| /* SPDX-License-Identifier: GPL-2.0-only */ |
| /* |
| * |
| * Copyright SUSE Linux Products GmbH 2010 |
| * |
| * Authors: Alexander Graf <agraf@suse.de> |
| */ |
| |
| #ifndef __ASM_KVM_BOOK3S_64_H__ |
| #define __ASM_KVM_BOOK3S_64_H__ |
| |
| #include <linux/string.h> |
| #include <asm/bitops.h> |
| #include <asm/book3s/64/mmu-hash.h> |
| #include <asm/cpu_has_feature.h> |
| #include <asm/ppc-opcode.h> |
| |
| #ifdef CONFIG_PPC_PSERIES |
| static inline bool kvmhv_on_pseries(void) |
| { |
| return !cpu_has_feature(CPU_FTR_HVMODE); |
| } |
| #else |
| static inline bool kvmhv_on_pseries(void) |
| { |
| return false; |
| } |
| #endif |
| |
| /* |
| * Structure for a nested guest, that is, for a guest that is managed by |
| * one of our guests. |
| */ |
| struct kvm_nested_guest { |
| struct kvm *l1_host; /* L1 VM that owns this nested guest */ |
| int l1_lpid; /* lpid L1 guest thinks this guest is */ |
| int shadow_lpid; /* real lpid of this nested guest */ |
| pgd_t *shadow_pgtable; /* our page table for this guest */ |
| u64 l1_gr_to_hr; /* L1's addr of part'n-scoped table */ |
| u64 process_table; /* process table entry for this guest */ |
| long refcnt; /* number of pointers to this struct */ |
| struct mutex tlb_lock; /* serialize page faults and tlbies */ |
| struct kvm_nested_guest *next; |
| cpumask_t need_tlb_flush; |
| cpumask_t cpu_in_guest; |
| short prev_cpu[NR_CPUS]; |
| u8 radix; /* is this nested guest radix */ |
| }; |
| |
| /* |
| * We define a nested rmap entry as a single 64-bit quantity |
| * 0xFFF0000000000000 12-bit lpid field |
| * 0x000FFFFFFFFFF000 40-bit guest 4k page frame number |
| * 0x0000000000000001 1-bit single entry flag |
| */ |
| #define RMAP_NESTED_LPID_MASK 0xFFF0000000000000UL |
| #define RMAP_NESTED_LPID_SHIFT (52) |
| #define RMAP_NESTED_GPA_MASK 0x000FFFFFFFFFF000UL |
| #define RMAP_NESTED_IS_SINGLE_ENTRY 0x0000000000000001UL |
| |
| /* Structure for a nested guest rmap entry */ |
| struct rmap_nested { |
| struct llist_node list; |
| u64 rmap; |
| }; |
| |
| /* |
| * for_each_nest_rmap_safe - iterate over the list of nested rmap entries |
| * safe against removal of the list entry or NULL list |
| * @pos: a (struct rmap_nested *) to use as a loop cursor |
| * @node: pointer to the first entry |
| * NOTE: this can be NULL |
| * @rmapp: an (unsigned long *) in which to return the rmap entries on each |
| * iteration |
| * NOTE: this must point to already allocated memory |
| * |
| * The nested_rmap is a llist of (struct rmap_nested) entries pointed to by the |
| * rmap entry in the memslot. The list is always terminated by a "single entry" |
| * stored in the list element of the final entry of the llist. If there is ONLY |
| * a single entry then this is itself in the rmap entry of the memslot, not a |
| * llist head pointer. |
| * |
| * Note that the iterator below assumes that a nested rmap entry is always |
| * non-zero. This is true for our usage because the LPID field is always |
| * non-zero (zero is reserved for the host). |
| * |
| * This should be used to iterate over the list of rmap_nested entries with |
