unpin the pages we already pinned so
* returning -errno is not an option
*/
if (nr_pinned)
return nr_pinned;
return ret;
}
return ret + nr_pinned;
}
/**
* get_user_pages_fast_only() - pin user pages in memory
* @start: starting user address
* @nr_pages: number of pages from start to pin
* @gup_flags: flags modifying pin behaviour
* @pages: array that receives pointers to the pages pinned.
* Should be at least nr_pages long.
*
* Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
* the regular GUP.
*
* If the architecture does not support this function, simply return with no
* pages pinned.
*
* Careful, careful! COW breaking can go either way, so a non-write
* access can get ambiguous page results. If you call this function without
* 'write' set, you'd better be sure that you're ok with that ambiguity.
*/
int get_user_pages_fast_only(unsigned long start, int nr_pages,
unsigned int gup_flags, struct page **pages)
{
/*
* Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
* because gup fast is always a "pin with a +1 page refcount" request.
*
* FOLL_FAST_ONLY is required in order to match the API description of
* this routine: no fall back to regular ("slow") GUP.
*/
if (!is_valid_gup_args(pages, NULL, &gup_flags,
FOLL_GET | FOLL_FAST_ONLY))
return -EINVAL;
return gup_fast_fallback(start, nr_pages, gup_flags, pages);
}
EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
/**
* get_user_pages_fast() - pin user pages in memory
* @start: starting user address
* @nr_pages: number of pages from start to pin
* @gup_flags: flags modifying pin behaviour
* @pages: array that receives pointers to the pages pinned.
* Should be at least nr_pages long.
*
* Attempt to pin user pages in memory without taking mm->mmap_lock.
* If not successful, it will fall back to taking the lock and
* calling get_user_pages().
*
* Returns number of pages pinned. This may be fewer than the number requested.
* If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
* -errno.
*/
int get_user_pages_fast(unsigned long start, int nr_pages,
unsigned int gup_flags, struct page **pages)
{
/*
* The caller may or may not have explicitly set FOLL_GET; either way is
* OK. However, internally (within mm/gup.c), gup fast variants must set
* FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
* request.
*/
if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
return -EINVAL;
return gup_fast_fallback(start, nr_pages, gup_flags, pages);
}
EXPORT_SYMBOL_GPL(get_user_pages_fast);
/**
* pin_user_pages_fast() - pin user pages in memory without taking locks
*
* @start: starting user address
* @nr_pages: number of pages from start to pin
* @gup_flags: flags modifying pin behaviour
* @pages: array that receives pointers to the pages pinned.
* Should be at least nr_pages long.
*
* Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
* get_user_pages_fast() for documentation on the function arguments, because
* the arguments here are identical.
*
* FOLL_PIN means that the pages must be released via unpin_user_page(). Please
* see Documentation/core-api/pin_user_pages.rst for further details.
*
* Note that if a zero_page is amongst the returned pages, it will not have
* pins in it and unpin_user_page() will not remove pins from it.
*/
int pin_user_pages_fast(unsigned long start, int nr_pages,
unsigned int gup_flags, struct page **pages)
{
if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
return -EINVAL;
return gup_fast_fallback(start, nr_pages, gup_flags, pages);
}
EXPORT_SYMBOL_GPL(pin_user_pages_fast);
/**
* pin_user_pages_remote() - pin pages of a remote process
*
* @mm: mm_struct of target mm
* @start: starting user address
* @nr_pages: number of pages from start to pin
* @gup_flags: flags modifying lookup behaviour
* @pages: array that receives pointers to the pages pinned.
* Should be at least nr_pages long.
* @locked: pointer to lock flag indicating whether lock is held and
* subsequently whether VM_FAULT_RETRY functionality can be
* utilised. Lock must initially be held.
*
* Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
* get_user_pages_remote() for documentation on the function arguments, because
* the arguments here are identical.
*
* FOLL_PIN means that the pages must be released via unpin_user_page(). Please
* see Documentation/core-api/pin_user_pages.rst for details.
*
* Note that if a zero_page is amongst the returned pages, it will not have
* pins in it and unpin_user_page*() will not remove pins from it.
*/
long pin_user_pages_remote(struct mm_struct *mm,
unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
int *locked)
{
int local_locked = 1;
if (!is_valid_gup_args(pages, locked, &gup_flags,
FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
return 0;
return __gup_longterm_locked(mm, start, nr_pages, pages,
locked ? locked : &local_locked,
gup_flags);
}
EXPORT_SYMBOL(pin_user_pages_remote);
/**
* pin_user_pages() - pin user pages in memory for use by other devices
*
* @start: starting user address
* @nr_pages: number of pages from start to pin
* @gup_flags: flags modifying lookup behaviour
* @pages: array that receives pointers to the pages pinned.
* Should be at least nr_pages long.
*
* Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
* FOLL_PIN is set.
*
* FOLL_PIN means that the pages must be released via unpin_user_page(). Please
* see Documentation/core-api/pin_user_pages.rst for details.
*
* Note that if a zero_page is amongst the returned pages, it will not have
* pins in it and unpin_user_page*() will not remove pins from it.
