blob: 9c76fb1ad2ec506879bb481509e20e1ede971f3d [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* SATA specific part of ATA helper library
*
* Copyright 2003-2004 Red Hat, Inc. All rights reserved.
* Copyright 2003-2004 Jeff Garzik
* Copyright 2006 Tejun Heo <htejun@gmail.com>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_eh.h>
#include <linux/libata.h>
#include <linux/unaligned.h>
#include "libata.h"
#include "libata-transport.h"
/* debounce timing parameters in msecs { interval, duration, timeout } */
const unsigned int sata_deb_timing_normal[] = { 5, 100, 2000 };
EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
const unsigned int sata_deb_timing_hotplug[] = { 25, 500, 2000 };
EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
const unsigned int sata_deb_timing_long[] = { 100, 2000, 5000 };
EXPORT_SYMBOL_GPL(sata_deb_timing_long);
/**
* sata_scr_valid - test whether SCRs are accessible
* @link: ATA link to test SCR accessibility for
*
* Test whether SCRs are accessible for @link.
*
* LOCKING:
* None.
*
* RETURNS:
* 1 if SCRs are accessible, 0 otherwise.
*/
int sata_scr_valid(struct ata_link *link)
{
struct ata_port *ap = link->ap;
return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
}
EXPORT_SYMBOL_GPL(sata_scr_valid);
/**
* sata_scr_read - read SCR register of the specified port
* @link: ATA link to read SCR for
* @reg: SCR to read
* @val: Place to store read value
*
* Read SCR register @reg of @link into *@val. This function is
* guaranteed to succeed if @link is ap->link, the cable type of
* the port is SATA and the port implements ->scr_read.
*
* LOCKING:
* None if @link is ap->link. Kernel thread context otherwise.
*
* RETURNS:
* 0 on success, negative errno on failure.
*/
int sata_scr_read(struct ata_link *link, int reg, u32 *val)
{
if (ata_is_host_link(link)) {
if (sata_scr_valid(link))
return link->ap->ops->scr_read(link, reg, val);
return -EOPNOTSUPP;
}
return sata_pmp_scr_read(link, reg, val);
}
EXPORT_SYMBOL_GPL(sata_scr_read);
/**
* sata_scr_write - write SCR register of the specified port
* @link: ATA link to write SCR for
* @reg: SCR to write
* @val: value to write
*
* Write @val to SCR register @reg of @link. This function is
* guaranteed to succeed if @link is ap->link, the cable type of
* the port is SATA and the port implements ->scr_read.
*
* LOCKING:
* None if @link is ap->link. Kernel thread context otherwise.
*
* RETURNS:
* 0 on success, negative errno on failure.
*/
int sata_scr_write(struct ata_link *link, int reg, u32 val)
{
if (ata_is_host_link(link)) {
if (sata_scr_valid(link))
return link->ap->ops->scr_write(link, reg, val);
return -EOPNOTSUPP;
}
return sata_pmp_scr_write(link, reg, val);
}
EXPORT_SYMBOL_GPL(sata_scr_write);
/**
* sata_scr_write_flush - write SCR register of the specified port and flush
* @link: ATA link to write SCR for
* @reg: SCR to write
* @val: value to write
*
* This function is identical to sata_scr_write() except that this
* function performs flush after writing to the register.
*
* LOCKING:
* None if @link is ap->link. Kernel thread context otherwise.
*
* RETURNS:
* 0 on success, negative errno on failure.
*/
int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
{
if (ata_is_host_link(link)) {
int rc;
if (sata_scr_valid(link)) {
rc = link->ap->ops->scr_write(link, reg, val);
if (rc == 0)
rc = link->ap->ops->scr_read(link, reg, &val);
return rc;
}
return -EOPNOTSUPP;
}
return sata_pmp_scr_write(link, reg, val);
}
EXPORT_SYMBOL_GPL(sata_scr_write_flush);
/**
* ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
* @tf: Taskfile to convert
* @pmp: Port multiplier port
* @is_cmd: This FIS is for command
* @fis: Buffer into which data will output
*
* Converts a standard ATA taskfile to a Serial ATA
* FIS structure (Register - Host to Device).
