| /* SPDX-License-Identifier: GPL-2.0+ */ |
| /* |
| * Read-Copy Update mechanism for mutual exclusion (tree-based version) |
| * Internal non-public definitions that provide either classic |
| * or preemptible semantics. |
| * |
| * Copyright Red Hat, 2009 |
| * Copyright IBM Corporation, 2009 |
| * |
| * Author: Ingo Molnar <mingo@elte.hu> |
| * Paul E. McKenney <paulmck@linux.ibm.com> |
| */ |
| |
| #include "../locking/rtmutex_common.h" |
| |
| static bool rcu_rdp_is_offloaded(struct rcu_data *rdp) |
| { |
| /* |
| * In order to read the offloaded state of an rdp in a safe |
| * and stable way and prevent from its value to be changed |
| * under us, we must either hold the barrier mutex, the cpu |
| * hotplug lock (read or write) or the nocb lock. Local |
| * non-preemptible reads are also safe. NOCB kthreads and |
| * timers have their own means of synchronization against the |
| * offloaded state updaters. |
| */ |
| RCU_LOCKDEP_WARN( |
| !(lockdep_is_held(&rcu_state.barrier_mutex) || |
| (IS_ENABLED(CONFIG_HOTPLUG_CPU) && lockdep_is_cpus_held()) || |
| rcu_lockdep_is_held_nocb(rdp) || |
| (rdp == this_cpu_ptr(&rcu_data) && |
| !(IS_ENABLED(CONFIG_PREEMPT_COUNT) && preemptible())) || |
| rcu_current_is_nocb_kthread(rdp)), |
| "Unsafe read of RCU_NOCB offloaded state" |
| ); |
| |
| return rcu_segcblist_is_offloaded(&rdp->cblist); |
| } |
| |
| /* |
| * Check the RCU kernel configuration parameters and print informative |
| * messages about anything out of the ordinary. |
| */ |
| static void __init rcu_bootup_announce_oddness(void) |
| { |
| if (IS_ENABLED(CONFIG_RCU_TRACE)) |
| pr_info("\tRCU event tracing is enabled.\n"); |
| if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || |
| (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) |
| pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n", |
| RCU_FANOUT); |
| if (rcu_fanout_exact) |
| pr_info("\tHierarchical RCU autobalancing is disabled.\n"); |
| if (IS_ENABLED(CONFIG_PROVE_RCU)) |
| pr_info("\tRCU lockdep checking is enabled.\n"); |
| if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) |
| pr_info("\tRCU strict (and thus non-scalable) grace periods are enabled.\n"); |
| if (RCU_NUM_LVLS >= 4) |
| pr_info("\tFour(or more)-level hierarchy is enabled.\n"); |
| if (RCU_FANOUT_LEAF != 16) |
| pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", |
| RCU_FANOUT_LEAF); |
| if (rcu_fanout_leaf != RCU_FANOUT_LEAF) |
| pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", |
| rcu_fanout_leaf); |
| if (nr_cpu_ids != NR_CPUS) |
| pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids); |
| #ifdef CONFIG_RCU_BOOST |
| pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", |
| kthread_prio, CONFIG_RCU_BOOST_DELAY); |
| #endif |
| if (blimit != DEFAULT_RCU_BLIMIT) |
| pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit); |
| if (qhimark != DEFAULT_RCU_QHIMARK) |
| pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark); |
| if (qlowmark != DEFAULT_RCU_QLOMARK) |
| pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark); |
| if (qovld != DEFAULT_RCU_QOVLD) |
| pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld); |
| if (jiffies_till_first_fqs != ULONG_MAX) |
| pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs); |
| if (jiffies_till_next_fqs != ULONG_MAX) |
| pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs); |
| if (jiffies_till_sched_qs != ULONG_MAX) |
| pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs); |
| if (rcu_kick_kthreads) |
| pr_info("\tKick kthreads if too-long grace period.\n"); |
| if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD)) |
| pr_info("\tRCU callback double-/use-after-free debug is enabled.\n"); |
| if (gp_preinit_delay) |
| pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay); |
| if (gp_init_delay) |
| pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay); |
| if (gp_cleanup_delay) |
| pr_info("\tRCU debug GP cleanup slowdown %d jiffies.\n", gp_cleanup_delay); |
| if (!use_softirq) |
| pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n"); |
| if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG)) |
| pr_info("\tRCU debug extended QS entry/exit.\n"); |
| rcupdate_announce_bootup_oddness(); |
| } |
| |
| #ifdef CONFIG_PREEMPT_RCU |
| |
| static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake); |
| static void rcu_read_unlock_special(struct task_struct *t); |
| |
| /* |
| * Tell them what RCU they are running. |
| */ |
| static void __init rcu_bootup_announce(void) |
| { |
| pr_info("Preemptible hierarchical RCU implementation.\n"); |
| rcu_bootup_announce_oddness(); |
| } |
| |
| /* Flags for rcu_preempt_ctxt_queue() decision table. */ |
| #define RCU_GP_TASKS 0x8 |
| #define RCU_EXP_TASKS 0x4 |
| #define RCU_GP_BLKD 0x2 |
| #define RCU_EXP_BLKD 0x1 |
| |
| /* |
| * Queues a task preempted within an RCU-preempt read-side critical |
| * section into the appropriate location within the ->blkd_tasks list, |
| * depending on the states of any ongoing normal and expedited grace |
| * periods. The ->gp_tasks pointer indicates which element the normal |
| * grace period is waiting on (NULL if none), and the ->exp_tasks pointer |
| * indicates which element the expedited grace period is waiting on (again, |
| * NULL if none). If a grace period is waiting on a given element in the |
| * ->blkd_tasks list, it also waits on all subsequent elements. Thus, |
| * adding a task to the tail of the list blocks any grace period that is |
| * already waiting on one of the elements. In contrast, adding a task |
| * to the head of the list won't block any grace period that is already |
| * waiting on one of the elements. |
| * |
| * This queuing is imprecise, and can sometimes make an ongoing grace |
| * period wait for a task that is not strictly speaking blocking it. |
| * Given the choice, we needlessly block a normal grace period rather than |
