blob: bb7327b82d0b2511e363264eb7ab730fc67fa4f2 [file] [log] [blame]
/* Broadcom NetXtreme-C/E network driver.
*
* Copyright (c) 2020 Broadcom Limited
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*/
#include <asm/byteorder.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/errno.h>
#include <linux/ethtool.h>
#include <linux/if_ether.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/skbuff.h>
#include "bnxt_hsi.h"
#include "bnxt.h"
#include "bnxt_hwrm.h"
static u64 hwrm_calc_sentinel(struct bnxt_hwrm_ctx *ctx, u16 req_type)
{
return (((uintptr_t)ctx) + req_type) ^ BNXT_HWRM_SENTINEL;
}
/**
* __hwrm_req_init() - Initialize an HWRM request.
* @bp: The driver context.
* @req: A pointer to the request pointer to initialize.
* @req_type: The request type. This will be converted to the little endian
* before being written to the req_type field of the returned request.
* @req_len: The length of the request to be allocated.
*
* Allocate DMA resources and initialize a new HWRM request object of the
* given type. The response address field in the request is configured with
* the DMA bus address that has been mapped for the response and the passed
* request is pointed to kernel virtual memory mapped for the request (such
* that short_input indirection can be accomplished without copying). The
* request’s target and completion ring are initialized to default values and
* can be overridden by writing to the returned request object directly.
*
* The initialized request can be further customized by writing to its fields
* directly, taking care to covert such fields to little endian. The request
* object will be consumed (and all its associated resources release) upon
* passing it to hwrm_req_send() unless ownership of the request has been
* claimed by the caller via a call to hwrm_req_hold(). If the request is not
* consumed, either because it is never sent or because ownership has been
* claimed, then it must be released by a call to hwrm_req_drop().
*
* Return: zero on success, negative error code otherwise:
* E2BIG: the type of request pointer is too large to fit.
* ENOMEM: an allocation failure occurred.
*/
int __hwrm_req_init(struct bnxt *bp, void **req, u16 req_type, u32 req_len)
{
struct bnxt_hwrm_ctx *ctx;
dma_addr_t dma_handle;
u8 *req_addr;
if (req_len > BNXT_HWRM_CTX_OFFSET)
return -E2BIG;
req_addr = dma_pool_alloc(bp->hwrm_dma_pool, GFP_KERNEL | __GFP_ZERO,
&dma_handle);
if (!req_addr)
return -ENOMEM;
ctx = (struct bnxt_hwrm_ctx *)(req_addr + BNXT_HWRM_CTX_OFFSET);
/* safety first, sentinel used to check for invalid requests */
ctx->sentinel = hwrm_calc_sentinel(ctx, req_type);
ctx->req_len = req_len;
ctx->req = (struct input *)req_addr;
ctx->resp = (struct output *)(req_addr + BNXT_HWRM_RESP_OFFSET);
ctx->dma_handle = dma_handle;
ctx->flags = 0; /* __GFP_ZERO, but be explicit regarding ownership */
ctx->timeout = bp->hwrm_cmd_timeout ?: DFLT_HWRM_CMD_TIMEOUT;
ctx->allocated = BNXT_HWRM_DMA_SIZE - BNXT_HWRM_CTX_OFFSET;
ctx->gfp = GFP_KERNEL;
ctx->slice_addr = NULL;
/* initialize common request fields */
ctx->req->req_type = cpu_to_le16(req_type);
ctx->req->resp_addr = cpu_to_le64(dma_handle + BNXT_HWRM_RESP_OFFSET);
ctx->req->cmpl_ring = cpu_to_le16(BNXT_HWRM_NO_CMPL_RING);
ctx->req->target_id = cpu_to_le16(BNXT_HWRM_TARGET);
*req = ctx->req;
return 0;
}
static struct bnxt_hwrm_ctx *__hwrm_ctx(struct bnxt *bp, u8 *req_addr)
{
void *ctx_addr = req_addr + BNXT_HWRM_CTX_OFFSET;
struct input *req = (struct input *)req_addr;
struct bnxt_hwrm_ctx *ctx = ctx_addr;
u64 sentinel;
if (!req) {
/* can only be due to software bug, be loud */
netdev_err(bp->dev, "null HWRM request");
dump_stack();
return NULL;
}
/* HWRM API has no type safety, verify sentinel to validate address */
sentinel = hwrm_calc_sentinel(ctx, le16_to_cpu(req->req_type));
if (ctx->sentinel != sentinel) {
/* can only be due to software bug, be loud */
netdev_err(bp->dev, "HWRM sentinel mismatch, req_type = %u\n",
(u32)le16_to_cpu(req->req_type));
dump_stack();
return NULL;
}
return ctx;
}
/**
* hwrm_req_timeout() - Set the completion timeout for the request.
