| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (c) 2019, Intel Corporation. */ |
| |
| #include <net/xdp_sock_drv.h> |
| #include "ice_base.h" |
| #include "ice_lib.h" |
| #include "ice_dcb_lib.h" |
| |
| /** |
| * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI |
| * @qs_cfg: gathered variables needed for PF->VSI queues assignment |
| * |
| * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap |
| */ |
| static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg) |
| { |
| unsigned int offset, i; |
| |
| mutex_lock(qs_cfg->qs_mutex); |
| offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size, |
| 0, qs_cfg->q_count, 0); |
| if (offset >= qs_cfg->pf_map_size) { |
| mutex_unlock(qs_cfg->qs_mutex); |
| return -ENOMEM; |
| } |
| |
| bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count); |
| for (i = 0; i < qs_cfg->q_count; i++) |
| qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset); |
| mutex_unlock(qs_cfg->qs_mutex); |
| |
| return 0; |
| } |
| |
| /** |
| * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI |
| * @qs_cfg: gathered variables needed for pf->vsi queues assignment |
| * |
| * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap |
| */ |
| static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg) |
| { |
| unsigned int i, index = 0; |
| |
| mutex_lock(qs_cfg->qs_mutex); |
| for (i = 0; i < qs_cfg->q_count; i++) { |
| index = find_next_zero_bit(qs_cfg->pf_map, |
| qs_cfg->pf_map_size, index); |
| if (index >= qs_cfg->pf_map_size) |
| goto err_scatter; |
| set_bit(index, qs_cfg->pf_map); |
| qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index; |
| } |
| mutex_unlock(qs_cfg->qs_mutex); |
| |
| return 0; |
| err_scatter: |
| for (index = 0; index < i; index++) { |
| clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map); |
| qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0; |
| } |
| mutex_unlock(qs_cfg->qs_mutex); |
| |
| return -ENOMEM; |
| } |
| |
| /** |
| * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled |
| * @pf: the PF being configured |
| * @pf_q: the PF queue |
| * @ena: enable or disable state of the queue |
| * |
| * This routine will wait for the given Rx queue of the PF to reach the |
| * enabled or disabled state. |
| * Returns -ETIMEDOUT in case of failing to reach the requested state after |
| * multiple retries; else will return 0 in case of success. |
| */ |
| static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena) |
| { |
| int i; |
| |
| for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) { |
| if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) & |
| QRX_CTRL_QENA_STAT_M)) |
| return 0; |
| |
| usleep_range(20, 40); |
| } |
| |
| return -ETIMEDOUT; |
| } |
| |
| /** |
| * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector |
| * @vsi: the VSI being configured |
| * @v_idx: index of the vector in the VSI struct |
| * |
| * We allocate one q_vector and set default value for ITR setting associated |
| * with this q_vector. If allocation fails we return -ENOMEM. |
| */ |
| static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx) |
| { |
| struct ice_pf *pf = vsi->back; |
| struct ice_q_vector *q_vector; |
| |
| /* allocate q_vector */ |
| q_vector = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*q_vector), |
| GFP_KERNEL); |
| if (!q_vector) |
| return -ENOMEM; |
| |
| q_vector->vsi = vsi; |
| q_vector->v_idx = v_idx; |
| q_vector->tx.itr_setting = ICE_DFLT_TX_ITR; |
| q_vector->rx.itr_setting = ICE_DFLT_RX_ITR; |
| q_vector->tx.itr_mode = ITR_DYNAMIC; |
| q_vector->rx.itr_mode = ITR_DYNAMIC; |
| q_vector->tx.type = ICE_TX_CONTAINER; |
| q_vector->rx.type = ICE_RX_CONTAINER; |
| |
| if (vsi->type == ICE_VSI_VF) |
| goto out; |
| /* only set affinity_mask if the CPU is online */ |
