blob: 15c0077dd27eb655c0418a06a977a270a7c1f760 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* RDMA Transport Layer
*
* Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
* Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
* Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
*/
#undef pr_fmt
#define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
#include <linux/module.h>
#include <linux/rculist.h>
#include <linux/random.h>
#include "rtrs-clt.h"
#include "rtrs-log.h"
#define RTRS_CONNECT_TIMEOUT_MS 30000
/*
* Wait a bit before trying to reconnect after a failure
* in order to give server time to finish clean up which
* leads to "false positives" failed reconnect attempts
*/
#define RTRS_RECONNECT_BACKOFF 1000
/*
* Wait for additional random time between 0 and 8 seconds
* before starting to reconnect to avoid clients reconnecting
* all at once in case of a major network outage
*/
#define RTRS_RECONNECT_SEED 8
#define FIRST_CONN 0x01
/* limit to 128 * 4k = 512k max IO */
#define RTRS_MAX_SEGMENTS 128
MODULE_DESCRIPTION("RDMA Transport Client");
MODULE_LICENSE("GPL");
static const struct rtrs_rdma_dev_pd_ops dev_pd_ops;
static struct rtrs_rdma_dev_pd dev_pd = {
.ops = &dev_pd_ops
};
static struct workqueue_struct *rtrs_wq;
static struct class *rtrs_clt_dev_class;
static inline bool rtrs_clt_is_connected(const struct rtrs_clt *clt)
{
struct rtrs_clt_sess *sess;
bool connected = false;
rcu_read_lock();
list_for_each_entry_rcu(sess, &clt->paths_list, s.entry)
connected |= READ_ONCE(sess->state) == RTRS_CLT_CONNECTED;
rcu_read_unlock();
return connected;
}
static struct rtrs_permit *
__rtrs_get_permit(struct rtrs_clt *clt, enum rtrs_clt_con_type con_type)
{
size_t max_depth = clt->queue_depth;
struct rtrs_permit *permit;
int bit;
/*
* Adapted from null_blk get_tag(). Callers from different cpus may
* grab the same bit, since find_first_zero_bit is not atomic.
* But then the test_and_set_bit_lock will fail for all the
* callers but one, so that they will loop again.
* This way an explicit spinlock is not required.
*/
do {
bit = find_first_zero_bit(clt->permits_map, max_depth);
if (bit >= max_depth)
return NULL;
} while (test_and_set_bit_lock(bit, clt->permits_map));
permit = get_permit(clt, bit);
WARN_ON(permit->mem_id != bit);
permit->cpu_id = raw_smp_processor_id();
permit->con_type = con_type;
return permit;
}
static inline void __rtrs_put_permit(struct rtrs_clt *clt,
struct rtrs_permit *permit)
{
clear_bit_unlock(permit->mem_id, clt->permits_map);
}
/**
* rtrs_clt_get_permit() - allocates permit for future RDMA operation
* @clt: Current session
* @con_type: Type of connection to use with the permit
* @can_wait: Wait type
*
* Description:
* Allocates permit for the following RDMA operation. Permit is used
* to preallocate all resources and to propagate memory pressure
* up earlier.
*
* Context:
* Can sleep if @wait == RTRS_PERMIT_WAIT
*/
struct rtrs_permit *rtrs_clt_get_permit(struct rtrs_clt *clt,
enum rtrs_clt_con_type con_type,
enum wait_type can_wait)
{
struct rtrs_permit *permit;
DEFINE_WAIT(wait);
permit = __rtrs_get_permit(clt, con_type);
if (permit || !can_wait)
return permit;
do {
prepare_to_wait(&clt->permits_wait, &wait,
TASK_UNINTERRUPTIBLE);
permit = __rtrs_get_permit(clt, con_type);
if (permit)
break;
io_schedule();
} while (1);
finish_wait(&clt->permits_wait, &wait);
return permit;
}
EXPORT_SYMBOL(rtrs_clt_get_permit);
/**
* rtrs_clt_put_permit() - puts allocated permit
* @clt: Current session
* @permit: Permit to be freed
*
* Context:
* Does not matter
*/
void rtrs_clt_put_permit(struct rtrs_clt *clt, struct rtrs_permit *permit)
{
if (WARN_ON(!test_bit(permit->mem_id, clt->permits_map)))
return;
__rtrs_put_permit(clt, permit);
/*
* rtrs_clt_get_permit() adds itself to the &clt->permits_wait list
* before calling schedule(). So if rtrs_clt_get_permit() is sleeping
* it must have added itself to &clt->permits_wait before
* __rtrs_put_permit() finished.
* Hence it is safe to guard wake_up() with a waitqueue_active() test.
*/
if (waitqueue_active(&clt->permits_wait))
wake_up(&clt->permits_wait);
}
EXPORT_SYMBOL(rtrs_clt_put_permit);
/**
* rtrs_permit_to_clt_con() - returns RDMA connection pointer by the permit
* @sess: client session pointer
* @permit: permit for the allocation of the RDMA buffer
* Note:
* IO connection starts from 1.
* 0 connection is for user messages.
*/
static
struct rtrs_clt_con *rtrs_permit_to_clt_con(struct rtrs_clt_sess *sess,
struct rtrs_permit *permit)
{
int id = 0;
if (permit->con_type == RTRS_IO_CON)
id = (permit->cpu_id % (sess->s.irq_con_num - 1)) + 1;
return to_clt_con(sess->s.con[id]);
}
/**
* rtrs_clt_change_state() - change the session state through session state
* machine.
*
* @sess: client session to change the state of.
* @new_state: state to change to.
*
* returns true if sess's state is changed to new state, otherwise return false.
*
* Locks:
* state_wq lock must be hold.
*/
static bool rtrs_clt_change_state(struct rtrs_clt_sess *sess,
enum rtrs_clt_state new_state)
{
enum rtrs_clt_state old_state;
bool changed = false;
lockdep_assert_held(&sess->state_wq.lock);
old_state = sess->state;
switch (new_state) {
case RTRS_CLT_CONNECTING:
switch (old_state) {
case RTRS_CLT_RECONNECTING:
changed = true;
fallthrough;
default:
break;
}
break;
case RTRS_CLT_RECONNECTING:
switch (old_state) {
case RTRS_CLT_CONNECTED:
case RTRS_CLT_CONNECTING_ERR:
case RTRS_CLT_CLOSED:
changed = true;
fallthrough;
default:
break;
}
break;
case RTRS_CLT_CONNECTED:
switch (old_state) {
case RTRS_CLT_CONNECTING:
changed = true;
fallthrough;
default:
break;
}
break;
case RTRS_CLT_CONNECTING_ERR:
switch (old_state) {
case RTRS_CLT_CONNECTING:
changed = true;
fallthrough;
default:
break;
}
break;
case RTRS_CLT_CLOSING:
switch (old_state) {
case RTRS_CLT_CONNECTING:
case RTRS_CLT_CONNECTING_ERR:
case RTRS_CLT_RECONNECTING:
case RTRS_CLT_CONNECTED:
changed = true;
fallthrough;
default:
break;
}
break;
case RTRS_CLT_CLOSED:
switch (old_state) {
case RTRS_CLT_CLOSING:
changed = true;
fallthrough;
default:
break;
}
break;
case RTRS_CLT_DEAD:
switch (old_state) {
case RTRS_CLT_CLOSED:
changed = true;
fallthrough;
default:
break;
}
break;
default:
break;
}
if (changed) {
sess->state = new_state;
wake_up_locked(&sess->state_wq);
}
return changed;
}
static bool rtrs_clt_change_state_from_to(struct rtrs_clt_sess *sess,
enum rtrs_clt_state old_state,
enum rtrs_clt_state new_state)
{
bool changed = false;
spin_lock_irq(&sess->state_wq.lock);
if (sess->state == old_state)
changed = rtrs_clt_change_state(sess, new_state);
spin_unlock_irq(&sess->state_wq.lock);
return changed;
}
static void rtrs_rdma_error_recovery(struct rtrs_clt_con *con)
{
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
if (rtrs_clt_change_state_from_to(sess,
RTRS_CLT_CONNECTED,
RTRS_CLT_RECONNECTING)) {
struct rtrs_clt *clt = sess->clt;
unsigned int delay_ms;
/*
* Normal scenario, reconnect if we were successfully connected
*/
delay_ms = clt->reconnect_delay_sec * 1000;
queue_delayed_work(rtrs_wq, &sess->reconnect_dwork,
msecs_to_jiffies(delay_ms +
prandom_u32() % RTRS_RECONNECT_SEED));
} else {
/*
* Error can happen just on establishing new connection,
* so notify waiter with error state, waiter is responsible
* for cleaning the rest and reconnect if needed.
*/
rtrs_clt_change_state_from_to(sess,
RTRS_CLT_CONNECTING,
RTRS_CLT_CONNECTING_ERR);
}
}
static void rtrs_clt_fast_reg_done(struct ib_cq *cq, struct ib_wc *wc)
{
struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
if (wc->status != IB_WC_SUCCESS) {
rtrs_err(con->c.sess, "Failed IB_WR_REG_MR: %s\n",
ib_wc_status_msg(wc->status));
rtrs_rdma_error_recovery(con);
}
}
static struct ib_cqe fast_reg_cqe = {
.done = rtrs_clt_fast_reg_done
};
static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
bool notify, bool can_wait);
static void rtrs_clt_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
{
struct rtrs_clt_io_req *req =
container_of(wc->wr_cqe, typeof(*req), inv_cqe);
struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
if (wc->status != IB_WC_SUCCESS) {
rtrs_err(con->c.sess, "Failed IB_WR_LOCAL_INV: %s\n",
ib_wc_status_msg(wc->status));
rtrs_rdma_error_recovery(con);
}
req->need_inv = false;
if (req->need_inv_comp)
complete(&req->inv_comp);
else
/* Complete request from INV callback */
complete_rdma_req(req, req->inv_errno, true, false);
}
static int rtrs_inv_rkey(struct rtrs_clt_io_req *req)
{
struct rtrs_clt_con *con = req->con;
struct ib_send_wr wr = {
.opcode = IB_WR_LOCAL_INV,
.wr_cqe = &req->inv_cqe,
.send_flags = IB_SEND_SIGNALED,
.ex.invalidate_rkey = req->mr->rkey,
};
req->inv_cqe.done = rtrs_clt_inv_rkey_done;
return ib_post_send(con->c.qp, &wr, NULL);
}
static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
bool notify, bool can_wait)
{
struct rtrs_clt_con *con = req->con;
struct rtrs_clt_sess *sess;
int err;
if (WARN_ON(!req->in_use))
return;
if (WARN_ON(!req->con))
return;
sess = to_clt_sess(con->c.sess);
if (req->sg_cnt) {
if (req->dir == DMA_FROM_DEVICE && req->need_inv) {
/*
* We are here to invalidate read requests
* ourselves. In normal scenario server should
* send INV for all read requests, but
* we are here, thus two things could happen:
*
* 1. this is failover, when errno != 0
* and can_wait == 1,
*
* 2. something totally bad happened and
* server forgot to send INV, so we
* should do that ourselves.
