| /* |
| * Multi buffer SHA1 algorithm Glue Code |
| * |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * Copyright(c) 2014 Intel Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * Contact Information: |
| * Tim Chen <tim.c.chen@linux.intel.com> |
| * |
| * BSD LICENSE |
| * |
| * Copyright(c) 2014 Intel Corporation. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * * Neither the name of Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <crypto/internal/hash.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/mm.h> |
| #include <linux/cryptohash.h> |
| #include <linux/types.h> |
| #include <linux/list.h> |
| #include <crypto/scatterwalk.h> |
| #include <crypto/sha.h> |
| #include <crypto/mcryptd.h> |
| #include <crypto/crypto_wq.h> |
| #include <asm/byteorder.h> |
| #include <asm/xcr.h> |
| #include <asm/fpu/xsave.h> |
| #include <linux/hardirq.h> |
| #include <asm/fpu/internal.h> |
| #include "sha_mb_ctx.h" |
| |
| #define FLUSH_INTERVAL 1000 /* in usec */ |
| |
| static struct mcryptd_alg_state sha1_mb_alg_state; |
| |
| struct sha1_mb_ctx { |
| struct mcryptd_ahash *mcryptd_tfm; |
| }; |
| |
| static inline struct mcryptd_hash_request_ctx *cast_hash_to_mcryptd_ctx(struct sha1_hash_ctx *hash_ctx) |
| { |
| struct shash_desc *desc; |
| |
| desc = container_of((void *) hash_ctx, struct shash_desc, __ctx); |
| return container_of(desc, struct mcryptd_hash_request_ctx, desc); |
| } |
| |
| static inline struct ahash_request *cast_mcryptd_ctx_to_req(struct mcryptd_hash_request_ctx *ctx) |
| { |
| return container_of((void *) ctx, struct ahash_request, __ctx); |
| } |
| |
| static void req_ctx_init(struct mcryptd_hash_request_ctx *rctx, |
| struct shash_desc *desc) |
| { |
| rctx->flag = HASH_UPDATE; |
| } |
| |
| static asmlinkage void (*sha1_job_mgr_init)(struct sha1_mb_mgr *state); |
| static asmlinkage struct job_sha1* (*sha1_job_mgr_submit)(struct sha1_mb_mgr *state, |
| struct job_sha1 *job); |
| static asmlinkage struct job_sha1* (*sha1_job_mgr_flush)(struct sha1_mb_mgr *state); |
| static asmlinkage struct job_sha1* (*sha1_job_mgr_get_comp_job)(struct sha1_mb_mgr *state); |
| |
| inline void sha1_init_digest(uint32_t *digest) |
| { |
| static const uint32_t initial_digest[SHA1_DIGEST_LENGTH] = {SHA1_H0, |
| SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 }; |
| memcpy(digest, initial_digest, sizeof(initial_digest)); |
| } |
| |
| inline uint32_t sha1_pad(uint8_t padblock[SHA1_BLOCK_SIZE * 2], |
| uint32_t total_len) |
| { |
| uint32_t i = total_len & (SHA1_BLOCK_SIZE - 1); |
| |
| memset(&padblock[i], 0, SHA1_BLOCK_SIZE); |
| padblock[i] = 0x80; |
| |
| i += ((SHA1_BLOCK_SIZE - 1) & |
| (0 - (total_len + SHA1_PADLENGTHFIELD_SIZE + 1))) |
| + 1 + SHA1_PADLENGTHFIELD_SIZE; |
| |
| #if SHA1_PADLENGTHFIELD_SIZE == 16 |
| *((uint64_t *) &padblock[i - 16]) = 0; |
| #endif |
| |
| *((uint64_t *) &padblock[i - 8]) = cpu_to_be64(total_len << 3); |
| |
| /* Number of extra blocks to hash */ |
| return i >> SHA1_LOG2_BLOCK_SIZE; |
| } |
| |
| static struct sha1_hash_ctx *sha1_ctx_mgr_resubmit(struct sha1_ctx_mgr *mgr, struct sha1_hash_ctx *ctx) |
| { |
| while (ctx) { |
| if (ctx->status & HASH_CTX_STS_COMPLETE) { |
| /* Clear PROCESSING bit */ |
| ctx->status = HASH_CTX_STS_COMPLETE; |