| * processing done on the u64 rmap value given by each iteration. This is safe |
| * against removal of list entries and it is always safe to call free on (pos). |
| * |
| * e.g. |
| * struct rmap_nested *cursor; |
| * struct llist_node *first; |
| * unsigned long rmap; |
| * for_each_nest_rmap_safe(cursor, first, &rmap) { |
| * do_something(rmap); |
| * free(cursor); |
| * } |
| */ |
| #define for_each_nest_rmap_safe(pos, node, rmapp) \ |
| for ((pos) = llist_entry((node), typeof(*(pos)), list); \ |
| (node) && \ |
| (*(rmapp) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ? \ |
| ((u64) (node)) : ((pos)->rmap))) && \ |
| (((node) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ? \ |
| ((struct llist_node *) ((pos) = NULL)) : \ |
| (pos)->list.next)), true); \ |
| (pos) = llist_entry((node), typeof(*(pos)), list)) |
| |
| struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid, |
| bool create); |
| void kvmhv_put_nested(struct kvm_nested_guest *gp); |
| int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid); |
| |
| /* Encoding of first parameter for H_TLB_INVALIDATE */ |
| #define H_TLBIE_P1_ENC(ric, prs, r) (___PPC_RIC(ric) | ___PPC_PRS(prs) | \ |
| ___PPC_R(r)) |
| |
| /* Power architecture requires HPT is at least 256kiB, at most 64TiB */ |
| #define PPC_MIN_HPT_ORDER 18 |
| #define PPC_MAX_HPT_ORDER 46 |
| |
| #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE |
| static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu) |
| { |
| preempt_disable(); |
| return &get_paca()->shadow_vcpu; |
| } |
| |
| static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu) |
| { |
| preempt_enable(); |
| } |
| #endif |
| |
| #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE |
| |
| static inline bool kvm_is_radix(struct kvm *kvm) |
| { |
| return kvm->arch.radix; |
| } |
| |
| static inline bool kvmhv_vcpu_is_radix(struct kvm_vcpu *vcpu) |
| { |
| bool radix; |
| |
| if (vcpu->arch.nested) |
| radix = vcpu->arch.nested->radix; |
| else |
| radix = kvm_is_radix(vcpu->kvm); |
| |
| return radix; |
| } |
| |
| #define KVM_DEFAULT_HPT_ORDER 24 /* 16MB HPT by default */ |
| #endif |
| |
| /* |
| * We use a lock bit in HPTE dword 0 to synchronize updates and |
| * accesses to each HPTE, and another bit to indicate non-present |
| * HPTEs. |
| */ |
| #define HPTE_V_HVLOCK 0x40UL |
| #define HPTE_V_ABSENT 0x20UL |
| |
| /* |
| * We use this bit in the guest_rpte field of the revmap entry |
| * to indicate a modified HPTE. |
| */ |
| #define HPTE_GR_MODIFIED (1ul << 62) |
| |
| /* These bits are reserved in the guest view of the HPTE */ |
| #define HPTE_GR_RESERVED HPTE_GR_MODIFIED |
| |
| static inline long try_lock_hpte(__be64 *hpte, unsigned long bits) |
| { |
| unsigned long tmp, old; |
| __be64 be_lockbit, be_bits; |
| |
| /* |
| * We load/store in native endian, but the HTAB is in big endian. If |
| * we byte swap all data we apply on the PTE we're implicitly correct |
| * again. |
| */ |
| be_lockbit = cpu_to_be64(HPTE_V_HVLOCK); |
| be_bits = cpu_to_be64(bits); |
| |
| asm volatile(" ldarx %0,0,%2\n" |
| " and. %1,%0,%3\n" |
| " bne 2f\n" |
| " or %0,%0,%4\n" |
