| /* |
| * Xen time implementation. |
| * |
| * This is implemented in terms of a clocksource driver which uses |
| * the hypervisor clock as a nanosecond timebase, and a clockevent |
| * driver which uses the hypervisor's timer mechanism. |
| * |
| * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 |
| */ |
| #include <linux/kernel.h> |
| #include <linux/interrupt.h> |
| #include <linux/clocksource.h> |
| #include <linux/clockchips.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/math64.h> |
| |
| #include <asm/pvclock.h> |
| #include <asm/xen/hypervisor.h> |
| #include <asm/xen/hypercall.h> |
| |
| #include <xen/events.h> |
| #include <xen/interface/xen.h> |
| #include <xen/interface/vcpu.h> |
| |
| #include "xen-ops.h" |
| |
| #define XEN_SHIFT 22 |
| |
| /* Xen may fire a timer up to this many ns early */ |
| #define TIMER_SLOP 100000 |
| #define NS_PER_TICK (1000000000LL / HZ) |
| |
| static cycle_t xen_clocksource_read(void); |
| |
| /* runstate info updated by Xen */ |
| static DEFINE_PER_CPU(struct vcpu_runstate_info, runstate); |
| |
| /* snapshots of runstate info */ |
| static DEFINE_PER_CPU(struct vcpu_runstate_info, runstate_snapshot); |
| |
| /* unused ns of stolen and blocked time */ |
| static DEFINE_PER_CPU(u64, residual_stolen); |
| static DEFINE_PER_CPU(u64, residual_blocked); |
| |
| /* return an consistent snapshot of 64-bit time/counter value */ |
| static u64 get64(const u64 *p) |
| { |
| u64 ret; |
| |
| if (BITS_PER_LONG < 64) { |
| u32 *p32 = (u32 *)p; |
| u32 h, l; |
| |
| /* |
| * Read high then low, and then make sure high is |
| * still the same; this will only loop if low wraps |
| * and carries into high. |
| * XXX some clean way to make this endian-proof? |
| */ |
| do { |
| h = p32[1]; |
| barrier(); |
| l = p32[0]; |
| barrier(); |
| } while (p32[1] != h); |
| |
| ret = (((u64)h) << 32) | l; |
| } else |
| ret = *p; |
| |
| return ret; |
| } |
| |
| /* |
| * Runstate accounting |
| */ |
| static void get_runstate_snapshot(struct vcpu_runstate_info *res) |
| { |
| u64 state_time; |
| struct vcpu_runstate_info *state; |
| |
| BUG_ON(preemptible()); |
| |
| state = &__get_cpu_var(runstate); |
| |
| /* |
| * The runstate info is always updated by the hypervisor on |
| * the current CPU, so there's no need to use anything |
| * stronger than a compiler barrier when fetching it. |
| */ |
| do { |
| state_time = get64(&state->state_entry_time); |
| barrier(); |
| *res = *state; |
| barrier(); |
| } while (get64(&state->state_entry_time) != state_time); |
| } |
| |
| /* return true when a vcpu could run but has no real cpu to run on */ |
| bool xen_vcpu_stolen(int vcpu) |
| { |
| return per_cpu(runstate, vcpu).state == RUNSTATE_runnable; |
| } |
| |
| static void setup_runstate_info(int cpu) |
| { |
| struct vcpu_register_runstate_memory_area area; |
| |
| area.addr.v = &per_cpu(runstate, cpu); |
| |
| if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area, |
| cpu, &area)) |
| BUG(); |
| } |
| |
| static void do_stolen_accounting(void) |
| { |
| struct vcpu_runstate_info state; |
| struct vcpu_runstate_info *snap; |
| s64 blocked, runnable, offline, stolen; |
| cputime_t ticks; |
| |
| get_runstate_snapshot(&state); |
| |
| WARN_ON(state.state != RUNSTATE_running); |
| |
| snap = &__get_cpu_var(runstate_snapshot); |
| |
| /* work out how much time the VCPU has not been runn*ing* */ |
