| /* Broadcom NetXtreme-C/E network driver. |
| * |
| * Copyright (c) 2020 Broadcom Limited |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation. |
| */ |
| |
| #include <asm/byteorder.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmapool.h> |
| #include <linux/errno.h> |
| #include <linux/ethtool.h> |
| #include <linux/if_ether.h> |
| #include <linux/io.h> |
| #include <linux/irq.h> |
| #include <linux/kernel.h> |
| #include <linux/list.h> |
| #include <linux/netdevice.h> |
| #include <linux/pci.h> |
| #include <linux/skbuff.h> |
| |
| #include "bnxt_hsi.h" |
| #include "bnxt.h" |
| #include "bnxt_hwrm.h" |
| |
| static u64 hwrm_calc_sentinel(struct bnxt_hwrm_ctx *ctx, u16 req_type) |
| { |
| return (((uintptr_t)ctx) + req_type) ^ BNXT_HWRM_SENTINEL; |
| } |
| |
| /** |
| * __hwrm_req_init() - Initialize an HWRM request. |
| * @bp: The driver context. |
| * @req: A pointer to the request pointer to initialize. |
| * @req_type: The request type. This will be converted to the little endian |
| * before being written to the req_type field of the returned request. |
| * @req_len: The length of the request to be allocated. |
| * |
| * Allocate DMA resources and initialize a new HWRM request object of the |
| * given type. The response address field in the request is configured with |
| * the DMA bus address that has been mapped for the response and the passed |
| * request is pointed to kernel virtual memory mapped for the request (such |
| * that short_input indirection can be accomplished without copying). The |
| * request’s target and completion ring are initialized to default values and |
| * can be overridden by writing to the returned request object directly. |
| * |
| * The initialized request can be further customized by writing to its fields |
| * directly, taking care to covert such fields to little endian. The request |
| * object will be consumed (and all its associated resources release) upon |
| * passing it to hwrm_req_send() unless ownership of the request has been |
| * claimed by the caller via a call to hwrm_req_hold(). If the request is not |
| * consumed, either because it is never sent or because ownership has been |
| * claimed, then it must be released by a call to hwrm_req_drop(). |
| * |
| * Return: zero on success, negative error code otherwise: |
| * E2BIG: the type of request pointer is too large to fit. |
| * ENOMEM: an allocation failure occurred. |
| */ |
| int __hwrm_req_init(struct bnxt *bp, void **req, u16 req_type, u32 req_len) |
| { |
| struct bnxt_hwrm_ctx *ctx; |
| dma_addr_t dma_handle; |
| u8 *req_addr; |
| |
| if (req_len > BNXT_HWRM_CTX_OFFSET) |
| return -E2BIG; |
| |
| req_addr = dma_pool_alloc(bp->hwrm_dma_pool, GFP_KERNEL | __GFP_ZERO, |
| &dma_handle); |
| if (!req_addr) |
| return -ENOMEM; |
| |
| ctx = (struct bnxt_hwrm_ctx *)(req_addr + BNXT_HWRM_CTX_OFFSET); |
| /* safety first, sentinel used to check for invalid requests */ |
| ctx->sentinel = hwrm_calc_sentinel(ctx, req_type); |
| ctx->req_len = req_len; |
| ctx->req = (struct input *)req_addr; |
| ctx->resp = (struct output *)(req_addr + BNXT_HWRM_RESP_OFFSET); |
| ctx->dma_handle = dma_handle; |
| ctx->flags = 0; /* __GFP_ZERO, but be explicit regarding ownership */ |
| ctx->timeout = bp->hwrm_cmd_timeout ?: DFLT_HWRM_CMD_TIMEOUT; |
| ctx->allocated = BNXT_HWRM_DMA_SIZE - BNXT_HWRM_CTX_OFFSET; |
