|  | /* | 
|  | *  linux/mm/swap_state.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
|  | *  Swap reorganised 29.12.95, Stephen Tweedie | 
|  | * | 
|  | *  Rewritten to use page cache, (C) 1998 Stephen Tweedie | 
|  | */ | 
|  | #include <linux/mm.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/page_cgroup.h> | 
|  |  | 
|  | #include <asm/pgtable.h> | 
|  |  | 
|  | /* | 
|  | * swapper_space is a fiction, retained to simplify the path through | 
|  | * vmscan's shrink_page_list. | 
|  | */ | 
|  | static const struct address_space_operations swap_aops = { | 
|  | .writepage	= swap_writepage, | 
|  | .set_page_dirty	= swap_set_page_dirty, | 
|  | .migratepage	= migrate_page, | 
|  | }; | 
|  |  | 
|  | static struct backing_dev_info swap_backing_dev_info = { | 
|  | .name		= "swap", | 
|  | .capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, | 
|  | }; | 
|  |  | 
|  | struct address_space swapper_space = { | 
|  | .page_tree	= RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN), | 
|  | .tree_lock	= __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock), | 
|  | .a_ops		= &swap_aops, | 
|  | .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear), | 
|  | .backing_dev_info = &swap_backing_dev_info, | 
|  | }; | 
|  |  | 
|  | #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0) | 
|  |  | 
|  | static struct { | 
|  | unsigned long add_total; | 
|  | unsigned long del_total; | 
|  | unsigned long find_success; | 
|  | unsigned long find_total; | 
|  | } swap_cache_info; | 
|  |  | 
|  | void show_swap_cache_info(void) | 
|  | { | 
|  | printk("%lu pages in swap cache\n", total_swapcache_pages); | 
|  | printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", | 
|  | swap_cache_info.add_total, swap_cache_info.del_total, | 
|  | swap_cache_info.find_success, swap_cache_info.find_total); | 
|  | printk("Free swap  = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10)); | 
|  | printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, | 
|  | * but sets SwapCache flag and private instead of mapping and index. | 
|  | */ | 
|  | static int __add_to_swap_cache(struct page *page, swp_entry_t entry) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | VM_BUG_ON(!PageLocked(page)); | 
|  | VM_BUG_ON(PageSwapCache(page)); | 
|  | VM_BUG_ON(!PageSwapBacked(page)); | 
|  |  | 
|  | page_cache_get(page); | 
|  | SetPageSwapCache(page); | 
|  | set_page_private(page, entry.val); | 
|  |  | 
|  | spin_lock_irq(&swapper_space.tree_lock); | 
|  | error = radix_tree_insert(&swapper_space.page_tree, entry.val, page); | 
|  | if (likely(!error)) { | 
|  | total_swapcache_pages++; | 
|  | __inc_zone_page_state(page, NR_FILE_PAGES); | 
|  | INC_CACHE_INFO(add_total); | 
|  | } | 
|  | spin_unlock_irq(&swapper_space.tree_lock); | 
|  |  | 
|  | if (unlikely(error)) { | 
|  | /* | 
|  | * Only the context which have set SWAP_HAS_CACHE flag | 
|  | * would call add_to_swap_cache(). | 
|  | * So add_to_swap_cache() doesn't returns -EEXIST. | 
|  | */ | 
|  | VM_BUG_ON(error == -EEXIST); | 
|  | set_page_private(page, 0UL); | 
|  | ClearPageSwapCache(page); | 
|  | page_cache_release(page); | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  |  | 
|  | int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | error = radix_tree_preload(gfp_mask); | 
|  | if (!error) { | 
|  | error = __add_to_swap_cache(page, entry); | 
|  | radix_tree_preload_end(); | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This must be called only on pages that have | 
|  | * been verified to be in the swap cache. | 
|  | */ | 
|  | void __delete_from_swap_cache(struct page *page) | 
|  | { | 
|  | VM_BUG_ON(!PageLocked(page)); | 
|  | VM_BUG_ON(!PageSwapCache(page)); | 
|  | VM_BUG_ON(PageWriteback(page)); | 
|  |  | 
|  | radix_tree_delete(&swapper_space.page_tree, page_private(page)); | 
|  | set_page_private(page, 0); | 
|  | ClearPageSwapCache(page); | 
|  | total_swapcache_pages--; | 
|  | __dec_zone_page_state(page, NR_FILE_PAGES); | 
|  | INC_CACHE_INFO(del_total); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * add_to_swap - allocate swap space for a page | 
|  | * @page: page we want to move to swap | 
|  | * | 
|  | * Allocate swap space for the page and add the page to the | 