| * blocking an expedited grace period. |
| * |
| * Note that an endless sequence of expedited grace periods still cannot |
| * indefinitely postpone a normal grace period. Eventually, all of the |
| * fixed number of preempted tasks blocking the normal grace period that are |
| * not also blocking the expedited grace period will resume and complete |
| * their RCU read-side critical sections. At that point, the ->gp_tasks |
| * pointer will equal the ->exp_tasks pointer, at which point the end of |
| * the corresponding expedited grace period will also be the end of the |
| * normal grace period. |
| */ |
| static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) |
| __releases(rnp->lock) /* But leaves rrupts disabled. */ |
| { |
| int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + |
| (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + |
| (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + |
| (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); |
| struct task_struct *t = current; |
| |
| raw_lockdep_assert_held_rcu_node(rnp); |
| WARN_ON_ONCE(rdp->mynode != rnp); |
| WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); |
| /* RCU better not be waiting on newly onlined CPUs! */ |
| WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask & |
| rdp->grpmask); |
| |
| /* |
| * Decide where to queue the newly blocked task. In theory, |
| * this could be an if-statement. In practice, when I tried |
| * that, it was quite messy. |
| */ |
| switch (blkd_state) { |
| case 0: |
| case RCU_EXP_TASKS: |
| case RCU_EXP_TASKS + RCU_GP_BLKD: |
| case RCU_GP_TASKS: |
| case RCU_GP_TASKS + RCU_EXP_TASKS: |
| |
| /* |
| * Blocking neither GP, or first task blocking the normal |
| * GP but not blocking the already-waiting expedited GP. |
| * Queue at the head of the list to avoid unnecessarily |
| * blocking the already-waiting GPs. |
| */ |
| list_add(&t->rcu_node_entry, &rnp->blkd_tasks); |
| break; |
| |
| case RCU_EXP_BLKD: |
| case RCU_GP_BLKD: |
| case RCU_GP_BLKD + RCU_EXP_BLKD: |
| case RCU_GP_TASKS + RCU_EXP_BLKD: |
| case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: |
| case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: |
| |
| /* |
| * First task arriving that blocks either GP, or first task |
| * arriving that blocks the expedited GP (with the normal |
| * GP already waiting), or a task arriving that blocks |
| * both GPs with both GPs already waiting. Queue at the |
| * tail of the list to avoid any GP waiting on any of the |
| * already queued tasks that are not blocking it. |
| */ |
| list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); |
| break; |
| |
| case RCU_EXP_TASKS + RCU_EXP_BLKD: |
| case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: |
| case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD: |
| |
| /* |
| * Second or subsequent task blocking the expedited GP. |
| * The task either does not block the normal GP, or is the |
| * first task blocking the normal GP. Queue just after |
| * the first task blocking the expedited GP. |
| */ |
| list_add(&t->rcu_node_entry, rnp->exp_tasks); |
| break; |
| |
| case RCU_GP_TASKS + RCU_GP_BLKD: |
| case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: |
| |
| /* |
| * Second or subsequent task blocking the normal GP. |
| * The task does not block the expedited GP. Queue just |
| * after the first task blocking the normal GP. |
| */ |
| list_add(&t->rcu_node_entry, rnp->gp_tasks); |
| break; |
| |
| default: |
| |
| /* Yet another exercise in excessive paranoia. */ |
| WARN_ON_ONCE(1); |
| break; |
| } |
| |
| /* |
| * We have now queued the task. If it was the first one to |
| * block either grace period, update the ->gp_tasks and/or |
| * ->exp_tasks pointers, respectively, to reference the newly |
| * blocked tasks. |
| */ |
| if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) { |
| WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry); |
| WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq); |
| } |
| if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) |
| WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry); |
| WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) != |
| !(rnp->qsmask & rdp->grpmask)); |
| WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) != |
| !(rnp->expmask & rdp->grpmask)); |
| raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ |
| |
| /* |
| * Report the quiescent state for the expedited GP. This expedited |
| * GP should not be able to end until we report, so there should be |
| * no need to check for a subsequent expedited GP. (Though we are |
| * still in a quiescent state in any case.) |
| */ |
| if (blkd_state & RCU_EXP_BLKD && rdp->cpu_no_qs.b.exp) |
| rcu_report_exp_rdp(rdp); |
| else |
| WARN_ON_ONCE(rdp->cpu_no_qs.b.exp); |
| } |
| |
| /* |
| * Record a preemptible-RCU quiescent state for the specified CPU. |
| * Note that this does not necessarily mean that the task currently running |
| * on the CPU is in a quiescent state: Instead, it means that the current |
| * grace period need not wait on any RCU read-side critical section that |
| * starts later on this CPU. It also means that if the current task is |
| * in an RCU read-side critical section, it has already added itself to |
| * some leaf rcu_node structure's ->blkd_tasks list. In addition to the |
| * current task, there might be any number of other tasks blocked while |
| * in an RCU read-side critical section. |
| * |
| * Unlike non-preemptible-RCU, quiescent state reports for expedited |
| * grace periods are handled separately via deferred quiescent states |
| * and context switch events. |
| * |
| * Callers to this function must disable preemption. |
| */ |
| static void rcu_qs(void) |
| { |
| RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n"); |