| return ctx; |
| } |
| |
| /* |
| * If the extra blocks are empty, begin hashing what remains |
| * in the user's buffer. |
| */ |
| if (ctx->partial_block_buffer_length == 0 && |
| ctx->incoming_buffer_length) { |
| |
| const void *buffer = ctx->incoming_buffer; |
| uint32_t len = ctx->incoming_buffer_length; |
| uint32_t copy_len; |
| |
| /* |
| * Only entire blocks can be hashed. |
| * Copy remainder to extra blocks buffer. |
| */ |
| copy_len = len & (SHA1_BLOCK_SIZE-1); |
| |
| if (copy_len) { |
| len -= copy_len; |
| memcpy(ctx->partial_block_buffer, |
| ((const char *) buffer + len), |
| copy_len); |
| ctx->partial_block_buffer_length = copy_len; |
| } |
| |
| ctx->incoming_buffer_length = 0; |
| |
| /* len should be a multiple of the block size now */ |
| assert((len % SHA1_BLOCK_SIZE) == 0); |
| |
| /* Set len to the number of blocks to be hashed */ |
| len >>= SHA1_LOG2_BLOCK_SIZE; |
| |
| if (len) { |
| |
| ctx->job.buffer = (uint8_t *) buffer; |
| ctx->job.len = len; |
| ctx = (struct sha1_hash_ctx *) sha1_job_mgr_submit(&mgr->mgr, |
| &ctx->job); |
| continue; |
| } |
| } |
| |
| /* |
| * If the extra blocks are not empty, then we are |
| * either on the last block(s) or we need more |
| * user input before continuing. |
| */ |
| if (ctx->status & HASH_CTX_STS_LAST) { |
| |
| uint8_t *buf = ctx->partial_block_buffer; |
| uint32_t n_extra_blocks = sha1_pad(buf, ctx->total_length); |
| |
| ctx->status = (HASH_CTX_STS_PROCESSING | |
| HASH_CTX_STS_COMPLETE); |
| ctx->job.buffer = buf; |
| ctx->job.len = (uint32_t) n_extra_blocks; |
| ctx = (struct sha1_hash_ctx *) sha1_job_mgr_submit(&mgr->mgr, &ctx->job); |
| continue; |
| } |
| |
| ctx->status = HASH_CTX_STS_IDLE; |
| return ctx; |
| } |
| |
| return NULL; |
| } |
| |
| static struct sha1_hash_ctx *sha1_ctx_mgr_get_comp_ctx(struct sha1_ctx_mgr *mgr) |
| { |
| /* |
| * If get_comp_job returns NULL, there are no jobs complete. |
| * If get_comp_job returns a job, verify that it is safe to return to the user. |
| * If it is not ready, resubmit the job to finish processing. |
| * If sha1_ctx_mgr_resubmit returned a job, it is ready to be returned. |
| * Otherwise, all jobs currently being managed by the hash_ctx_mgr still need processing. |
| */ |
| struct sha1_hash_ctx *ctx; |
| |
| ctx = (struct sha1_hash_ctx *) sha1_job_mgr_get_comp_job(&mgr->mgr); |
| return sha1_ctx_mgr_resubmit(mgr, ctx); |
| } |
| |
| static void sha1_ctx_mgr_init(struct sha1_ctx_mgr *mgr) |
| { |
| sha1_job_mgr_init(&mgr->mgr); |
| } |
| |
| static struct sha1_hash_ctx *sha1_ctx_mgr_submit(struct sha1_ctx_mgr *mgr, |
| struct sha1_hash_ctx *ctx, |
| const void *buffer, |
| uint32_t len, |
| int flags) |
| { |
| if (flags & (~HASH_ENTIRE)) { |
| /* User should not pass anything other than FIRST, UPDATE, or LAST */ |
| ctx->error = HASH_CTX_ERROR_INVALID_FLAGS; |
| return ctx; |
| } |
| |
| if (ctx->status & HASH_CTX_STS_PROCESSING) { |
| /* Cannot submit to a currently processing job. */ |
| ctx->error = HASH_CTX_ERROR_ALREADY_PROCESSING; |
| return ctx; |
| } |
| |
| if ((ctx->status & HASH_CTX_STS_COMPLETE) && !(flags & HASH_FIRST)) { |
| /* Cannot update a finished job. */ |
| ctx->error = HASH_CTX_ERROR_ALREADY_COMPLETED; |
| return ctx; |
| } |
| |
| |