* @bp: The driver context.
* @req: The request to set the timeout.
* @timeout: The timeout in milliseconds.
*
* Set the timeout associated with the request for subsequent calls to
* hwrm_req_send(). Some requests are long running and require a different
* timeout than the default.
*/
void hwrm_req_timeout(struct bnxt *bp, void *req, unsigned int timeout)
{
struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
if (ctx)
ctx->timeout = timeout;
}
/**
* hwrm_req_alloc_flags() - Sets GFP allocation flags for slices.
* @bp: The driver context.
* @req: The request for which calls to hwrm_req_dma_slice() will have altered
* allocation flags.
* @gfp: A bitmask of GFP flags. These flags are passed to dma_alloc_coherent()
* whenever it is used to allocate backing memory for slices. Note that
* calls to hwrm_req_dma_slice() will not always result in new allocations,
* however, memory suballocated from the request buffer is already
* __GFP_ZERO.
*
* Sets the GFP allocation flags associated with the request for subsequent
* calls to hwrm_req_dma_slice(). This can be useful for specifying __GFP_ZERO
* for slice allocations.
*/
void hwrm_req_alloc_flags(struct bnxt *bp, void *req, gfp_t gfp)
{
struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
if (ctx)
ctx->gfp = gfp;
}
/**
* hwrm_req_replace() - Replace request data.
* @bp: The driver context.
* @req: The request to modify. A call to hwrm_req_replace() is conceptually
* an assignment of new_req to req. Subsequent calls to HWRM API functions,
* such as hwrm_req_send(), should thus use req and not new_req (in fact,
* calls to HWRM API functions will fail if non-managed request objects
* are passed).
* @len: The length of new_req.
* @new_req: The pre-built request to copy or reference.
*
* Replaces the request data in req with that of new_req. This is useful in
* scenarios where a request object has already been constructed by a third
* party prior to creating a resource managed request using hwrm_req_init().
* Depending on the length, hwrm_req_replace() will either copy the new
* request data into the DMA memory allocated for req, or it will simply
* reference the new request and use it in lieu of req during subsequent
* calls to hwrm_req_send(). The resource management is associated with
* req and is independent of and does not apply to new_req. The caller must
* ensure that the lifetime of new_req is least as long as req. Any slices
* that may have been associated with the original request are released.
*
* Return: zero on success, negative error code otherwise:
* E2BIG: Request is too large.
* EINVAL: Invalid request to modify.