| if (__this_cpu_read(rcu_data.cpu_no_qs.b.norm)) { |
| trace_rcu_grace_period(TPS("rcu_preempt"), |
| __this_cpu_read(rcu_data.gp_seq), |
| TPS("cpuqs")); |
| __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); |
| barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */ |
| WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false); |
| } |
| } |
| |
| /* |
| * We have entered the scheduler, and the current task might soon be |
| * context-switched away from. If this task is in an RCU read-side |
| * critical section, we will no longer be able to rely on the CPU to |
| * record that fact, so we enqueue the task on the blkd_tasks list. |
| * The task will dequeue itself when it exits the outermost enclosing |
| * RCU read-side critical section. Therefore, the current grace period |
| * cannot be permitted to complete until the blkd_tasks list entries |
| * predating the current grace period drain, in other words, until |
| * rnp->gp_tasks becomes NULL. |
| * |
| * Caller must disable interrupts. |
| */ |
| void rcu_note_context_switch(bool preempt) |
| { |
| struct task_struct *t = current; |
| struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
| struct rcu_node *rnp; |
| |
| trace_rcu_utilization(TPS("Start context switch")); |
| lockdep_assert_irqs_disabled(); |
| WARN_ONCE(!preempt && rcu_preempt_depth() > 0, "Voluntary context switch within RCU read-side critical section!"); |
| if (rcu_preempt_depth() > 0 && |
| !t->rcu_read_unlock_special.b.blocked) { |
| |
| /* Possibly blocking in an RCU read-side critical section. */ |
| rnp = rdp->mynode; |
| raw_spin_lock_rcu_node(rnp); |
| t->rcu_read_unlock_special.b.blocked = true; |
| t->rcu_blocked_node = rnp; |
| |
| /* |
| * Verify the CPU's sanity, trace the preemption, and |
| * then queue the task as required based on the states |
| * of any ongoing and expedited grace periods. |
| */ |
| WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp)); |
| WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); |
| trace_rcu_preempt_task(rcu_state.name, |
| t->pid, |
| (rnp->qsmask & rdp->grpmask) |
| ? rnp->gp_seq |
| : rcu_seq_snap(&rnp->gp_seq)); |
| rcu_preempt_ctxt_queue(rnp, rdp); |
| } else { |
| rcu_preempt_deferred_qs(t); |
| } |
| |
| /* |
| * Either we were not in an RCU read-side critical section to |
| * begin with, or we have now recorded that critical section |
| * globally. Either way, we can now note a quiescent state |
| * for this CPU. Again, if we were in an RCU read-side critical |
| * section, and if that critical section was blocking the current |
| * grace period, then the fact that the task has been enqueued |
| * means that we continue to block the current grace period. |
| */ |
| rcu_qs(); |
| if (rdp->cpu_no_qs.b.exp) |
| rcu_report_exp_rdp(rdp); |
| rcu_tasks_qs(current, preempt); |
| trace_rcu_utilization(TPS("End context switch")); |
| } |
| EXPORT_SYMBOL_GPL(rcu_note_context_switch); |
| |
| /* |
| * Check for preempted RCU readers blocking the current grace period |
| * for the specified rcu_node structure. If the caller needs a reliable |
| * answer, it must hold the rcu_node's ->lock. |
| */ |
| static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) |
| { |
| return READ_ONCE(rnp->gp_tasks) != NULL; |
| } |
| |
| /* limit value for ->rcu_read_lock_nesting. */ |
| #define RCU_NEST_PMAX (INT_MAX / 2) |
| |
| static void rcu_preempt_read_enter(void) |
| { |
| WRITE_ONCE(current->rcu_read_lock_nesting, READ_ONCE(current->rcu_read_lock_nesting) + 1); |
| } |
| |
| static int rcu_preempt_read_exit(void) |
| { |
| int ret = READ_ONCE(current->rcu_read_lock_nesting) - 1; |
| |
| WRITE_ONCE(current->rcu_read_lock_nesting, ret); |
| return ret; |
| } |
| |
| static void rcu_preempt_depth_set(int val) |
| { |
| WRITE_ONCE(current->rcu_read_lock_nesting, val); |
| } |
| |
| /* |
| * Preemptible RCU implementation for rcu_read_lock(). |
| * Just increment ->rcu_read_lock_nesting, shared state will be updated |
| * if we block. |
| */ |
| void __rcu_read_lock(void) |
| { |
| rcu_preempt_read_enter(); |
| if (IS_ENABLED(CONFIG_PROVE_LOCKING)) |
| WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX); |
| if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread) |
| WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true); |
| barrier(); /* critical section after entry code. */ |
| } |
| EXPORT_SYMBOL_GPL(__rcu_read_lock); |
| |
| /* |
| * Preemptible RCU implementation for rcu_read_unlock(). |
| * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost |
| * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then |
| * invoke rcu_read_unlock_special() to clean up after a context switch |
| * in an RCU read-side critical section and other special cases. |
| */ |
| void __rcu_read_unlock(void) |
| { |
| struct task_struct *t = current; |
| |
| barrier(); // critical section before exit code. |
| if (rcu_preempt_read_exit() == 0) { |
| barrier(); // critical-section exit before .s check. |
| if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s))) |
| rcu_read_unlock_special(t); |
| } |
| if (IS_ENABLED(CONFIG_PROVE_LOCKING)) { |
| int rrln = rcu_preempt_depth(); |
| |
| WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX); |
| } |
| } |
| EXPORT_SYMBOL_GPL(__rcu_read_unlock); |
| |
| /* |
| * Advance a ->blkd_tasks-list pointer to the next entry, instead |
| * returning NULL if at the end of the list. |
| */ |
| static struct list_head *rcu_next_node_entry(struct task_struct *t, |
| struct rcu_node *rnp) |
| { |
| struct list_head *np; |
| |
| np = t->rcu_node_entry.next; |
| if (np == &rnp->blkd_tasks) |
| np = NULL; |
| return np; |
| } |
| |
| /* |
| * Return true if the specified rcu_node structure has tasks that were |
| * preempted within an RCU read-side critical section. |
| */ |
| static bool rcu_preempt_has_tasks(struct rcu_node *rnp) |
| { |
| return !list_empty(&rnp->blkd_tasks); |