*/
if (can_wait) {
req->need_inv_comp = true;
} else {
/* This should be IO path, so always notify */
WARN_ON(!notify);
/* Save errno for INV callback */
req->inv_errno = errno;
}
refcount_inc(&req->ref);
err = rtrs_inv_rkey(req);
if (err) {
rtrs_err(con->c.sess, "Send INV WR key=%#x: %d\n",
req->mr->rkey, err);
} else if (can_wait) {
wait_for_completion(&req->inv_comp);
} else {
/*
* Something went wrong, so request will be
* completed from INV callback.
*/
WARN_ON_ONCE(1);
return;
}
if (!refcount_dec_and_test(&req->ref))
return;
}
ib_dma_unmap_sg(sess->s.dev->ib_dev, req->sglist,
req->sg_cnt, req->dir);
}
if (!refcount_dec_and_test(&req->ref))
return;
if (req->mp_policy == MP_POLICY_MIN_INFLIGHT)
atomic_dec(&sess->stats->inflight);
req->in_use = false;
req->con = NULL;
if (errno) {
rtrs_err_rl(con->c.sess, "IO request failed: error=%d path=%s [%s:%u] notify=%d\n",
errno, kobject_name(&sess->kobj), sess->hca_name,
sess->hca_port, notify);
}
if (notify)
req->conf(req->priv, errno);
}
static int rtrs_post_send_rdma(struct rtrs_clt_con *con,
struct rtrs_clt_io_req *req,
struct rtrs_rbuf *rbuf, u32 off,
u32 imm, struct ib_send_wr *wr)
{
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
enum ib_send_flags flags;
struct ib_sge sge;
if (!req->sg_size) {
rtrs_wrn(con->c.sess,
"Doing RDMA Write failed, no data supplied\n");
return -EINVAL;
}
/* user data and user message in the first list element */
sge.addr = req->iu->dma_addr;
sge.length = req->sg_size;
sge.lkey = sess->s.dev->ib_pd->local_dma_lkey;
/*
* From time to time we have to post signalled sends,
* or send queue will fill up and only QP reset can help.
*/
flags = atomic_inc_return(&con->c.wr_cnt) % sess->s.signal_interval ?
0 : IB_SEND_SIGNALED;
ib_dma_sync_single_for_device(sess->s.dev->ib_dev, req->iu->dma_addr,
req->sg_size, DMA_TO_DEVICE);
return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, &sge, 1,
rbuf->rkey, rbuf->addr + off,
imm, flags, wr, NULL);
}
static void process_io_rsp(struct rtrs_clt_sess *sess, u32 msg_id,
s16 errno, bool w_inval)
{
struct rtrs_clt_io_req *req;
if (WARN_ON(msg_id >= sess->queue_depth))
return;
req = &sess->reqs[msg_id];
/* Drop need_inv if server responded with send with invalidation */
req->need_inv &= !w_inval;
complete_rdma_req(req, errno, true, false);
}
static void rtrs_clt_recv_done(struct rtrs_clt_con *con, struct ib_wc *wc)
{
struct rtrs_iu *iu;
int err;
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
WARN_ON((sess->flags & RTRS_MSG_NEW_RKEY_F) == 0);
iu = container_of(wc->wr_cqe, struct rtrs_iu,
cqe);
err = rtrs_iu_post_recv(&con->c, iu);
if (err) {
rtrs_err(con->c.sess, "post iu failed %d\n", err);
rtrs_rdma_error_recovery(con);
}
}
static void rtrs_clt_rkey_rsp_done(struct rtrs_clt_con *con, struct ib_wc *wc)
{
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
struct rtrs_msg_rkey_rsp *msg;
u32 imm_type, imm_payload;
bool w_inval = false;
struct rtrs_iu *iu;
u32 buf_id;
int err;
WARN_ON((sess->flags & RTRS_MSG_NEW_RKEY_F) == 0);
iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
if (wc->byte_len < sizeof(*msg)) {
rtrs_err(con->c.sess, "rkey response is malformed: size %d\n",
wc->byte_len);
goto out;
}
ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
iu->size, DMA_FROM_DEVICE);
msg = iu->buf;
if (le16_to_cpu(msg->type) != RTRS_MSG_RKEY_RSP) {
rtrs_err(sess->clt, "rkey response is malformed: type %d\n",
le16_to_cpu(msg->type));
goto out;
}
buf_id = le16_to_cpu(msg->buf_id);
if (WARN_ON(buf_id >= sess->queue_depth))
goto out;
rtrs_from_imm(be32_to_cpu(wc->ex.imm_data), &imm_type, &imm_payload);
if (imm_type == RTRS_IO_RSP_IMM ||
imm_type == RTRS_IO_RSP_W_INV_IMM) {
u32 msg_id;
w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
if (WARN_ON(buf_id != msg_id))
goto out;
sess->rbufs[buf_id].rkey = le32_to_cpu(msg->rkey);
process_io_rsp(sess, msg_id, err, w_inval);
}
ib_dma_sync_single_for_device(sess->s.dev->ib_dev, iu->dma_addr,
iu->size, DMA_FROM_DEVICE);
return rtrs_clt_recv_done(con, wc);
out:
rtrs_rdma_error_recovery(con);
}
static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
static struct ib_cqe io_comp_cqe = {
.done = rtrs_clt_rdma_done
};
/*
* Post x2 empty WRs: first is for this RDMA with IMM,
* second is for RECV with INV, which happened earlier.
*/
static int rtrs_post_recv_empty_x2(struct rtrs_con *con, struct ib_cqe *cqe)
{
struct ib_recv_wr wr_arr[2], *wr;
int i;
memset(wr_arr, 0, sizeof(wr_arr));
for (i = 0; i < ARRAY_SIZE(wr_arr); i++) {
wr = &wr_arr[i];
wr->wr_cqe = cqe;
if (i)
/* Chain backwards */
wr->next = &wr_arr[i - 1];
}
return ib_post_recv(con->qp, wr, NULL);
}
static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
{
struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
u32 imm_type, imm_payload;
bool w_inval = false;
int err;
if (wc->status != IB_WC_SUCCESS) {
if (wc->status != IB_WC_WR_FLUSH_ERR) {
rtrs_err(sess->clt, "RDMA failed: %s\n",
ib_wc_status_msg(wc->status));
rtrs_rdma_error_recovery(con);
}
return;
}
rtrs_clt_update_wc_stats(con);
switch (wc->opcode) {
case IB_WC_RECV_RDMA_WITH_IMM:
/*
* post_recv() RDMA write completions of IO reqs (read/write)
* and hb
*/
if (WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done))
return;
rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
&imm_type, &imm_payload);
if (imm_type == RTRS_IO_RSP_IMM ||
imm_type == RTRS_IO_RSP_W_INV_IMM) {
u32 msg_id;
w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
process_io_rsp(sess, msg_id, err, w_inval);
} else if (imm_type == RTRS_HB_MSG_IMM) {
WARN_ON(con->c.cid);
rtrs_send_hb_ack(&sess->s);
if (sess->flags & RTRS_MSG_NEW_RKEY_F)
return rtrs_clt_recv_done(con, wc);
} else if (imm_type == RTRS_HB_ACK_IMM) {
WARN_ON(con->c.cid);
sess->s.hb_missed_cnt = 0;
sess->s.hb_cur_latency =
ktime_sub(ktime_get(), sess->s.hb_last_sent);
if (sess->flags & RTRS_MSG_NEW_RKEY_F)
return rtrs_clt_recv_done(con, wc);
} else {
rtrs_wrn(con->c.sess, "Unknown IMM type %u\n",
imm_type);
}
if (w_inval)
/*
* Post x2 empty WRs: first is for this RDMA with IMM,
* second is for RECV with INV, which happened earlier.
*/
err = rtrs_post_recv_empty_x2(&con->c, &io_comp_cqe);
else
err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
if (err) {
rtrs_err(con->c.sess, "rtrs_post_recv_empty(): %d\n",
err);
rtrs_rdma_error_recovery(con);
}
break;
case IB_WC_RECV:
/*
* Key invalidations from server side
*/
WARN_ON(!(wc->wc_flags & IB_WC_WITH_INVALIDATE ||
wc->wc_flags & IB_WC_WITH_IMM));
WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done);
if (sess->flags & RTRS_MSG_NEW_RKEY_F) {
if (wc->wc_flags & IB_WC_WITH_INVALIDATE)
return rtrs_clt_recv_done(con, wc);
return rtrs_clt_rkey_rsp_done(con, wc);
}
break;
case IB_WC_RDMA_WRITE:
/*
* post_send() RDMA write completions of IO reqs (read/write)
* and hb.
*/
break;
default:
rtrs_wrn(sess->clt, "Unexpected WC type: %d\n", wc->opcode);
return;
}
}
static int post_recv_io(struct rtrs_clt_con *con, size_t q_size)
{
int err, i;
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
for (i = 0; i < q_size; i++) {
if (sess->flags & RTRS_MSG_NEW_RKEY_F) {
struct rtrs_iu *iu = &con->rsp_ius[i];
err = rtrs_iu_post_recv(&con->c, iu);
} else {
err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
}
if (err)
return err;
}
return 0;
}
static int post_recv_sess(struct rtrs_clt_sess *sess)
{
size_t q_size = 0;
int err, cid;
for (cid = 0; cid < sess->s.con_num; cid++) {
if (cid == 0)
q_size = SERVICE_CON_QUEUE_DEPTH;
else
q_size = sess->queue_depth;
/*
* x2 for RDMA read responses + FR key invalidations,
* RDMA writes do not require any FR registrations.
*/
q_size *= 2;
err = post_recv_io(to_clt_con(sess->s.con[cid]), q_size);
if (err) {
rtrs_err(sess->clt, "post_recv_io(), err: %d\n", err);
return err;
}
}
return 0;
}
struct path_it {
int i;
struct list_head skip_list;
struct rtrs_clt *clt;
struct rtrs_clt_sess *(*next_path)(struct path_it *it);
};
/**
* list_next_or_null_rr_rcu - get next list element in round-robin fashion.
* @head: the head for the list.
* @ptr: the list head to take the next element from.
* @type: the type of the struct this is embedded in.
