| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (c) 2019, Intel Corporation. */ |
| |
| #include "ice_txrx_lib.h" |
| #include "ice_eswitch.h" |
| #include "ice_lib.h" |
| |
| /** |
| * ice_release_rx_desc - Store the new tail and head values |
| * @rx_ring: ring to bump |
| * @val: new head index |
| */ |
| void ice_release_rx_desc(struct ice_rx_ring *rx_ring, u16 val) |
| { |
| u16 prev_ntu = rx_ring->next_to_use & ~0x7; |
| |
| rx_ring->next_to_use = val; |
| |
| /* update next to alloc since we have filled the ring */ |
| rx_ring->next_to_alloc = val; |
| |
| /* QRX_TAIL will be updated with any tail value, but hardware ignores |
| * the lower 3 bits. This makes it so we only bump tail on meaningful |
| * boundaries. Also, this allows us to bump tail on intervals of 8 up to |
| * the budget depending on the current traffic load. |
| */ |
| val &= ~0x7; |
| if (prev_ntu != val) { |
| /* Force memory writes to complete before letting h/w |
| * know there are new descriptors to fetch. (Only |
| * applicable for weak-ordered memory model archs, |
| * such as IA-64). |
| */ |
| wmb(); |
| writel(val, rx_ring->tail); |
| } |
| } |
| |
| /** |
| * ice_ptype_to_htype - get a hash type |
| * @ptype: the ptype value from the descriptor |
| * |
| * Returns appropriate hash type (such as PKT_HASH_TYPE_L2/L3/L4) to be used by |
| * skb_set_hash based on PTYPE as parsed by HW Rx pipeline and is part of |
| * Rx desc. |
| */ |
| static enum pkt_hash_types ice_ptype_to_htype(u16 ptype) |
| { |
| struct ice_rx_ptype_decoded decoded = ice_decode_rx_desc_ptype(ptype); |
| |
| if (!decoded.known) |
| return PKT_HASH_TYPE_NONE; |
| if (decoded.payload_layer == ICE_RX_PTYPE_PAYLOAD_LAYER_PAY4) |
| return PKT_HASH_TYPE_L4; |
| if (decoded.payload_layer == ICE_RX_PTYPE_PAYLOAD_LAYER_PAY3) |
| return PKT_HASH_TYPE_L3; |
| if (decoded.outer_ip == ICE_RX_PTYPE_OUTER_L2) |
| return PKT_HASH_TYPE_L2; |
| |
| return PKT_HASH_TYPE_NONE; |
| } |
| |
| /** |
| * ice_rx_hash - set the hash value in the skb |
| * @rx_ring: descriptor ring |
| * @rx_desc: specific descriptor |
| * @skb: pointer to current skb |
| * @rx_ptype: the ptype value from the descriptor |
| */ |
| static void |
| ice_rx_hash(struct ice_rx_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc, |
| struct sk_buff *skb, u16 rx_ptype) |
| { |
| struct ice_32b_rx_flex_desc_nic *nic_mdid; |
| u32 hash; |
| |
| if (!(rx_ring->netdev->features & NETIF_F_RXHASH)) |
| return; |
| |
| if (rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC) |
| return; |
| |
| nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc; |
| hash = le32_to_cpu(nic_mdid->rss_hash); |
| skb_set_hash(skb, hash, ice_ptype_to_htype(rx_ptype)); |
| } |
| |
| /** |
| * ice_rx_csum - Indicate in skb if checksum is good |
| * @ring: the ring we care about |
| * @skb: skb currently being received and modified |
| * @rx_desc: the receive descriptor |
| * @ptype: the packet type decoded by hardware |
| * |
| * skb->protocol must be set before this function is called |
| */ |
| static void |
| ice_rx_csum(struct ice_rx_ring *ring, struct sk_buff *skb, |
| union ice_32b_rx_flex_desc *rx_desc, u16 ptype) |
| { |
| struct ice_rx_ptype_decoded decoded; |
| u16 rx_status0, rx_status1; |
| bool ipv4, ipv6; |
| |
| rx_status0 = le16_to_cpu(rx_desc->wb.status_error0); |
| rx_status1 = le16_to_cpu(rx_desc->wb.status_error1); |
| |
| decoded = ice_decode_rx_desc_ptype(ptype); |
| |
| /* Start with CHECKSUM_NONE and by default csum_level = 0 */ |
| skb->ip_summed = CHECKSUM_NONE; |
| skb_checksum_none_assert(skb); |
| |
| /* check if Rx checksum is enabled */ |
| if (!(ring->netdev->features & NETIF_F_RXCSUM)) |
| return; |
| |
| /* check if HW has decoded the packet and checksum */ |
| if (!(rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S))) |
| return; |
| |