*/
int hwrm_req_replace(struct bnxt *bp, void *req, void *new_req, u32 len)
{
struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
struct input *internal_req = req;
u16 req_type;
if (!ctx)
return -EINVAL;
if (len > BNXT_HWRM_CTX_OFFSET)
return -E2BIG;
/* free any existing slices */
ctx->allocated = BNXT_HWRM_DMA_SIZE - BNXT_HWRM_CTX_OFFSET;
if (ctx->slice_addr) {
dma_free_coherent(&bp->pdev->dev, ctx->slice_size,
ctx->slice_addr, ctx->slice_handle);
ctx->slice_addr = NULL;
}
ctx->gfp = GFP_KERNEL;
if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) || len > BNXT_HWRM_MAX_REQ_LEN) {
memcpy(internal_req, new_req, len);
} else {
internal_req->req_type = ((struct input *)new_req)->req_type;
ctx->req = new_req;
}
ctx->req_len = len;
ctx->req->resp_addr = cpu_to_le64(ctx->dma_handle +
BNXT_HWRM_RESP_OFFSET);
/* update sentinel for potentially new request type */
req_type = le16_to_cpu(internal_req->req_type);
ctx->sentinel = hwrm_calc_sentinel(ctx, req_type);
return 0;
}
/**
* hwrm_req_flags() - Set non internal flags of the ctx
* @bp: The driver context.
* @req: The request containing the HWRM command
* @flags: ctx flags that don't have BNXT_HWRM_INTERNAL_FLAG set
*
* ctx flags can be used by the callers to instruct how the subsequent
* hwrm_req_send() should behave. Example: callers can use hwrm_req_flags
* with BNXT_HWRM_CTX_SILENT to omit kernel prints of errors of hwrm_req_send()
* or with BNXT_HWRM_FULL_WAIT enforce hwrm_req_send() to wait for full timeout
* even if FW is not responding.
* This generic function can be used to set any flag that is not an internal flag
* of the HWRM module.
*/
void hwrm_req_flags(struct bnxt *bp, void *req, enum bnxt_hwrm_ctx_flags flags)
{
struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
if (ctx)
ctx->flags |= (flags & HWRM_API_FLAGS);
}
/**
* hwrm_req_hold() - Claim ownership of the request's resources.
* @bp: The driver context.
* @req: A pointer to the request to own. The request will no longer be
* consumed by calls to hwrm_req_send().
*
* Take ownership of the request. Ownership places responsibility on the
* caller to free the resources associated with the request via a call to
* hwrm_req_drop(). The caller taking ownership implies that a subsequent
* call to hwrm_req_send() will not consume the request (ie. sending will
* not free the associated resources if the request is owned by the caller).
* Taking ownership returns a reference to the response. Retaining and
* accessing the response data is the most common reason to take ownership
* of the request. Ownership can also be acquired in order to reuse the same
* request object across multiple invocations of hwrm_req_send().
*
* Return: A pointer to the response object.
*
* The resources associated with the response will remain available to the
* caller until ownership of the request is relinquished via a call to
* hwrm_req_drop(). It is not possible for hwrm_req_hold() to return NULL if
* a valid request is provided. A returned NULL value would imply a driver
* bug and the implementation will complain loudly in the logs to aid in
* detection. It should not be necessary to check the result for NULL.
*/
void *hwrm_req_hold(struct bnxt *bp, void *req)
{
struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
struct input *input = (struct input *)req;
if (!ctx)
return NULL;
if (ctx->flags & BNXT_HWRM_INTERNAL_CTX_OWNED) {
/* can only be due to software bug, be loud */
netdev_err(bp->dev, "HWRM context already owned, req_type = %u\n",
(u32)le16_to_cpu(input->req_type));
dump_stack();
return NULL;
}
ctx->flags |= BNXT_HWRM_INTERNAL_CTX_OWNED;
return ((u8 *)req) + BNXT_HWRM_RESP_OFFSET;
}
static void __hwrm_ctx_drop(struct bnxt *bp, struct bnxt_hwrm_ctx *ctx)
{
void *addr = ((u8 *)ctx) - BNXT_HWRM_CTX_OFFSET;
dma_addr_t dma_handle = ctx->dma_handle; /* save before invalidate */
/* unmap any auxiliary DMA slice */
if (ctx->slice_addr)
dma_free_coherent(&bp->pdev->dev, ctx->slice_size,
ctx->slice_addr, ctx->slice_handle);
/* invalidate, ensure ownership, sentinel and dma_handle are cleared */
memset(ctx, 0, sizeof(struct bnxt_hwrm_ctx));
/* return the buffer to the DMA pool */
if (dma_handle)
dma_pool_free(bp->hwrm_dma_pool, addr, dma_handle);
}
/**
* hwrm_req_drop() - Release all resources associated with the request.