| if (cpu_online(v_idx)) |
| cpumask_set_cpu(v_idx, &q_vector->affinity_mask); |
| |
| /* This will not be called in the driver load path because the netdev |
| * will not be created yet. All other cases with register the NAPI |
| * handler here (i.e. resume, reset/rebuild, etc.) |
| */ |
| if (vsi->netdev) |
| netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll, |
| NAPI_POLL_WEIGHT); |
| |
| out: |
| /* tie q_vector and VSI together */ |
| vsi->q_vectors[v_idx] = q_vector; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_free_q_vector - Free memory allocated for a specific interrupt vector |
| * @vsi: VSI having the memory freed |
| * @v_idx: index of the vector to be freed |
| */ |
| static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx) |
| { |
| struct ice_q_vector *q_vector; |
| struct ice_pf *pf = vsi->back; |
| struct ice_tx_ring *tx_ring; |
| struct ice_rx_ring *rx_ring; |
| struct device *dev; |
| |
| dev = ice_pf_to_dev(pf); |
| if (!vsi->q_vectors[v_idx]) { |
| dev_dbg(dev, "Queue vector at index %d not found\n", v_idx); |
| return; |
| } |
| q_vector = vsi->q_vectors[v_idx]; |
| |
| ice_for_each_tx_ring(tx_ring, q_vector->tx) |
| tx_ring->q_vector = NULL; |
| ice_for_each_rx_ring(rx_ring, q_vector->rx) |
| rx_ring->q_vector = NULL; |
| |
| /* only VSI with an associated netdev is set up with NAPI */ |
| if (vsi->netdev) |
| netif_napi_del(&q_vector->napi); |
| |
| devm_kfree(dev, q_vector); |
| vsi->q_vectors[v_idx] = NULL; |
| } |
| |
| /** |
| * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set |
| * @hw: board specific structure |
| */ |
| static void ice_cfg_itr_gran(struct ice_hw *hw) |
| { |
| u32 regval = rd32(hw, GLINT_CTL); |
| |
| /* no need to update global register if ITR gran is already set */ |
| if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) && |
| (((regval & GLINT_CTL_ITR_GRAN_200_M) >> |
| GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) && |
| (((regval & GLINT_CTL_ITR_GRAN_100_M) >> |
| GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) && |
| (((regval & GLINT_CTL_ITR_GRAN_50_M) >> |
| GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) && |
| (((regval & GLINT_CTL_ITR_GRAN_25_M) >> |
| GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US)) |
| return; |
| |
| regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) & |
| GLINT_CTL_ITR_GRAN_200_M) | |
| ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) & |
| GLINT_CTL_ITR_GRAN_100_M) | |
| ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) & |
| GLINT_CTL_ITR_GRAN_50_M) | |
| ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) & |
| GLINT_CTL_ITR_GRAN_25_M); |
| wr32(hw, GLINT_CTL, regval); |
| } |
| |
| /** |
| * ice_calc_txq_handle - calculate the queue handle |
| * @vsi: VSI that ring belongs to |
| * @ring: ring to get the absolute queue index |
| * @tc: traffic class number |
| */ |
| static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc) |
| { |
| WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n"); |
| |
| if (ring->ch) |
| return ring->q_index - ring->ch->base_q; |
| |
| /* Idea here for calculation is that we subtract the number of queue |
| * count from TC that ring belongs to from it's absolute queue index |
| * and as a result we get the queue's index within TC. |
| */ |
| return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset; |
| } |
| |
| /** |
| * ice_eswitch_calc_txq_handle |
| * @ring: pointer to ring which unique index is needed |
| * |
| * To correctly work with many netdevs ring->q_index of Tx rings on switchdev |
| * VSI can repeat. Hardware ring setup requires unique q_index. Calculate it |
| * here by finding index in vsi->tx_rings of this ring. |
| * |
| * Return ICE_INVAL_Q_INDEX when index wasn't found. Should never happen, |