| ctx->gfp = GFP_KERNEL; |
| ctx->slice_addr = NULL; |
| |
| /* initialize common request fields */ |
| ctx->req->req_type = cpu_to_le16(req_type); |
| ctx->req->resp_addr = cpu_to_le64(dma_handle + BNXT_HWRM_RESP_OFFSET); |
| ctx->req->cmpl_ring = cpu_to_le16(BNXT_HWRM_NO_CMPL_RING); |
| ctx->req->target_id = cpu_to_le16(BNXT_HWRM_TARGET); |
| *req = ctx->req; |
| |
| return 0; |
| } |
| |
| static struct bnxt_hwrm_ctx *__hwrm_ctx(struct bnxt *bp, u8 *req_addr) |
| { |
| void *ctx_addr = req_addr + BNXT_HWRM_CTX_OFFSET; |
| struct input *req = (struct input *)req_addr; |
| struct bnxt_hwrm_ctx *ctx = ctx_addr; |
| u64 sentinel; |
| |
| if (!req) { |
| /* can only be due to software bug, be loud */ |
| netdev_err(bp->dev, "null HWRM request"); |
| dump_stack(); |
| return NULL; |
| } |
| |
| /* HWRM API has no type safety, verify sentinel to validate address */ |
| sentinel = hwrm_calc_sentinel(ctx, le16_to_cpu(req->req_type)); |
| if (ctx->sentinel != sentinel) { |
| /* can only be due to software bug, be loud */ |
| netdev_err(bp->dev, "HWRM sentinel mismatch, req_type = %u\n", |
| (u32)le16_to_cpu(req->req_type)); |
| dump_stack(); |
| return NULL; |
| } |
| |
| return ctx; |
| } |
| |
| /** |
| * hwrm_req_timeout() - Set the completion timeout for the request. |
| * @bp: The driver context. |
| * @req: The request to set the timeout. |
| * @timeout: The timeout in milliseconds. |
| * |
| * Set the timeout associated with the request for subsequent calls to |
| * hwrm_req_send(). Some requests are long running and require a different |
| * timeout than the default. |
| */ |
| void hwrm_req_timeout(struct bnxt *bp, void *req, unsigned int timeout) |
| { |
| struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); |
| |
| if (ctx) |
| ctx->timeout = timeout; |
| } |
| |
| /** |
| * hwrm_req_alloc_flags() - Sets GFP allocation flags for slices. |
| * @bp: The driver context. |
| * @req: The request for which calls to hwrm_req_dma_slice() will have altered |
| * allocation flags. |
| * @gfp: A bitmask of GFP flags. These flags are passed to dma_alloc_coherent() |
| * whenever it is used to allocate backing memory for slices. Note that |
| * calls to hwrm_req_dma_slice() will not always result in new allocations, |
| * however, memory suballocated from the request buffer is already |
| * __GFP_ZERO. |
| * |
| * Sets the GFP allocation flags associated with the request for subsequent |
| * calls to hwrm_req_dma_slice(). This can be useful for specifying __GFP_ZERO |
| * for slice allocations. |
| */ |
| void hwrm_req_alloc_flags(struct bnxt *bp, void *req, gfp_t gfp) |
| { |
| struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); |
| |
| if (ctx) |
| ctx->gfp = gfp; |
| } |
| |
| /** |
| * hwrm_req_replace() - Replace request data. |
| * @bp: The driver context. |
| * @req: The request to modify. A call to hwrm_req_replace() is conceptually |
| * an assignment of new_req to req. Subsequent calls to HWRM API functions, |
| * such as hwrm_req_send(), should thus use req and not new_req (in fact, |
| * calls to HWRM API functions will fail if non-managed request objects |
| * are passed). |
| * @len: The length of new_req. |
| * @new_req: The pre-built request to copy or reference. |
| * |
| * Replaces the request data in req with that of new_req. This is useful in |
| * scenarios where a request object has already been constructed by a third |