| if (flags & HASH_FIRST) { |
| /* Init digest */ |
| sha1_init_digest(ctx->job.result_digest); |
| |
| /* Reset byte counter */ |
| ctx->total_length = 0; |
| |
| /* Clear extra blocks */ |
| ctx->partial_block_buffer_length = 0; |
| } |
| |
| /* If we made it here, there were no errors during this call to submit */ |
| ctx->error = HASH_CTX_ERROR_NONE; |
| |
| /* Store buffer ptr info from user */ |
| ctx->incoming_buffer = buffer; |
| ctx->incoming_buffer_length = len; |
| |
| /* Store the user's request flags and mark this ctx as currently being processed. */ |
| ctx->status = (flags & HASH_LAST) ? |
| (HASH_CTX_STS_PROCESSING | HASH_CTX_STS_LAST) : |
| HASH_CTX_STS_PROCESSING; |
| |
| /* Advance byte counter */ |
| ctx->total_length += len; |
| |
| /* |
| * If there is anything currently buffered in the extra blocks, |
| * append to it until it contains a whole block. |
| * Or if the user's buffer contains less than a whole block, |
| * append as much as possible to the extra block. |
| */ |
| if ((ctx->partial_block_buffer_length) | (len < SHA1_BLOCK_SIZE)) { |
| /* Compute how many bytes to copy from user buffer into extra block */ |
| uint32_t copy_len = SHA1_BLOCK_SIZE - ctx->partial_block_buffer_length; |
| if (len < copy_len) |
| copy_len = len; |
| |
| if (copy_len) { |
| /* Copy and update relevant pointers and counters */ |
| memcpy(&ctx->partial_block_buffer[ctx->partial_block_buffer_length], |
| buffer, copy_len); |
| |
| ctx->partial_block_buffer_length += copy_len; |
| ctx->incoming_buffer = (const void *)((const char *)buffer + copy_len); |
| ctx->incoming_buffer_length = len - copy_len; |
| } |
| |
| /* The extra block should never contain more than 1 block here */ |
| assert(ctx->partial_block_buffer_length <= SHA1_BLOCK_SIZE); |
| |
| /* If the extra block buffer contains exactly 1 block, it can be hashed. */ |
| if (ctx->partial_block_buffer_length >= SHA1_BLOCK_SIZE) { |
| ctx->partial_block_buffer_length = 0; |
| |
| ctx->job.buffer = ctx->partial_block_buffer; |
| ctx->job.len = 1; |
| ctx = (struct sha1_hash_ctx *) sha1_job_mgr_submit(&mgr->mgr, &ctx->job); |
| } |
| } |
| |
| return sha1_ctx_mgr_resubmit(mgr, ctx); |
| } |
| |
| static struct sha1_hash_ctx *sha1_ctx_mgr_flush(struct sha1_ctx_mgr *mgr) |
| { |
| struct sha1_hash_ctx *ctx; |
| |
| while (1) { |
| ctx = (struct sha1_hash_ctx *) sha1_job_mgr_flush(&mgr->mgr); |
| |
| /* If flush returned 0, there are no more jobs in flight. */ |
| if (!ctx) |
| return NULL; |
| |
| /* |
| * If flush returned a job, resubmit the job to finish processing. |
| */ |
| ctx = sha1_ctx_mgr_resubmit(mgr, ctx); |
| |
| /* |
| * If sha1_ctx_mgr_resubmit returned a job, it is ready to be returned. |
| * Otherwise, all jobs currently being managed by the sha1_ctx_mgr |
| * still need processing. Loop. |
| */ |
| if (ctx) |
| return ctx; |
| } |
| } |
| |
| static int sha1_mb_init(struct shash_desc *desc) |
| { |
| struct sha1_hash_ctx *sctx = shash_desc_ctx(desc); |
| |
| hash_ctx_init(sctx); |
| sctx->job.result_digest[0] = SHA1_H0; |
| sctx->job.result_digest[1] = SHA1_H1; |
| sctx->job.result_digest[2] = SHA1_H2; |
| sctx->job.result_digest[3] = SHA1_H3; |
| sctx->job.result_digest[4] = SHA1_H4; |
| sctx->total_length = 0; |
| sctx->partial_block_buffer_length = 0; |