* @memb: the name of the list_head within the struct.
*
* Next element returned in round-robin fashion, i.e. head will be skipped,
* but if list is observed as empty, NULL will be returned.
*
* This primitive may safely run concurrently with the _rcu list-mutation
* primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
*/
#define list_next_or_null_rr_rcu(head, ptr, type, memb) \
({ \
list_next_or_null_rcu(head, ptr, type, memb) ?: \
list_next_or_null_rcu(head, READ_ONCE((ptr)->next), \
type, memb); \
})
/**
* get_next_path_rr() - Returns path in round-robin fashion.
* @it: the path pointer
*
* Related to @MP_POLICY_RR
*
* Locks:
* rcu_read_lock() must be hold.
*/
static struct rtrs_clt_sess *get_next_path_rr(struct path_it *it)
{
struct rtrs_clt_sess __rcu **ppcpu_path;
struct rtrs_clt_sess *path;
struct rtrs_clt *clt;
clt = it->clt;
/*
* Here we use two RCU objects: @paths_list and @pcpu_path
* pointer. See rtrs_clt_remove_path_from_arr() for details
* how that is handled.
*/
ppcpu_path = this_cpu_ptr(clt->pcpu_path);
path = rcu_dereference(*ppcpu_path);
if (!path)
path = list_first_or_null_rcu(&clt->paths_list,
typeof(*path), s.entry);
else
path = list_next_or_null_rr_rcu(&clt->paths_list,
&path->s.entry,
typeof(*path),
s.entry);
rcu_assign_pointer(*ppcpu_path, path);
return path;
}
/**
* get_next_path_min_inflight() - Returns path with minimal inflight count.
* @it: the path pointer
*
* Related to @MP_POLICY_MIN_INFLIGHT
*
* Locks:
* rcu_read_lock() must be hold.
*/
static struct rtrs_clt_sess *get_next_path_min_inflight(struct path_it *it)
{
struct rtrs_clt_sess *min_path = NULL;
struct rtrs_clt *clt = it->clt;
struct rtrs_clt_sess *sess;
int min_inflight = INT_MAX;
int inflight;
list_for_each_entry_rcu(sess, &clt->paths_list, s.entry) {
if (READ_ONCE(sess->state) != RTRS_CLT_CONNECTED)
continue;
if (!list_empty(raw_cpu_ptr(sess->mp_skip_entry)))
continue;
inflight = atomic_read(&sess->stats->inflight);
if (inflight < min_inflight) {
min_inflight = inflight;
min_path = sess;
}
}
/*
* add the path to the skip list, so that next time we can get
* a different one
*/
if (min_path)
list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list);
return min_path;
}
/**
* get_next_path_min_latency() - Returns path with minimal latency.
* @it: the path pointer
*
* Return: a path with the lowest latency or NULL if all paths are tried
*
* Locks:
* rcu_read_lock() must be hold.
*
* Related to @MP_POLICY_MIN_LATENCY
*
* This DOES skip an already-tried path.
* There is a skip-list to skip a path if the path has tried but failed.
* It will try the minimum latency path and then the second minimum latency
* path and so on. Finally it will return NULL if all paths are tried.
* Therefore the caller MUST check the returned
* path is NULL and trigger the IO error.
*/
static struct rtrs_clt_sess *get_next_path_min_latency(struct path_it *it)
{
struct rtrs_clt_sess *min_path = NULL;
struct rtrs_clt *clt = it->clt;
struct rtrs_clt_sess *sess;
ktime_t min_latency = INT_MAX;
ktime_t latency;
list_for_each_entry_rcu(sess, &clt->paths_list, s.entry) {
if (READ_ONCE(sess->state) != RTRS_CLT_CONNECTED)
continue;
if (!list_empty(raw_cpu_ptr(sess->mp_skip_entry)))
continue;
latency = sess->s.hb_cur_latency;
if (latency < min_latency) {
min_latency = latency;
min_path = sess;
}
}
/*
* add the path to the skip list, so that next time we can get
* a different one
*/
if (min_path)
list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list);
return min_path;
}
static inline void path_it_init(struct path_it *it, struct rtrs_clt *clt)
{
INIT_LIST_HEAD(&it->skip_list);
it->clt = clt;
it->i = 0;
if (clt->mp_policy == MP_POLICY_RR)
it->next_path = get_next_path_rr;
else if (clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
it->next_path = get_next_path_min_inflight;
else
it->next_path = get_next_path_min_latency;
}
static inline void path_it_deinit(struct path_it *it)
{
struct list_head *skip, *tmp;
/*
* The skip_list is used only for the MIN_INFLIGHT policy.
* We need to remove paths from it, so that next IO can insert
* paths (->mp_skip_entry) into a skip_list again.
*/
list_for_each_safe(skip, tmp, &it->skip_list)
list_del_init(skip);
}
/**
* rtrs_clt_init_req() - Initialize an rtrs_clt_io_req holding information
* about an inflight IO.
* The user buffer holding user control message (not data) is copied into
* the corresponding buffer of rtrs_iu (req->iu->buf), which later on will
* also hold the control message of rtrs.
* @req: an io request holding information about IO.
* @sess: client session
* @conf: conformation callback function to notify upper layer.
* @permit: permit for allocation of RDMA remote buffer
* @priv: private pointer
* @vec: kernel vector containing control message
* @usr_len: length of the user message
* @sg: scater list for IO data
* @sg_cnt: number of scater list entries
* @data_len: length of the IO data
* @dir: direction of the IO.
*/
static void rtrs_clt_init_req(struct rtrs_clt_io_req *req,
struct rtrs_clt_sess *sess,
void (*conf)(void *priv, int errno),
struct rtrs_permit *permit, void *priv,
const struct kvec *vec, size_t usr_len,
struct scatterlist *sg, size_t sg_cnt,
size_t data_len, int dir)
{
struct iov_iter iter;
size_t len;
req->permit = permit;
req->in_use = true;
req->usr_len = usr_len;
req->data_len = data_len;
req->sglist = sg;
req->sg_cnt = sg_cnt;
req->priv = priv;
req->dir = dir;
req->con = rtrs_permit_to_clt_con(sess, permit);
req->conf = conf;
req->need_inv = false;
req->need_inv_comp = false;
req->inv_errno = 0;
refcount_set(&req->ref, 1);
req->mp_policy = sess->clt->mp_policy;
iov_iter_kvec(&iter, READ, vec, 1, usr_len);
len = _copy_from_iter(req->iu->buf, usr_len, &iter);
WARN_ON(len != usr_len);
reinit_completion(&req->inv_comp);
}
static struct rtrs_clt_io_req *
rtrs_clt_get_req(struct rtrs_clt_sess *sess,
void (*conf)(void *priv, int errno),
struct rtrs_permit *permit, void *priv,
const struct kvec *vec, size_t usr_len,
struct scatterlist *sg, size_t sg_cnt,
size_t data_len, int dir)
{
struct rtrs_clt_io_req *req;
req = &sess->reqs[permit->mem_id];
rtrs_clt_init_req(req, sess, conf, permit, priv, vec, usr_len,
sg, sg_cnt, data_len, dir);
return req;
}
static struct rtrs_clt_io_req *
rtrs_clt_get_copy_req(struct rtrs_clt_sess *alive_sess,
struct rtrs_clt_io_req *fail_req)
{
struct rtrs_clt_io_req *req;
struct kvec vec = {
.iov_base = fail_req->iu->buf,
.iov_len = fail_req->usr_len
};
req = &alive_sess->reqs[fail_req->permit->mem_id];
rtrs_clt_init_req(req, alive_sess, fail_req->conf, fail_req->permit,
fail_req->priv, &vec, fail_req->usr_len,
fail_req->sglist, fail_req->sg_cnt,
fail_req->data_len, fail_req->dir);
return req;
}
static int rtrs_post_rdma_write_sg(struct rtrs_clt_con *con,
struct rtrs_clt_io_req *req,
struct rtrs_rbuf *rbuf, bool fr_en,
u32 size, u32 imm, struct ib_send_wr *wr,
struct ib_send_wr *tail)
{
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
struct ib_sge *sge = req->sge;
enum ib_send_flags flags;
struct scatterlist *sg;
size_t num_sge;
int i;
struct ib_send_wr *ptail = NULL;
if (fr_en) {
i = 0;
sge[i].addr = req->mr->iova;
sge[i].length = req->mr->length;
sge[i].lkey = req->mr->lkey;
i++;
num_sge = 2;
ptail = tail;
} else {
for_each_sg(req->sglist, sg, req->sg_cnt, i) {
sge[i].addr = sg_dma_address(sg);
sge[i].length = sg_dma_len(sg);
sge[i].lkey = sess->s.dev->ib_pd->local_dma_lkey;
}
num_sge = 1 + req->sg_cnt;
}
sge[i].addr = req->iu->dma_addr;
sge[i].length = size;
sge[i].lkey = sess->s.dev->ib_pd->local_dma_lkey;
/*
* From time to time we have to post signalled sends,
* or send queue will fill up and only QP reset can help.
*/
flags = atomic_inc_return(&con->c.wr_cnt) % sess->s.signal_interval ?