* @bp: The driver context.
* @req: The request to consume, releasing the associated resources. The
* request object, any slices, and its associated response are no
* longer valid.
*
* It is legal to call hwrm_req_drop() on an unowned request, provided it
* has not already been consumed by hwrm_req_send() (for example, to release
* an aborted request). A given request should not be dropped more than once,
* nor should it be dropped after having been consumed by hwrm_req_send(). To
* do so is an error (the context will not be found and a stack trace will be
* rendered in the kernel log).
*/
void hwrm_req_drop(struct bnxt *bp, void *req)
{
struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
if (ctx)
__hwrm_ctx_drop(bp, ctx);
}
static int __hwrm_to_stderr(u32 hwrm_err)
{
switch (hwrm_err) {
case HWRM_ERR_CODE_SUCCESS:
return 0;
case HWRM_ERR_CODE_RESOURCE_LOCKED:
return -EROFS;
case HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED:
return -EACCES;
case HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR:
return -ENOSPC;
case HWRM_ERR_CODE_INVALID_PARAMS:
case HWRM_ERR_CODE_INVALID_FLAGS:
case HWRM_ERR_CODE_INVALID_ENABLES:
case HWRM_ERR_CODE_UNSUPPORTED_TLV:
case HWRM_ERR_CODE_UNSUPPORTED_OPTION_ERR:
return -EINVAL;
case HWRM_ERR_CODE_NO_BUFFER:
return -ENOMEM;
case HWRM_ERR_CODE_HOT_RESET_PROGRESS:
case HWRM_ERR_CODE_BUSY:
return -EAGAIN;
case HWRM_ERR_CODE_CMD_NOT_SUPPORTED:
return -EOPNOTSUPP;
default:
return -EIO;
}
}
static struct bnxt_hwrm_wait_token *
__hwrm_acquire_token(struct bnxt *bp, enum bnxt_hwrm_chnl dst)
{
struct bnxt_hwrm_wait_token *token;
token = kzalloc(sizeof(*token), GFP_KERNEL);
if (!token)
return NULL;
mutex_lock(&bp->hwrm_cmd_lock);
token->dst = dst;
token->state = BNXT_HWRM_PENDING;
if (dst == BNXT_HWRM_CHNL_CHIMP) {
token->seq_id = bp->hwrm_cmd_seq++;
hlist_add_head_rcu(&token->node, &bp->hwrm_pending_list);
} else {
token->seq_id = bp->hwrm_cmd_kong_seq++;
}
return token;
}
static void
__hwrm_release_token(struct bnxt *bp, struct bnxt_hwrm_wait_token *token)
{
if (token->dst == BNXT_HWRM_CHNL_CHIMP) {
hlist_del_rcu(&token->node);
kfree_rcu(token, rcu);
} else {
kfree(token);
}
mutex_unlock(&bp->hwrm_cmd_lock);
}
void
hwrm_update_token(struct bnxt *bp, u16 seq_id, enum bnxt_hwrm_wait_state state)
{
struct bnxt_hwrm_wait_token *token;
rcu_read_lock();
hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) {
if (token->seq_id == seq_id) {
WRITE_ONCE(token->state, state);
rcu_read_unlock();
return;
}
}
rcu_read_unlock();
netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
}
static int __hwrm_send(struct bnxt *bp, struct bnxt_hwrm_ctx *ctx)
{
u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER;
enum bnxt_hwrm_chnl dst = BNXT_HWRM_CHNL_CHIMP;
u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM;
struct bnxt_hwrm_wait_token *token = NULL;
struct hwrm_short_input short_input = {0};
u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
unsigned int i, timeout, tmo_count;
u32 *data = (u32 *)ctx->req;
u32 msg_len = ctx->req_len;
int rc = -EBUSY;
u32 req_type;
u16 len = 0;
u8 *valid;
if (ctx->flags & BNXT_HWRM_INTERNAL_RESP_DIRTY)