| " stdcx. %0,0,%2\n" |
| " beq+ 2f\n" |
| " mr %1,%3\n" |
| "2: isync" |
| : "=&r" (tmp), "=&r" (old) |
| : "r" (hpte), "r" (be_bits), "r" (be_lockbit) |
| : "cc", "memory"); |
| return old == 0; |
| } |
| |
| static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v) |
| { |
| hpte_v &= ~HPTE_V_HVLOCK; |
| asm volatile(PPC_RELEASE_BARRIER "" : : : "memory"); |
| hpte[0] = cpu_to_be64(hpte_v); |
| } |
| |
| /* Without barrier */ |
| static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v) |
| { |
| hpte_v &= ~HPTE_V_HVLOCK; |
| hpte[0] = cpu_to_be64(hpte_v); |
| } |
| |
| /* |
| * These functions encode knowledge of the POWER7/8/9 hardware |
| * interpretations of the HPTE LP (large page size) field. |
| */ |
| static inline int kvmppc_hpte_page_shifts(unsigned long h, unsigned long l) |
| { |
| unsigned int lphi; |
| |
| if (!(h & HPTE_V_LARGE)) |
| return 12; /* 4kB */ |
| lphi = (l >> 16) & 0xf; |
| switch ((l >> 12) & 0xf) { |
| case 0: |
| return !lphi ? 24 : 0; /* 16MB */ |
| break; |
| case 1: |
| return 16; /* 64kB */ |
| break; |
| case 3: |
| return !lphi ? 34 : 0; /* 16GB */ |
| break; |
| case 7: |
| return (16 << 8) + 12; /* 64kB in 4kB */ |
| break; |
| case 8: |
| if (!lphi) |
| return (24 << 8) + 16; /* 16MB in 64kkB */ |
| if (lphi == 3) |
| return (24 << 8) + 12; /* 16MB in 4kB */ |
| break; |
| } |
| return 0; |
| } |
| |
| static inline int kvmppc_hpte_base_page_shift(unsigned long h, unsigned long l) |
| { |
| return kvmppc_hpte_page_shifts(h, l) & 0xff; |
| } |
| |
| static inline int kvmppc_hpte_actual_page_shift(unsigned long h, unsigned long l) |
| { |
| int tmp = kvmppc_hpte_page_shifts(h, l); |
| |
| if (tmp >= 0x100) |
| tmp >>= 8; |
| return tmp; |
| } |
| |
| static inline unsigned long kvmppc_actual_pgsz(unsigned long v, unsigned long r) |
| { |
| int shift = kvmppc_hpte_actual_page_shift(v, r); |
| |
| if (shift) |
| return 1ul << shift; |
| return 0; |
| } |
| |
| static inline int kvmppc_pgsize_lp_encoding(int base_shift, int actual_shift) |
| { |
| switch (base_shift) { |
| case 12: |
| switch (actual_shift) { |
| case 12: |
| return 0; |
| case 16: |
| return 7; |
| case 24: |
| return 0x38; |
| } |
| break; |
| case 16: |
| switch (actual_shift) { |
| case 16: |
| return 1; |
| case 24: |
| return 8; |
| } |
| break; |
| case 24: |
| return 0; |
| } |
| return -1; |
| } |
| |
| static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r, |
| unsigned long pte_index) |
| { |
| int a_pgshift, b_pgshift; |
| unsigned long rb = 0, va_low, sllp; |
| |
| b_pgshift = a_pgshift = kvmppc_hpte_page_shifts(v, r); |
| if (a_pgshift >= 0x100) { |
| b_pgshift &= 0xff; |
| a_pgshift >>= 8; |
| } |
| |
| /* |
| * Ignore the top 14 bits of va |
| * v have top two bits covering segment size, hence move |
| * by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits. |
| * AVA field in v also have the lower 23 bits ignored. |
| * For base page size 4K we need 14 .. 65 bits (so need to |
| * collect extra 11 bits) |
| * For others we need 14..14+i |
| */ |
| /* This covers 14..54 bits of va*/ |
| rb = (v & ~0x7fUL) << 16; /* AVA field */ |
| |
| /* |