0 : IB_SEND_SIGNALED;
ib_dma_sync_single_for_device(sess->s.dev->ib_dev, req->iu->dma_addr,
size, DMA_TO_DEVICE);
return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, sge, num_sge,
rbuf->rkey, rbuf->addr, imm,
flags, wr, ptail);
}
static int rtrs_map_sg_fr(struct rtrs_clt_io_req *req, size_t count)
{
int nr;
/* Align the MR to a 4K page size to match the block virt boundary */
nr = ib_map_mr_sg(req->mr, req->sglist, count, NULL, SZ_4K);
if (nr < 0)
return nr;
if (nr < req->sg_cnt)
return -EINVAL;
ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
return nr;
}
static int rtrs_clt_write_req(struct rtrs_clt_io_req *req)
{
struct rtrs_clt_con *con = req->con;
struct rtrs_sess *s = con->c.sess;
struct rtrs_clt_sess *sess = to_clt_sess(s);
struct rtrs_msg_rdma_write *msg;
struct rtrs_rbuf *rbuf;
int ret, count = 0;
u32 imm, buf_id;
struct ib_reg_wr rwr;
struct ib_send_wr inv_wr;
struct ib_send_wr *wr = NULL;
bool fr_en = false;
const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
if (tsize > sess->chunk_size) {
rtrs_wrn(s, "Write request failed, size too big %zu > %d\n",
tsize, sess->chunk_size);
return -EMSGSIZE;
}
if (req->sg_cnt) {
count = ib_dma_map_sg(sess->s.dev->ib_dev, req->sglist,
req->sg_cnt, req->dir);
if (!count) {
rtrs_wrn(s, "Write request failed, map failed\n");
return -EINVAL;
}
}
/* put rtrs msg after sg and user message */
msg = req->iu->buf + req->usr_len;
msg->type = cpu_to_le16(RTRS_MSG_WRITE);
msg->usr_len = cpu_to_le16(req->usr_len);
/* rtrs message on server side will be after user data and message */
imm = req->permit->mem_off + req->data_len + req->usr_len;
imm = rtrs_to_io_req_imm(imm);
buf_id = req->permit->mem_id;
req->sg_size = tsize;
rbuf = &sess->rbufs[buf_id];
if (count) {
ret = rtrs_map_sg_fr(req, count);
if (ret < 0) {
rtrs_err_rl(s,
"Write request failed, failed to map fast reg. data, err: %d\n",
ret);
ib_dma_unmap_sg(sess->s.dev->ib_dev, req->sglist,
req->sg_cnt, req->dir);
return ret;
}
inv_wr = (struct ib_send_wr) {
.opcode = IB_WR_LOCAL_INV,
.wr_cqe = &req->inv_cqe,
.send_flags = IB_SEND_SIGNALED,
.ex.invalidate_rkey = req->mr->rkey,
};
req->inv_cqe.done = rtrs_clt_inv_rkey_done;
rwr = (struct ib_reg_wr) {
.wr.opcode = IB_WR_REG_MR,
.wr.wr_cqe = &fast_reg_cqe,
.mr = req->mr,
.key = req->mr->rkey,
.access = (IB_ACCESS_LOCAL_WRITE),
};
wr = &rwr.wr;
fr_en = true;
refcount_inc(&req->ref);
}
/*
* Update stats now, after request is successfully sent it is not
* safe anymore to touch it.
*/
rtrs_clt_update_all_stats(req, WRITE);
ret = rtrs_post_rdma_write_sg(req->con, req, rbuf, fr_en,
req->usr_len + sizeof(*msg),
imm, wr, &inv_wr);
if (ret) {
rtrs_err_rl(s,
"Write request failed: error=%d path=%s [%s:%u]\n",
ret, kobject_name(&sess->kobj), sess->hca_name,
sess->hca_port);
if (req->mp_policy == MP_POLICY_MIN_INFLIGHT)
atomic_dec(&sess->stats->inflight);
if (req->sg_cnt)
ib_dma_unmap_sg(sess->s.dev->ib_dev, req->sglist,
req->sg_cnt, req->dir);
}
return ret;
}
static int rtrs_clt_read_req(struct rtrs_clt_io_req *req)
{
struct rtrs_clt_con *con = req->con;
struct rtrs_sess *s = con->c.sess;
struct rtrs_clt_sess *sess = to_clt_sess(s);
struct rtrs_msg_rdma_read *msg;
struct rtrs_ib_dev *dev = sess->s.dev;
struct ib_reg_wr rwr;
struct ib_send_wr *wr = NULL;
int ret, count = 0;
u32 imm, buf_id;
const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
if (tsize > sess->chunk_size) {
rtrs_wrn(s,
"Read request failed, message size is %zu, bigger than CHUNK_SIZE %d\n",
tsize, sess->chunk_size);
return -EMSGSIZE;
}
if (req->sg_cnt) {
count = ib_dma_map_sg(dev->ib_dev, req->sglist, req->sg_cnt,
req->dir);
if (!count) {
rtrs_wrn(s,
"Read request failed, dma map failed\n");
return -EINVAL;
}
}
/* put our message into req->buf after user message*/
msg = req->iu->buf + req->usr_len;
msg->type = cpu_to_le16(RTRS_MSG_READ);
msg->usr_len = cpu_to_le16(req->usr_len);
if (count) {
ret = rtrs_map_sg_fr(req, count);
if (ret < 0) {
rtrs_err_rl(s,
"Read request failed, failed to map fast reg. data, err: %d\n",
ret);
ib_dma_unmap_sg(dev->ib_dev, req->sglist, req->sg_cnt,
req->dir);
return ret;
}
rwr = (struct ib_reg_wr) {
.wr.opcode = IB_WR_REG_MR,
.wr.wr_cqe = &fast_reg_cqe,
.mr = req->mr,
.key = req->mr->rkey,
.access = (IB_ACCESS_LOCAL_WRITE |
IB_ACCESS_REMOTE_WRITE),
};
wr = &rwr.wr;
msg->sg_cnt = cpu_to_le16(1);
msg->flags = cpu_to_le16(RTRS_MSG_NEED_INVAL_F);
msg->desc[0].addr = cpu_to_le64(req->mr->iova);
msg->desc[0].key = cpu_to_le32(req->mr->rkey);
msg->desc[0].len = cpu_to_le32(req->mr->length);
/* Further invalidation is required */
req->need_inv = !!RTRS_MSG_NEED_INVAL_F;
} else {
msg->sg_cnt = 0;
msg->flags = 0;
}
/*
* rtrs message will be after the space reserved for disk data and
* user message
*/
imm = req->permit->mem_off + req->data_len + req->usr_len;
imm = rtrs_to_io_req_imm(imm);
buf_id = req->permit->mem_id;
req->sg_size = sizeof(*msg);
req->sg_size += le16_to_cpu(msg->sg_cnt) * sizeof(struct rtrs_sg_desc);
req->sg_size += req->usr_len;
/*
* Update stats now, after request is successfully sent it is not
* safe anymore to touch it.
*/
rtrs_clt_update_all_stats(req, READ);
ret = rtrs_post_send_rdma(req->con, req, &sess->rbufs[buf_id],
req->data_len, imm, wr);
if (ret) {
rtrs_err_rl(s,
"Read request failed: error=%d path=%s [%s:%u]\n",
ret, kobject_name(&sess->kobj), sess->hca_name,
sess->hca_port);
if (req->mp_policy == MP_POLICY_MIN_INFLIGHT)
atomic_dec(&sess->stats->inflight);
req->need_inv = false;
if (req->sg_cnt)
ib_dma_unmap_sg(dev->ib_dev, req->sglist,
req->sg_cnt, req->dir);
}
return ret;
}
/**
* rtrs_clt_failover_req() - Try to find an active path for a failed request
* @clt: clt context
* @fail_req: a failed io request.
*/
static int rtrs_clt_failover_req(struct rtrs_clt *clt,
struct rtrs_clt_io_req *fail_req)
{
struct rtrs_clt_sess *alive_sess;
struct rtrs_clt_io_req *req;
int err = -ECONNABORTED;
struct path_it it;
rcu_read_lock();
for (path_it_init(&it, clt);
(alive_sess = it.next_path(&it)) && it.i < it.clt->paths_num;
it.i++) {
if (READ_ONCE(alive_sess->state) != RTRS_CLT_CONNECTED)
continue;
req = rtrs_clt_get_copy_req(alive_sess, fail_req);
if (req->dir == DMA_TO_DEVICE)
err = rtrs_clt_write_req(req);
else
err = rtrs_clt_read_req(req);
if (err) {
req->in_use = false;
continue;
}
/* Success path */
rtrs_clt_inc_failover_cnt(alive_sess->stats);
break;
}
path_it_deinit(&it);
rcu_read_unlock();
return err;
}
static void fail_all_outstanding_reqs(struct rtrs_clt_sess *sess)
{
struct rtrs_clt *clt = sess->clt;
struct rtrs_clt_io_req *req;
int i, err;
if (!sess->reqs)
return;
for (i = 0; i < sess->queue_depth; ++i) {
req = &sess->reqs[i];
if (!req->in_use)
continue;
/*
* Safely (without notification) complete failed request.
* After completion this request is still useble and can
* be failovered to another path.
*/
complete_rdma_req(req, -ECONNABORTED, false, true);
err = rtrs_clt_failover_req(clt, req);
if (err)
/* Failover failed, notify anyway */
req->conf(req->priv, err);
}
}
static void free_sess_reqs(struct rtrs_clt_sess *sess)
{
struct rtrs_clt_io_req *req;
int i;
if (!sess->reqs)
return;
for (i = 0; i < sess->queue_depth; ++i) {
req = &sess->reqs[i];
if (req->mr)
ib_dereg_mr(req->mr);
kfree(req->sge);
rtrs_iu_free(req->iu, sess->s.dev->ib_dev, 1);
}
kfree(sess->reqs);
sess->reqs = NULL;
}
static int alloc_sess_reqs(struct rtrs_clt_sess *sess)
{
struct rtrs_clt_io_req *req;
int i, err = -ENOMEM;
sess->reqs = kcalloc(sess->queue_depth, sizeof(*sess->reqs),
GFP_KERNEL);
if (!sess->reqs)
return -ENOMEM;
for (i = 0; i < sess->queue_depth; ++i) {
req = &sess->reqs[i];
req->iu = rtrs_iu_alloc(1, sess->max_hdr_size, GFP_KERNEL,
sess->s.dev->ib_dev,
DMA_TO_DEVICE,
rtrs_clt_rdma_done);
if (!req->iu)
goto out;
req->sge = kcalloc(2, sizeof(*req->sge), GFP_KERNEL);
if (!req->sge)
goto out;
req->mr = ib_alloc_mr(sess->s.dev->ib_pd, IB_MR_TYPE_MEM_REG,
sess->max_pages_per_mr);
if (IS_ERR(req->mr)) {
err = PTR_ERR(req->mr);
req->mr = NULL;
pr_err("Failed to alloc sess->max_pages_per_mr %d\n",
sess->max_pages_per_mr);
goto out;
}
init_completion(&req->inv_comp);
}
return 0;
out:
free_sess_reqs(sess);
return err;
}
static int alloc_permits(struct rtrs_clt *clt)
{
unsigned int chunk_bits;
int err, i;
clt->permits_map = kcalloc(BITS_TO_LONGS(clt->queue_depth),
sizeof(long), GFP_KERNEL);
if (!clt->permits_map) {
err = -ENOMEM;
goto out_err;
}
clt->permits = kcalloc(clt->queue_depth, permit_size(clt), GFP_KERNEL);
if (!clt->permits) {
err = -ENOMEM;
goto err_map;
}
chunk_bits = ilog2(clt->queue_depth - 1) + 1;
for (i = 0; i < clt->queue_depth; i++) {
struct rtrs_permit *permit;
permit = get_permit(clt, i);
permit->mem_id = i;
permit->mem_off = i << (MAX_IMM_PAYL_BITS - chunk_bits);
}
return 0;
err_map:
kfree(clt->permits_map);
clt->permits_map = NULL;
out_err:
return err;
}
static void free_permits(struct rtrs_clt *clt)
{
if (clt->permits_map) {
size_t sz = clt->queue_depth;
wait_event(clt->permits_wait,
find_first_bit(clt->permits_map, sz) >= sz);
}
kfree(clt->permits_map);
clt->permits_map = NULL;
kfree(clt->permits);
clt->permits = NULL;
}
static void query_fast_reg_mode(struct rtrs_clt_sess *sess)
{
struct ib_device *ib_dev;
u64 max_pages_per_mr;
int mr_page_shift;
ib_dev = sess->s.dev->ib_dev;
/*
* Use the smallest page size supported by the HCA, down to a
* minimum of 4096 bytes. We're unlikely to build large sglists
* out of smaller entries.