|  | * swap cache.  Caller needs to hold the page lock. | 
|  | */ | 
|  | int add_to_swap(struct page *page) | 
|  | { | 
|  | swp_entry_t entry; | 
|  | int err; | 
|  |  | 
|  | VM_BUG_ON(!PageLocked(page)); | 
|  | VM_BUG_ON(!PageUptodate(page)); | 
|  |  | 
|  | entry = get_swap_page(); | 
|  | if (!entry.val) | 
|  | return 0; | 
|  |  | 
|  | if (unlikely(PageTransHuge(page))) | 
|  | if (unlikely(split_huge_page(page))) { | 
|  | swapcache_free(entry, NULL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Radix-tree node allocations from PF_MEMALLOC contexts could | 
|  | * completely exhaust the page allocator. __GFP_NOMEMALLOC | 
|  | * stops emergency reserves from being allocated. | 
|  | * | 
|  | * TODO: this could cause a theoretical memory reclaim | 
|  | * deadlock in the swap out path. | 
|  | */ | 
|  | /* | 
|  | * Add it to the swap cache and mark it dirty | 
|  | */ | 
|  | err = add_to_swap_cache(page, entry, | 
|  | __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN); | 
|  |  | 
|  | if (!err) {	/* Success */ | 
|  | SetPageDirty(page); | 
|  | return 1; | 
|  | } else {	/* -ENOMEM radix-tree allocation failure */ | 
|  | /* | 
|  | * add_to_swap_cache() doesn't return -EEXIST, so we can safely | 
|  | * clear SWAP_HAS_CACHE flag. | 
|  | */ | 
|  | swapcache_free(entry, NULL); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This must be called only on pages that have | 
|  | * been verified to be in the swap cache and locked. | 
|  | * It will never put the page into the free list, | 
|  | * the caller has a reference on the page. | 
|  | */ | 
|  | void delete_from_swap_cache(struct page *page) | 
|  | { | 
|  | swp_entry_t entry; | 
|  |  | 
|  | entry.val = page_private(page); | 
|  |  | 
|  | spin_lock_irq(&swapper_space.tree_lock); | 
|  | __delete_from_swap_cache(page); | 
|  | spin_unlock_irq(&swapper_space.tree_lock); | 
|  |  | 
|  | swapcache_free(entry, page); | 
|  | page_cache_release(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we are the only user, then try to free up the swap cache. | 
|  | * | 
|  | * Its ok to check for PageSwapCache without the page lock | 
|  | * here because we are going to recheck again inside | 
|  | * try_to_free_swap() _with_ the lock. | 
|  | * 					- Marcelo | 
|  | */ | 
|  | static inline void free_swap_cache(struct page *page) | 
|  | { | 
|  | if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) { | 
|  | try_to_free_swap(page); | 
|  | unlock_page(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Perform a free_page(), also freeing any swap cache associated with | 
|  | * this page if it is the last user of the page. | 
|  | */ | 
|  | void free_page_and_swap_cache(struct page *page) | 
|  | { | 
|  | free_swap_cache(page); | 
|  | page_cache_release(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Passed an array of pages, drop them all from swapcache and then release | 
|  | * them.  They are removed from the LRU and freed if this is their last use. | 
|  | */ | 
|  | void free_pages_and_swap_cache(struct page **pages, int nr) | 
|  | { | 
|  | struct page **pagep = pages; | 
|  |  | 
|  | lru_add_drain(); | 
|  | while (nr) { | 
|  | int todo = min(nr, PAGEVEC_SIZE); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < todo; i++) | 
|  | free_swap_cache(pagep[i]); | 
|  | release_pages(pagep, todo, 0); | 
|  | pagep += todo; | 
|  | nr -= todo; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lookup a swap entry in the swap cache. A found page will be returned | 
|  | * unlocked and with its refcount incremented - we rely on the kernel | 
|  | * lock getting page table operations atomic even if we drop the page | 
|  | * lock before returning. | 
|  | */ | 
|  | struct page * lookup_swap_cache(swp_entry_t entry) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | page = find_get_page(&swapper_space, entry.val); | 
|  |  | 
|  | if (page) | 
|  | INC_CACHE_INFO(find_success); | 
|  |  | 
|  | INC_CACHE_INFO(find_total); | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Locate a page of swap in physical memory, reserving swap cache space | 
|  | * and reading the disk if it is not already cached. | 
|  | * A failure return means that either the page allocation failed or that | 