| sctx->status = HASH_CTX_STS_IDLE; |
| |
| return 0; |
| } |
| |
| static int sha1_mb_set_results(struct mcryptd_hash_request_ctx *rctx) |
| { |
| int i; |
| struct sha1_hash_ctx *sctx = shash_desc_ctx(&rctx->desc); |
| __be32 *dst = (__be32 *) rctx->out; |
| |
| for (i = 0; i < 5; ++i) |
| dst[i] = cpu_to_be32(sctx->job.result_digest[i]); |
| |
| return 0; |
| } |
| |
| static int sha_finish_walk(struct mcryptd_hash_request_ctx **ret_rctx, |
| struct mcryptd_alg_cstate *cstate, bool flush) |
| { |
| int flag = HASH_UPDATE; |
| int nbytes, err = 0; |
| struct mcryptd_hash_request_ctx *rctx = *ret_rctx; |
| struct sha1_hash_ctx *sha_ctx; |
| |
| /* more work ? */ |
| while (!(rctx->flag & HASH_DONE)) { |
| nbytes = crypto_ahash_walk_done(&rctx->walk, 0); |
| if (nbytes < 0) { |
| err = nbytes; |
| goto out; |
| } |
| /* check if the walk is done */ |
| if (crypto_ahash_walk_last(&rctx->walk)) { |
| rctx->flag |= HASH_DONE; |
| if (rctx->flag & HASH_FINAL) |
| flag |= HASH_LAST; |
| |
| } |
| sha_ctx = (struct sha1_hash_ctx *) shash_desc_ctx(&rctx->desc); |
| kernel_fpu_begin(); |
| sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data, nbytes, flag); |
| if (!sha_ctx) { |
| if (flush) |
| sha_ctx = sha1_ctx_mgr_flush(cstate->mgr); |
| } |
| kernel_fpu_end(); |
| if (sha_ctx) |
| rctx = cast_hash_to_mcryptd_ctx(sha_ctx); |
| else { |
| rctx = NULL; |
| goto out; |
| } |
| } |
| |
| /* copy the results */ |
| if (rctx->flag & HASH_FINAL) |
| sha1_mb_set_results(rctx); |
| |
| out: |
| *ret_rctx = rctx; |
| return err; |
| } |
| |
| static int sha_complete_job(struct mcryptd_hash_request_ctx *rctx, |
| struct mcryptd_alg_cstate *cstate, |
| int err) |
| { |
| struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx); |
| struct sha1_hash_ctx *sha_ctx; |
| struct mcryptd_hash_request_ctx *req_ctx; |
| int ret; |
| |
| /* remove from work list */ |
| spin_lock(&cstate->work_lock); |
| list_del(&rctx->waiter); |
| spin_unlock(&cstate->work_lock); |
| |
| if (irqs_disabled()) |
| rctx->complete(&req->base, err); |
| else { |
| local_bh_disable(); |
| rctx->complete(&req->base, err); |
| local_bh_enable(); |
| } |
| |
| /* check to see if there are other jobs that are done */ |
| sha_ctx = sha1_ctx_mgr_get_comp_ctx(cstate->mgr); |
| while (sha_ctx) { |
| req_ctx = cast_hash_to_mcryptd_ctx(sha_ctx); |
| ret = sha_finish_walk(&req_ctx, cstate, false); |
| if (req_ctx) { |
| spin_lock(&cstate->work_lock); |
| list_del(&req_ctx->waiter); |
| spin_unlock(&cstate->work_lock); |
| |
| req = cast_mcryptd_ctx_to_req(req_ctx); |
| if (irqs_disabled()) |
| rctx->complete(&req->base, ret); |
| else { |
| local_bh_disable(); |
| rctx->complete(&req->base, ret); |
| local_bh_enable(); |
| } |
| } |
| sha_ctx = sha1_ctx_mgr_get_comp_ctx(cstate->mgr); |
| } |
| |
| return 0; |
| } |
| |
| static void sha1_mb_add_list(struct mcryptd_hash_request_ctx *rctx, |
| struct mcryptd_alg_cstate *cstate) |
| { |
| unsigned long next_flush; |
| unsigned long delay = usecs_to_jiffies(FLUSH_INTERVAL); |
| |
| /* initialize tag */ |
| rctx->tag.arrival = jiffies; /* tag the arrival time */ |
| rctx->tag.seq_num = cstate->next_seq_num++; |
| next_flush = rctx->tag.arrival + delay; |
| rctx->tag.expire = next_flush; |