| } |
| |
| /* |
| * Report deferred quiescent states. The deferral time can |
| * be quite short, for example, in the case of the call from |
| * rcu_read_unlock_special(). |
| */ |
| static void |
| rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags) |
| { |
| bool empty_exp; |
| bool empty_norm; |
| bool empty_exp_now; |
| struct list_head *np; |
| bool drop_boost_mutex = false; |
| struct rcu_data *rdp; |
| struct rcu_node *rnp; |
| union rcu_special special; |
| |
| /* |
| * If RCU core is waiting for this CPU to exit its critical section, |
| * report the fact that it has exited. Because irqs are disabled, |
| * t->rcu_read_unlock_special cannot change. |
| */ |
| special = t->rcu_read_unlock_special; |
| rdp = this_cpu_ptr(&rcu_data); |
| if (!special.s && !rdp->cpu_no_qs.b.exp) { |
| local_irq_restore(flags); |
| return; |
| } |
| t->rcu_read_unlock_special.s = 0; |
| if (special.b.need_qs) { |
| if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { |
| rdp->cpu_no_qs.b.norm = false; |
| rcu_report_qs_rdp(rdp); |
| udelay(rcu_unlock_delay); |
| } else { |
| rcu_qs(); |
| } |
| } |
| |
| /* |
| * Respond to a request by an expedited grace period for a |
| * quiescent state from this CPU. Note that requests from |
| * tasks are handled when removing the task from the |
| * blocked-tasks list below. |
| */ |
| if (rdp->cpu_no_qs.b.exp) |
| rcu_report_exp_rdp(rdp); |
| |
| /* Clean up if blocked during RCU read-side critical section. */ |
| if (special.b.blocked) { |
| |
| /* |
| * Remove this task from the list it blocked on. The task |
| * now remains queued on the rcu_node corresponding to the |
| * CPU it first blocked on, so there is no longer any need |
| * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia. |
| */ |
| rnp = t->rcu_blocked_node; |
| raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ |
| WARN_ON_ONCE(rnp != t->rcu_blocked_node); |
| WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); |
| empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); |
| WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq && |
| (!empty_norm || rnp->qsmask)); |
| empty_exp = sync_rcu_exp_done(rnp); |
| smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ |
| np = rcu_next_node_entry(t, rnp); |
| list_del_init(&t->rcu_node_entry); |
| t->rcu_blocked_node = NULL; |
| trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), |
| rnp->gp_seq, t->pid); |
| if (&t->rcu_node_entry == rnp->gp_tasks) |
| WRITE_ONCE(rnp->gp_tasks, np); |
| if (&t->rcu_node_entry == rnp->exp_tasks) |
| WRITE_ONCE(rnp->exp_tasks, np); |
| if (IS_ENABLED(CONFIG_RCU_BOOST)) { |
| /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ |
| drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx.rtmutex) == t; |
| if (&t->rcu_node_entry == rnp->boost_tasks) |
| WRITE_ONCE(rnp->boost_tasks, np); |
| } |
| |
| /* |
| * If this was the last task on the current list, and if |
| * we aren't waiting on any CPUs, report the quiescent state. |
| * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, |
| * so we must take a snapshot of the expedited state. |
| */ |
| empty_exp_now = sync_rcu_exp_done(rnp); |
| if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { |
| trace_rcu_quiescent_state_report(TPS("preempt_rcu"), |
| rnp->gp_seq, |
| 0, rnp->qsmask, |
| rnp->level, |
| rnp->grplo, |
| rnp->grphi, |
| !!rnp->gp_tasks); |
| rcu_report_unblock_qs_rnp(rnp, flags); |
| } else { |
| raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| } |
| |
| /* |
| * If this was the last task on the expedited lists, |
| * then we need to report up the rcu_node hierarchy. |
| */ |
| if (!empty_exp && empty_exp_now) |
| rcu_report_exp_rnp(rnp, true); |
| |
| /* Unboost if we were boosted. */ |
| if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) |
| rt_mutex_futex_unlock(&rnp->boost_mtx.rtmutex); |
| } else { |
| local_irq_restore(flags); |
| } |
| } |
| |
| /* |
| * Is a deferred quiescent-state pending, and are we also not in |
| * an RCU read-side critical section? It is the caller's responsibility |
| * to ensure it is otherwise safe to report any deferred quiescent |
| * states. The reason for this is that it is safe to report a |
| * quiescent state during context switch even though preemption |
| * is disabled. This function cannot be expected to understand these |
| * nuances, so the caller must handle them. |
| */ |
| static bool rcu_preempt_need_deferred_qs(struct task_struct *t) |
| { |
| return (__this_cpu_read(rcu_data.cpu_no_qs.b.exp) || |
| READ_ONCE(t->rcu_read_unlock_special.s)) && |
| rcu_preempt_depth() == 0; |
| } |
| |
| /* |
| * Report a deferred quiescent state if needed and safe to do so. |
| * As with rcu_preempt_need_deferred_qs(), "safe" involves only |
| * not being in an RCU read-side critical section. The caller must |
| * evaluate safety in terms of interrupt, softirq, and preemption |
| * disabling. |
| */ |
| static void rcu_preempt_deferred_qs(struct task_struct *t) |
| { |
| unsigned long flags; |
| |
| if (!rcu_preempt_need_deferred_qs(t)) |
| return; |
| local_irq_save(flags); |
| rcu_preempt_deferred_qs_irqrestore(t, flags); |
| } |
| |
| /* |
| * Minimal handler to give the scheduler a chance to re-evaluate. |
| */ |
| static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp) |
| { |
| struct rcu_data *rdp; |
| |
| rdp = container_of(iwp, struct rcu_data, defer_qs_iw); |
| rdp->defer_qs_iw_pending = false; |
| } |
| |
| /* |
| * Handle special cases during rcu_read_unlock(), such as needing to |
| * notify RCU core processing or task having blocked during the RCU |
| * read-side critical section. |
| */ |
| static void rcu_read_unlock_special(struct task_struct *t) |
| { |
| unsigned long flags; |
| bool irqs_were_disabled; |
| bool preempt_bh_were_disabled = |
| !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK)); |