*/
mr_page_shift = max(12, ffs(ib_dev->attrs.page_size_cap) - 1);
max_pages_per_mr = ib_dev->attrs.max_mr_size;
do_div(max_pages_per_mr, (1ull << mr_page_shift));
sess->max_pages_per_mr =
min3(sess->max_pages_per_mr, (u32)max_pages_per_mr,
ib_dev->attrs.max_fast_reg_page_list_len);
sess->clt->max_segments =
min(sess->max_pages_per_mr, sess->clt->max_segments);
}
static bool rtrs_clt_change_state_get_old(struct rtrs_clt_sess *sess,
enum rtrs_clt_state new_state,
enum rtrs_clt_state *old_state)
{
bool changed;
spin_lock_irq(&sess->state_wq.lock);
if (old_state)
*old_state = sess->state;
changed = rtrs_clt_change_state(sess, new_state);
spin_unlock_irq(&sess->state_wq.lock);
return changed;
}
static void rtrs_clt_hb_err_handler(struct rtrs_con *c)
{
struct rtrs_clt_con *con = container_of(c, typeof(*con), c);
rtrs_rdma_error_recovery(con);
}
static void rtrs_clt_init_hb(struct rtrs_clt_sess *sess)
{
rtrs_init_hb(&sess->s, &io_comp_cqe,
RTRS_HB_INTERVAL_MS,
RTRS_HB_MISSED_MAX,
rtrs_clt_hb_err_handler,
rtrs_wq);
}
static void rtrs_clt_reconnect_work(struct work_struct *work);
static void rtrs_clt_close_work(struct work_struct *work);
static struct rtrs_clt_sess *alloc_sess(struct rtrs_clt *clt,
const struct rtrs_addr *path,
size_t con_num, u32 nr_poll_queues)
{
struct rtrs_clt_sess *sess;
int err = -ENOMEM;
int cpu;
size_t total_con;
sess = kzalloc(sizeof(*sess), GFP_KERNEL);
if (!sess)
goto err;
/*
* irqmode and poll
* +1: Extra connection for user messages
*/
total_con = con_num + nr_poll_queues + 1;
sess->s.con = kcalloc(total_con, sizeof(*sess->s.con), GFP_KERNEL);
if (!sess->s.con)
goto err_free_sess;
sess->s.con_num = total_con;
sess->s.irq_con_num = con_num + 1;
sess->stats = kzalloc(sizeof(*sess->stats), GFP_KERNEL);
if (!sess->stats)
goto err_free_con;
mutex_init(&sess->init_mutex);
uuid_gen(&sess->s.uuid);
memcpy(&sess->s.dst_addr, path->dst,
rdma_addr_size((struct sockaddr *)path->dst));
/*
* rdma_resolve_addr() passes src_addr to cma_bind_addr, which
* checks the sa_family to be non-zero. If user passed src_addr=NULL
* the sess->src_addr will contain only zeros, which is then fine.
*/
if (path->src)
memcpy(&sess->s.src_addr, path->src,
rdma_addr_size((struct sockaddr *)path->src));
strscpy(sess->s.sessname, clt->sessname, sizeof(sess->s.sessname));
sess->clt = clt;
sess->max_pages_per_mr = RTRS_MAX_SEGMENTS;
init_waitqueue_head(&sess->state_wq);
sess->state = RTRS_CLT_CONNECTING;
atomic_set(&sess->connected_cnt, 0);
INIT_WORK(&sess->close_work, rtrs_clt_close_work);
INIT_DELAYED_WORK(&sess->reconnect_dwork, rtrs_clt_reconnect_work);
rtrs_clt_init_hb(sess);
sess->mp_skip_entry = alloc_percpu(typeof(*sess->mp_skip_entry));
if (!sess->mp_skip_entry)
goto err_free_stats;
for_each_possible_cpu(cpu)
INIT_LIST_HEAD(per_cpu_ptr(sess->mp_skip_entry, cpu));
err = rtrs_clt_init_stats(sess->stats);
if (err)
goto err_free_percpu;
return sess;
err_free_percpu:
free_percpu(sess->mp_skip_entry);
err_free_stats:
kfree(sess->stats);
err_free_con:
kfree(sess->s.con);
err_free_sess:
kfree(sess);
err:
return ERR_PTR(err);
}
void free_sess(struct rtrs_clt_sess *sess)
{
free_percpu(sess->mp_skip_entry);
mutex_destroy(&sess->init_mutex);
kfree(sess->s.con);
kfree(sess->rbufs);
kfree(sess);
}
static int create_con(struct rtrs_clt_sess *sess, unsigned int cid)
{
struct rtrs_clt_con *con;
con = kzalloc(sizeof(*con), GFP_KERNEL);
if (!con)
return -ENOMEM;
/* Map first two connections to the first CPU */
con->cpu = (cid ? cid - 1 : 0) % nr_cpu_ids;
con->c.cid = cid;
con->c.sess = &sess->s;
/* Align with srv, init as 1 */
atomic_set(&con->c.wr_cnt, 1);
mutex_init(&con->con_mutex);
sess->s.con[cid] = &con->c;
return 0;
}
static void destroy_con(struct rtrs_clt_con *con)
{
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
sess->s.con[con->c.cid] = NULL;
mutex_destroy(&con->con_mutex);
kfree(con);
}
static int create_con_cq_qp(struct rtrs_clt_con *con)
{
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
u32 max_send_wr, max_recv_wr, cq_num, max_send_sge, wr_limit;
int err, cq_vector;
struct rtrs_msg_rkey_rsp *rsp;
lockdep_assert_held(&con->con_mutex);
if (con->c.cid == 0) {
max_send_sge = 1;
/* We must be the first here */
if (WARN_ON(sess->s.dev))
return -EINVAL;
/*
* The whole session uses device from user connection.
* Be careful not to close user connection before ib dev
* is gracefully put.
*/
sess->s.dev = rtrs_ib_dev_find_or_add(con->c.cm_id->device,
&dev_pd);
if (!sess->s.dev) {
rtrs_wrn(sess->clt,
"rtrs_ib_dev_find_get_or_add(): no memory\n");
return -ENOMEM;
}
sess->s.dev_ref = 1;
query_fast_reg_mode(sess);
wr_limit = sess->s.dev->ib_dev->attrs.max_qp_wr;
/*
* Two (request + registration) completion for send
* Two for recv if always_invalidate is set on server
* or one for recv.
* + 2 for drain and heartbeat
* in case qp gets into error state.
*/
max_send_wr =
min_t(int, wr_limit, SERVICE_CON_QUEUE_DEPTH * 2 + 2);
max_recv_wr = max_send_wr;
} else {
/*
* Here we assume that session members are correctly set.
* This is always true if user connection (cid == 0) is
* established first.
*/
if (WARN_ON(!sess->s.dev))
return -EINVAL;
if (WARN_ON(!sess->queue_depth))
return -EINVAL;
wr_limit = sess->s.dev->ib_dev->attrs.max_qp_wr;
/* Shared between connections */
sess->s.dev_ref++;
max_send_wr = min_t(int, wr_limit,
/* QD * (REQ + RSP + FR REGS or INVS) + drain */
sess->queue_depth * 3 + 1);
max_recv_wr = min_t(int, wr_limit,
sess->queue_depth * 3 + 1);
max_send_sge = 2;
}
atomic_set(&con->c.sq_wr_avail, max_send_wr);
cq_num = max_send_wr + max_recv_wr;
/* alloc iu to recv new rkey reply when server reports flags set */
if (sess->flags & RTRS_MSG_NEW_RKEY_F || con->c.cid == 0) {
con->rsp_ius = rtrs_iu_alloc(cq_num, sizeof(*rsp),
GFP_KERNEL, sess->s.dev->ib_dev,
DMA_FROM_DEVICE,
rtrs_clt_rdma_done);
if (!con->rsp_ius)
return -ENOMEM;
con->queue_num = cq_num;
}
cq_num = max_send_wr + max_recv_wr;
cq_vector = con->cpu % sess->s.dev->ib_dev->num_comp_vectors;
if (con->c.cid >= sess->s.irq_con_num)
err = rtrs_cq_qp_create(&sess->s, &con->c, max_send_sge,
cq_vector, cq_num, max_send_wr,
max_recv_wr, IB_POLL_DIRECT);
else
err = rtrs_cq_qp_create(&sess->s, &con->c, max_send_sge,
cq_vector, cq_num, max_send_wr,
max_recv_wr, IB_POLL_SOFTIRQ);
/*
* In case of error we do not bother to clean previous allocations,
* since destroy_con_cq_qp() must be called.
*/
return err;
}
static void destroy_con_cq_qp(struct rtrs_clt_con *con)
{
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
/*
* Be careful here: destroy_con_cq_qp() can be called even
* create_con_cq_qp() failed, see comments there.