*
* LOCKING:
* Inherited from caller.
*/
void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
{
fis[0] = 0x27; /* Register - Host to Device FIS */
fis[1] = pmp & 0xf; /* Port multiplier number*/
if (is_cmd)
fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
fis[2] = tf->command;
fis[3] = tf->feature;
fis[4] = tf->lbal;
fis[5] = tf->lbam;
fis[6] = tf->lbah;
fis[7] = tf->device;
fis[8] = tf->hob_lbal;
fis[9] = tf->hob_lbam;
fis[10] = tf->hob_lbah;
fis[11] = tf->hob_feature;
fis[12] = tf->nsect;
fis[13] = tf->hob_nsect;
fis[14] = 0;
fis[15] = tf->ctl;
fis[16] = tf->auxiliary & 0xff;
fis[17] = (tf->auxiliary >> 8) & 0xff;
fis[18] = (tf->auxiliary >> 16) & 0xff;
fis[19] = (tf->auxiliary >> 24) & 0xff;
}
EXPORT_SYMBOL_GPL(ata_tf_to_fis);
/**
* ata_tf_from_fis - Convert SATA FIS to ATA taskfile
* @fis: Buffer from which data will be input
* @tf: Taskfile to output
*
* Converts a serial ATA FIS structure to a standard ATA taskfile.
*
* LOCKING:
* Inherited from caller.
*/
void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
{
tf->status = fis[2];
tf->error = fis[3];
tf->lbal = fis[4];
tf->lbam = fis[5];
tf->lbah = fis[6];
tf->device = fis[7];
tf->hob_lbal = fis[8];
tf->hob_lbam = fis[9];
tf->hob_lbah = fis[10];
tf->nsect = fis[12];
tf->hob_nsect = fis[13];
}
EXPORT_SYMBOL_GPL(ata_tf_from_fis);
/**
* sata_link_debounce - debounce SATA phy status
* @link: ATA link to debounce SATA phy status for
* @params: timing parameters { interval, duration, timeout } in msec
* @deadline: deadline jiffies for the operation
*
* Make sure SStatus of @link reaches stable state, determined by
* holding the same value where DET is not 1 for @duration polled
* every @interval, before @timeout. Timeout constraints the
* beginning of the stable state. Because DET gets stuck at 1 on
* some controllers after hot unplugging, this functions waits
* until timeout then returns 0 if DET is stable at 1.
*
* @timeout is further limited by @deadline. The sooner of the
* two is used.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno on failure.
*/
int sata_link_debounce(struct ata_link *link, const unsigned int *params,
unsigned long deadline)
{
unsigned int interval = params[0];
unsigned int duration = params[1];
unsigned long last_jiffies, t;
u32 last, cur;
int rc;
t = ata_deadline(jiffies, params[2]);
if (time_before(t, deadline))
deadline = t;
if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
return rc;
cur &= 0xf;
last = cur;
last_jiffies = jiffies;
while (1) {
ata_msleep(link->ap, interval);
if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
return rc;
cur &= 0xf;
/* DET stable? */
if (cur == last) {
if (cur == 1 && time_before(jiffies, deadline))
continue;
if (time_after(jiffies,
ata_deadline(last_jiffies, duration)))
return 0;
continue;
}
/* unstable, start over */
last = cur;
last_jiffies = jiffies;
/* Check deadline. If debouncing failed, return
* -EPIPE to tell upper layer to lower link speed.
*/
if (time_after(jiffies, deadline))
return -EPIPE;
}
}
EXPORT_SYMBOL_GPL(sata_link_debounce);
/**
* sata_link_resume - resume SATA link
* @link: ATA link to resume SATA
* @params: timing parameters { interval, duration, timeout } in msec
* @deadline: deadline jiffies for the operation
*
* Resume SATA phy @link and debounce it.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno on failure.
*/
int sata_link_resume(struct ata_link *link, const unsigned int *params,
unsigned long deadline)
{
int tries = ATA_LINK_RESUME_TRIES;
u32 scontrol, serror;
int rc;
if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
return rc;
/*
* Writes to SControl sometimes get ignored under certain
* controllers (ata_piix SIDPR). Make sure DET actually is
* cleared.