| * because VSI is get from ring->vsi, so it has to be present in this VSI. |
| */ |
| static u16 ice_eswitch_calc_txq_handle(struct ice_tx_ring *ring) |
| { |
| struct ice_vsi *vsi = ring->vsi; |
| int i; |
| |
| ice_for_each_txq(vsi, i) { |
| if (vsi->tx_rings[i] == ring) |
| return i; |
| } |
| |
| return ICE_INVAL_Q_INDEX; |
| } |
| |
| /** |
| * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring |
| * @ring: The Tx ring to configure |
| * |
| * This enables/disables XPS for a given Tx descriptor ring |
| * based on the TCs enabled for the VSI that ring belongs to. |
| */ |
| static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring) |
| { |
| if (!ring->q_vector || !ring->netdev) |
| return; |
| |
| /* We only initialize XPS once, so as not to overwrite user settings */ |
| if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state)) |
| return; |
| |
| netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask, |
| ring->q_index); |
| } |
| |
| /** |
| * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance |
| * @ring: The Tx ring to configure |
| * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized |
| * @pf_q: queue index in the PF space |
| * |
| * Configure the Tx descriptor ring in TLAN context. |
| */ |
| static void |
| ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q) |
| { |
| struct ice_vsi *vsi = ring->vsi; |
| struct ice_hw *hw = &vsi->back->hw; |
| |
| tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S; |
| |
| tlan_ctx->port_num = vsi->port_info->lport; |
| |
| /* Transmit Queue Length */ |
| tlan_ctx->qlen = ring->count; |
| |
| ice_set_cgd_num(tlan_ctx, ring->dcb_tc); |
| |
| /* PF number */ |
| tlan_ctx->pf_num = hw->pf_id; |
| |
| /* queue belongs to a specific VSI type |
| * VF / VM index should be programmed per vmvf_type setting: |
| * for vmvf_type = VF, it is VF number between 0-256 |
| * for vmvf_type = VM, it is VM number between 0-767 |
| * for PF or EMP this field should be set to zero |
| */ |
| switch (vsi->type) { |
| case ICE_VSI_LB: |
| case ICE_VSI_CTRL: |
| case ICE_VSI_PF: |
| if (ring->ch) |
| tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ; |
| else |
| tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF; |
| break; |
| case ICE_VSI_VF: |
| /* Firmware expects vmvf_num to be absolute VF ID */ |
| tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id; |
| tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF; |
| break; |
| case ICE_VSI_SWITCHDEV_CTRL: |
| tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ; |
| break; |
| default: |
| return; |
| } |
| |
| /* make sure the context is associated with the right VSI */ |
| if (ring->ch) |
| tlan_ctx->src_vsi = ring->ch->vsi_num; |
| else |
| tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx); |
| |
| /* Restrict Tx timestamps to the PF VSI */ |
| switch (vsi->type) { |
| case ICE_VSI_PF: |
| tlan_ctx->tsyn_ena = 1; |
| break; |
| default: |
| break; |
| } |
| |
| tlan_ctx->tso_ena = ICE_TX_LEGACY; |
| tlan_ctx->tso_qnum = pf_q; |
| |
| /* Legacy or Advanced Host Interface: |
| * 0: Advanced Host Interface |
| * 1: Legacy Host Interface |
| */ |
| tlan_ctx->legacy_int = ICE_TX_LEGACY; |
| } |
| |
| /** |
| * ice_rx_offset - Return expected offset into page to access data |
| * @rx_ring: Ring we are requesting offset of |
| * |
| * Returns the offset value for ring into the data buffer. |
| */ |
| static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring) |
| { |
| if (ice_ring_uses_build_skb(rx_ring)) |
| return ICE_SKB_PAD; |
| else if (ice_is_xdp_ena_vsi(rx_ring->vsi)) |
| return XDP_PACKET_HEADROOM; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_setup_rx_ctx - Configure a receive ring context |
| * @ring: The Rx ring to configure |
| * |