| |
| spin_lock(&cstate->work_lock); |
| list_add_tail(&rctx->waiter, &cstate->work_list); |
| spin_unlock(&cstate->work_lock); |
| |
| mcryptd_arm_flusher(cstate, delay); |
| } |
| |
| static int sha1_mb_update(struct shash_desc *desc, const u8 *data, |
| unsigned int len) |
| { |
| struct mcryptd_hash_request_ctx *rctx = |
| container_of(desc, struct mcryptd_hash_request_ctx, desc); |
| struct mcryptd_alg_cstate *cstate = |
| this_cpu_ptr(sha1_mb_alg_state.alg_cstate); |
| |
| struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx); |
| struct sha1_hash_ctx *sha_ctx; |
| int ret = 0, nbytes; |
| |
| |
| /* sanity check */ |
| if (rctx->tag.cpu != smp_processor_id()) { |
| pr_err("mcryptd error: cpu clash\n"); |
| goto done; |
| } |
| |
| /* need to init context */ |
| req_ctx_init(rctx, desc); |
| |
| nbytes = crypto_ahash_walk_first(req, &rctx->walk); |
| |
| if (nbytes < 0) { |
| ret = nbytes; |
| goto done; |
| } |
| |
| if (crypto_ahash_walk_last(&rctx->walk)) |
| rctx->flag |= HASH_DONE; |
| |
| /* submit */ |
| sha_ctx = (struct sha1_hash_ctx *) shash_desc_ctx(desc); |
| sha1_mb_add_list(rctx, cstate); |
| kernel_fpu_begin(); |
| sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data, nbytes, HASH_UPDATE); |
| kernel_fpu_end(); |
| |
| /* check if anything is returned */ |
| if (!sha_ctx) |
| return -EINPROGRESS; |
| |
| if (sha_ctx->error) { |
| ret = sha_ctx->error; |
| rctx = cast_hash_to_mcryptd_ctx(sha_ctx); |
| goto done; |
| } |
| |
| rctx = cast_hash_to_mcryptd_ctx(sha_ctx); |
| ret = sha_finish_walk(&rctx, cstate, false); |
| |
| if (!rctx) |
| return -EINPROGRESS; |
| done: |
| sha_complete_job(rctx, cstate, ret); |
| return ret; |
| } |
| |
| static int sha1_mb_finup(struct shash_desc *desc, const u8 *data, |
| unsigned int len, u8 *out) |
| { |
| struct mcryptd_hash_request_ctx *rctx = |
| container_of(desc, struct mcryptd_hash_request_ctx, desc); |
| struct mcryptd_alg_cstate *cstate = |
| this_cpu_ptr(sha1_mb_alg_state.alg_cstate); |
| |
| struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx); |
| struct sha1_hash_ctx *sha_ctx; |
| int ret = 0, flag = HASH_UPDATE, nbytes; |
| |
| /* sanity check */ |
| if (rctx->tag.cpu != smp_processor_id()) { |
| pr_err("mcryptd error: cpu clash\n"); |
| goto done; |
| } |
| |
| /* need to init context */ |
| req_ctx_init(rctx, desc); |
| |
| nbytes = crypto_ahash_walk_first(req, &rctx->walk); |
| |
| if (nbytes < 0) { |
| ret = nbytes; |
| goto done; |
| } |
| |
| if (crypto_ahash_walk_last(&rctx->walk)) { |
| rctx->flag |= HASH_DONE; |
| flag = HASH_LAST; |
| } |
| rctx->out = out; |
| |
| /* submit */ |
| rctx->flag |= HASH_FINAL; |
| sha_ctx = (struct sha1_hash_ctx *) shash_desc_ctx(desc); |
| sha1_mb_add_list(rctx, cstate); |
| |
| kernel_fpu_begin(); |
| sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data, nbytes, flag); |
| kernel_fpu_end(); |
| |
| /* check if anything is returned */ |
| if (!sha_ctx) |
| return -EINPROGRESS; |
| |
| if (sha_ctx->error) { |
| ret = sha_ctx->error; |
| goto done; |
| } |
| |
| rctx = cast_hash_to_mcryptd_ctx(sha_ctx); |
| ret = sha_finish_walk(&rctx, cstate, false); |
| if (!rctx) |
| return -EINPROGRESS; |
| done: |
| sha_complete_job(rctx, cstate, ret); |
| return ret; |
| } |
| |