*/
do {
scontrol = (scontrol & 0x0f0) | 0x300;
if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
return rc;
/*
* Some PHYs react badly if SStatus is pounded
* immediately after resuming. Delay 200ms before
* debouncing.
*/
if (!(link->flags & ATA_LFLAG_NO_DEBOUNCE_DELAY))
ata_msleep(link->ap, 200);
/* is SControl restored correctly? */
if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
return rc;
} while ((scontrol & 0xf0f) != 0x300 && --tries);
if ((scontrol & 0xf0f) != 0x300) {
ata_link_warn(link, "failed to resume link (SControl %X)\n",
scontrol);
return 0;
}
if (tries < ATA_LINK_RESUME_TRIES)
ata_link_warn(link, "link resume succeeded after %d retries\n",
ATA_LINK_RESUME_TRIES - tries);
if ((rc = sata_link_debounce(link, params, deadline)))
return rc;
/* clear SError, some PHYs require this even for SRST to work */
if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
rc = sata_scr_write(link, SCR_ERROR, serror);
return rc != -EINVAL ? rc : 0;
}
EXPORT_SYMBOL_GPL(sata_link_resume);
/**
* sata_link_scr_lpm - manipulate SControl IPM and SPM fields
* @link: ATA link to manipulate SControl for
* @policy: LPM policy to configure
* @spm_wakeup: initiate LPM transition to active state
*
* Manipulate the IPM field of the SControl register of @link
* according to @policy. If @policy is ATA_LPM_MAX_POWER and
* @spm_wakeup is %true, the SPM field is manipulated to wake up
* the link. This function also clears PHYRDY_CHG before
* returning.
*
* LOCKING:
* EH context.
*
* RETURNS:
* 0 on success, -errno otherwise.
*/
int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
bool spm_wakeup)
{
struct ata_eh_context *ehc = &link->eh_context;
bool woken_up = false;
u32 scontrol;
int rc;
rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
if (rc)
return rc;
switch (policy) {
case ATA_LPM_MAX_POWER:
/* disable all LPM transitions */
scontrol |= (0x7 << 8);
/* initiate transition to active state */
if (spm_wakeup) {
scontrol |= (0x4 << 12);
woken_up = true;
}
break;
case ATA_LPM_MED_POWER:
/* allow LPM to PARTIAL */
scontrol &= ~(0x1 << 8);
scontrol |= (0x6 << 8);
break;
case ATA_LPM_MED_POWER_WITH_DIPM:
case ATA_LPM_MIN_POWER_WITH_PARTIAL:
case ATA_LPM_MIN_POWER:
if (ata_link_nr_enabled(link) > 0) {
/* assume no restrictions on LPM transitions */
scontrol &= ~(0x7 << 8);
/*
* If the controller does not support partial, slumber,
* or devsleep, then disallow these transitions.
*/
if (link->ap->host->flags & ATA_HOST_NO_PART)
scontrol |= (0x1 << 8);
if (link->ap->host->flags & ATA_HOST_NO_SSC)
scontrol |= (0x2 << 8);
if (link->ap->host->flags & ATA_HOST_NO_DEVSLP)
scontrol |= (0x4 << 8);
} else {
/* empty port, power off */
scontrol &= ~0xf;
scontrol |= (0x1 << 2);
}
break;
default:
WARN_ON(1);
}
rc = sata_scr_write(link, SCR_CONTROL, scontrol);
if (rc)
return rc;
/* give the link time to transit out of LPM state */
if (woken_up)
msleep(10);
/* clear PHYRDY_CHG from SError */
ehc->i.serror &= ~SERR_PHYRDY_CHG;
return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
}
EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
{
struct ata_link *host_link = &link->ap->link;
u32 limit, target, spd;
limit = link->sata_spd_limit;
/* Don't configure downstream link faster than upstream link.
* It doesn't speed up anything and some PMPs choke on such
* configuration.