|  | * the swap entry is no longer in use. | 
|  | */ | 
|  | struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, | 
|  | struct vm_area_struct *vma, unsigned long addr) | 
|  | { | 
|  | struct page *found_page, *new_page = NULL; | 
|  | int err; | 
|  |  | 
|  | do { | 
|  | /* | 
|  | * First check the swap cache.  Since this is normally | 
|  | * called after lookup_swap_cache() failed, re-calling | 
|  | * that would confuse statistics. | 
|  | */ | 
|  | found_page = find_get_page(&swapper_space, entry.val); | 
|  | if (found_page) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Get a new page to read into from swap. | 
|  | */ | 
|  | if (!new_page) { | 
|  | new_page = alloc_page_vma(gfp_mask, vma, addr); | 
|  | if (!new_page) | 
|  | break;		/* Out of memory */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * call radix_tree_preload() while we can wait. | 
|  | */ | 
|  | err = radix_tree_preload(gfp_mask & GFP_KERNEL); | 
|  | if (err) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Swap entry may have been freed since our caller observed it. | 
|  | */ | 
|  | err = swapcache_prepare(entry); | 
|  | if (err == -EEXIST) {	/* seems racy */ | 
|  | radix_tree_preload_end(); | 
|  | continue; | 
|  | } | 
|  | if (err) {		/* swp entry is obsolete ? */ | 
|  | radix_tree_preload_end(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* May fail (-ENOMEM) if radix-tree node allocation failed. */ | 
|  | __set_page_locked(new_page); | 
|  | SetPageSwapBacked(new_page); | 
|  | err = __add_to_swap_cache(new_page, entry); | 
|  | if (likely(!err)) { | 
|  | radix_tree_preload_end(); | 
|  | /* | 
|  | * Initiate read into locked page and return. | 
|  | */ | 
|  | lru_cache_add_anon(new_page); | 
|  | swap_readpage(new_page); | 
|  | return new_page; | 
|  | } | 
|  | radix_tree_preload_end(); | 
|  | ClearPageSwapBacked(new_page); | 
|  | __clear_page_locked(new_page); | 
|  | /* | 
|  | * add_to_swap_cache() doesn't return -EEXIST, so we can safely | 
|  | * clear SWAP_HAS_CACHE flag. | 
|  | */ | 
|  | swapcache_free(entry, NULL); | 
|  | } while (err != -ENOMEM); | 
|  |  | 
|  | if (new_page) | 
|  | page_cache_release(new_page); | 
|  | return found_page; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * swapin_readahead - swap in pages in hope we need them soon | 
|  | * @entry: swap entry of this memory | 
|  | * @gfp_mask: memory allocation flags | 
|  | * @vma: user vma this address belongs to | 
|  | * @addr: target address for mempolicy | 
|  | * | 
|  | * Returns the struct page for entry and addr, after queueing swapin. | 
|  | * | 
|  | * Primitive swap readahead code. We simply read an aligned block of | 
|  | * (1 << page_cluster) entries in the swap area. This method is chosen | 
|  | * because it doesn't cost us any seek time.  We also make sure to queue | 
|  | * the 'original' request together with the readahead ones... | 
|  | * | 
|  | * This has been extended to use the NUMA policies from the mm triggering | 
|  | * the readahead. | 
|  | * | 
|  | * Caller must hold down_read on the vma->vm_mm if vma is not NULL. | 
|  | */ | 
|  | struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, | 
|  | struct vm_area_struct *vma, unsigned long addr) | 
|  | { | 
|  | struct page *page; | 
|  | unsigned long offset = swp_offset(entry); | 
|  | unsigned long start_offset, end_offset; | 
|  | unsigned long mask = (1UL << page_cluster) - 1; | 
|  | struct blk_plug plug; | 
|  |  | 
|  | /* Read a page_cluster sized and aligned cluster around offset. */ | 
|  | start_offset = offset & ~mask; | 
|  | end_offset = offset | mask; | 
|  | if (!start_offset)	/* First page is swap header. */ | 
|  | start_offset++; | 
|  |  | 
|  | blk_start_plug(&plug); | 
|  | for (offset = start_offset; offset <= end_offset ; offset++) { | 
|  | /* Ok, do the async read-ahead now */ | 
|  | page = read_swap_cache_async(swp_entry(swp_type(entry), offset), | 
|  | gfp_mask, vma, addr); | 
|  | if (!page) | 
|  | continue; | 
|  | page_cache_release(page); | 
|  | } | 
|  | blk_finish_plug(&plug); | 
|  |  | 
|  | lru_add_drain();	/* Push any new pages onto the LRU now */ | 
|  | return read_swap_cache_async(entry, gfp_mask, vma, addr); | 
|  | } |