memset(ctx->resp, 0, PAGE_SIZE);
req_type = le16_to_cpu(ctx->req->req_type);
if (BNXT_NO_FW_ACCESS(bp) && req_type != HWRM_FUNC_RESET)
goto exit;
if (msg_len > BNXT_HWRM_MAX_REQ_LEN &&
msg_len > bp->hwrm_max_ext_req_len) {
rc = -E2BIG;
goto exit;
}
if (bnxt_kong_hwrm_message(bp, ctx->req)) {
dst = BNXT_HWRM_CHNL_KONG;
bar_offset = BNXT_GRCPF_REG_KONG_COMM;
doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER;
if (le16_to_cpu(ctx->req->cmpl_ring) != INVALID_HW_RING_ID) {
netdev_err(bp->dev, "Ring completions not supported for KONG commands, req_type = %d\n",
req_type);
rc = -EINVAL;
goto exit;
}
}
token = __hwrm_acquire_token(bp, dst);
if (!token) {
rc = -ENOMEM;
goto exit;
}
ctx->req->seq_id = cpu_to_le16(token->seq_id);
if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
msg_len > BNXT_HWRM_MAX_REQ_LEN) {
short_input.req_type = ctx->req->req_type;
short_input.signature =
cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
short_input.size = cpu_to_le16(msg_len);
short_input.req_addr = cpu_to_le64(ctx->dma_handle);
data = (u32 *)&short_input;
msg_len = sizeof(short_input);
max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
}
/* Ensure any associated DMA buffers are written before doorbell */
wmb();
/* Write request msg to hwrm channel */
__iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4);
for (i = msg_len; i < max_req_len; i += 4)
writel(0, bp->bar0 + bar_offset + i);
/* Ring channel doorbell */
writel(1, bp->bar0 + doorbell_offset);
if (!pci_is_enabled(bp->pdev)) {
rc = -ENODEV;
goto exit;
}
/* Limit timeout to an upper limit */
timeout = min_t(uint, ctx->timeout, HWRM_CMD_MAX_TIMEOUT);
/* convert timeout to usec */
timeout *= 1000;
i = 0;
/* Short timeout for the first few iterations:
* number of loops = number of loops for short timeout +
* number of loops for standard timeout.
*/
tmo_count = HWRM_SHORT_TIMEOUT_COUNTER;
timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER;
tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT);
if (le16_to_cpu(ctx->req->cmpl_ring) != INVALID_HW_RING_ID) {
/* Wait until hwrm response cmpl interrupt is processed */
while (READ_ONCE(token->state) < BNXT_HWRM_COMPLETE &&
i++ < tmo_count) {
/* Abort the wait for completion if the FW health
* check has failed.
*/
if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
goto exit;
/* on first few passes, just barely sleep */
if (i < HWRM_SHORT_TIMEOUT_COUNTER) {
usleep_range(HWRM_SHORT_MIN_TIMEOUT,
HWRM_SHORT_MAX_TIMEOUT);
} else {
if (HWRM_WAIT_MUST_ABORT(bp, ctx))
break;
usleep_range(HWRM_MIN_TIMEOUT,
HWRM_MAX_TIMEOUT);
}
}
if (READ_ONCE(token->state) != BNXT_HWRM_COMPLETE) {
if (!(ctx->flags & BNXT_HWRM_CTX_SILENT))
netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
le16_to_cpu(ctx->req->req_type));
goto exit;
}
len = le16_to_cpu(READ_ONCE(ctx->resp->resp_len));
valid = ((u8 *)ctx->resp) + len - 1;
} else {
__le16 seen_out_of_seq = ctx->req->seq_id; /* will never see */
int j;
/* Check if response len is updated */
for (i = 0; i < tmo_count; i++) {
/* Abort the wait for completion if the FW health
* check has failed.