*/
if (!ata_is_host_link(link) && host_link->sata_spd)
limit &= (1 << host_link->sata_spd) - 1;
if (limit == UINT_MAX)
target = 0;
else
target = fls(limit);
spd = (*scontrol >> 4) & 0xf;
*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
return spd != target;
}
/**
* sata_set_spd_needed - is SATA spd configuration needed
* @link: Link in question
*
* Test whether the spd limit in SControl matches
* @link->sata_spd_limit. This function is used to determine
* whether hardreset is necessary to apply SATA spd
* configuration.
*
* LOCKING:
* Inherited from caller.
*
* RETURNS:
* 1 if SATA spd configuration is needed, 0 otherwise.
*/
static int sata_set_spd_needed(struct ata_link *link)
{
u32 scontrol;
if (sata_scr_read(link, SCR_CONTROL, &scontrol))
return 1;
return __sata_set_spd_needed(link, &scontrol);
}
/**
* sata_set_spd - set SATA spd according to spd limit
* @link: Link to set SATA spd for
*
* Set SATA spd of @link according to sata_spd_limit.
*
* LOCKING:
* Inherited from caller.
*
* RETURNS:
* 0 if spd doesn't need to be changed, 1 if spd has been
* changed. Negative errno if SCR registers are inaccessible.
*/
int sata_set_spd(struct ata_link *link)
{
u32 scontrol;
int rc;
if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
return rc;
if (!__sata_set_spd_needed(link, &scontrol))
return 0;
if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
return rc;
return 1;
}
EXPORT_SYMBOL_GPL(sata_set_spd);
/**
* sata_down_spd_limit - adjust SATA spd limit downward
* @link: Link to adjust SATA spd limit for
* @spd_limit: Additional limit
*
* Adjust SATA spd limit of @link downward. Note that this
* function only adjusts the limit. The change must be applied
* using sata_set_spd().
*
* If @spd_limit is non-zero, the speed is limited to equal to or
* lower than @spd_limit if such speed is supported. If
* @spd_limit is slower than any supported speed, only the lowest
* supported speed is allowed.
*
* LOCKING:
* Inherited from caller.
*
* RETURNS:
* 0 on success, negative errno on failure
*/
int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
{
u32 sstatus, spd, mask;
int rc, bit;
if (!sata_scr_valid(link))
return -EOPNOTSUPP;
/* If SCR can be read, use it to determine the current SPD.
* If not, use cached value in link->sata_spd.
*/
rc = sata_scr_read(link, SCR_STATUS, &sstatus);
if (rc == 0 && ata_sstatus_online(sstatus))
spd = (sstatus >> 4) & 0xf;
else
spd = link->sata_spd;
mask = link->sata_spd_limit;
if (mask <= 1)
return -EINVAL;
/* unconditionally mask off the highest bit */
bit = fls(mask) - 1;
mask &= ~(1 << bit);
/*
* Mask off all speeds higher than or equal to the current one. At
* this point, if current SPD is not available and we previously
* recorded the link speed from SStatus, the driver has already
* masked off the highest bit so mask should already be 1 or 0.
* Otherwise, we should not force 1.5Gbps on a link where we have
* not previously recorded speed from SStatus. Just return in this
* case.
*/
if (spd > 1)
mask &= (1 << (spd - 1)) - 1;
else if (link->sata_spd)
return -EINVAL;
/* were we already at the bottom? */
if (!mask)
return -EINVAL;
if (spd_limit) {
if (mask & ((1 << spd_limit) - 1))
mask &= (1 << spd_limit) - 1;
else {
bit = ffs(mask) - 1;
mask = 1 << bit;
}
}
link->sata_spd_limit = mask;
ata_link_warn(link, "limiting SATA link speed to %s\n",
sata_spd_string(fls(mask)));
return 0;
}
/**
* sata_link_hardreset - reset link via SATA phy reset
* @link: link to reset
* @timing: timing parameters { interval, duration, timeout } in msec
* @deadline: deadline jiffies for the operation
* @online: optional out parameter indicating link onlineness
* @check_ready: optional callback to check link readiness
*
* SATA phy-reset @link using DET bits of SControl register.
* After hardreset, link readiness is waited upon using
* ata_wait_ready() if @check_ready is specified. LLDs are
* allowed to not specify @check_ready and wait itself after this
* function returns. Device classification is LLD's
* responsibility.