| static int sha1_mb_final(struct shash_desc *desc, u8 *out) |
| { |
| struct mcryptd_hash_request_ctx *rctx = |
| container_of(desc, struct mcryptd_hash_request_ctx, desc); |
| struct mcryptd_alg_cstate *cstate = |
| this_cpu_ptr(sha1_mb_alg_state.alg_cstate); |
| |
| struct sha1_hash_ctx *sha_ctx; |
| int ret = 0; |
| u8 data; |
| |
| /* sanity check */ |
| if (rctx->tag.cpu != smp_processor_id()) { |
| pr_err("mcryptd error: cpu clash\n"); |
| goto done; |
| } |
| |
| /* need to init context */ |
| req_ctx_init(rctx, desc); |
| |
| rctx->out = out; |
| rctx->flag |= HASH_DONE | HASH_FINAL; |
| |
| sha_ctx = (struct sha1_hash_ctx *) shash_desc_ctx(desc); |
| /* flag HASH_FINAL and 0 data size */ |
| sha1_mb_add_list(rctx, cstate); |
| kernel_fpu_begin(); |
| sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, &data, 0, HASH_LAST); |
| kernel_fpu_end(); |
| |
| /* check if anything is returned */ |
| if (!sha_ctx) |
| return -EINPROGRESS; |
| |
| if (sha_ctx->error) { |
| ret = sha_ctx->error; |
| rctx = cast_hash_to_mcryptd_ctx(sha_ctx); |
| goto done; |
| } |
| |
| rctx = cast_hash_to_mcryptd_ctx(sha_ctx); |
| ret = sha_finish_walk(&rctx, cstate, false); |
| if (!rctx) |
| return -EINPROGRESS; |
| done: |
| sha_complete_job(rctx, cstate, ret); |
| return ret; |
| } |
| |
| static int sha1_mb_export(struct shash_desc *desc, void *out) |
| { |
| struct sha1_hash_ctx *sctx = shash_desc_ctx(desc); |
| |
| memcpy(out, sctx, sizeof(*sctx)); |
| |
| return 0; |
| } |
| |
| static int sha1_mb_import(struct shash_desc *desc, const void *in) |
| { |
| struct sha1_hash_ctx *sctx = shash_desc_ctx(desc); |
| |
| memcpy(sctx, in, sizeof(*sctx)); |
| |
| return 0; |
| } |
| |
| |
| static struct shash_alg sha1_mb_shash_alg = { |
| .digestsize = SHA1_DIGEST_SIZE, |
| .init = sha1_mb_init, |
| .update = sha1_mb_update, |
| .final = sha1_mb_final, |
| .finup = sha1_mb_finup, |
| .export = sha1_mb_export, |
| .import = sha1_mb_import, |
| .descsize = sizeof(struct sha1_hash_ctx), |
| .statesize = sizeof(struct sha1_hash_ctx), |
| .base = { |
| .cra_name = "__sha1-mb", |
| .cra_driver_name = "__intel_sha1-mb", |
| .cra_priority = 100, |
| /* |
| * use ASYNC flag as some buffers in multi-buffer |
| * algo may not have completed before hashing thread sleep |
| */ |
| .cra_flags = CRYPTO_ALG_TYPE_SHASH | CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_INTERNAL, |
| .cra_blocksize = SHA1_BLOCK_SIZE, |
| .cra_module = THIS_MODULE, |
| .cra_list = LIST_HEAD_INIT(sha1_mb_shash_alg.base.cra_list), |
| } |
| }; |
| |
| static int sha1_mb_async_init(struct ahash_request *req) |
| { |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm); |
| struct ahash_request *mcryptd_req = ahash_request_ctx(req); |
| struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm; |
| |
| memcpy(mcryptd_req, req, sizeof(*req)); |
| ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base); |
| return crypto_ahash_init(mcryptd_req); |
| } |
| |
| static int sha1_mb_async_update(struct ahash_request *req) |
| { |
| struct ahash_request *mcryptd_req = ahash_request_ctx(req); |
| |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm); |
| struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm; |
| |
| memcpy(mcryptd_req, req, sizeof(*req)); |
| ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base); |
| return crypto_ahash_update(mcryptd_req); |
| } |
| |
| static int sha1_mb_async_finup(struct ahash_request *req) |
| { |
| struct ahash_request *mcryptd_req = ahash_request_ctx(req); |
| |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm); |
| struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm; |
| |
| memcpy(mcryptd_req, req, sizeof(*req)); |
| ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base); |
| return crypto_ahash_finup(mcryptd_req); |
| } |
| |
| static int sha1_mb_async_final(struct ahash_request *req) |
| { |
| struct ahash_request *mcryptd_req = ahash_request_ctx(req); |
| |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm); |
| struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm; |
| |
| memcpy(mcryptd_req, req, sizeof(*req)); |
| ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base); |
| return crypto_ahash_final(mcryptd_req); |
| } |
| |
| static int sha1_mb_async_digest(struct ahash_request *req) |
| { |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm); |
| struct ahash_request *mcryptd_req = ahash_request_ctx(req); |
| struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm; |
| |
| memcpy(mcryptd_req, req, sizeof(*req)); |
| ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base); |
| return crypto_ahash_digest(mcryptd_req); |
| } |
| |
| static int sha1_mb_async_init_tfm(struct crypto_tfm *tfm) |
| { |
| struct mcryptd_ahash *mcryptd_tfm; |
| struct sha1_mb_ctx *ctx = crypto_tfm_ctx(tfm); |
| struct mcryptd_hash_ctx *mctx; |
| |
| mcryptd_tfm = mcryptd_alloc_ahash("__intel_sha1-mb", |
| CRYPTO_ALG_INTERNAL, |
| CRYPTO_ALG_INTERNAL); |
| if (IS_ERR(mcryptd_tfm)) |
| return PTR_ERR(mcryptd_tfm); |
| mctx = crypto_ahash_ctx(&mcryptd_tfm->base); |
| mctx->alg_state = &sha1_mb_alg_state; |
| ctx->mcryptd_tfm = mcryptd_tfm; |
| crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), |
| sizeof(struct ahash_request) + |
| crypto_ahash_reqsize(&mcryptd_tfm->base)); |
| |
| return 0; |
| } |
| |
| static void sha1_mb_async_exit_tfm(struct crypto_tfm *tfm) |
| { |
| struct sha1_mb_ctx *ctx = crypto_tfm_ctx(tfm); |
| |
| mcryptd_free_ahash(ctx->mcryptd_tfm); |
| } |
| |
| static struct ahash_alg sha1_mb_async_alg = { |
| .init = sha1_mb_async_init, |
| .update = sha1_mb_async_update, |
| .final = sha1_mb_async_final, |
| .finup = sha1_mb_async_finup, |
| .digest = sha1_mb_async_digest, |
| .halg = { |
| .digestsize = SHA1_DIGEST_SIZE, |
| .base = { |
| .cra_name = "sha1", |
| .cra_driver_name = "sha1_mb", |
| .cra_priority = 200, |
| .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, |
| .cra_blocksize = SHA1_BLOCK_SIZE, |
| .cra_type = &crypto_ahash_type, |
| .cra_module = THIS_MODULE, |
| .cra_list = LIST_HEAD_INIT(sha1_mb_async_alg.halg.base.cra_list), |
| .cra_init = sha1_mb_async_init_tfm, |
| .cra_exit = sha1_mb_async_exit_tfm, |
| .cra_ctxsize = sizeof(struct sha1_mb_ctx), |
| .cra_alignmask = 0, |
| }, |
| }, |
| }; |
| |
| static unsigned long sha1_mb_flusher(struct mcryptd_alg_cstate *cstate) |
| { |
| struct mcryptd_hash_request_ctx *rctx; |
| unsigned long cur_time; |
| unsigned long next_flush = 0; |
| struct sha1_hash_ctx *sha_ctx; |
| |
| |