| * Configure the Rx descriptor ring in RLAN context. |
| */ |
| static int ice_setup_rx_ctx(struct ice_rx_ring *ring) |
| { |
| int chain_len = ICE_MAX_CHAINED_RX_BUFS; |
| struct ice_vsi *vsi = ring->vsi; |
| u32 rxdid = ICE_RXDID_FLEX_NIC; |
| struct ice_rlan_ctx rlan_ctx; |
| struct ice_hw *hw; |
| u16 pf_q; |
| int err; |
| |
| hw = &vsi->back->hw; |
| |
| /* what is Rx queue number in global space of 2K Rx queues */ |
| pf_q = vsi->rxq_map[ring->q_index]; |
| |
| /* clear the context structure first */ |
| memset(&rlan_ctx, 0, sizeof(rlan_ctx)); |
| |
| /* Receive Queue Base Address. |
| * Indicates the starting address of the descriptor queue defined in |
| * 128 Byte units. |
| */ |
| rlan_ctx.base = ring->dma >> 7; |
| |
| rlan_ctx.qlen = ring->count; |
| |
| /* Receive Packet Data Buffer Size. |
| * The Packet Data Buffer Size is defined in 128 byte units. |
| */ |
| rlan_ctx.dbuf = ring->rx_buf_len >> ICE_RLAN_CTX_DBUF_S; |
| |
| /* use 32 byte descriptors */ |
| rlan_ctx.dsize = 1; |
| |
| /* Strip the Ethernet CRC bytes before the packet is posted to host |
| * memory. |
| */ |
| rlan_ctx.crcstrip = 1; |
| |
| /* L2TSEL flag defines the reported L2 Tags in the receive descriptor */ |
| rlan_ctx.l2tsel = 1; |
| |
| rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT; |
| rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT; |
| rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT; |
| |
| /* This controls whether VLAN is stripped from inner headers |
| * The VLAN in the inner L2 header is stripped to the receive |
| * descriptor if enabled by this flag. |
| */ |
| rlan_ctx.showiv = 0; |
| |
| /* For AF_XDP ZC, we disallow packets to span on |
| * multiple buffers, thus letting us skip that |
| * handling in the fast-path. |
| */ |
| if (ring->xsk_pool) |
| chain_len = 1; |
| /* Max packet size for this queue - must not be set to a larger value |
| * than 5 x DBUF |
| */ |
| rlan_ctx.rxmax = min_t(u32, vsi->max_frame, |
| chain_len * ring->rx_buf_len); |
| |
| /* Rx queue threshold in units of 64 */ |
| rlan_ctx.lrxqthresh = 1; |
| |
| /* Enable Flexible Descriptors in the queue context which |
| * allows this driver to select a specific receive descriptor format |
| * increasing context priority to pick up profile ID; default is 0x01; |
| * setting to 0x03 to ensure profile is programming if prev context is |
| * of same priority |
| */ |
| if (vsi->type != ICE_VSI_VF) |
| ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true); |
| else |
| ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3, |
| false); |
| |
| /* Absolute queue number out of 2K needs to be passed */ |
| err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q); |
| if (err) { |
| dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n", |
| pf_q, err); |
| return -EIO; |
| } |
| |
| if (vsi->type == ICE_VSI_VF) |
| return 0; |
| |
| /* configure Rx buffer alignment */ |
| if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) |
| ice_clear_ring_build_skb_ena(ring); |
| else |
| ice_set_ring_build_skb_ena(ring); |
| |
| ring->rx_offset = ice_rx_offset(ring); |
| |
| /* init queue specific tail register */ |
| ring->tail = hw->hw_addr + QRX_TAIL(pf_q); |
| writel(0, ring->tail); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_vsi_cfg_rxq - Configure an Rx queue |
| * @ring: the ring being configured |
| * |
| * Return 0 on success and a negative value on error. |
| */ |
| int ice_vsi_cfg_rxq(struct ice_rx_ring *ring) |
| { |
| struct device *dev = ice_pf_to_dev(ring->vsi->back); |
| u16 num_bufs = ICE_DESC_UNUSED(ring); |
| int err; |
| |
| ring->rx_buf_len = ring->vsi->rx_buf_len; |
| |
| if (ring->vsi->type == ICE_VSI_PF) { |
| if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) |
| /* coverity[check_return] */ |
| xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, |
| ring->q_index, ring->q_vector->napi.napi_id); |
| |
| ring->xsk_pool = ice_xsk_pool(ring); |
| if (ring->xsk_pool) { |
| xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); |
| |
| ring->rx_buf_len = |
| xsk_pool_get_rx_frame_size(ring->xsk_pool); |
| err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, |
| MEM_TYPE_XSK_BUFF_POOL, |
| NULL); |
| if (err) |
| return err; |
| xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); |
| |
| dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", |
| ring->q_index); |
| } else { |
| if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) |
| /* coverity[check_return] */ |
| xdp_rxq_info_reg(&ring->xdp_rxq, |
| ring->netdev, |
| ring->q_index, ring->q_vector->napi.napi_id); |
| |
| err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, |
| MEM_TYPE_PAGE_SHARED, |
| NULL); |
| if (err) |
| return err; |
| } |
| } |
| |
| err = ice_setup_rx_ctx(ring); |
| if (err) { |
| dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n", |
| ring->q_index, err); |
| return err; |
| } |
| |
| if (ring->xsk_pool) { |
| bool ok; |
| |
| if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) { |
| dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n", |
| num_bufs, ring->q_index); |
| dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n"); |
| |
| return 0; |
| } |
| |
| ok = ice_alloc_rx_bufs_zc(ring, num_bufs); |
| if (!ok) { |
| u16 pf_q = ring->vsi->rxq_map[ring->q_index]; |
| |
| dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n", |
| ring->q_index, pf_q); |
| } |
| |
| return 0; |
| } |
| |
| ice_alloc_rx_bufs(ring, num_bufs); |
| |
| return 0; |
| } |
| |
| /** |
| * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI |
| * @qs_cfg: gathered variables needed for pf->vsi queues assignment |
| * |
| * This function first tries to find contiguous space. If it is not successful, |
| * it tries with the scatter approach. |
| * |
| * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap |
| */ |
| int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg) |
| { |
| int ret = 0; |
| |
| ret = __ice_vsi_get_qs_contig(qs_cfg); |
| if (ret) { |
| /* contig failed, so try with scatter approach */ |
| qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER; |
| qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count, |
| qs_cfg->scatter_count); |
| ret = __ice_vsi_get_qs_sc(qs_cfg); |
| } |
| return ret; |
| } |
| |
| /** |
| * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait |
| * @vsi: the VSI being configured |
| * @ena: start or stop the Rx ring |
| * @rxq_idx: 0-based Rx queue index for the VSI passed in |
| * @wait: wait or don't wait for configuration to finish in hardware |
| * |
| * Return 0 on success and negative on error. |
| */ |
| int |
| ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait) |
| { |
| int pf_q = vsi->rxq_map[rxq_idx]; |
| struct ice_pf *pf = vsi->back; |
| struct ice_hw *hw = &pf->hw; |
| u32 rx_reg; |
| |
| rx_reg = rd32(hw, QRX_CTRL(pf_q)); |
| |
| /* Skip if the queue is already in the requested state */ |
| if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M)) |
| return 0; |
| |
| /* turn on/off the queue */ |
| if (ena) |
| rx_reg |= QRX_CTRL_QENA_REQ_M; |
| else |
| rx_reg &= ~QRX_CTRL_QENA_REQ_M; |
| wr32(hw, QRX_CTRL(pf_q), rx_reg); |
| |
| if (!wait) |
| return 0; |
| |
| ice_flush(hw); |
| return ice_pf_rxq_wait(pf, pf_q, ena); |
| } |
| |
| /** |
| * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started |
| * @vsi: the VSI being configured |
| * @ena: true/false to verify Rx ring has been enabled/disabled respectively |
| * @rxq_idx: 0-based Rx queue index for the VSI passed in |
| * |
| * This routine will wait for the given Rx queue of the VSI to reach the |
| * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach |
| * the requested state after multiple retries; else will return 0 in case of |
| * success. |
| */ |
| int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx) |
| { |
| int pf_q = vsi->rxq_map[rxq_idx]; |
| struct ice_pf *pf = vsi->back; |
| |
| return ice_pf_rxq_wait(pf, pf_q, ena); |
| } |
| |
| /** |
| * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors |
| * @vsi: the VSI being configured |
| * |
| * We allocate one q_vector per queue interrupt. If allocation fails we |
| * return -ENOMEM. |
| */ |
| int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi) |
| { |
| struct device *dev = ice_pf_to_dev(vsi->back); |
| u16 v_idx; |
| int err; |
| |
| if (vsi->q_vectors[0]) { |
| dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num); |
| return -EEXIST; |
| } |
| |
| for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) { |
| err = ice_vsi_alloc_q_vector(vsi, v_idx); |
| if (err) |
| goto err_out; |
| } |
| |
| return 0; |
| |
| err_out: |
| while (v_idx--) |
| ice_free_q_vector(vsi, v_idx); |
| |
| dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n", |
| vsi->num_q_vectors, vsi->vsi_num, err); |
| vsi->num_q_vectors = 0; |
| return err; |
| } |
| |
| /** |
| * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors |
| * @vsi: the VSI being configured |
| * |
| * This function maps descriptor rings to the queue-specific vectors allotted |
| * through the MSI-X enabling code. On a constrained vector budget, we map Tx |
| * and Rx rings to the vector as "efficiently" as possible. |
| */ |
| void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi) |
| { |
| int q_vectors = vsi->num_q_vectors; |
| u16 tx_rings_rem, rx_rings_rem; |
| int v_id; |
| |
| /* initially assigning remaining rings count to VSIs num queue value */ |
| tx_rings_rem = vsi->num_txq; |
| rx_rings_rem = vsi->num_rxq; |
| |
| for (v_id = 0; v_id < q_vectors; v_id++) { |
| struct ice_q_vector *q_vector = vsi->q_vectors[v_id]; |
| u8 tx_rings_per_v, rx_rings_per_v; |
| u16 q_id, q_base; |
| |
| /* Tx rings mapping to vector */ |
| tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem, |
| q_vectors - v_id); |
| q_vector->num_ring_tx = tx_rings_per_v; |
| q_vector->tx.tx_ring = NULL; |
| q_vector->tx.itr_idx = ICE_TX_ITR; |
| q_base = vsi->num_txq - tx_rings_rem; |
| |
| for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) { |
| struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id]; |
| |
| tx_ring->q_vector = q_vector; |
| tx_ring->next = q_vector->tx.tx_ring; |
| q_vector->tx.tx_ring = tx_ring; |
| } |
| tx_rings_rem -= tx_rings_per_v; |
| |
| /* Rx rings mapping to vector */ |
| rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem, |
| q_vectors - v_id); |
| q_vector->num_ring_rx = rx_rings_per_v; |
| q_vector->rx.rx_ring = NULL; |
| q_vector->rx.itr_idx = ICE_RX_ITR; |
| q_base = vsi->num_rxq - rx_rings_rem; |
| |
| for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) { |
| struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id]; |
| |
| rx_ring->q_vector = q_vector; |
| rx_ring->next = q_vector->rx.rx_ring; |
| q_vector->rx.rx_ring = rx_ring; |
| } |
| rx_rings_rem -= rx_rings_per_v; |
| } |
| } |
| |
| /** |
| * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors |
| * @vsi: the VSI having memory freed |
| */ |
| void ice_vsi_free_q_vectors(struct ice_vsi *vsi) |
| { |
| int v_idx; |
| |
| ice_for_each_q_vector(vsi, v_idx) |
| ice_free_q_vector(vsi, v_idx); |
| } |
| |
| /** |
| * ice_vsi_cfg_txq - Configure single Tx queue |
| * @vsi: the VSI that queue belongs to |
| * @ring: Tx ring to be configured |
| * @qg_buf: queue group buffer |
| */ |
| int |
| ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring, |