| blocked = state.time[RUNSTATE_blocked] - snap->time[RUNSTATE_blocked]; |
| runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable]; |
| offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline]; |
| |
| *snap = state; |
| |
| /* Add the appropriate number of ticks of stolen time, |
| including any left-overs from last time. Passing NULL to |
| account_steal_time accounts the time as stolen. */ |
| stolen = runnable + offline + __get_cpu_var(residual_stolen); |
| |
| if (stolen < 0) |
| stolen = 0; |
| |
| ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen); |
| __get_cpu_var(residual_stolen) = stolen; |
| account_steal_time(NULL, ticks); |
| |
| /* Add the appropriate number of ticks of blocked time, |
| including any left-overs from last time. Passing idle to |
| account_steal_time accounts the time as idle/wait. */ |
| blocked += __get_cpu_var(residual_blocked); |
| |
| if (blocked < 0) |
| blocked = 0; |
| |
| ticks = iter_div_u64_rem(blocked, NS_PER_TICK, &blocked); |
| __get_cpu_var(residual_blocked) = blocked; |
| account_steal_time(idle_task(smp_processor_id()), ticks); |
| } |
| |
| /* |
| * Xen sched_clock implementation. Returns the number of unstolen |
| * nanoseconds, which is nanoseconds the VCPU spent in RUNNING+BLOCKED |
| * states. |
| */ |
| unsigned long long xen_sched_clock(void) |
| { |
| struct vcpu_runstate_info state; |
| cycle_t now; |
| u64 ret; |
| s64 offset; |
| |
| /* |
| * Ideally sched_clock should be called on a per-cpu basis |
| * anyway, so preempt should already be disabled, but that's |
| * not current practice at the moment. |
| */ |
| preempt_disable(); |
| |
| now = xen_clocksource_read(); |
| |
| get_runstate_snapshot(&state); |
| |
| WARN_ON(state.state != RUNSTATE_running); |
| |
| offset = now - state.state_entry_time; |
| if (offset < 0) |
| offset = 0; |
| |
| ret = state.time[RUNSTATE_blocked] + |
| state.time[RUNSTATE_running] + |
| offset; |
| |
| preempt_enable(); |
| |
| return ret; |
| } |
| |
| |
| /* Get the TSC speed from Xen */ |
| unsigned long xen_tsc_khz(void) |
| { |
| u64 xen_khz = 1000000ULL << 32; |
| const struct pvclock_vcpu_time_info *info = |
| &HYPERVISOR_shared_info->vcpu_info[0].time; |
| |
| do_div(xen_khz, info->tsc_to_system_mul); |
| if (info->tsc_shift < 0) |
| xen_khz <<= -info->tsc_shift; |
| else |
| xen_khz >>= info->tsc_shift; |
| |
| return xen_khz; |
| } |
| |
| static cycle_t xen_clocksource_read(void) |
| { |
| struct pvclock_vcpu_time_info *src; |
| cycle_t ret; |
| |
| src = &get_cpu_var(xen_vcpu)->time; |
| ret = pvclock_clocksource_read(src); |
| put_cpu_var(xen_vcpu); |
| return ret; |
| } |
| |
| static void xen_read_wallclock(struct timespec *ts) |
| { |
| struct shared_info *s = HYPERVISOR_shared_info; |
| struct pvclock_wall_clock *wall_clock = &(s->wc); |
| struct pvclock_vcpu_time_info *vcpu_time; |
| |
| vcpu_time = &get_cpu_var(xen_vcpu)->time; |
| pvclock_read_wallclock(wall_clock, vcpu_time, ts); |
| put_cpu_var(xen_vcpu); |
| } |
| |
| unsigned long xen_get_wallclock(void) |
| { |
| struct timespec ts; |
| |
| xen_read_wallclock(&ts); |
| return ts.tv_sec; |
| } |
| |
| int xen_set_wallclock(unsigned long now) |
| { |
| /* do nothing for domU */ |
| return -1; |
| } |
| |
| static struct clocksource xen_clocksource __read_mostly = { |
| .name = "xen", |