*/
long pin_user_pages(unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages)
{
int locked = 1;
if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
return 0;
return __gup_longterm_locked(current->mm, start, nr_pages,
pages, &locked, gup_flags);
}
EXPORT_SYMBOL(pin_user_pages);
/*
* pin_user_pages_unlocked() is the FOLL_PIN variant of
* get_user_pages_unlocked(). Behavior is the same, except that this one sets
* FOLL_PIN and rejects FOLL_GET.
*
* Note that if a zero_page is amongst the returned pages, it will not have
* pins in it and unpin_user_page*() will not remove pins from it.
*/
long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
struct page **pages, unsigned int gup_flags)
{
int locked = 0;
if (!is_valid_gup_args(pages, NULL, &gup_flags,
FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
return 0;
return __gup_longterm_locked(current->mm, start, nr_pages, pages,
&locked, gup_flags);
}
EXPORT_SYMBOL(pin_user_pages_unlocked);
/**
* memfd_pin_folios() - pin folios associated with a memfd
* @memfd: the memfd whose folios are to be pinned
* @start: the first memfd offset
* @end: the last memfd offset (inclusive)
* @folios: array that receives pointers to the folios pinned
* @max_folios: maximum number of entries in @folios
* @offset: the offset into the first folio
*
* Attempt to pin folios associated with a memfd in the contiguous range
* [start, end]. Given that a memfd is either backed by shmem or hugetlb,
* the folios can either be found in the page cache or need to be allocated
* if necessary. Once the folios are located, they are all pinned via
* FOLL_PIN and @offset is populatedwith the offset into the first folio.
* And, eventually, these pinned folios must be released either using
* unpin_folios() or unpin_folio().
*
* It must be noted that the folios may be pinned for an indefinite amount
* of time. And, in most cases, the duration of time they may stay pinned
* would be controlled by the userspace. This behavior is effectively the
* same as using FOLL_LONGTERM with other GUP APIs.
*
* Returns number of folios pinned, which could be less than @max_folios
* as it depends on the folio sizes that cover the range [start, end].
* If no folios were pinned, it returns -errno.
*/
long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
struct folio **folios, unsigned int max_folios,
pgoff_t *offset)
{
unsigned int flags, nr_folios, nr_found;
unsigned int i, pgshift = PAGE_SHIFT;
pgoff_t start_idx, end_idx, next_idx;
struct folio *folio = NULL;
struct folio_batch fbatch;
struct hstate *h;
long ret = -EINVAL;
if (start < 0 || start > end || !max_folios)
return -EINVAL;
if (!memfd)
return -EINVAL;
if (!shmem_file(memfd) && !is_file_hugepages(memfd))
return -EINVAL;
if (end >= i_size_read(file_inode(memfd)))
return -EINVAL;
if (is_file_hugepages(memfd)) {
h = hstate_file(memfd);
pgshift = huge_page_shift(h);
}
flags = memalloc_pin_save();
do {
nr_folios = 0;
start_idx = start >> pgshift;
end_idx = end >> pgshift;
if (is_file_hugepages(memfd)) {
start_idx <<= huge_page_order(h);
end_idx <<= huge_page_order(h);
}
folio_batch_init(&fbatch);
while (start_idx <= end_idx && nr_folios < max_folios) {
/*
* In most cases, we should be able to find the folios
* in the page cache. If we cannot find them for some
* reason, we try to allocate them and add them to the
* page cache.
*/
nr_found = filemap_get_folios_contig(memfd->f_mapping,
&start_idx,
end_idx,
&fbatch);
if (folio) {
folio_put(folio);
folio = NULL;
}
next_idx = 0;
for (i = 0; i < nr_found; i++) {
/*
* As there can be multiple entries for a
* given folio in the batch returned by
* filemap_get_folios_contig(), the below
* check is to ensure that we pin and return a
* unique set of folios between start and end.
*/
if (next_idx &&
next_idx != folio_index(fbatch.folios[i]))
continue;
folio = page_folio(&fbatch.folios[i]->page);
if (try_grab_folio(folio, 1, FOLL_PIN)) {
folio_batch_release(&fbatch);
ret = -EINVAL;
goto err;
}
if (nr_folios == 0)
*offset = offset_in_folio(folio, start);
folios[nr_folios] = folio;
next_idx = folio_next_index(folio);
if (++nr_folios == max_folios)
break;
}
folio = NULL;
folio_batch_release(&fbatch);
if (!nr_found) {
folio = memfd_alloc_folio(memfd, start_idx);
if (IS_ERR(folio)) {
ret = PTR_ERR(folio);
if (ret != -EEXIST)
goto err;
}
}
}
ret = check_and_migrate_movable_folios(nr_folios, folios);
} while (ret == -EAGAIN);
memalloc_pin_restore(flags);
return ret ? ret : nr_folios;
err:
memalloc_pin_restore(flags);
unpin_folios(folios, nr_folios);
return ret;
}
EXPORT_SYMBOL_GPL(memfd_pin_folios);