| * AVA in v had cleared lower 23 bits. We need to derive |
| * that from pteg index |
| */ |
| va_low = pte_index >> 3; |
| if (v & HPTE_V_SECONDARY) |
| va_low = ~va_low; |
| /* |
| * get the vpn bits from va_low using reverse of hashing. |
| * In v we have va with 23 bits dropped and then left shifted |
| * HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need |
| * right shift it with (SID_SHIFT - (23 - 7)) |
| */ |
| if (!(v & HPTE_V_1TB_SEG)) |
| va_low ^= v >> (SID_SHIFT - 16); |
| else |
| va_low ^= v >> (SID_SHIFT_1T - 16); |
| va_low &= 0x7ff; |
| |
| if (b_pgshift <= 12) { |
| if (a_pgshift > 12) { |
| sllp = (a_pgshift == 16) ? 5 : 4; |
| rb |= sllp << 5; /* AP field */ |
| } |
| rb |= (va_low & 0x7ff) << 12; /* remaining 11 bits of AVA */ |
| } else { |
| int aval_shift; |
| /* |
| * remaining bits of AVA/LP fields |
| * Also contain the rr bits of LP |
| */ |
| rb |= (va_low << b_pgshift) & 0x7ff000; |
| /* |
| * Now clear not needed LP bits based on actual psize |
| */ |
| rb &= ~((1ul << a_pgshift) - 1); |
| /* |
| * AVAL field 58..77 - base_page_shift bits of va |
| * we have space for 58..64 bits, Missing bits should |
| * be zero filled. +1 is to take care of L bit shift |
| */ |
| aval_shift = 64 - (77 - b_pgshift) + 1; |
| rb |= ((va_low << aval_shift) & 0xfe); |
| |
| rb |= 1; /* L field */ |
| rb |= r & 0xff000 & ((1ul << a_pgshift) - 1); /* LP field */ |
| } |
| rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8; /* B field */ |
| return rb; |
| } |
| |
| static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize) |
| { |
| return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT; |
| } |
| |
| static inline int hpte_is_writable(unsigned long ptel) |
| { |
| unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP); |
| |
| return pp != PP_RXRX && pp != PP_RXXX; |
| } |
| |
| static inline unsigned long hpte_make_readonly(unsigned long ptel) |
| { |
| if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX) |
| ptel = (ptel & ~HPTE_R_PP) | PP_RXXX; |
| else |
| ptel |= PP_RXRX; |
| return ptel; |
| } |
| |
| static inline bool hpte_cache_flags_ok(unsigned long hptel, bool is_ci) |
| { |
| unsigned int wimg = hptel & HPTE_R_WIMG; |
| |
| /* Handle SAO */ |
| if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) && |
| cpu_has_feature(CPU_FTR_ARCH_206)) |
| wimg = HPTE_R_M; |
| |
| if (!is_ci) |
| return wimg == HPTE_R_M; |
| /* |
| * if host is mapped cache inhibited, make sure hptel also have |
| * cache inhibited. |
| */ |
| if (wimg & HPTE_R_W) /* FIXME!! is this ok for all guest. ? */ |
| return false; |
| return !!(wimg & HPTE_R_I); |
| } |
| |
| /* |
| * If it's present and writable, atomically set dirty and referenced bits and |
| * return the PTE, otherwise return 0. |
| */ |
| static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing) |
| { |
| pte_t old_pte, new_pte = __pte(0); |
| |
| while (1) { |
| /* |
| * Make sure we don't reload from ptep |
| */ |
| old_pte = READ_ONCE(*ptep); |
| /* |
| * wait until H_PAGE_BUSY is clear then set it atomically |
| */ |
| if (unlikely(pte_val(old_pte) & H_PAGE_BUSY)) { |