*/
lockdep_assert_held(&con->con_mutex);
rtrs_cq_qp_destroy(&con->c);
if (con->rsp_ius) {
rtrs_iu_free(con->rsp_ius, sess->s.dev->ib_dev, con->queue_num);
con->rsp_ius = NULL;
con->queue_num = 0;
}
if (sess->s.dev_ref && !--sess->s.dev_ref) {
rtrs_ib_dev_put(sess->s.dev);
sess->s.dev = NULL;
}
}
static void stop_cm(struct rtrs_clt_con *con)
{
rdma_disconnect(con->c.cm_id);
if (con->c.qp)
ib_drain_qp(con->c.qp);
}
static void destroy_cm(struct rtrs_clt_con *con)
{
rdma_destroy_id(con->c.cm_id);
con->c.cm_id = NULL;
}
static int rtrs_rdma_addr_resolved(struct rtrs_clt_con *con)
{
struct rtrs_sess *s = con->c.sess;
int err;
mutex_lock(&con->con_mutex);
err = create_con_cq_qp(con);
mutex_unlock(&con->con_mutex);
if (err) {
rtrs_err(s, "create_con_cq_qp(), err: %d\n", err);
return err;
}
err = rdma_resolve_route(con->c.cm_id, RTRS_CONNECT_TIMEOUT_MS);
if (err)
rtrs_err(s, "Resolving route failed, err: %d\n", err);
return err;
}
static int rtrs_rdma_route_resolved(struct rtrs_clt_con *con)
{
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
struct rtrs_clt *clt = sess->clt;
struct rtrs_msg_conn_req msg;
struct rdma_conn_param param;
int err;
param = (struct rdma_conn_param) {
.retry_count = 7,
.rnr_retry_count = 7,
.private_data = &msg,
.private_data_len = sizeof(msg),
};
msg = (struct rtrs_msg_conn_req) {
.magic = cpu_to_le16(RTRS_MAGIC),
.version = cpu_to_le16(RTRS_PROTO_VER),
.cid = cpu_to_le16(con->c.cid),
.cid_num = cpu_to_le16(sess->s.con_num),
.recon_cnt = cpu_to_le16(sess->s.recon_cnt),
};
msg.first_conn = sess->for_new_clt ? FIRST_CONN : 0;
uuid_copy(&msg.sess_uuid, &sess->s.uuid);
uuid_copy(&msg.paths_uuid, &clt->paths_uuid);
err = rdma_connect_locked(con->c.cm_id, &param);
if (err)
rtrs_err(clt, "rdma_connect_locked(): %d\n", err);
return err;
}
static int rtrs_rdma_conn_established(struct rtrs_clt_con *con,
struct rdma_cm_event *ev)
{
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
struct rtrs_clt *clt = sess->clt;
const struct rtrs_msg_conn_rsp *msg;
u16 version, queue_depth;
int errno;
u8 len;
msg = ev->param.conn.private_data;
len = ev->param.conn.private_data_len;
if (len < sizeof(*msg)) {
rtrs_err(clt, "Invalid RTRS connection response\n");
return -ECONNRESET;
}
if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
rtrs_err(clt, "Invalid RTRS magic\n");
return -ECONNRESET;
}
version = le16_to_cpu(msg->version);
if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
rtrs_err(clt, "Unsupported major RTRS version: %d, expected %d\n",
version >> 8, RTRS_PROTO_VER_MAJOR);
return -ECONNRESET;
}
errno = le16_to_cpu(msg->errno);
if (errno) {
rtrs_err(clt, "Invalid RTRS message: errno %d\n",
errno);
return -ECONNRESET;
}
if (con->c.cid == 0) {
queue_depth = le16_to_cpu(msg->queue_depth);
if (sess->queue_depth > 0 && queue_depth != sess->queue_depth) {
rtrs_err(clt, "Error: queue depth changed\n");
/*
* Stop any more reconnection attempts
*/
sess->reconnect_attempts = -1;
rtrs_err(clt,
"Disabling auto-reconnect. Trigger a manual reconnect after issue is resolved\n");
return -ECONNRESET;
}
if (!sess->rbufs) {
sess->rbufs = kcalloc(queue_depth, sizeof(*sess->rbufs),
GFP_KERNEL);
if (!sess->rbufs)
return -ENOMEM;
}
sess->queue_depth = queue_depth;
sess->s.signal_interval = min_not_zero(queue_depth,
(unsigned short) SERVICE_CON_QUEUE_DEPTH);
sess->max_hdr_size = le32_to_cpu(msg->max_hdr_size);
sess->max_io_size = le32_to_cpu(msg->max_io_size);
sess->flags = le32_to_cpu(msg->flags);
sess->chunk_size = sess->max_io_size + sess->max_hdr_size;
/*
* Global IO size is always a minimum.
* If while a reconnection server sends us a value a bit
* higher - client does not care and uses cached minimum.
*
* Since we can have several sessions (paths) restablishing
* connections in parallel, use lock.
*/
mutex_lock(&clt->paths_mutex);
clt->queue_depth = sess->queue_depth;
clt->max_io_size = min_not_zero(sess->max_io_size,
clt->max_io_size);
mutex_unlock(&clt->paths_mutex);
/*
* Cache the hca_port and hca_name for sysfs
*/
sess->hca_port = con->c.cm_id->port_num;
scnprintf(sess->hca_name, sizeof(sess->hca_name),
sess->s.dev->ib_dev->name);
sess->s.src_addr = con->c.cm_id->route.addr.src_addr;
/* set for_new_clt, to allow future reconnect on any path */
sess->for_new_clt = 1;
}
return 0;
}
static inline void flag_success_on_conn(struct rtrs_clt_con *con)
{
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
atomic_inc(&sess->connected_cnt);
con->cm_err = 1;
}
static int rtrs_rdma_conn_rejected(struct rtrs_clt_con *con,
struct rdma_cm_event *ev)
{
struct rtrs_sess *s = con->c.sess;
const struct rtrs_msg_conn_rsp *msg;
const char *rej_msg;
int status, errno;
u8 data_len;
status = ev->status;
rej_msg = rdma_reject_msg(con->c.cm_id, status);
msg = rdma_consumer_reject_data(con->c.cm_id, ev, &data_len);
if (msg && data_len >= sizeof(*msg)) {
errno = (int16_t)le16_to_cpu(msg->errno);
if (errno == -EBUSY)
rtrs_err(s,
"Previous session is still exists on the server, please reconnect later\n");
else
rtrs_err(s,
"Connect rejected: status %d (%s), rtrs errno %d\n",
status, rej_msg, errno);
} else {
rtrs_err(s,
"Connect rejected but with malformed message: status %d (%s)\n",
status, rej_msg);
}
return -ECONNRESET;
}
void rtrs_clt_close_conns(struct rtrs_clt_sess *sess, bool wait)
{
if (rtrs_clt_change_state_get_old(sess, RTRS_CLT_CLOSING, NULL))
queue_work(rtrs_wq, &sess->close_work);
if (wait)
flush_work(&sess->close_work);
}
static inline void flag_error_on_conn(struct rtrs_clt_con *con, int cm_err)
{
if (con->cm_err == 1) {
struct rtrs_clt_sess *sess;
sess = to_clt_sess(con->c.sess);
if (atomic_dec_and_test(&sess->connected_cnt))
wake_up(&sess->state_wq);
}
con->cm_err = cm_err;
}
static int rtrs_clt_rdma_cm_handler(struct rdma_cm_id *cm_id,
struct rdma_cm_event *ev)
{
struct rtrs_clt_con *con = cm_id->context;
struct rtrs_sess *s = con->c.sess;
struct rtrs_clt_sess *sess = to_clt_sess(s);
int cm_err = 0;
switch (ev->event) {
case RDMA_CM_EVENT_ADDR_RESOLVED:
cm_err = rtrs_rdma_addr_resolved(con);
break;
case RDMA_CM_EVENT_ROUTE_RESOLVED:
cm_err = rtrs_rdma_route_resolved(con);
break;
case RDMA_CM_EVENT_ESTABLISHED:
cm_err = rtrs_rdma_conn_established(con, ev);
if (!cm_err) {
/*
* Report success and wake up. Here we abuse state_wq,
* i.e. wake up without state change, but we set cm_err.
*/
flag_success_on_conn(con);
wake_up(&sess->state_wq);
return 0;
}
break;
case RDMA_CM_EVENT_REJECTED:
cm_err = rtrs_rdma_conn_rejected(con, ev);
break;
case RDMA_CM_EVENT_DISCONNECTED:
/* No message for disconnecting */
cm_err = -ECONNRESET;
break;
case RDMA_CM_EVENT_CONNECT_ERROR:
case RDMA_CM_EVENT_UNREACHABLE:
case RDMA_CM_EVENT_ADDR_CHANGE:
case RDMA_CM_EVENT_TIMEWAIT_EXIT:
rtrs_wrn(s, "CM error (CM event: %s, err: %d)\n",
rdma_event_msg(ev->event), ev->status);
cm_err = -ECONNRESET;
break;
case RDMA_CM_EVENT_ADDR_ERROR:
case RDMA_CM_EVENT_ROUTE_ERROR:
rtrs_wrn(s, "CM error (CM event: %s, err: %d)\n",
rdma_event_msg(ev->event), ev->status);
cm_err = -EHOSTUNREACH;
break;
case RDMA_CM_EVENT_DEVICE_REMOVAL:
/*
* Device removal is a special case. Queue close and return 0.
*/
rtrs_clt_close_conns(sess, false);
return 0;
default:
rtrs_err(s, "Unexpected RDMA CM error (CM event: %s, err: %d)\n",
rdma_event_msg(ev->event), ev->status);
cm_err = -ECONNRESET;
break;
}
if (cm_err) {
/*
* cm error makes sense only on connection establishing,
* in other cases we rely on normal procedure of reconnecting.
*/
flag_error_on_conn(con, cm_err);
rtrs_rdma_error_recovery(con);
}
return 0;
}
static int create_cm(struct rtrs_clt_con *con)
{
struct rtrs_sess *s = con->c.sess;
struct rtrs_clt_sess *sess = to_clt_sess(s);
struct rdma_cm_id *cm_id;
int err;
cm_id = rdma_create_id(&init_net, rtrs_clt_rdma_cm_handler, con,
sess->s.dst_addr.ss_family == AF_IB ?
RDMA_PS_IB : RDMA_PS_TCP, IB_QPT_RC);
if (IS_ERR(cm_id)) {
err = PTR_ERR(cm_id);
rtrs_err(s, "Failed to create CM ID, err: %d\n", err);
return err;
}
con->c.cm_id = cm_id;
con->cm_err = 0;
/* allow the port to be reused */
err = rdma_set_reuseaddr(cm_id, 1);
if (err != 0) {
rtrs_err(s, "Set address reuse failed, err: %d\n", err);
goto destroy_cm;
}
err = rdma_resolve_addr(cm_id, (struct sockaddr *)&sess->s.src_addr,
(struct sockaddr *)&sess->s.dst_addr,
RTRS_CONNECT_TIMEOUT_MS);
if (err) {
rtrs_err(s, "Failed to resolve address, err: %d\n", err);
goto destroy_cm;
}
/*
* Combine connection status and session events. This is needed
* for waiting two possible cases: cm_err has something meaningful
* or session state was really changed to error by device removal.