| * party prior to creating a resource managed request using hwrm_req_init(). |
| * Depending on the length, hwrm_req_replace() will either copy the new |
| * request data into the DMA memory allocated for req, or it will simply |
| * reference the new request and use it in lieu of req during subsequent |
| * calls to hwrm_req_send(). The resource management is associated with |
| * req and is independent of and does not apply to new_req. The caller must |
| * ensure that the lifetime of new_req is least as long as req. Any slices |
| * that may have been associated with the original request are released. |
| * |
| * Return: zero on success, negative error code otherwise: |
| * E2BIG: Request is too large. |
| * EINVAL: Invalid request to modify. |
| */ |
| int hwrm_req_replace(struct bnxt *bp, void *req, void *new_req, u32 len) |
| { |
| struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); |
| struct input *internal_req = req; |
| u16 req_type; |
| |
| if (!ctx) |
| return -EINVAL; |
| |
| if (len > BNXT_HWRM_CTX_OFFSET) |
| return -E2BIG; |
| |
| /* free any existing slices */ |
| ctx->allocated = BNXT_HWRM_DMA_SIZE - BNXT_HWRM_CTX_OFFSET; |
| if (ctx->slice_addr) { |
| dma_free_coherent(&bp->pdev->dev, ctx->slice_size, |
| ctx->slice_addr, ctx->slice_handle); |
| ctx->slice_addr = NULL; |
| } |
| ctx->gfp = GFP_KERNEL; |
| |
| if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) || len > BNXT_HWRM_MAX_REQ_LEN) { |
| memcpy(internal_req, new_req, len); |
| } else { |
| internal_req->req_type = ((struct input *)new_req)->req_type; |
| ctx->req = new_req; |
| } |
| |
| ctx->req_len = len; |
| ctx->req->resp_addr = cpu_to_le64(ctx->dma_handle + |
| BNXT_HWRM_RESP_OFFSET); |
| |
| /* update sentinel for potentially new request type */ |
| req_type = le16_to_cpu(internal_req->req_type); |
| ctx->sentinel = hwrm_calc_sentinel(ctx, req_type); |
| |
| return 0; |
| } |
| |
| /** |
| * hwrm_req_flags() - Set non internal flags of the ctx |
| * @bp: The driver context. |
| * @req: The request containing the HWRM command |
| * @flags: ctx flags that don't have BNXT_HWRM_INTERNAL_FLAG set |
| * |
| * ctx flags can be used by the callers to instruct how the subsequent |
| * hwrm_req_send() should behave. Example: callers can use hwrm_req_flags |
| * with BNXT_HWRM_CTX_SILENT to omit kernel prints of errors of hwrm_req_send() |
| * or with BNXT_HWRM_FULL_WAIT enforce hwrm_req_send() to wait for full timeout |
| * even if FW is not responding. |
| * This generic function can be used to set any flag that is not an internal flag |
| * of the HWRM module. |
| */ |
| void hwrm_req_flags(struct bnxt *bp, void *req, enum bnxt_hwrm_ctx_flags flags) |
| { |
| struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); |
| |
| if (ctx) |
| ctx->flags |= (flags & HWRM_API_FLAGS); |
| } |
| |
| /** |
| * hwrm_req_hold() - Claim ownership of the request's resources. |
| * @bp: The driver context. |
| * @req: A pointer to the request to own. The request will no longer be |
| * consumed by calls to hwrm_req_send(). |
| * |
| * Take ownership of the request. Ownership places responsibility on the |
| * caller to free the resources associated with the request via a call to |
| * hwrm_req_drop(). The caller taking ownership implies that a subsequent |
| * call to hwrm_req_send() will not consume the request (ie. sending will |