| cpu_relax(); |
| continue; |
| } |
| /* If pte is not present return None */ |
| if (unlikely(!(pte_val(old_pte) & _PAGE_PRESENT))) |
| return __pte(0); |
| |
| new_pte = pte_mkyoung(old_pte); |
| if (writing && pte_write(old_pte)) |
| new_pte = pte_mkdirty(new_pte); |
| |
| if (pte_xchg(ptep, old_pte, new_pte)) |
| break; |
| } |
| return new_pte; |
| } |
| |
| static inline bool hpte_read_permission(unsigned long pp, unsigned long key) |
| { |
| if (key) |
| return PP_RWRX <= pp && pp <= PP_RXRX; |
| return true; |
| } |
| |
| static inline bool hpte_write_permission(unsigned long pp, unsigned long key) |
| { |
| if (key) |
| return pp == PP_RWRW; |
| return pp <= PP_RWRW; |
| } |
| |
| static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr) |
| { |
| unsigned long skey; |
| |
| skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) | |
| ((hpte_r & HPTE_R_KEY_LO) >> 9); |
| return (amr >> (62 - 2 * skey)) & 3; |
| } |
| |
| static inline void lock_rmap(unsigned long *rmap) |
| { |
| do { |
| while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap)) |
| cpu_relax(); |
| } while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap)); |
| } |
| |
| static inline void unlock_rmap(unsigned long *rmap) |
| { |
| __clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap); |
| } |
| |
| static inline bool slot_is_aligned(struct kvm_memory_slot *memslot, |
| unsigned long pagesize) |
| { |
| unsigned long mask = (pagesize >> PAGE_SHIFT) - 1; |
| |
| if (pagesize <= PAGE_SIZE) |
| return true; |
| return !(memslot->base_gfn & mask) && !(memslot->npages & mask); |
| } |
| |
| /* |
| * This works for 4k, 64k and 16M pages on POWER7, |
| * and 4k and 16M pages on PPC970. |
| */ |
| static inline unsigned long slb_pgsize_encoding(unsigned long psize) |
| { |
| unsigned long senc = 0; |
| |
| if (psize > 0x1000) { |
| senc = SLB_VSID_L; |
| if (psize == 0x10000) |
| senc |= SLB_VSID_LP_01; |
| } |
| return senc; |
| } |
| |
| static inline int is_vrma_hpte(unsigned long hpte_v) |
| { |
| return (hpte_v & ~0xffffffUL) == |
| (HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16))); |
| } |
| |
| #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE |
| /* |
| * Note modification of an HPTE; set the HPTE modified bit |
| * if anyone is interested. |
| */ |
| static inline void note_hpte_modification(struct kvm *kvm, |
| struct revmap_entry *rev) |
| { |
| if (atomic_read(&kvm->arch.hpte_mod_interest)) |
| rev->guest_rpte |= HPTE_GR_MODIFIED; |
| } |
| |
| /* |
| * Like kvm_memslots(), but for use in real mode when we can't do |
| * any RCU stuff (since the secondary threads are offline from the |
| * kernel's point of view), and we can't print anything. |
| * Thus we use rcu_dereference_raw() rather than rcu_dereference_check(). |
| */ |
| static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm) |
| { |
| return rcu_dereference_raw_check(kvm->memslots[0]); |
| } |
| |
| extern void kvmppc_mmu_debugfs_init(struct kvm *kvm); |
| extern void kvmhv_radix_debugfs_init(struct kvm *kvm); |
| |
| extern void kvmhv_rm_send_ipi(int cpu); |
| |