*/
if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
goto exit;
if (token &&
READ_ONCE(token->state) == BNXT_HWRM_DEFERRED) {
__hwrm_release_token(bp, token);
token = NULL;
}
len = le16_to_cpu(READ_ONCE(ctx->resp->resp_len));
if (len) {
__le16 resp_seq = READ_ONCE(ctx->resp->seq_id);
if (resp_seq == ctx->req->seq_id)
break;
if (resp_seq != seen_out_of_seq) {
netdev_warn(bp->dev, "Discarding out of seq response: 0x%x for msg {0x%x 0x%x}\n",
le16_to_cpu(resp_seq),
le16_to_cpu(ctx->req->req_type),
le16_to_cpu(ctx->req->seq_id));
seen_out_of_seq = resp_seq;
}
}
/* on first few passes, just barely sleep */
if (i < HWRM_SHORT_TIMEOUT_COUNTER) {
usleep_range(HWRM_SHORT_MIN_TIMEOUT,
HWRM_SHORT_MAX_TIMEOUT);
} else {
if (HWRM_WAIT_MUST_ABORT(bp, ctx))
goto timeout_abort;
usleep_range(HWRM_MIN_TIMEOUT,
HWRM_MAX_TIMEOUT);
}
}
if (i >= tmo_count) {
timeout_abort:
if (!(ctx->flags & BNXT_HWRM_CTX_SILENT))
netdev_err(bp->dev, "Error (timeout: %u) msg {0x%x 0x%x} len:%d\n",
hwrm_total_timeout(i),
le16_to_cpu(ctx->req->req_type),
le16_to_cpu(ctx->req->seq_id), len);
goto exit;
}
/* Last byte of resp contains valid bit */
valid = ((u8 *)ctx->resp) + len - 1;
for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) {
/* make sure we read from updated DMA memory */
dma_rmb();
if (*valid)
break;
usleep_range(1, 5);
}
if (j >= HWRM_VALID_BIT_DELAY_USEC) {
if (!(ctx->flags & BNXT_HWRM_CTX_SILENT))
netdev_err(bp->dev, "Error (timeout: %u) msg {0x%x 0x%x} len:%d v:%d\n",
hwrm_total_timeout(i),
le16_to_cpu(ctx->req->req_type),
le16_to_cpu(ctx->req->seq_id), len,
*valid);
goto exit;
}
}
/* Zero valid bit for compatibility. Valid bit in an older spec
* may become a new field in a newer spec. We must make sure that
* a new field not implemented by old spec will read zero.
*/
*valid = 0;
rc = le16_to_cpu(ctx->resp->error_code);
if (rc && !(ctx->flags & BNXT_HWRM_CTX_SILENT)) {
netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
le16_to_cpu(ctx->resp->req_type),
le16_to_cpu(ctx->resp->seq_id), rc);
}
rc = __hwrm_to_stderr(rc);
exit:
if (token)
__hwrm_release_token(bp, token);
if (ctx->flags & BNXT_HWRM_INTERNAL_CTX_OWNED)
ctx->flags |= BNXT_HWRM_INTERNAL_RESP_DIRTY;
else
__hwrm_ctx_drop(bp, ctx);
return rc;
}
/**
* hwrm_req_send() - Execute an HWRM command.
* @bp: The driver context.
* @req: A pointer to the request to send. The DMA resources associated with
* the request will be released (ie. the request will be consumed) unless
* ownership of the request has been assumed by the caller via a call to
* hwrm_req_hold().
*
* Send an HWRM request to the device and wait for a response. The request is
* consumed if it is not owned by the caller. This function will block until
* the request has either completed or times out due to an error.
*
* Return: A result code.