*/
err = wait_event_interruptible_timeout(
sess->state_wq,
con->cm_err || sess->state != RTRS_CLT_CONNECTING,
msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
if (err == 0 || err == -ERESTARTSYS) {
if (err == 0)
err = -ETIMEDOUT;
/* Timedout or interrupted */
goto errr;
}
if (con->cm_err < 0) {
err = con->cm_err;
goto errr;
}
if (READ_ONCE(sess->state) != RTRS_CLT_CONNECTING) {
/* Device removal */
err = -ECONNABORTED;
goto errr;
}
return 0;
errr:
stop_cm(con);
mutex_lock(&con->con_mutex);
destroy_con_cq_qp(con);
mutex_unlock(&con->con_mutex);
destroy_cm:
destroy_cm(con);
return err;
}
static void rtrs_clt_sess_up(struct rtrs_clt_sess *sess)
{
struct rtrs_clt *clt = sess->clt;
int up;
/*
* We can fire RECONNECTED event only when all paths were
* connected on rtrs_clt_open(), then each was disconnected
* and the first one connected again. That's why this nasty
* game with counter value.
*/
mutex_lock(&clt->paths_ev_mutex);
up = ++clt->paths_up;
/*
* Here it is safe to access paths num directly since up counter
* is greater than MAX_PATHS_NUM only while rtrs_clt_open() is
* in progress, thus paths removals are impossible.
*/
if (up > MAX_PATHS_NUM && up == MAX_PATHS_NUM + clt->paths_num)
clt->paths_up = clt->paths_num;
else if (up == 1)
clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_RECONNECTED);
mutex_unlock(&clt->paths_ev_mutex);
/* Mark session as established */
sess->established = true;
sess->reconnect_attempts = 0;
sess->stats->reconnects.successful_cnt++;
}
static void rtrs_clt_sess_down(struct rtrs_clt_sess *sess)
{
struct rtrs_clt *clt = sess->clt;
if (!sess->established)
return;
sess->established = false;
mutex_lock(&clt->paths_ev_mutex);
WARN_ON(!clt->paths_up);
if (--clt->paths_up == 0)
clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_DISCONNECTED);
mutex_unlock(&clt->paths_ev_mutex);
}
static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_sess *sess)
{
struct rtrs_clt_con *con;
unsigned int cid;
WARN_ON(READ_ONCE(sess->state) == RTRS_CLT_CONNECTED);
/*
* Possible race with rtrs_clt_open(), when DEVICE_REMOVAL comes
* exactly in between. Start destroying after it finishes.
*/
mutex_lock(&sess->init_mutex);
mutex_unlock(&sess->init_mutex);
/*
* All IO paths must observe !CONNECTED state before we
* free everything.
*/
synchronize_rcu();
rtrs_stop_hb(&sess->s);
/*
* The order it utterly crucial: firstly disconnect and complete all
* rdma requests with error (thus set in_use=false for requests),
* then fail outstanding requests checking in_use for each, and
* eventually notify upper layer about session disconnection.
*/
for (cid = 0; cid < sess->s.con_num; cid++) {
if (!sess->s.con[cid])
break;
con = to_clt_con(sess->s.con[cid]);
stop_cm(con);
}
fail_all_outstanding_reqs(sess);
free_sess_reqs(sess);
rtrs_clt_sess_down(sess);
/*
* Wait for graceful shutdown, namely when peer side invokes
* rdma_disconnect(). 'connected_cnt' is decremented only on
* CM events, thus if other side had crashed and hb has detected
* something is wrong, here we will stuck for exactly timeout ms,
* since CM does not fire anything. That is fine, we are not in
* hurry.
*/
wait_event_timeout(sess->state_wq, !atomic_read(&sess->connected_cnt),
msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
for (cid = 0; cid < sess->s.con_num; cid++) {
if (!sess->s.con[cid])
break;
con = to_clt_con(sess->s.con[cid]);
mutex_lock(&con->con_mutex);
destroy_con_cq_qp(con);
mutex_unlock(&con->con_mutex);
destroy_cm(con);
destroy_con(con);
}
}
static inline bool xchg_sessions(struct rtrs_clt_sess __rcu **rcu_ppcpu_path,
struct rtrs_clt_sess *sess,
struct rtrs_clt_sess *next)
{
struct rtrs_clt_sess **ppcpu_path;
/* Call cmpxchg() without sparse warnings */
ppcpu_path = (typeof(ppcpu_path))rcu_ppcpu_path;
return sess == cmpxchg(ppcpu_path, sess, next);
}
static void rtrs_clt_remove_path_from_arr(struct rtrs_clt_sess *sess)
{
struct rtrs_clt *clt = sess->clt;
struct rtrs_clt_sess *next;
bool wait_for_grace = false;
int cpu;
mutex_lock(&clt->paths_mutex);
list_del_rcu(&sess->s.entry);
/* Make sure everybody observes path removal. */
synchronize_rcu();
/*
* At this point nobody sees @sess in the list, but still we have
* dangling pointer @pcpu_path which _can_ point to @sess. Since
* nobody can observe @sess in the list, we guarantee that IO path
* will not assign @sess to @pcpu_path, i.e. @pcpu_path can be equal
* to @sess, but can never again become @sess.
*/
/*
* Decrement paths number only after grace period, because
* caller of do_each_path() must firstly observe list without
* path and only then decremented paths number.
*
* Otherwise there can be the following situation:
* o Two paths exist and IO is coming.
* o One path is removed:
* CPU#0 CPU#1
* do_each_path(): rtrs_clt_remove_path_from_arr():
* path = get_next_path()
* ^^^ list_del_rcu(path)
* [!CONNECTED path] clt->paths_num--
* ^^^^^^^^^
* load clt->paths_num from 2 to 1
* ^^^^^^^^^
* sees 1
*
* path is observed as !CONNECTED, but do_each_path() loop
* ends, because expression i < clt->paths_num is false.
*/
clt->paths_num--;
/*
* Get @next connection from current @sess which is going to be
* removed. If @sess is the last element, then @next is NULL.
*/
rcu_read_lock();
next = list_next_or_null_rr_rcu(&clt->paths_list, &sess->s.entry,
typeof(*next), s.entry);
rcu_read_unlock();
/*
* @pcpu paths can still point to the path which is going to be
* removed, so change the pointer manually.
*/
for_each_possible_cpu(cpu) {
struct rtrs_clt_sess __rcu **ppcpu_path;
ppcpu_path = per_cpu_ptr(clt->pcpu_path, cpu);
if (rcu_dereference_protected(*ppcpu_path,
lockdep_is_held(&clt->paths_mutex)) != sess)
/*
* synchronize_rcu() was called just after deleting
* entry from the list, thus IO code path cannot
* change pointer back to the pointer which is going
* to be removed, we are safe here.
*/
continue;
/*
* We race with IO code path, which also changes pointer,
* thus we have to be careful not to overwrite it.
*/
if (xchg_sessions(ppcpu_path, sess, next))
/*
* @ppcpu_path was successfully replaced with @next,
* that means that someone could also pick up the
* @sess and dereferencing it right now, so wait for
* a grace period is required.
*/
wait_for_grace = true;
}
if (wait_for_grace)
synchronize_rcu();
mutex_unlock(&clt->paths_mutex);
}
static void rtrs_clt_add_path_to_arr(struct rtrs_clt_sess *sess)
{
struct rtrs_clt *clt = sess->clt;
mutex_lock(&clt->paths_mutex);
clt->paths_num++;
list_add_tail_rcu(&sess->s.entry, &clt->paths_list);
mutex_unlock(&clt->paths_mutex);
}
static void rtrs_clt_close_work(struct work_struct *work)
{
struct rtrs_clt_sess *sess;
sess = container_of(work, struct rtrs_clt_sess, close_work);
cancel_delayed_work_sync(&sess->reconnect_dwork);
rtrs_clt_stop_and_destroy_conns(sess);
rtrs_clt_change_state_get_old(sess, RTRS_CLT_CLOSED, NULL);
}
static int init_conns(struct rtrs_clt_sess *sess)
{
unsigned int cid;
int err;
/*
* On every new session connections increase reconnect counter
* to avoid clashes with previous sessions not yet closed
* sessions on a server side.
*/
sess->s.recon_cnt++;
/* Establish all RDMA connections */
for (cid = 0; cid < sess->s.con_num; cid++) {
err = create_con(sess, cid);
if (err)
goto destroy;
err = create_cm(to_clt_con(sess->s.con[cid]));
if (err) {
destroy_con(to_clt_con(sess->s.con[cid]));
goto destroy;
}
}
err = alloc_sess_reqs(sess);
if (err)
goto destroy;
rtrs_start_hb(&sess->s);
return 0;
destroy:
while (cid--) {
struct rtrs_clt_con *con = to_clt_con(sess->s.con[cid]);
stop_cm(con);
mutex_lock(&con->con_mutex);
destroy_con_cq_qp(con);
mutex_unlock(&con->con_mutex);
destroy_cm(con);
destroy_con(con);
}
/*
* If we've never taken async path and got an error, say,
* doing rdma_resolve_addr(), switch to CONNECTION_ERR state
* manually to keep reconnecting.
*/
rtrs_clt_change_state_get_old(sess, RTRS_CLT_CONNECTING_ERR, NULL);
return err;
}
static void rtrs_clt_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
{
struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
struct rtrs_iu *iu;
iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
rtrs_iu_free(iu, sess->s.dev->ib_dev, 1);
if (wc->status != IB_WC_SUCCESS) {
rtrs_err(sess->clt, "Sess info request send failed: %s\n",
ib_wc_status_msg(wc->status));
rtrs_clt_change_state_get_old(sess, RTRS_CLT_CONNECTING_ERR, NULL);
return;
}
rtrs_clt_update_wc_stats(con);
}
static int process_info_rsp(struct rtrs_clt_sess *sess,
const struct rtrs_msg_info_rsp *msg)
{
unsigned int sg_cnt, total_len;
int i, sgi;
sg_cnt = le16_to_cpu(msg->sg_cnt);
if (!sg_cnt || (sess->queue_depth % sg_cnt)) {
rtrs_err(sess->clt, "Incorrect sg_cnt %d, is not multiple\n",
sg_cnt);
return -EINVAL;
}
/*
* Check if IB immediate data size is enough to hold the mem_id and
* the offset inside the memory chunk.