| struct ice_aqc_add_tx_qgrp *qg_buf) |
| { |
| u8 buf_len = struct_size(qg_buf, txqs, 1); |
| struct ice_tlan_ctx tlan_ctx = { 0 }; |
| struct ice_aqc_add_txqs_perq *txq; |
| struct ice_channel *ch = ring->ch; |
| struct ice_pf *pf = vsi->back; |
| struct ice_hw *hw = &pf->hw; |
| enum ice_status status; |
| u16 pf_q; |
| u8 tc; |
| |
| /* Configure XPS */ |
| ice_cfg_xps_tx_ring(ring); |
| |
| pf_q = ring->reg_idx; |
| ice_setup_tx_ctx(ring, &tlan_ctx, pf_q); |
| /* copy context contents into the qg_buf */ |
| qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q); |
| ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx, |
| ice_tlan_ctx_info); |
| |
| /* init queue specific tail reg. It is referred as |
| * transmit comm scheduler queue doorbell. |
| */ |
| ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q); |
| |
| if (IS_ENABLED(CONFIG_DCB)) |
| tc = ring->dcb_tc; |
| else |
| tc = 0; |
| |
| /* Add unique software queue handle of the Tx queue per |
| * TC into the VSI Tx ring |
| */ |
| if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { |
| ring->q_handle = ice_eswitch_calc_txq_handle(ring); |
| |
| if (ring->q_handle == ICE_INVAL_Q_INDEX) |
| return -ENODEV; |
| } else { |
| ring->q_handle = ice_calc_txq_handle(vsi, ring, tc); |
| } |
| |
| if (ch) |
| status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0, |
| ring->q_handle, 1, qg_buf, buf_len, |
| NULL); |
| else |
| status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, |
| ring->q_handle, 1, qg_buf, buf_len, |
| NULL); |
| if (status) { |
| dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %s\n", |
| ice_stat_str(status)); |
| return -ENODEV; |
| } |
| |
| /* Add Tx Queue TEID into the VSI Tx ring from the |
| * response. This will complete configuring and |
| * enabling the queue. |
| */ |
| txq = &qg_buf->txqs[0]; |
| if (pf_q == le16_to_cpu(txq->txq_id)) |
| ring->txq_teid = le32_to_cpu(txq->q_teid); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_cfg_itr - configure the initial interrupt throttle values |
| * @hw: pointer to the HW structure |
| * @q_vector: interrupt vector that's being configured |
| * |
| * Configure interrupt throttling values for the ring containers that are |
| * associated with the interrupt vector passed in. |
| */ |
| void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector) |
| { |
| ice_cfg_itr_gran(hw); |
| |
| if (q_vector->num_ring_rx) |
| ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting); |
| |
| if (q_vector->num_ring_tx) |
| ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting); |
| |
| ice_write_intrl(q_vector, q_vector->intrl); |
| } |
| |
| /** |
| * ice_cfg_txq_interrupt - configure interrupt on Tx queue |
| * @vsi: the VSI being configured |
| * @txq: Tx queue being mapped to MSI-X vector |
| * @msix_idx: MSI-X vector index within the function |
| * @itr_idx: ITR index of the interrupt cause |
| * |
| * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector |
| * within the function space. |
| */ |
| void |
| ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx) |
| { |
| struct ice_pf *pf = vsi->back; |
| struct ice_hw *hw = &pf->hw; |
| u32 val; |
| |
| itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M; |
| |
| val = QINT_TQCTL_CAUSE_ENA_M | itr_idx | |
| ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M); |
| |
| wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val); |
| if (ice_is_xdp_ena_vsi(vsi)) { |
| u32 xdp_txq = txq + vsi->num_xdp_txq; |
| |
| wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), |
| val); |
| } |
| ice_flush(hw); |
| } |
| |
| /** |
| * ice_cfg_rxq_interrupt - configure interrupt on Rx queue |
| * @vsi: the VSI being configured |
| * @rxq: Rx queue being mapped to MSI-X vector |