| .rating = 400, |
| .read = xen_clocksource_read, |
| .mask = ~0, |
| .mult = 1<<XEN_SHIFT, /* time directly in nanoseconds */ |
| .shift = XEN_SHIFT, |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| }; |
| |
| /* |
| Xen clockevent implementation |
| |
| Xen has two clockevent implementations: |
| |
| The old timer_op one works with all released versions of Xen prior |
| to version 3.0.4. This version of the hypervisor provides a |
| single-shot timer with nanosecond resolution. However, sharing the |
| same event channel is a 100Hz tick which is delivered while the |
| vcpu is running. We don't care about or use this tick, but it will |
| cause the core time code to think the timer fired too soon, and |
| will end up resetting it each time. It could be filtered, but |
| doing so has complications when the ktime clocksource is not yet |
| the xen clocksource (ie, at boot time). |
| |
| The new vcpu_op-based timer interface allows the tick timer period |
| to be changed or turned off. The tick timer is not useful as a |
| periodic timer because events are only delivered to running vcpus. |
| The one-shot timer can report when a timeout is in the past, so |
| set_next_event is capable of returning -ETIME when appropriate. |
| This interface is used when available. |
| */ |
| |
| |
| /* |
| Get a hypervisor absolute time. In theory we could maintain an |
| offset between the kernel's time and the hypervisor's time, and |
| apply that to a kernel's absolute timeout. Unfortunately the |
| hypervisor and kernel times can drift even if the kernel is using |
| the Xen clocksource, because ntp can warp the kernel's clocksource. |
| */ |
| static s64 get_abs_timeout(unsigned long delta) |
| { |
| return xen_clocksource_read() + delta; |
| } |
| |
| static void xen_timerop_set_mode(enum clock_event_mode mode, |
| struct clock_event_device *evt) |
| { |
| switch (mode) { |
| case CLOCK_EVT_MODE_PERIODIC: |
| /* unsupported */ |
| WARN_ON(1); |
| break; |
| |
| case CLOCK_EVT_MODE_ONESHOT: |
| case CLOCK_EVT_MODE_RESUME: |
| break; |
| |
| case CLOCK_EVT_MODE_UNUSED: |
| case CLOCK_EVT_MODE_SHUTDOWN: |
| HYPERVISOR_set_timer_op(0); /* cancel timeout */ |
| break; |
| } |
| } |
| |
| static int xen_timerop_set_next_event(unsigned long delta, |
| struct clock_event_device *evt) |
| { |
| WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT); |
| |
| if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0) |
| BUG(); |
| |
| /* We may have missed the deadline, but there's no real way of |
| knowing for sure. If the event was in the past, then we'll |
| get an immediate interrupt. */ |
| |
| return 0; |
| } |
| |
| static const struct clock_event_device xen_timerop_clockevent = { |
| .name = "xen", |
| .features = CLOCK_EVT_FEAT_ONESHOT, |
| |
| .max_delta_ns = 0xffffffff, |
| .min_delta_ns = TIMER_SLOP, |
| |
| .mult = 1, |
| .shift = 0, |
| .rating = 500, |
| |
| .set_mode = xen_timerop_set_mode, |
| .set_next_event = xen_timerop_set_next_event, |
| }; |
| |
| |
| |
| static void xen_vcpuop_set_mode(enum clock_event_mode mode, |
| struct clock_event_device *evt) |
| { |
| int cpu = smp_processor_id(); |
| |
| switch (mode) { |
| case CLOCK_EVT_MODE_PERIODIC: |
| WARN_ON(1); /* unsupported */ |
| break; |
| |
| case CLOCK_EVT_MODE_ONESHOT: |
| if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) |
| BUG(); |