| * not free the associated resources if the request is owned by the caller). |
| * Taking ownership returns a reference to the response. Retaining and |
| * accessing the response data is the most common reason to take ownership |
| * of the request. Ownership can also be acquired in order to reuse the same |
| * request object across multiple invocations of hwrm_req_send(). |
| * |
| * Return: A pointer to the response object. |
| * |
| * The resources associated with the response will remain available to the |
| * caller until ownership of the request is relinquished via a call to |
| * hwrm_req_drop(). It is not possible for hwrm_req_hold() to return NULL if |
| * a valid request is provided. A returned NULL value would imply a driver |
| * bug and the implementation will complain loudly in the logs to aid in |
| * detection. It should not be necessary to check the result for NULL. |
| */ |
| void *hwrm_req_hold(struct bnxt *bp, void *req) |
| { |
| struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); |
| struct input *input = (struct input *)req; |
| |
| if (!ctx) |
| return NULL; |
| |
| if (ctx->flags & BNXT_HWRM_INTERNAL_CTX_OWNED) { |
| /* can only be due to software bug, be loud */ |
| netdev_err(bp->dev, "HWRM context already owned, req_type = %u\n", |
| (u32)le16_to_cpu(input->req_type)); |
| dump_stack(); |
| return NULL; |
| } |
| |
| ctx->flags |= BNXT_HWRM_INTERNAL_CTX_OWNED; |
| return ((u8 *)req) + BNXT_HWRM_RESP_OFFSET; |
| } |
| |
| static void __hwrm_ctx_drop(struct bnxt *bp, struct bnxt_hwrm_ctx *ctx) |
| { |
| void *addr = ((u8 *)ctx) - BNXT_HWRM_CTX_OFFSET; |
| dma_addr_t dma_handle = ctx->dma_handle; /* save before invalidate */ |
| |
| /* unmap any auxiliary DMA slice */ |
| if (ctx->slice_addr) |
| dma_free_coherent(&bp->pdev->dev, ctx->slice_size, |
| ctx->slice_addr, ctx->slice_handle); |
| |
| /* invalidate, ensure ownership, sentinel and dma_handle are cleared */ |
| memset(ctx, 0, sizeof(struct bnxt_hwrm_ctx)); |
| |
| /* return the buffer to the DMA pool */ |
| if (dma_handle) |
| dma_pool_free(bp->hwrm_dma_pool, addr, dma_handle); |
| } |
| |
| /** |
| * hwrm_req_drop() - Release all resources associated with the request. |
| * @bp: The driver context. |
| * @req: The request to consume, releasing the associated resources. The |
| * request object, any slices, and its associated response are no |
| * longer valid. |
| * |
| * It is legal to call hwrm_req_drop() on an unowned request, provided it |
| * has not already been consumed by hwrm_req_send() (for example, to release |
| * an aborted request). A given request should not be dropped more than once, |
| * nor should it be dropped after having been consumed by hwrm_req_send(). To |
| * do so is an error (the context will not be found and a stack trace will be |
| * rendered in the kernel log). |
| */ |
| void hwrm_req_drop(struct bnxt *bp, void *req) |
| { |
| struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); |
| |
| if (ctx) |
| __hwrm_ctx_drop(bp, ctx); |
| } |
| |
| static int __hwrm_to_stderr(u32 hwrm_err) |
| { |
| switch (hwrm_err) { |
| case HWRM_ERR_CODE_SUCCESS: |
| return 0; |
| case HWRM_ERR_CODE_RESOURCE_LOCKED: |
| return -EROFS; |
| case HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED: |
| return -EACCES; |
| case HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR: |
