|  | /* | 
|  | * rational fractions | 
|  | * | 
|  | * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <oskar@scara.com> | 
|  | * | 
|  | * helper functions when coping with rational numbers | 
|  | */ | 
|  |  | 
|  | #include <linux/rational.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/export.h> | 
|  |  | 
|  | /* | 
|  | * calculate best rational approximation for a given fraction | 
|  | * taking into account restricted register size, e.g. to find | 
|  | * appropriate values for a pll with 5 bit denominator and | 
|  | * 8 bit numerator register fields, trying to set up with a | 
|  | * frequency ratio of 3.1415, one would say: | 
|  | * | 
|  | * rational_best_approximation(31415, 10000, | 
|  | *		(1 << 8) - 1, (1 << 5) - 1, &n, &d); | 
|  | * | 
|  | * you may look at given_numerator as a fixed point number, | 
|  | * with the fractional part size described in given_denominator. | 
|  | * | 
|  | * for theoretical background, see: | 
|  | * http://en.wikipedia.org/wiki/Continued_fraction | 
|  | */ | 
|  |  | 
|  | void rational_best_approximation( | 
|  | unsigned long given_numerator, unsigned long given_denominator, | 
|  | unsigned long max_numerator, unsigned long max_denominator, | 
|  | unsigned long *best_numerator, unsigned long *best_denominator) | 
|  | { | 
|  | unsigned long n, d, n0, d0, n1, d1; | 
|  | n = given_numerator; | 
|  | d = given_denominator; | 
|  | n0 = d1 = 0; | 
|  | n1 = d0 = 1; | 
|  | for (;;) { | 
|  | unsigned long t, a; | 
|  | if ((n1 > max_numerator) || (d1 > max_denominator)) { | 
|  | n1 = n0; | 
|  | d1 = d0; | 
|  | break; | 
|  | } | 
|  | if (d == 0) | 
|  | break; | 
|  | t = d; | 
|  | a = n / d; | 
|  | d = n % d; | 
|  | n = t; | 
|  | t = n0 + a * n1; | 
|  | n0 = n1; | 
|  | n1 = t; | 
|  | t = d0 + a * d1; | 
|  | d0 = d1; | 
|  | d1 = t; | 
|  | } | 
|  | *best_numerator = n1; | 
|  | *best_denominator = d1; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(rational_best_approximation); |