| if (!(decoded.known && decoded.outer_ip)) |
| return; |
| |
| ipv4 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) && |
| (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV4); |
| ipv6 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) && |
| (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV6); |
| |
| if (ipv4 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) | |
| BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))) |
| goto checksum_fail; |
| |
| if (ipv6 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S)))) |
| goto checksum_fail; |
| |
| /* check for L4 errors and handle packets that were not able to be |
| * checksummed due to arrival speed |
| */ |
| if (rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)) |
| goto checksum_fail; |
| |
| /* check for outer UDP checksum error in tunneled packets */ |
| if ((rx_status1 & BIT(ICE_RX_FLEX_DESC_STATUS1_NAT_S)) && |
| (rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S))) |
| goto checksum_fail; |
| |
| /* If there is an outer header present that might contain a checksum |
| * we need to bump the checksum level by 1 to reflect the fact that |
| * we are indicating we validated the inner checksum. |
| */ |
| if (decoded.tunnel_type >= ICE_RX_PTYPE_TUNNEL_IP_GRENAT) |
| skb->csum_level = 1; |
| |
| /* Only report checksum unnecessary for TCP, UDP, or SCTP */ |
| switch (decoded.inner_prot) { |
| case ICE_RX_PTYPE_INNER_PROT_TCP: |
| case ICE_RX_PTYPE_INNER_PROT_UDP: |
| case ICE_RX_PTYPE_INNER_PROT_SCTP: |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| break; |
| default: |
| break; |
| } |
| return; |
| |
| checksum_fail: |
| ring->vsi->back->hw_csum_rx_error++; |
| } |
| |
| /** |
| * ice_process_skb_fields - Populate skb header fields from Rx descriptor |
| * @rx_ring: Rx descriptor ring packet is being transacted on |
| * @rx_desc: pointer to the EOP Rx descriptor |
| * @skb: pointer to current skb being populated |
| * @ptype: the packet type decoded by hardware |
| * |
| * This function checks the ring, descriptor, and packet information in |
| * order to populate the hash, checksum, VLAN, protocol, and |
| * other fields within the skb. |
| */ |
| void |
| ice_process_skb_fields(struct ice_rx_ring *rx_ring, |
| union ice_32b_rx_flex_desc *rx_desc, |
| struct sk_buff *skb, u16 ptype) |
| { |
| ice_rx_hash(rx_ring, rx_desc, skb, ptype); |
| |
| /* modifies the skb - consumes the enet header */ |
| skb->protocol = eth_type_trans(skb, ice_eswitch_get_target_netdev |
| (rx_ring, rx_desc)); |
| |
| ice_rx_csum(rx_ring, skb, rx_desc, ptype); |
| |
| if (rx_ring->ptp_rx) |
| ice_ptp_rx_hwtstamp(rx_ring, rx_desc, skb); |
| } |
| |
| /** |
| * ice_receive_skb - Send a completed packet up the stack |
| * @rx_ring: Rx ring in play |
| * @skb: packet to send up |
| * @vlan_tag: VLAN tag for packet |
| * |
| * This function sends the completed packet (via. skb) up the stack using |
| * gro receive functions (with/without VLAN tag) |
| */ |
| void |
| ice_receive_skb(struct ice_rx_ring *rx_ring, struct sk_buff *skb, u16 vlan_tag) |
| { |
| if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) && |
| (vlan_tag & VLAN_VID_MASK)) |
| __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); |
| napi_gro_receive(&rx_ring->q_vector->napi, skb); |
| } |
| |
| /** |
| * ice_clean_xdp_irq - Reclaim resources after transmit completes on XDP ring |
| * @xdp_ring: XDP ring to clean |
| */ |
| static void ice_clean_xdp_irq(struct ice_tx_ring *xdp_ring) |
| { |
| unsigned int total_bytes = 0, total_pkts = 0; |
| u16 ntc = xdp_ring->next_to_clean; |
| struct ice_tx_desc *next_dd_desc; |
| u16 next_dd = xdp_ring->next_dd; |
| struct ice_tx_buf *tx_buf; |
| int i; |
| |
| next_dd_desc = ICE_TX_DESC(xdp_ring, next_dd); |
| if (!(next_dd_desc->cmd_type_offset_bsz & |
| cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) |