| |
| /* NMI handlers cannot block and cannot safely manipulate state. */ |
| if (in_nmi()) |
| return; |
| |
| local_irq_save(flags); |
| irqs_were_disabled = irqs_disabled_flags(flags); |
| if (preempt_bh_were_disabled || irqs_were_disabled) { |
| bool expboost; // Expedited GP in flight or possible boosting. |
| struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
| struct rcu_node *rnp = rdp->mynode; |
| |
| expboost = (t->rcu_blocked_node && READ_ONCE(t->rcu_blocked_node->exp_tasks)) || |
| (rdp->grpmask & READ_ONCE(rnp->expmask)) || |
| IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) || |
| (IS_ENABLED(CONFIG_RCU_BOOST) && irqs_were_disabled && |
| t->rcu_blocked_node); |
| // Need to defer quiescent state until everything is enabled. |
| if (use_softirq && (in_hardirq() || (expboost && !irqs_were_disabled))) { |
| // Using softirq, safe to awaken, and either the |
| // wakeup is free or there is either an expedited |
| // GP in flight or a potential need to deboost. |
| raise_softirq_irqoff(RCU_SOFTIRQ); |
| } else { |
| // Enabling BH or preempt does reschedule, so... |
| // Also if no expediting and no possible deboosting, |
| // slow is OK. Plus nohz_full CPUs eventually get |
| // tick enabled. |
| set_tsk_need_resched(current); |
| set_preempt_need_resched(); |
| if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled && |
| expboost && !rdp->defer_qs_iw_pending && cpu_online(rdp->cpu)) { |
| // Get scheduler to re-evaluate and call hooks. |
| // If !IRQ_WORK, FQS scan will eventually IPI. |
| if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && |
| IS_ENABLED(CONFIG_PREEMPT_RT)) |
| rdp->defer_qs_iw = IRQ_WORK_INIT_HARD( |
| rcu_preempt_deferred_qs_handler); |
| else |
| init_irq_work(&rdp->defer_qs_iw, |
| rcu_preempt_deferred_qs_handler); |
| rdp->defer_qs_iw_pending = true; |
| irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu); |
| } |
| } |
| local_irq_restore(flags); |
| return; |
| } |
| rcu_preempt_deferred_qs_irqrestore(t, flags); |
| } |
| |
| /* |
| * Check that the list of blocked tasks for the newly completed grace |
| * period is in fact empty. It is a serious bug to complete a grace |
| * period that still has RCU readers blocked! This function must be |
| * invoked -before- updating this rnp's ->gp_seq. |
| * |
| * Also, if there are blocked tasks on the list, they automatically |
| * block the newly created grace period, so set up ->gp_tasks accordingly. |
| */ |
| static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) |
| { |
| struct task_struct *t; |
| |
| RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n"); |
| raw_lockdep_assert_held_rcu_node(rnp); |
| if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) |
| dump_blkd_tasks(rnp, 10); |
| if (rcu_preempt_has_tasks(rnp) && |
| (rnp->qsmaskinit || rnp->wait_blkd_tasks)) { |
| WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next); |
| t = container_of(rnp->gp_tasks, struct task_struct, |
| rcu_node_entry); |
| trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"), |
| rnp->gp_seq, t->pid); |
| } |
| WARN_ON_ONCE(rnp->qsmask); |
| } |
| |
| /* |
| * Check for a quiescent state from the current CPU, including voluntary |
| * context switches for Tasks RCU. When a task blocks, the task is |
| * recorded in the corresponding CPU's rcu_node structure, which is checked |
| * elsewhere, hence this function need only check for quiescent states |
| * related to the current CPU, not to those related to tasks. |
| */ |
| static void rcu_flavor_sched_clock_irq(int user) |
| { |
| struct task_struct *t = current; |
| |
| lockdep_assert_irqs_disabled(); |
| if (user || rcu_is_cpu_rrupt_from_idle()) { |
| rcu_note_voluntary_context_switch(current); |
| } |
| if (rcu_preempt_depth() > 0 || |
| (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) { |
| /* No QS, force context switch if deferred. */ |
| if (rcu_preempt_need_deferred_qs(t)) { |
| set_tsk_need_resched(t); |
| set_preempt_need_resched(); |
| } |
| } else if (rcu_preempt_need_deferred_qs(t)) { |
| rcu_preempt_deferred_qs(t); /* Report deferred QS. */ |
| return; |
| } else if (!WARN_ON_ONCE(rcu_preempt_depth())) { |
| rcu_qs(); /* Report immediate QS. */ |
| return; |
| } |
| |
| /* If GP is oldish, ask for help from rcu_read_unlock_special(). */ |
| if (rcu_preempt_depth() > 0 && |
| __this_cpu_read(rcu_data.core_needs_qs) && |
| __this_cpu_read(rcu_data.cpu_no_qs.b.norm) && |
| !t->rcu_read_unlock_special.b.need_qs && |
| time_after(jiffies, rcu_state.gp_start + HZ)) |
| t->rcu_read_unlock_special.b.need_qs = true; |
| } |
| |
| /* |
| * Check for a task exiting while in a preemptible-RCU read-side |
| * critical section, clean up if so. No need to issue warnings, as |
| * debug_check_no_locks_held() already does this if lockdep is enabled. |
| * Besides, if this function does anything other than just immediately |
| * return, there was a bug of some sort. Spewing warnings from this |
| * function is like as not to simply obscure important prior warnings. |
| */ |
| void exit_rcu(void) |
| { |
| struct task_struct *t = current; |
| |
| if (unlikely(!list_empty(¤t->rcu_node_entry))) { |
| rcu_preempt_depth_set(1); |
| barrier(); |
| WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true); |
| } else if (unlikely(rcu_preempt_depth())) { |
| rcu_preempt_depth_set(1); |
| } else { |
| return; |
| } |
| __rcu_read_unlock(); |
| rcu_preempt_deferred_qs(current); |
| } |
| |
| /* |
| * Dump the blocked-tasks state, but limit the list dump to the |
| * specified number of elements. |
| */ |
| static void |
| dump_blkd_tasks(struct rcu_node *rnp, int ncheck) |
| { |
| int cpu; |
| int i; |
| struct list_head *lhp; |
| struct rcu_data *rdp; |
| struct rcu_node *rnp1; |
| |
| raw_lockdep_assert_held_rcu_node(rnp); |
| pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", |