| * @msix_idx: MSI-X vector index within the function |
| * @itr_idx: ITR index of the interrupt cause |
| * |
| * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector |
| * within the function space. |
| */ |
| void |
| ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx) |
| { |
| struct ice_pf *pf = vsi->back; |
| struct ice_hw *hw = &pf->hw; |
| u32 val; |
| |
| itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M; |
| |
| val = QINT_RQCTL_CAUSE_ENA_M | itr_idx | |
| ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M); |
| |
| wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val); |
| |
| ice_flush(hw); |
| } |
| |
| /** |
| * ice_trigger_sw_intr - trigger a software interrupt |
| * @hw: pointer to the HW structure |
| * @q_vector: interrupt vector to trigger the software interrupt for |
| */ |
| void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector) |
| { |
| wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), |
| (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) | |
| GLINT_DYN_CTL_SWINT_TRIG_M | |
| GLINT_DYN_CTL_INTENA_M); |
| } |
| |
| /** |
| * ice_vsi_stop_tx_ring - Disable single Tx ring |
| * @vsi: the VSI being configured |
| * @rst_src: reset source |
| * @rel_vmvf_num: Relative ID of VF/VM |
| * @ring: Tx ring to be stopped |
| * @txq_meta: Meta data of Tx ring to be stopped |
| */ |
| int |
| ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, |
| u16 rel_vmvf_num, struct ice_tx_ring *ring, |
| struct ice_txq_meta *txq_meta) |
| { |
| struct ice_pf *pf = vsi->back; |
| struct ice_q_vector *q_vector; |
| struct ice_hw *hw = &pf->hw; |
| enum ice_status status; |
| u32 val; |
| |
| /* clear cause_ena bit for disabled queues */ |
| val = rd32(hw, QINT_TQCTL(ring->reg_idx)); |
| val &= ~QINT_TQCTL_CAUSE_ENA_M; |
| wr32(hw, QINT_TQCTL(ring->reg_idx), val); |
| |
| /* software is expected to wait for 100 ns */ |
| ndelay(100); |
| |
| /* trigger a software interrupt for the vector |
| * associated to the queue to schedule NAPI handler |
| */ |
| q_vector = ring->q_vector; |
| if (q_vector) |
| ice_trigger_sw_intr(hw, q_vector); |
| |
| status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx, |
| txq_meta->tc, 1, &txq_meta->q_handle, |
| &txq_meta->q_id, &txq_meta->q_teid, rst_src, |
| rel_vmvf_num, NULL); |
| |
| /* if the disable queue command was exercised during an |
| * active reset flow, ICE_ERR_RESET_ONGOING is returned. |
| * This is not an error as the reset operation disables |
| * queues at the hardware level anyway. |
| */ |
| if (status == ICE_ERR_RESET_ONGOING) { |
| dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n"); |
| } else if (status == ICE_ERR_DOES_NOT_EXIST) { |
| dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n"); |
| } else if (status) { |
| dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %s\n", |
| ice_stat_str(status)); |
| return -ENODEV; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_fill_txq_meta - Prepare the Tx queue's meta data |
| * @vsi: VSI that ring belongs to |
| * @ring: ring that txq_meta will be based on |
| * @txq_meta: a helper struct that wraps Tx queue's information |
| * |
| * Set up a helper struct that will contain all the necessary fields that |
| * are needed for stopping Tx queue |
| */ |
| void |
| ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_tx_ring *ring, |
| struct ice_txq_meta *txq_meta) |
| { |
| struct ice_channel *ch = ring->ch; |
| u8 tc; |
| |
| if (IS_ENABLED(CONFIG_DCB)) |
| tc = ring->dcb_tc; |
| else |
| tc = 0; |
| |
| txq_meta->q_id = ring->reg_idx; |
| txq_meta->q_teid = ring->txq_teid; |
| txq_meta->q_handle = ring->q_handle; |
| if (ch) { |
| txq_meta->vsi_idx = ch->ch_vsi->idx; |
| txq_meta->tc = 0; |
| } else { |
| txq_meta->vsi_idx = vsi->idx; |
| txq_meta->tc = tc; |
| } |
| } |