*
* *@online is set to one iff reset succeeded and @link is online
* after reset.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno otherwise.
*/
int sata_link_hardreset(struct ata_link *link, const unsigned int *timing,
unsigned long deadline,
bool *online, int (*check_ready)(struct ata_link *))
{
u32 scontrol;
int rc;
if (online)
*online = false;
if (sata_set_spd_needed(link)) {
/* SATA spec says nothing about how to reconfigure
* spd. To be on the safe side, turn off phy during
* reconfiguration. This works for at least ICH7 AHCI
* and Sil3124.
*/
if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
goto out;
scontrol = (scontrol & 0x0f0) | 0x304;
if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
goto out;
sata_set_spd(link);
}
/* issue phy wake/reset */
if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
goto out;
scontrol = (scontrol & 0x0f0) | 0x301;
if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
goto out;
/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
* 10.4.2 says at least 1 ms.
*/
ata_msleep(link->ap, 1);
/* bring link back */
rc = sata_link_resume(link, timing, deadline);
if (rc)
goto out;
/* if link is offline nothing more to do */
if (ata_phys_link_offline(link))
goto out;
/* Link is online. From this point, -ENODEV too is an error. */
if (online)
*online = true;
if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
/* If PMP is supported, we have to do follow-up SRST.
* Some PMPs don't send D2H Reg FIS after hardreset if
* the first port is empty. Wait only for
* ATA_TMOUT_PMP_SRST_WAIT.
*/
if (check_ready) {
unsigned long pmp_deadline;
pmp_deadline = ata_deadline(jiffies,
ATA_TMOUT_PMP_SRST_WAIT);
if (time_after(pmp_deadline, deadline))
pmp_deadline = deadline;
ata_wait_ready(link, pmp_deadline, check_ready);
}
rc = -EAGAIN;
goto out;
}
rc = 0;
if (check_ready)
rc = ata_wait_ready(link, deadline, check_ready);
out:
if (rc && rc != -EAGAIN) {
/* online is set iff link is online && reset succeeded */
if (online)
*online = false;
}
return rc;
}
EXPORT_SYMBOL_GPL(sata_link_hardreset);
/**
* sata_std_hardreset - COMRESET w/o waiting or classification
* @link: link to reset
* @class: resulting class of attached device
* @deadline: deadline jiffies for the operation
*
* Standard SATA COMRESET w/o waiting or classification.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 if link offline, -EAGAIN if link online, -errno on errors.
*/
int sata_std_hardreset(struct ata_link *link, unsigned int *class,
unsigned long deadline)
{
const unsigned int *timing = sata_ehc_deb_timing(&link->eh_context);
bool online;
int rc;
rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
if (online)
return -EAGAIN;
return rc;
}
EXPORT_SYMBOL_GPL(sata_std_hardreset);
/**
* ata_qc_complete_multiple - Complete multiple qcs successfully
* @ap: port in question
* @qc_active: new qc_active mask
*
* Complete in-flight commands. This functions is meant to be
* called from low-level driver's interrupt routine to complete
* requests normally. ap->qc_active and @qc_active is compared
* and commands are completed accordingly.
*
* Always use this function when completing multiple NCQ commands
* from IRQ handlers instead of calling ata_qc_complete()
* multiple times to keep IRQ expect status properly in sync.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
* RETURNS:
* Number of completed commands on success, -errno otherwise.
*/
int ata_qc_complete_multiple(struct ata_port *ap, u64 qc_active)
{
u64 done_mask, ap_qc_active = ap->qc_active;
int nr_done = 0;
/*
* If the internal tag is set on ap->qc_active, then we care about
* bit0 on the passed in qc_active mask. Move that bit up to match
* the internal tag.