| __func__, rnp->grplo, rnp->grphi, rnp->level, |
| (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs); |
| for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) |
| pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n", |
| __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext); |
| pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n", |
| __func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks), |
| READ_ONCE(rnp->exp_tasks)); |
| pr_info("%s: ->blkd_tasks", __func__); |
| i = 0; |
| list_for_each(lhp, &rnp->blkd_tasks) { |
| pr_cont(" %p", lhp); |
| if (++i >= ncheck) |
| break; |
| } |
| pr_cont("\n"); |
| for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) { |
| rdp = per_cpu_ptr(&rcu_data, cpu); |
| pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n", |
| cpu, ".o"[rcu_rdp_cpu_online(rdp)], |
| (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, |
| (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); |
| } |
| } |
| |
| #else /* #ifdef CONFIG_PREEMPT_RCU */ |
| |
| /* |
| * If strict grace periods are enabled, and if the calling |
| * __rcu_read_unlock() marks the beginning of a quiescent state, immediately |
| * report that quiescent state and, if requested, spin for a bit. |
| */ |
| void rcu_read_unlock_strict(void) |
| { |
| struct rcu_data *rdp; |
| |
| if (irqs_disabled() || preempt_count() || !rcu_state.gp_kthread) |
| return; |
| rdp = this_cpu_ptr(&rcu_data); |
| rcu_report_qs_rdp(rdp); |
| udelay(rcu_unlock_delay); |
| } |
| EXPORT_SYMBOL_GPL(rcu_read_unlock_strict); |
| |
| /* |
| * Tell them what RCU they are running. |
| */ |
| static void __init rcu_bootup_announce(void) |
| { |
| pr_info("Hierarchical RCU implementation.\n"); |
| rcu_bootup_announce_oddness(); |
| } |
| |
| /* |
| * Note a quiescent state for PREEMPTION=n. Because we do not need to know |
| * how many quiescent states passed, just if there was at least one since |
| * the start of the grace period, this just sets a flag. The caller must |
| * have disabled preemption. |
| */ |
| static void rcu_qs(void) |
| { |
| RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!"); |
| if (!__this_cpu_read(rcu_data.cpu_no_qs.s)) |
| return; |
| trace_rcu_grace_period(TPS("rcu_sched"), |
| __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs")); |
| __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); |
| if (__this_cpu_read(rcu_data.cpu_no_qs.b.exp)) |
| rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); |
| } |
| |
| /* |
| * Register an urgently needed quiescent state. If there is an |
| * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight |
| * dyntick-idle quiescent state visible to other CPUs, which will in |
| * some cases serve for expedited as well as normal grace periods. |
| * Either way, register a lightweight quiescent state. |
| */ |
| void rcu_all_qs(void) |
| { |
| unsigned long flags; |
| |
| if (!raw_cpu_read(rcu_data.rcu_urgent_qs)) |
| return; |
| preempt_disable(); |
| /* Load rcu_urgent_qs before other flags. */ |
| if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { |
| preempt_enable(); |
| return; |
| } |
| this_cpu_write(rcu_data.rcu_urgent_qs, false); |
| if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) { |
| local_irq_save(flags); |
| rcu_momentary_dyntick_idle(); |
| local_irq_restore(flags); |
| } |
| rcu_qs(); |
| preempt_enable(); |
| } |
| EXPORT_SYMBOL_GPL(rcu_all_qs); |
| |
| /* |
| * Note a PREEMPTION=n context switch. The caller must have disabled interrupts. |
| */ |
| void rcu_note_context_switch(bool preempt) |
| { |
| trace_rcu_utilization(TPS("Start context switch")); |
| rcu_qs(); |
| /* Load rcu_urgent_qs before other flags. */ |
| if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) |
| goto out; |
| this_cpu_write(rcu_data.rcu_urgent_qs, false); |
| if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) |
| rcu_momentary_dyntick_idle(); |
| rcu_tasks_qs(current, preempt); |
| out: |
| trace_rcu_utilization(TPS("End context switch")); |
| } |
| EXPORT_SYMBOL_GPL(rcu_note_context_switch); |
| |
| /* |
| * Because preemptible RCU does not exist, there are never any preempted |
| * RCU readers. |
| */ |
| static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) |
| { |
| return 0; |
| } |
| |
| /* |
| * Because there is no preemptible RCU, there can be no readers blocked. |
| */ |
| static bool rcu_preempt_has_tasks(struct rcu_node *rnp) |
| { |
| return false; |
| } |
| |
| /* |
| * Because there is no preemptible RCU, there can be no deferred quiescent |
| * states. |
| */ |
| static bool rcu_preempt_need_deferred_qs(struct task_struct *t) |
| { |
| return false; |
| } |
| |
| // Except that we do need to respond to a request by an expedited grace |
| // period for a quiescent state from this CPU. Note that requests from |
| // tasks are handled when removing the task from the blocked-tasks list |
| // below. |
| static void rcu_preempt_deferred_qs(struct task_struct *t) |
| { |
| struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
| |
| if (rdp->cpu_no_qs.b.exp) |
| rcu_report_exp_rdp(rdp); |
| } |
| |
| /* |
| * Because there is no preemptible RCU, there can be no readers blocked, |
| * so there is no need to check for blocked tasks. So check only for |
| * bogus qsmask values. |
| */ |
| static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) |
| { |
| WARN_ON_ONCE(rnp->qsmask); |
| } |
| |
| /* |
| * Check to see if this CPU is in a non-context-switch quiescent state, |
| * namely user mode and idle loop. |
| */ |
| static void rcu_flavor_sched_clock_irq(int user) |
| { |
| if (user || rcu_is_cpu_rrupt_from_idle()) { |
| |
| /* |
| * Get here if this CPU took its interrupt from user |
| * mode or from the idle loop, and if this is not a |
| * nested interrupt. In this case, the CPU is in |
| * a quiescent state, so note it. |
| * |