| return -ENOSPC; |
| case HWRM_ERR_CODE_INVALID_PARAMS: |
| case HWRM_ERR_CODE_INVALID_FLAGS: |
| case HWRM_ERR_CODE_INVALID_ENABLES: |
| case HWRM_ERR_CODE_UNSUPPORTED_TLV: |
| case HWRM_ERR_CODE_UNSUPPORTED_OPTION_ERR: |
| return -EINVAL; |
| case HWRM_ERR_CODE_NO_BUFFER: |
| return -ENOMEM; |
| case HWRM_ERR_CODE_HOT_RESET_PROGRESS: |
| case HWRM_ERR_CODE_BUSY: |
| return -EAGAIN; |
| case HWRM_ERR_CODE_CMD_NOT_SUPPORTED: |
| return -EOPNOTSUPP; |
| default: |
| return -EIO; |
| } |
| } |
| |
| static struct bnxt_hwrm_wait_token * |
| __hwrm_acquire_token(struct bnxt *bp, enum bnxt_hwrm_chnl dst) |
| { |
| struct bnxt_hwrm_wait_token *token; |
| |
| token = kzalloc(sizeof(*token), GFP_KERNEL); |
| if (!token) |
| return NULL; |
| |
| mutex_lock(&bp->hwrm_cmd_lock); |
| |
| token->dst = dst; |
| token->state = BNXT_HWRM_PENDING; |
| if (dst == BNXT_HWRM_CHNL_CHIMP) { |
| token->seq_id = bp->hwrm_cmd_seq++; |
| hlist_add_head_rcu(&token->node, &bp->hwrm_pending_list); |
| } else { |
| token->seq_id = bp->hwrm_cmd_kong_seq++; |
| } |
| |
| return token; |
| } |
| |
| static void |
| __hwrm_release_token(struct bnxt *bp, struct bnxt_hwrm_wait_token *token) |
| { |
| if (token->dst == BNXT_HWRM_CHNL_CHIMP) { |
| hlist_del_rcu(&token->node); |
| kfree_rcu(token, rcu); |
| } else { |
| kfree(token); |
| } |
| mutex_unlock(&bp->hwrm_cmd_lock); |
| } |
| |
| void |
| hwrm_update_token(struct bnxt *bp, u16 seq_id, enum bnxt_hwrm_wait_state state) |
| { |
| struct bnxt_hwrm_wait_token *token; |
| |
| rcu_read_lock(); |
| hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) { |
| if (token->seq_id == seq_id) { |
| WRITE_ONCE(token->state, state); |
| rcu_read_unlock(); |
| return; |
| } |
| } |
| rcu_read_unlock(); |
| netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id); |
| } |
| |
| static int __hwrm_send(struct bnxt *bp, struct bnxt_hwrm_ctx *ctx) |
| { |
| u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER; |
| enum bnxt_hwrm_chnl dst = BNXT_HWRM_CHNL_CHIMP; |
| u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM; |
| struct bnxt_hwrm_wait_token *token = NULL; |
| struct hwrm_short_input short_input = {0}; |
| u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN; |
| unsigned int i, timeout, tmo_count; |
| u32 *data = (u32 *)ctx->req; |
| u32 msg_len = ctx->req_len; |
| int rc = -EBUSY; |
| u32 req_type; |
| u16 len = 0; |
| u8 *valid; |
| |
| if (ctx->flags & BNXT_HWRM_INTERNAL_RESP_DIRTY) |
| memset(ctx->resp, 0, PAGE_SIZE); |
| |
| req_type = le16_to_cpu(ctx->req->req_type); |
| if (BNXT_NO_FW_ACCESS(bp) && req_type != HWRM_FUNC_RESET) |
| goto exit; |
| |
| if (msg_len > BNXT_HWRM_MAX_REQ_LEN && |
| msg_len > bp->hwrm_max_ext_req_len) { |
| rc = -E2BIG; |
| goto exit; |
| } |
| |
| if (bnxt_kong_hwrm_message(bp, ctx->req)) { |
| dst = BNXT_HWRM_CHNL_KONG; |
| bar_offset = BNXT_GRCPF_REG_KONG_COMM; |
| doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER; |
| if (le16_to_cpu(ctx->req->cmpl_ring) != INVALID_HW_RING_ID) { |
| netdev_err(bp->dev, "Ring completions not supported for KONG commands, req_type = %d\n", |
| req_type); |
| rc = -EINVAL; |
| goto exit; |
| } |
| } |
| |
| token = __hwrm_acquire_token(bp, dst); |
| if (!token) { |
| rc = -ENOMEM; |
| goto exit; |
| } |
| ctx->req->seq_id = cpu_to_le16(token->seq_id); |
| |
| if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) || |