| return; |
| |
| for (i = 0; i < ICE_TX_THRESH; i++) { |
| tx_buf = &xdp_ring->tx_buf[ntc]; |
| |
| total_bytes += tx_buf->bytecount; |
| /* normally tx_buf->gso_segs was taken but at this point |
| * it's always 1 for us |
| */ |
| total_pkts++; |
| |
| page_frag_free(tx_buf->raw_buf); |
| dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma), |
| dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); |
| dma_unmap_len_set(tx_buf, len, 0); |
| tx_buf->raw_buf = NULL; |
| |
| ntc++; |
| if (ntc >= xdp_ring->count) |
| ntc = 0; |
| } |
| |
| next_dd_desc->cmd_type_offset_bsz = 0; |
| xdp_ring->next_dd = xdp_ring->next_dd + ICE_TX_THRESH; |
| if (xdp_ring->next_dd > xdp_ring->count) |
| xdp_ring->next_dd = ICE_TX_THRESH - 1; |
| xdp_ring->next_to_clean = ntc; |
| ice_update_tx_ring_stats(xdp_ring, total_pkts, total_bytes); |
| } |
| |
| /** |
| * ice_xmit_xdp_ring - submit single packet to XDP ring for transmission |
| * @data: packet data pointer |
| * @size: packet data size |
| * @xdp_ring: XDP ring for transmission |
| */ |
| int ice_xmit_xdp_ring(void *data, u16 size, struct ice_tx_ring *xdp_ring) |
| { |
| u16 i = xdp_ring->next_to_use; |
| struct ice_tx_desc *tx_desc; |
| struct ice_tx_buf *tx_buf; |
| dma_addr_t dma; |
| |
| if (ICE_DESC_UNUSED(xdp_ring) < ICE_TX_THRESH) |
| ice_clean_xdp_irq(xdp_ring); |
| |
| if (!unlikely(ICE_DESC_UNUSED(xdp_ring))) { |
| xdp_ring->tx_stats.tx_busy++; |
| return ICE_XDP_CONSUMED; |
| } |
| |
| dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE); |
| if (dma_mapping_error(xdp_ring->dev, dma)) |
| return ICE_XDP_CONSUMED; |
| |
| tx_buf = &xdp_ring->tx_buf[i]; |
| tx_buf->bytecount = size; |
| tx_buf->gso_segs = 1; |
| tx_buf->raw_buf = data; |
| |
| /* record length, and DMA address */ |
| dma_unmap_len_set(tx_buf, len, size); |
| dma_unmap_addr_set(tx_buf, dma, dma); |
| |
| tx_desc = ICE_TX_DESC(xdp_ring, i); |
| tx_desc->buf_addr = cpu_to_le64(dma); |
| tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP, 0, |
| size, 0); |
| |
| i++; |
| if (i == xdp_ring->count) { |
| i = 0; |
| tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_rs); |
| tx_desc->cmd_type_offset_bsz |= |
| cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S); |
| xdp_ring->next_rs = ICE_TX_THRESH - 1; |
| } |
| xdp_ring->next_to_use = i; |
| |
| if (i > xdp_ring->next_rs) { |
| tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_rs); |
| tx_desc->cmd_type_offset_bsz |= |
| cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S); |
| xdp_ring->next_rs += ICE_TX_THRESH; |
| } |
| |
| return ICE_XDP_TX; |
| } |
| |
| /** |
| * ice_xmit_xdp_buff - convert an XDP buffer to an XDP frame and send it |
| * @xdp: XDP buffer |
| * @xdp_ring: XDP Tx ring |
| * |
| * Returns negative on failure, 0 on success. |
| */ |
| int ice_xmit_xdp_buff(struct xdp_buff *xdp, struct ice_tx_ring *xdp_ring) |
| { |
| struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); |
| |
| if (unlikely(!xdpf)) |
| return ICE_XDP_CONSUMED; |
| |
| return ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring); |
| } |
| |
| /** |
| * ice_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map |
| * @xdp_ring: XDP ring |
| * @xdp_res: Result of the receive batch |
| * |
| * This function bumps XDP Tx tail and/or flush redirect map, and |
| * should be called when a batch of packets has been processed in the |
| * napi loop. |
| */ |
| void ice_finalize_xdp_rx(struct ice_tx_ring *xdp_ring, unsigned int xdp_res) |
| { |
| if (xdp_res & ICE_XDP_REDIR) |
| xdp_do_flush_map(); |
| |
| if (xdp_res & ICE_XDP_TX) { |
| if (static_branch_unlikely(&ice_xdp_locking_key)) |
| spin_lock(&xdp_ring->tx_lock); |
| ice_xdp_ring_update_tail(xdp_ring); |
| if (static_branch_unlikely(&ice_xdp_locking_key)) |
| spin_unlock(&xdp_ring->tx_lock); |
| } |
| } |