*/
if ((ilog2(sg_cnt - 1) + 1) + (ilog2(sess->chunk_size - 1) + 1) >
MAX_IMM_PAYL_BITS) {
rtrs_err(sess->clt,
"RDMA immediate size (%db) not enough to encode %d buffers of size %dB\n",
MAX_IMM_PAYL_BITS, sg_cnt, sess->chunk_size);
return -EINVAL;
}
total_len = 0;
for (sgi = 0, i = 0; sgi < sg_cnt && i < sess->queue_depth; sgi++) {
const struct rtrs_sg_desc *desc = &msg->desc[sgi];
u32 len, rkey;
u64 addr;
addr = le64_to_cpu(desc->addr);
rkey = le32_to_cpu(desc->key);
len = le32_to_cpu(desc->len);
total_len += len;
if (!len || (len % sess->chunk_size)) {
rtrs_err(sess->clt, "Incorrect [%d].len %d\n", sgi,
len);
return -EINVAL;
}
for ( ; len && i < sess->queue_depth; i++) {
sess->rbufs[i].addr = addr;
sess->rbufs[i].rkey = rkey;
len -= sess->chunk_size;
addr += sess->chunk_size;
}
}
/* Sanity check */
if (sgi != sg_cnt || i != sess->queue_depth) {
rtrs_err(sess->clt, "Incorrect sg vector, not fully mapped\n");
return -EINVAL;
}
if (total_len != sess->chunk_size * sess->queue_depth) {
rtrs_err(sess->clt, "Incorrect total_len %d\n", total_len);
return -EINVAL;
}
return 0;
}
static void rtrs_clt_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
{
struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
struct rtrs_msg_info_rsp *msg;
enum rtrs_clt_state state;
struct rtrs_iu *iu;
size_t rx_sz;
int err;
state = RTRS_CLT_CONNECTING_ERR;
WARN_ON(con->c.cid);
iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
if (wc->status != IB_WC_SUCCESS) {
rtrs_err(sess->clt, "Sess info response recv failed: %s\n",
ib_wc_status_msg(wc->status));
goto out;
}
WARN_ON(wc->opcode != IB_WC_RECV);
if (wc->byte_len < sizeof(*msg)) {
rtrs_err(sess->clt, "Sess info response is malformed: size %d\n",
wc->byte_len);
goto out;
}
ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
iu->size, DMA_FROM_DEVICE);
msg = iu->buf;
if (le16_to_cpu(msg->type) != RTRS_MSG_INFO_RSP) {
rtrs_err(sess->clt, "Sess info response is malformed: type %d\n",
le16_to_cpu(msg->type));
goto out;
}
rx_sz = sizeof(*msg);
rx_sz += sizeof(msg->desc[0]) * le16_to_cpu(msg->sg_cnt);
if (wc->byte_len < rx_sz) {
rtrs_err(sess->clt, "Sess info response is malformed: size %d\n",
wc->byte_len);
goto out;
}
err = process_info_rsp(sess, msg);
if (err)
goto out;
err = post_recv_sess(sess);
if (err)
goto out;
state = RTRS_CLT_CONNECTED;
out:
rtrs_clt_update_wc_stats(con);
rtrs_iu_free(iu, sess->s.dev->ib_dev, 1);
rtrs_clt_change_state_get_old(sess, state, NULL);
}
static int rtrs_send_sess_info(struct rtrs_clt_sess *sess)
{
struct rtrs_clt_con *usr_con = to_clt_con(sess->s.con[0]);
struct rtrs_msg_info_req *msg;
struct rtrs_iu *tx_iu, *rx_iu;
size_t rx_sz;
int err;
rx_sz = sizeof(struct rtrs_msg_info_rsp);
rx_sz += sizeof(struct rtrs_sg_desc) * sess->queue_depth;
tx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req), GFP_KERNEL,
sess->s.dev->ib_dev, DMA_TO_DEVICE,
rtrs_clt_info_req_done);
rx_iu = rtrs_iu_alloc(1, rx_sz, GFP_KERNEL, sess->s.dev->ib_dev,
DMA_FROM_DEVICE, rtrs_clt_info_rsp_done);
if (!tx_iu || !rx_iu) {
err = -ENOMEM;
goto out;
}
/* Prepare for getting info response */
err = rtrs_iu_post_recv(&usr_con->c, rx_iu);
if (err) {
rtrs_err(sess->clt, "rtrs_iu_post_recv(), err: %d\n", err);
goto out;
}
rx_iu = NULL;
msg = tx_iu->buf;
msg->type = cpu_to_le16(RTRS_MSG_INFO_REQ);
memcpy(msg->sessname, sess->s.sessname, sizeof(msg->sessname));
ib_dma_sync_single_for_device(sess->s.dev->ib_dev, tx_iu->dma_addr,
tx_iu->size, DMA_TO_DEVICE);
/* Send info request */
err = rtrs_iu_post_send(&usr_con->c, tx_iu, sizeof(*msg), NULL);
if (err) {
rtrs_err(sess->clt, "rtrs_iu_post_send(), err: %d\n", err);
goto out;
}
tx_iu = NULL;
/* Wait for state change */
wait_event_interruptible_timeout(sess->state_wq,
sess->state != RTRS_CLT_CONNECTING,
msecs_to_jiffies(
RTRS_CONNECT_TIMEOUT_MS));
if (READ_ONCE(sess->state) != RTRS_CLT_CONNECTED) {
if (READ_ONCE(sess->state) == RTRS_CLT_CONNECTING_ERR)
err = -ECONNRESET;
else
err = -ETIMEDOUT;
}
out:
if (tx_iu)
rtrs_iu_free(tx_iu, sess->s.dev->ib_dev, 1);
if (rx_iu)
rtrs_iu_free(rx_iu, sess->s.dev->ib_dev, 1);
if (err)
/* If we've never taken async path because of malloc problems */
rtrs_clt_change_state_get_old(sess, RTRS_CLT_CONNECTING_ERR, NULL);
return err;
}
/**
* init_sess() - establishes all session connections and does handshake
* @sess: client session.
* In case of error full close or reconnect procedure should be taken,
* because reconnect or close async works can be started.
*/
static int init_sess(struct rtrs_clt_sess *sess)
{
int err;
char str[NAME_MAX];
struct rtrs_addr path = {
.src = &sess->s.src_addr,
.dst = &sess->s.dst_addr,
};
rtrs_addr_to_str(&path, str, sizeof(str));
mutex_lock(&sess->init_mutex);
err = init_conns(sess);
if (err) {
rtrs_err(sess->clt,
"init_conns() failed: err=%d path=%s [%s:%u]\n", err,
str, sess->hca_name, sess->hca_port);
goto out;
}
err = rtrs_send_sess_info(sess);
if (err) {
rtrs_err(
sess->clt,
"rtrs_send_sess_info() failed: err=%d path=%s [%s:%u]\n",
err, str, sess->hca_name, sess->hca_port);
goto out;
}
rtrs_clt_sess_up(sess);
out:
mutex_unlock(&sess->init_mutex);
return err;
}
static void rtrs_clt_reconnect_work(struct work_struct *work)
{
struct rtrs_clt_sess *sess;
struct rtrs_clt *clt;
unsigned int delay_ms;
int err;
sess = container_of(to_delayed_work(work), struct rtrs_clt_sess,
reconnect_dwork);
clt = sess->clt;
if (READ_ONCE(sess->state) != RTRS_CLT_RECONNECTING)
return;
if (sess->reconnect_attempts >= clt->max_reconnect_attempts) {
/* Close a session completely if max attempts is reached */
rtrs_clt_close_conns(sess, false);
return;
}
sess->reconnect_attempts++;
/* Stop everything */
rtrs_clt_stop_and_destroy_conns(sess);
msleep(RTRS_RECONNECT_BACKOFF);
if (rtrs_clt_change_state_get_old(sess, RTRS_CLT_CONNECTING, NULL)) {
err = init_sess(sess);
if (err)
goto reconnect_again;
}
return;
reconnect_again:
if (rtrs_clt_change_state_get_old(sess, RTRS_CLT_RECONNECTING, NULL)) {
sess->stats->reconnects.fail_cnt++;
delay_ms = clt->reconnect_delay_sec * 1000;
queue_delayed_work(rtrs_wq, &sess->reconnect_dwork,
msecs_to_jiffies(delay_ms +
prandom_u32() %
RTRS_RECONNECT_SEED));
}
}
static void rtrs_clt_dev_release(struct device *dev)
{
struct rtrs_clt *clt = container_of(dev, struct rtrs_clt, dev);
kfree(clt);
}
static struct rtrs_clt *alloc_clt(const char *sessname, size_t paths_num,
u16 port, size_t pdu_sz, void *priv,
void (*link_ev)(void *priv,
enum rtrs_clt_link_ev ev),
unsigned int reconnect_delay_sec,
unsigned int max_reconnect_attempts)
{
struct rtrs_clt *clt;
int err;
if (!paths_num || paths_num > MAX_PATHS_NUM)
return ERR_PTR(-EINVAL);
if (strlen(sessname) >= sizeof(clt->sessname))
return ERR_PTR(-EINVAL);
clt = kzalloc(sizeof(*clt), GFP_KERNEL);
if (!clt)
return ERR_PTR(-ENOMEM);
clt->pcpu_path = alloc_percpu(typeof(*clt->pcpu_path));
if (!clt->pcpu_path) {
kfree(clt);
return ERR_PTR(-ENOMEM);
}
uuid_gen(&clt->paths_uuid);
INIT_LIST_HEAD_RCU(&clt->paths_list);
clt->paths_num = paths_num;
clt->paths_up = MAX_PATHS_NUM;
clt->port = port;
clt->pdu_sz = pdu_sz;
clt->max_segments = RTRS_MAX_SEGMENTS;
clt->reconnect_delay_sec = reconnect_delay_sec;
clt->max_reconnect_attempts = max_reconnect_attempts;
clt->priv = priv;
clt->link_ev = link_ev;
clt->mp_policy = MP_POLICY_MIN_INFLIGHT;
strscpy(clt->sessname, sessname, sizeof(clt->sessname));
init_waitqueue_head(&clt->permits_wait);
mutex_init(&clt->paths_ev_mutex);
mutex_init(&clt->paths_mutex);
clt->dev.class = rtrs_clt_dev_class;
clt->dev.release = rtrs_clt_dev_release;
err = dev_set_name(&clt->dev, "%s", sessname);
if (err)
goto err;
/*
* Suppress user space notification until
* sysfs files are created
*/
dev_set_uevent_suppress(&clt->dev, true);
err = device_register(&clt->dev);
if (err) {
put_device(&clt->dev);
goto err;
}
clt->kobj_paths = kobject_create_and_add("paths", &clt->dev.kobj);
if (!clt->kobj_paths) {
err = -ENOMEM;
goto err_dev;
}
err = rtrs_clt_create_sysfs_root_files(clt);
if (err) {
kobject_del(clt->kobj_paths);
kobject_put(clt->kobj_paths);
goto err_dev;
}
dev_set_uevent_suppress(&clt->dev, false);
kobject_uevent(&clt->dev.kobj, KOBJ_ADD);
return clt;
err_dev:
device_unregister(&clt->dev);
err:
free_percpu(clt->pcpu_path);
kfree(clt);
return ERR_PTR(err);
}
static void free_clt(struct rtrs_clt *clt)