| msg_len > BNXT_HWRM_MAX_REQ_LEN) { |
| short_input.req_type = ctx->req->req_type; |
| short_input.signature = |
| cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD); |
| short_input.size = cpu_to_le16(msg_len); |
| short_input.req_addr = cpu_to_le64(ctx->dma_handle); |
| |
| data = (u32 *)&short_input; |
| msg_len = sizeof(short_input); |
| |
| max_req_len = BNXT_HWRM_SHORT_REQ_LEN; |
| } |
| |
| /* Ensure any associated DMA buffers are written before doorbell */ |
| wmb(); |
| |
| /* Write request msg to hwrm channel */ |
| __iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4); |
| |
| for (i = msg_len; i < max_req_len; i += 4) |
| writel(0, bp->bar0 + bar_offset + i); |
| |
| /* Ring channel doorbell */ |
| writel(1, bp->bar0 + doorbell_offset); |
| |
| if (!pci_is_enabled(bp->pdev)) { |
| rc = -ENODEV; |
| goto exit; |
| } |
| |
| /* Limit timeout to an upper limit */ |
| timeout = min_t(uint, ctx->timeout, HWRM_CMD_MAX_TIMEOUT); |
| /* convert timeout to usec */ |
| timeout *= 1000; |
| |
| i = 0; |
| /* Short timeout for the first few iterations: |
| * number of loops = number of loops for short timeout + |
| * number of loops for standard timeout. |
| */ |
| tmo_count = HWRM_SHORT_TIMEOUT_COUNTER; |
| timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER; |
| tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT); |
| |
| if (le16_to_cpu(ctx->req->cmpl_ring) != INVALID_HW_RING_ID) { |
| /* Wait until hwrm response cmpl interrupt is processed */ |
| while (READ_ONCE(token->state) < BNXT_HWRM_COMPLETE && |
| i++ < tmo_count) { |
| /* Abort the wait for completion if the FW health |
| * check has failed. |
| */ |
| if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) |
| goto exit; |
| /* on first few passes, just barely sleep */ |
| if (i < HWRM_SHORT_TIMEOUT_COUNTER) { |
| usleep_range(HWRM_SHORT_MIN_TIMEOUT, |
| HWRM_SHORT_MAX_TIMEOUT); |
| } else { |
| if (HWRM_WAIT_MUST_ABORT(bp, ctx)) |
| break; |
| usleep_range(HWRM_MIN_TIMEOUT, |
| HWRM_MAX_TIMEOUT); |
| } |
| } |
| |
| if (READ_ONCE(token->state) != BNXT_HWRM_COMPLETE) { |
| if (!(ctx->flags & BNXT_HWRM_CTX_SILENT)) |
| netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n", |
| le16_to_cpu(ctx->req->req_type)); |
| goto exit; |
| } |
| len = le16_to_cpu(READ_ONCE(ctx->resp->resp_len)); |
| valid = ((u8 *)ctx->resp) + len - 1; |
| } else { |
| __le16 seen_out_of_seq = ctx->req->seq_id; /* will never see */ |
| int j; |
| |
| /* Check if response len is updated */ |
| for (i = 0; i < tmo_count; i++) { |
| /* Abort the wait for completion if the FW health |
| * check has failed. |
| */ |
| if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) |
| goto exit; |
| |
| if (token && |
| READ_ONCE(token->state) == BNXT_HWRM_DEFERRED) { |
| __hwrm_release_token(bp, token); |
| token = NULL; |
| } |
| |
| len = le16_to_cpu(READ_ONCE(ctx->resp->resp_len)); |
| if (len) { |
| __le16 resp_seq = READ_ONCE(ctx->resp->seq_id); |
| |
| if (resp_seq == ctx->req->seq_id) |
| break; |
| if (resp_seq != seen_out_of_seq) { |
| netdev_warn(bp->dev, "Discarding out of seq response: 0x%x for msg {0x%x 0x%x}\n", |
| le16_to_cpu(resp_seq), |
| le16_to_cpu(ctx->req->req_type), |
| le16_to_cpu(ctx->req->seq_id)); |
| seen_out_of_seq = resp_seq; |
| } |
| } |
| |
| /* on first few passes, just barely sleep */ |
| if (i < HWRM_SHORT_TIMEOUT_COUNTER) { |