| cur_time = jiffies; |
| |
| while (!list_empty(&cstate->work_list)) { |
| rctx = list_entry(cstate->work_list.next, |
| struct mcryptd_hash_request_ctx, waiter); |
| if (time_before(cur_time, rctx->tag.expire)) |
| break; |
| kernel_fpu_begin(); |
| sha_ctx = (struct sha1_hash_ctx *) sha1_ctx_mgr_flush(cstate->mgr); |
| kernel_fpu_end(); |
| if (!sha_ctx) { |
| pr_err("sha1_mb error: nothing got flushed for non-empty list\n"); |
| break; |
| } |
| rctx = cast_hash_to_mcryptd_ctx(sha_ctx); |
| sha_finish_walk(&rctx, cstate, true); |
| sha_complete_job(rctx, cstate, 0); |
| } |
| |
| if (!list_empty(&cstate->work_list)) { |
| rctx = list_entry(cstate->work_list.next, |
| struct mcryptd_hash_request_ctx, waiter); |
| /* get the hash context and then flush time */ |
| next_flush = rctx->tag.expire; |
| mcryptd_arm_flusher(cstate, get_delay(next_flush)); |
| } |
| return next_flush; |
| } |
| |
| static int __init sha1_mb_mod_init(void) |
| { |
| |
| int cpu; |
| int err; |
| struct mcryptd_alg_cstate *cpu_state; |
| |
| /* check for dependent cpu features */ |
| if (!boot_cpu_has(X86_FEATURE_AVX2) || |
| !boot_cpu_has(X86_FEATURE_BMI2)) |
| return -ENODEV; |
| |
| /* initialize multibuffer structures */ |
| sha1_mb_alg_state.alg_cstate = alloc_percpu(struct mcryptd_alg_cstate); |
| |
| sha1_job_mgr_init = sha1_mb_mgr_init_avx2; |
| sha1_job_mgr_submit = sha1_mb_mgr_submit_avx2; |
| sha1_job_mgr_flush = sha1_mb_mgr_flush_avx2; |
| sha1_job_mgr_get_comp_job = sha1_mb_mgr_get_comp_job_avx2; |
| |
| if (!sha1_mb_alg_state.alg_cstate) |
| return -ENOMEM; |
| for_each_possible_cpu(cpu) { |
| cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu); |
| cpu_state->next_flush = 0; |
| cpu_state->next_seq_num = 0; |
| cpu_state->flusher_engaged = false; |
| INIT_DELAYED_WORK(&cpu_state->flush, mcryptd_flusher); |
| cpu_state->cpu = cpu; |
| cpu_state->alg_state = &sha1_mb_alg_state; |
| cpu_state->mgr = (struct sha1_ctx_mgr *) kzalloc(sizeof(struct sha1_ctx_mgr), GFP_KERNEL); |
| if (!cpu_state->mgr) |
| goto err2; |
| sha1_ctx_mgr_init(cpu_state->mgr); |
| INIT_LIST_HEAD(&cpu_state->work_list); |
| spin_lock_init(&cpu_state->work_lock); |
| } |
| sha1_mb_alg_state.flusher = &sha1_mb_flusher; |
| |
| err = crypto_register_shash(&sha1_mb_shash_alg); |
| if (err) |
| goto err2; |
| err = crypto_register_ahash(&sha1_mb_async_alg); |
| if (err) |
| goto err1; |
| |
| |
| return 0; |
| err1: |
| crypto_unregister_shash(&sha1_mb_shash_alg); |
| err2: |
| for_each_possible_cpu(cpu) { |
| cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu); |
| kfree(cpu_state->mgr); |
| } |
| free_percpu(sha1_mb_alg_state.alg_cstate); |
| return -ENODEV; |
| } |
| |
| static void __exit sha1_mb_mod_fini(void) |
| { |
| int cpu; |
| struct mcryptd_alg_cstate *cpu_state; |
| |
| crypto_unregister_ahash(&sha1_mb_async_alg); |
| crypto_unregister_shash(&sha1_mb_shash_alg); |
| for_each_possible_cpu(cpu) { |
| cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu); |
| kfree(cpu_state->mgr); |
| } |
| free_percpu(sha1_mb_alg_state.alg_cstate); |
| } |
| |
| module_init(sha1_mb_mod_init); |
| module_exit(sha1_mb_mod_fini); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm, multi buffer accelerated"); |
| |
| MODULE_ALIAS_CRYPTO("sha1"); |