| * No memory barrier is required here because rcu_qs() |
| * references only CPU-local variables that other CPUs |
| * neither access nor modify, at least not while the |
| * corresponding CPU is online. |
| */ |
| |
| rcu_qs(); |
| } |
| } |
| |
| /* |
| * Because preemptible RCU does not exist, tasks cannot possibly exit |
| * while in preemptible RCU read-side critical sections. |
| */ |
| void exit_rcu(void) |
| { |
| } |
| |
| /* |
| * Dump the guaranteed-empty blocked-tasks state. Trust but verify. |
| */ |
| static void |
| dump_blkd_tasks(struct rcu_node *rnp, int ncheck) |
| { |
| WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks)); |
| } |
| |
| #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ |
| |
| /* |
| * If boosting, set rcuc kthreads to realtime priority. |
| */ |
| static void rcu_cpu_kthread_setup(unsigned int cpu) |
| { |
| struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); |
| #ifdef CONFIG_RCU_BOOST |
| struct sched_param sp; |
| |
| sp.sched_priority = kthread_prio; |
| sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); |
| #endif /* #ifdef CONFIG_RCU_BOOST */ |
| |
| WRITE_ONCE(rdp->rcuc_activity, jiffies); |
| } |
| |
| #ifdef CONFIG_RCU_BOOST |
| |
| /* |
| * Carry out RCU priority boosting on the task indicated by ->exp_tasks |
| * or ->boost_tasks, advancing the pointer to the next task in the |
| * ->blkd_tasks list. |
| * |
| * Note that irqs must be enabled: boosting the task can block. |
| * Returns 1 if there are more tasks needing to be boosted. |
| */ |
| static int rcu_boost(struct rcu_node *rnp) |
| { |
| unsigned long flags; |
| struct task_struct *t; |
| struct list_head *tb; |
| |
| if (READ_ONCE(rnp->exp_tasks) == NULL && |
| READ_ONCE(rnp->boost_tasks) == NULL) |
| return 0; /* Nothing left to boost. */ |
| |
| raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| |
| /* |
| * Recheck under the lock: all tasks in need of boosting |
| * might exit their RCU read-side critical sections on their own. |
| */ |
| if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { |
| raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| return 0; |
| } |
| |
| /* |
| * Preferentially boost tasks blocking expedited grace periods. |
| * This cannot starve the normal grace periods because a second |
| * expedited grace period must boost all blocked tasks, including |
| * those blocking the pre-existing normal grace period. |
| */ |
| if (rnp->exp_tasks != NULL) |
| tb = rnp->exp_tasks; |
| else |
| tb = rnp->boost_tasks; |
| |
| /* |
| * We boost task t by manufacturing an rt_mutex that appears to |
| * be held by task t. We leave a pointer to that rt_mutex where |
| * task t can find it, and task t will release the mutex when it |
| * exits its outermost RCU read-side critical section. Then |
| * simply acquiring this artificial rt_mutex will boost task |
| * t's priority. (Thanks to tglx for suggesting this approach!) |
| * |
| * Note that task t must acquire rnp->lock to remove itself from |
| * the ->blkd_tasks list, which it will do from exit() if from |
| * nowhere else. We therefore are guaranteed that task t will |
| * stay around at least until we drop rnp->lock. Note that |
| * rnp->lock also resolves races between our priority boosting |
| * and task t's exiting its outermost RCU read-side critical |
| * section. |
| */ |
| t = container_of(tb, struct task_struct, rcu_node_entry); |
| rt_mutex_init_proxy_locked(&rnp->boost_mtx.rtmutex, t); |
| raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| /* Lock only for side effect: boosts task t's priority. */ |
| rt_mutex_lock(&rnp->boost_mtx); |
| rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ |
| rnp->n_boosts++; |
| |
| return READ_ONCE(rnp->exp_tasks) != NULL || |
| READ_ONCE(rnp->boost_tasks) != NULL; |
| } |
| |
| /* |
| * Priority-boosting kthread, one per leaf rcu_node. |
| */ |
| static int rcu_boost_kthread(void *arg) |
| { |
| struct rcu_node *rnp = (struct rcu_node *)arg; |
| int spincnt = 0; |
| int more2boost; |
| |
| trace_rcu_utilization(TPS("Start boost kthread@init")); |
| for (;;) { |
| WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING); |
| trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); |
| rcu_wait(READ_ONCE(rnp->boost_tasks) || |
| READ_ONCE(rnp->exp_tasks)); |
| trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); |
| WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING); |
| more2boost = rcu_boost(rnp); |
| if (more2boost) |
| spincnt++; |
| else |
| spincnt = 0; |
| if (spincnt > 10) { |
| WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING); |
| trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); |
| schedule_timeout_idle(2); |
| trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); |
| spincnt = 0; |
| } |
| } |
| /* NOTREACHED */ |
| trace_rcu_utilization(TPS("End boost kthread@notreached")); |
| return 0; |
| } |
| |
| /* |
| * Check to see if it is time to start boosting RCU readers that are |
| * blocking the current grace period, and, if so, tell the per-rcu_node |
| * kthread to start boosting them. If there is an expedited grace |
| * period in progress, it is always time to boost. |
| * |
| * The caller must hold rnp->lock, which this function releases. |
| * The ->boost_kthread_task is immortal, so we don't need to worry |
| * about it going away. |
| */ |
| static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) |
| __releases(rnp->lock) |
| { |
| raw_lockdep_assert_held_rcu_node(rnp); |
| if (!rnp->boost_kthread_task || |
| (!rcu_preempt_blocked_readers_cgp(rnp) && !rnp->exp_tasks)) { |
| raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| return; |
| } |
| if (rnp->exp_tasks != NULL || |
| (rnp->gp_tasks != NULL && |
| rnp->boost_tasks == NULL && |
| rnp->qsmask == 0 && |
| (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) { |
| if (rnp->exp_tasks == NULL) |
| WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks); |
| raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| rcu_wake_cond(rnp->boost_kthread_task, |
| READ_ONCE(rnp->boost_kthread_status)); |
| } else { |
| raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| } |
| } |
| |
| /* |
| * Is the current CPU running the RCU-callbacks kthread? |
| * Caller must have preemption disabled. |
| */ |
| static bool rcu_is_callbacks_kthread(void) |
| { |
| return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current; |
| } |
| |
| #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) |
| |
| /* |
| * Do priority-boost accounting for the start of a new grace period. |
| */ |
| static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) |
| { |
| rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; |
| } |
| |
| /* |
| * Create an RCU-boost kthread for the specified node if one does not |
| * already exist. We only create this kthread for preemptible RCU. |
| */ |
| static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp) |
| { |
| unsigned long flags; |
| int rnp_index = rnp - rcu_get_root(); |
| struct sched_param sp; |
| struct task_struct *t; |
| |
| mutex_lock(&rnp->boost_kthread_mutex); |
| if (rnp->boost_kthread_task || !rcu_scheduler_fully_active) |
| goto out; |
| |
| t = kthread_create(rcu_boost_kthread, (void *)rnp, |
| "rcub/%d", rnp_index); |
| if (WARN_ON_ONCE(IS_ERR(t))) |
| goto out; |
| |
| raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| rnp->boost_kthread_task = t; |
| raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| sp.sched_priority = kthread_prio; |
| sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); |
| wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ |
| |
| out: |
| mutex_unlock(&rnp->boost_kthread_mutex); |
| } |
| |
| /* |
| * Set the per-rcu_node kthread's affinity to cover all CPUs that are |
| * served by the rcu_node in question. The CPU hotplug lock is still |
| * held, so the value of rnp->qsmaskinit will be stable. |
| * |
| * We don't include outgoingcpu in the affinity set, use -1 if there is |
| * no outgoing CPU. If there are no CPUs left in the affinity set, |
| * this function allows the kthread to execute on any CPU. |
| */ |
| static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) |
| { |
| struct task_struct *t = rnp->boost_kthread_task; |
| unsigned long mask = rcu_rnp_online_cpus(rnp); |
| cpumask_var_t cm; |
| int cpu; |
| |
| if (!t) |
| return; |
| if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) |
| return; |
| mutex_lock(&rnp->boost_kthread_mutex); |
| for_each_leaf_node_possible_cpu(rnp, cpu) |
| if ((mask & leaf_node_cpu_bit(rnp, cpu)) && |
| cpu != outgoingcpu) |
| cpumask_set_cpu(cpu, cm); |
| cpumask_and(cm, cm, housekeeping_cpumask(HK_TYPE_RCU)); |
| if (cpumask_empty(cm)) |
| cpumask_copy(cm, housekeeping_cpumask(HK_TYPE_RCU)); |
| set_cpus_allowed_ptr(t, cm); |
| mutex_unlock(&rnp->boost_kthread_mutex); |
| free_cpumask_var(cm); |
| } |
| |
| #else /* #ifdef CONFIG_RCU_BOOST */ |
| |
| static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) |
| __releases(rnp->lock) |
| { |
| raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| } |
| |
| static bool rcu_is_callbacks_kthread(void) |
| { |
| return false; |
| } |
| |
| static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) |
| { |
| } |
| |
| static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp) |
| { |
| } |
| |
| static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) |
| { |
| } |
| |
| #endif /* #else #ifdef CONFIG_RCU_BOOST */ |
| |
| /* |
| * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the |
| * grace-period kthread will do force_quiescent_state() processing? |
| * The idea is to avoid waking up RCU core processing on such a |
| * CPU unless the grace period has extended for too long. |
| * |
| * This code relies on the fact that all NO_HZ_FULL CPUs are also |
| * RCU_NOCB_CPU CPUs. |
| */ |
| static bool rcu_nohz_full_cpu(void) |
| { |
| #ifdef CONFIG_NO_HZ_FULL |
| if (tick_nohz_full_cpu(smp_processor_id()) && |
| (!rcu_gp_in_progress() || |
| time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ))) |
| return true; |
| #endif /* #ifdef CONFIG_NO_HZ_FULL */ |
| return false; |
| } |
| |
| /* |
| * Bind the RCU grace-period kthreads to the housekeeping CPU. |
| */ |
| static void rcu_bind_gp_kthread(void) |
| { |
| if (!tick_nohz_full_enabled()) |
| return; |
| housekeeping_affine(current, HK_TYPE_RCU); |
| } |
| |
| /* Record the current task on dyntick-idle entry. */ |
| static __always_inline void rcu_dynticks_task_enter(void) |
| { |
| #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) |
| WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); |
| #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ |
| } |
| |
| /* Record no current task on dyntick-idle exit. */ |
| static __always_inline void rcu_dynticks_task_exit(void) |
| { |
| #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) |
| WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); |
| #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ |
| } |
| |
| /* Turn on heavyweight RCU tasks trace readers on idle/user entry. */ |
| static __always_inline void rcu_dynticks_task_trace_enter(void) |
| { |
| #ifdef CONFIG_TASKS_TRACE_RCU |
| if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) |
| current->trc_reader_special.b.need_mb = true; |
| #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ |
| } |
| |
| /* Turn off heavyweight RCU tasks trace readers on idle/user exit. */ |
| static __always_inline void rcu_dynticks_task_trace_exit(void) |
| { |
| #ifdef CONFIG_TASKS_TRACE_RCU |
| if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) |
| current->trc_reader_special.b.need_mb = false; |
| #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ |
| } |