| usleep_range(HWRM_SHORT_MIN_TIMEOUT, |
| HWRM_SHORT_MAX_TIMEOUT); |
| } else { |
| if (HWRM_WAIT_MUST_ABORT(bp, ctx)) |
| goto timeout_abort; |
| usleep_range(HWRM_MIN_TIMEOUT, |
| HWRM_MAX_TIMEOUT); |
| } |
| } |
| |
| if (i >= tmo_count) { |
| timeout_abort: |
| if (!(ctx->flags & BNXT_HWRM_CTX_SILENT)) |
| netdev_err(bp->dev, "Error (timeout: %u) msg {0x%x 0x%x} len:%d\n", |
| hwrm_total_timeout(i), |
| le16_to_cpu(ctx->req->req_type), |
| le16_to_cpu(ctx->req->seq_id), len); |
| goto exit; |
| } |
| |
| /* Last byte of resp contains valid bit */ |
| valid = ((u8 *)ctx->resp) + len - 1; |
| for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) { |
| /* make sure we read from updated DMA memory */ |
| dma_rmb(); |
| if (*valid) |
| break; |
| usleep_range(1, 5); |
| } |
| |
| if (j >= HWRM_VALID_BIT_DELAY_USEC) { |
| if (!(ctx->flags & BNXT_HWRM_CTX_SILENT)) |
| netdev_err(bp->dev, "Error (timeout: %u) msg {0x%x 0x%x} len:%d v:%d\n", |
| hwrm_total_timeout(i), |
| le16_to_cpu(ctx->req->req_type), |
| le16_to_cpu(ctx->req->seq_id), len, |
| *valid); |
| goto exit; |
| } |
| } |
| |
| /* Zero valid bit for compatibility. Valid bit in an older spec |
| * may become a new field in a newer spec. We must make sure that |
| * a new field not implemented by old spec will read zero. |
| */ |
| *valid = 0; |
| rc = le16_to_cpu(ctx->resp->error_code); |
| if (rc && !(ctx->flags & BNXT_HWRM_CTX_SILENT)) { |
| netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n", |
| le16_to_cpu(ctx->resp->req_type), |
| le16_to_cpu(ctx->resp->seq_id), rc); |
| } |
| rc = __hwrm_to_stderr(rc); |
| exit: |
| if (token) |
| __hwrm_release_token(bp, token); |
| if (ctx->flags & BNXT_HWRM_INTERNAL_CTX_OWNED) |
| ctx->flags |= BNXT_HWRM_INTERNAL_RESP_DIRTY; |
| else |
| __hwrm_ctx_drop(bp, ctx); |
| return rc; |
| } |
| |
| /** |
| * hwrm_req_send() - Execute an HWRM command. |
| * @bp: The driver context. |
| * @req: A pointer to the request to send. The DMA resources associated with |
| * the request will be released (ie. the request will be consumed) unless |
| * ownership of the request has been assumed by the caller via a call to |
| * hwrm_req_hold(). |
| * |
| * Send an HWRM request to the device and wait for a response. The request is |
| * consumed if it is not owned by the caller. This function will block until |
| * the request has either completed or times out due to an error. |
| * |
| * Return: A result code. |
| * |
| * The result is zero on success, otherwise the negative error code indicates |
| * one of the following errors: |
| * E2BIG: The request was too large. |
| * EBUSY: The firmware is in a fatal state or the request timed out |
| * EACCESS: HWRM access denied. |
| * ENOSPC: HWRM resource allocation error. |
| * EINVAL: Request parameters are invalid. |
| * ENOMEM: HWRM has no buffers. |
| * EAGAIN: HWRM busy or reset in progress. |
| * EOPNOTSUPP: Invalid request type. |
| * EIO: Any other error. |
| * Error handling is orthogonal to request ownership. An unowned request will |
| * still be consumed on error. If the caller owns the request, then the caller |
| * is responsible for releasing the resources. Otherwise, hwrm_req_send() will |
| * always consume the request. |
| */ |
| int hwrm_req_send(struct bnxt *bp, void *req) |
| { |
| struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); |
| |
| if (!ctx) |