*
* The result is zero on success, otherwise the negative error code indicates
* one of the following errors:
* E2BIG: The request was too large.
* EBUSY: The firmware is in a fatal state or the request timed out
* EACCESS: HWRM access denied.
* ENOSPC: HWRM resource allocation error.
* EINVAL: Request parameters are invalid.
* ENOMEM: HWRM has no buffers.
* EAGAIN: HWRM busy or reset in progress.
* EOPNOTSUPP: Invalid request type.
* EIO: Any other error.
* Error handling is orthogonal to request ownership. An unowned request will
* still be consumed on error. If the caller owns the request, then the caller
* is responsible for releasing the resources. Otherwise, hwrm_req_send() will
* always consume the request.
*/
int hwrm_req_send(struct bnxt *bp, void *req)
{
struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
if (!ctx)
return -EINVAL;
return __hwrm_send(bp, ctx);
}
/**
* hwrm_req_send_silent() - A silent version of hwrm_req_send().
* @bp: The driver context.
* @req: The request to send without logging.
*
* The same as hwrm_req_send(), except that the request is silenced using
* hwrm_req_silence() prior the call. This version of the function is
* provided solely to preserve the legacy API’s flavor for this functionality.
*
* Return: A result code, see hwrm_req_send().
*/
int hwrm_req_send_silent(struct bnxt *bp, void *req)
{
hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT);
return hwrm_req_send(bp, req);
}
/**
* hwrm_req_dma_slice() - Allocate a slice of DMA mapped memory.
* @bp: The driver context.
* @req: The request for which indirect data will be associated.
* @size: The size of the allocation.
* @dma_handle: The bus address associated with the allocation. The HWRM API has
* no knowledge about the type of the request and so cannot infer how the
* caller intends to use the indirect data. Thus, the caller is
* responsible for configuring the request object appropriately to
* point to the associated indirect memory. Note, DMA handle has the
* same definition as it does in dma_alloc_coherent(), the caller is
* responsible for endian conversions via cpu_to_le64() before assigning
* this address.
*
* Allocates DMA mapped memory for indirect data related to a request. The
* lifetime of the DMA resources will be bound to that of the request (ie.
* they will be automatically released when the request is either consumed by
* hwrm_req_send() or dropped by hwrm_req_drop()). Small allocations are
* efficiently suballocated out of the request buffer space, hence the name
* slice, while larger requests are satisfied via an underlying call to
* dma_alloc_coherent(). Multiple suballocations are supported, however, only
* one externally mapped region is.
*
* Return: The kernel virtual address of the DMA mapping.
*/
void *
hwrm_req_dma_slice(struct bnxt *bp, void *req, u32 size, dma_addr_t *dma_handle)
{
struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
u8 *end = ((u8 *)req) + BNXT_HWRM_DMA_SIZE;
struct input *input = req;
u8 *addr, *req_addr = req;
u32 max_offset, offset;
if (!ctx)
return NULL;
max_offset = BNXT_HWRM_DMA_SIZE - ctx->allocated;
offset = max_offset - size;
offset = ALIGN_DOWN(offset, BNXT_HWRM_DMA_ALIGN);
addr = req_addr + offset;
if (addr < req_addr + max_offset && req_addr + ctx->req_len <= addr) {
ctx->allocated = end - addr;
*dma_handle = ctx->dma_handle + offset;
return addr;
}
/* could not suballocate from ctx buffer, try create a new mapping */
if (ctx->slice_addr) {
/* if one exists, can only be due to software bug, be loud */
netdev_err(bp->dev, "HWRM refusing to reallocate DMA slice, req_type = %u\n",
(u32)le16_to_cpu(input->req_type));
dump_stack();
return NULL;
}
addr = dma_alloc_coherent(&bp->pdev->dev, size, dma_handle, ctx->gfp);
if (!addr)
return NULL;
ctx->slice_addr = addr;
ctx->slice_size = size;
ctx->slice_handle = *dma_handle;
return addr;
}