| break; |
| |
| case CLOCK_EVT_MODE_UNUSED: |
| case CLOCK_EVT_MODE_SHUTDOWN: |
| if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) || |
| HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) |
| BUG(); |
| break; |
| case CLOCK_EVT_MODE_RESUME: |
| break; |
| } |
| } |
| |
| static int xen_vcpuop_set_next_event(unsigned long delta, |
| struct clock_event_device *evt) |
| { |
| int cpu = smp_processor_id(); |
| struct vcpu_set_singleshot_timer single; |
| int ret; |
| |
| WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT); |
| |
| single.timeout_abs_ns = get_abs_timeout(delta); |
| single.flags = VCPU_SSHOTTMR_future; |
| |
| ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single); |
| |
| BUG_ON(ret != 0 && ret != -ETIME); |
| |
| return ret; |
| } |
| |
| static const struct clock_event_device xen_vcpuop_clockevent = { |
| .name = "xen", |
| .features = CLOCK_EVT_FEAT_ONESHOT, |
| |
| .max_delta_ns = 0xffffffff, |
| .min_delta_ns = TIMER_SLOP, |
| |
| .mult = 1, |
| .shift = 0, |
| .rating = 500, |
| |
| .set_mode = xen_vcpuop_set_mode, |
| .set_next_event = xen_vcpuop_set_next_event, |
| }; |
| |
| static const struct clock_event_device *xen_clockevent = |
| &xen_timerop_clockevent; |
| static DEFINE_PER_CPU(struct clock_event_device, xen_clock_events); |
| |
| static irqreturn_t xen_timer_interrupt(int irq, void *dev_id) |
| { |
| struct clock_event_device *evt = &__get_cpu_var(xen_clock_events); |
| irqreturn_t ret; |
| |
| ret = IRQ_NONE; |
| if (evt->event_handler) { |
| evt->event_handler(evt); |
| ret = IRQ_HANDLED; |
| } |
| |
| do_stolen_accounting(); |
| |
| return ret; |
| } |
| |
| void xen_setup_timer(int cpu) |
| { |
| const char *name; |
| struct clock_event_device *evt; |
| int irq; |
| |
| printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu); |
| |
| name = kasprintf(GFP_KERNEL, "timer%d", cpu); |
| if (!name) |
| name = "<timer kasprintf failed>"; |
| |
| irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt, |
| IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING, |
| name, NULL); |
| |
| evt = &per_cpu(xen_clock_events, cpu); |
| memcpy(evt, xen_clockevent, sizeof(*evt)); |
| |
| evt->cpumask = cpumask_of_cpu(cpu); |
| evt->irq = irq; |
| |
| setup_runstate_info(cpu); |
| } |
| |
| void xen_setup_cpu_clockevents(void) |
| { |
| BUG_ON(preemptible()); |
| |
| clockevents_register_device(&__get_cpu_var(xen_clock_events)); |
| } |
| |
| void xen_timer_resume(void) |
| { |
| int cpu; |
| |
| if (xen_clockevent != &xen_vcpuop_clockevent) |
| return; |
| |
| for_each_online_cpu(cpu) { |
| if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) |
| BUG(); |
| } |
| } |
| |
| __init void xen_time_init(void) |
| { |
| int cpu = smp_processor_id(); |
| |
| clocksource_register(&xen_clocksource); |
| |
| if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) { |
| /* Successfully turned off 100Hz tick, so we have the |
| vcpuop-based timer interface */ |
| printk(KERN_DEBUG "Xen: using vcpuop timer interface\n"); |
| xen_clockevent = &xen_vcpuop_clockevent; |
| } |
| |
| /* Set initial system time with full resolution */ |
| xen_read_wallclock(&xtime); |
| set_normalized_timespec(&wall_to_monotonic, |
| -xtime.tv_sec, -xtime.tv_nsec); |
| |
| setup_force_cpu_cap(X86_FEATURE_TSC); |
| |
| xen_setup_timer(cpu); |
| xen_setup_cpu_clockevents(); |
| } |