| static inline unsigned long kvmppc_hpt_npte(struct kvm_hpt_info *hpt) |
| { |
| /* HPTEs are 2**4 bytes long */ |
| return 1UL << (hpt->order - 4); |
| } |
| |
| static inline unsigned long kvmppc_hpt_mask(struct kvm_hpt_info *hpt) |
| { |
| /* 128 (2**7) bytes in each HPTEG */ |
| return (1UL << (hpt->order - 7)) - 1; |
| } |
| |
| /* Set bits in a dirty bitmap, which is in LE format */ |
| static inline void set_dirty_bits(unsigned long *map, unsigned long i, |
| unsigned long npages) |
| { |
| |
| if (npages >= 8) |
| memset((char *)map + i / 8, 0xff, npages / 8); |
| else |
| for (; npages; ++i, --npages) |
| __set_bit_le(i, map); |
| } |
| |
| static inline void set_dirty_bits_atomic(unsigned long *map, unsigned long i, |
| unsigned long npages) |
| { |
| if (npages >= 8) |
| memset((char *)map + i / 8, 0xff, npages / 8); |
| else |
| for (; npages; ++i, --npages) |
| set_bit_le(i, map); |
| } |
| |
| static inline u64 sanitize_msr(u64 msr) |
| { |
| msr &= ~MSR_HV; |
| msr |= MSR_ME; |
| return msr; |
| } |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| static inline void copy_from_checkpoint(struct kvm_vcpu *vcpu) |
| { |
| vcpu->arch.regs.ccr = vcpu->arch.cr_tm; |
| vcpu->arch.regs.xer = vcpu->arch.xer_tm; |
| vcpu->arch.regs.link = vcpu->arch.lr_tm; |
| vcpu->arch.regs.ctr = vcpu->arch.ctr_tm; |
| vcpu->arch.amr = vcpu->arch.amr_tm; |
| vcpu->arch.ppr = vcpu->arch.ppr_tm; |
| vcpu->arch.dscr = vcpu->arch.dscr_tm; |
| vcpu->arch.tar = vcpu->arch.tar_tm; |
| memcpy(vcpu->arch.regs.gpr, vcpu->arch.gpr_tm, |
| sizeof(vcpu->arch.regs.gpr)); |
| vcpu->arch.fp = vcpu->arch.fp_tm; |
| vcpu->arch.vr = vcpu->arch.vr_tm; |
| vcpu->arch.vrsave = vcpu->arch.vrsave_tm; |
| } |
| |
| static inline void copy_to_checkpoint(struct kvm_vcpu *vcpu) |
| { |
| vcpu->arch.cr_tm = vcpu->arch.regs.ccr; |
| vcpu->arch.xer_tm = vcpu->arch.regs.xer; |
| vcpu->arch.lr_tm = vcpu->arch.regs.link; |
| vcpu->arch.ctr_tm = vcpu->arch.regs.ctr; |
| vcpu->arch.amr_tm = vcpu->arch.amr; |
| vcpu->arch.ppr_tm = vcpu->arch.ppr; |
| vcpu->arch.dscr_tm = vcpu->arch.dscr; |
| vcpu->arch.tar_tm = vcpu->arch.tar; |
| memcpy(vcpu->arch.gpr_tm, vcpu->arch.regs.gpr, |
| sizeof(vcpu->arch.regs.gpr)); |
| vcpu->arch.fp_tm = vcpu->arch.fp; |
| vcpu->arch.vr_tm = vcpu->arch.vr; |
| vcpu->arch.vrsave_tm = vcpu->arch.vrsave; |
| } |
| #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ |
| |
| extern int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte, |
| unsigned long gpa, unsigned int level, |
| unsigned long mmu_seq, unsigned int lpid, |
| unsigned long *rmapp, struct rmap_nested **n_rmap); |
| extern void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp, |
| struct rmap_nested **n_rmap); |
| extern void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp, |
| unsigned long clr, unsigned long set, |
| unsigned long hpa, unsigned long nbytes); |
| extern void kvmhv_remove_nest_rmap_range(struct kvm *kvm, |
| const struct kvm_memory_slot *memslot, |
| unsigned long gpa, unsigned long hpa, |
| unsigned long nbytes); |
| |
| #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ |
| |
| #endif /* __ASM_KVM_BOOK3S_64_H__ */ |