| return -EINVAL; |
| |
| return __hwrm_send(bp, ctx); |
| } |
| |
| /** |
| * hwrm_req_send_silent() - A silent version of hwrm_req_send(). |
| * @bp: The driver context. |
| * @req: The request to send without logging. |
| * |
| * The same as hwrm_req_send(), except that the request is silenced using |
| * hwrm_req_silence() prior the call. This version of the function is |
| * provided solely to preserve the legacy API’s flavor for this functionality. |
| * |
| * Return: A result code, see hwrm_req_send(). |
| */ |
| int hwrm_req_send_silent(struct bnxt *bp, void *req) |
| { |
| hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT); |
| return hwrm_req_send(bp, req); |
| } |
| |
| /** |
| * hwrm_req_dma_slice() - Allocate a slice of DMA mapped memory. |
| * @bp: The driver context. |
| * @req: The request for which indirect data will be associated. |
| * @size: The size of the allocation. |
| * @dma_handle: The bus address associated with the allocation. The HWRM API has |
| * no knowledge about the type of the request and so cannot infer how the |
| * caller intends to use the indirect data. Thus, the caller is |
| * responsible for configuring the request object appropriately to |
| * point to the associated indirect memory. Note, DMA handle has the |
| * same definition as it does in dma_alloc_coherent(), the caller is |
| * responsible for endian conversions via cpu_to_le64() before assigning |
| * this address. |
| * |
| * Allocates DMA mapped memory for indirect data related to a request. The |
| * lifetime of the DMA resources will be bound to that of the request (ie. |
| * they will be automatically released when the request is either consumed by |
| * hwrm_req_send() or dropped by hwrm_req_drop()). Small allocations are |
| * efficiently suballocated out of the request buffer space, hence the name |
| * slice, while larger requests are satisfied via an underlying call to |
| * dma_alloc_coherent(). Multiple suballocations are supported, however, only |
| * one externally mapped region is. |
| * |
| * Return: The kernel virtual address of the DMA mapping. |
| */ |
| void * |
| hwrm_req_dma_slice(struct bnxt *bp, void *req, u32 size, dma_addr_t *dma_handle) |
| { |
| struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); |
| u8 *end = ((u8 *)req) + BNXT_HWRM_DMA_SIZE; |
| struct input *input = req; |
| u8 *addr, *req_addr = req; |
| u32 max_offset, offset; |
| |
| if (!ctx) |
| return NULL; |
| |
| max_offset = BNXT_HWRM_DMA_SIZE - ctx->allocated; |
| offset = max_offset - size; |
| offset = ALIGN_DOWN(offset, BNXT_HWRM_DMA_ALIGN); |
| addr = req_addr + offset; |
| |
| if (addr < req_addr + max_offset && req_addr + ctx->req_len <= addr) { |
| ctx->allocated = end - addr; |
| *dma_handle = ctx->dma_handle + offset; |
| return addr; |
| } |
| |
| /* could not suballocate from ctx buffer, try create a new mapping */ |
| if (ctx->slice_addr) { |
| /* if one exists, can only be due to software bug, be loud */ |
| netdev_err(bp->dev, "HWRM refusing to reallocate DMA slice, req_type = %u\n", |
| (u32)le16_to_cpu(input->req_type)); |
| dump_stack(); |
| return NULL; |
| } |
| |
| addr = dma_alloc_coherent(&bp->pdev->dev, size, dma_handle, ctx->gfp); |
| |
| if (!addr) |
| return NULL; |
| |
| ctx->slice_addr = addr; |
| ctx->slice_size = size; |
| ctx->slice_handle = *dma_handle; |
| |
| return addr; |
| } |