*/
if (ap_qc_active & (1ULL << ATA_TAG_INTERNAL)) {
qc_active |= (qc_active & 0x01) << ATA_TAG_INTERNAL;
qc_active ^= qc_active & 0x01;
}
done_mask = ap_qc_active ^ qc_active;
if (unlikely(done_mask & qc_active)) {
ata_port_err(ap, "illegal qc_active transition (%08llx->%08llx)\n",
ap->qc_active, qc_active);
return -EINVAL;
}
if (ap->ops->qc_ncq_fill_rtf)
ap->ops->qc_ncq_fill_rtf(ap, done_mask);
while (done_mask) {
struct ata_queued_cmd *qc;
unsigned int tag = __ffs64(done_mask);
qc = ata_qc_from_tag(ap, tag);
if (qc) {
ata_qc_complete(qc);
nr_done++;
}
done_mask &= ~(1ULL << tag);
}
return nr_done;
}
EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
/**
* ata_slave_link_init - initialize slave link
* @ap: port to initialize slave link for
*
* Create and initialize slave link for @ap. This enables slave
* link handling on the port.
*
* In libata, a port contains links and a link contains devices.
* There is single host link but if a PMP is attached to it,
* there can be multiple fan-out links. On SATA, there's usually
* a single device connected to a link but PATA and SATA
* controllers emulating TF based interface can have two - master
* and slave.
*
* However, there are a few controllers which don't fit into this
* abstraction too well - SATA controllers which emulate TF
* interface with both master and slave devices but also have
* separate SCR register sets for each device. These controllers
* need separate links for physical link handling
* (e.g. onlineness, link speed) but should be treated like a
* traditional M/S controller for everything else (e.g. command
* issue, softreset).
*
* slave_link is libata's way of handling this class of
* controllers without impacting core layer too much. For
* anything other than physical link handling, the default host
* link is used for both master and slave. For physical link
* handling, separate @ap->slave_link is used. All dirty details
* are implemented inside libata core layer. From LLD's POV, the
* only difference is that prereset, hardreset and postreset are
* called once more for the slave link, so the reset sequence
* looks like the following.
*
* prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
* softreset(M) -> postreset(M) -> postreset(S)
*
* Note that softreset is called only for the master. Softreset
* resets both M/S by definition, so SRST on master should handle
* both (the standard method will work just fine).
*
* LOCKING:
* Should be called before host is registered.
*
* RETURNS:
* 0 on success, -errno on failure.
*/
int ata_slave_link_init(struct ata_port *ap)
{
struct ata_link *link;
WARN_ON(ap->slave_link);
WARN_ON(ap->flags & ATA_FLAG_PMP);
link = kzalloc(sizeof(*link), GFP_KERNEL);
if (!link)
return -ENOMEM;
ata_link_init(ap, link, 1);
ap->slave_link = link;
return 0;
}
EXPORT_SYMBOL_GPL(ata_slave_link_init);
/**
* sata_lpm_ignore_phy_events - test if PHY event should be ignored
* @link: Link receiving the event
*
* Test whether the received PHY event has to be ignored or not.
*
* LOCKING:
* None:
*
* RETURNS:
* True if the event has to be ignored.
*/
bool sata_lpm_ignore_phy_events(struct ata_link *link)
{
unsigned long lpm_timeout = link->last_lpm_change +
msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
/* if LPM is enabled, PHYRDY doesn't mean anything */
if (link->lpm_policy > ATA_LPM_MAX_POWER)
return true;
/* ignore the first PHY event after the LPM policy changed
* as it is might be spurious
*/
if ((link->flags & ATA_LFLAG_CHANGED) &&
time_before(jiffies, lpm_timeout))
return true;
return false;
}
EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
static const char *ata_lpm_policy_names[] = {
[ATA_LPM_UNKNOWN] = "keep_firmware_settings",
[ATA_LPM_MAX_POWER] = "max_performance",
[ATA_LPM_MED_POWER] = "medium_power",
[ATA_LPM_MED_POWER_WITH_DIPM] = "med_power_with_dipm",
[ATA_LPM_MIN_POWER_WITH_PARTIAL] = "min_power_with_partial",
[ATA_LPM_MIN_POWER] = "min_power",
};
static ssize_t ata_scsi_lpm_store(struct device *device,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(device);
struct ata_port *ap = ata_shost_to_port(shost);
struct ata_link *link;
struct ata_device *dev;
enum ata_lpm_policy policy;
unsigned long flags;
/* UNKNOWN is internal state, iterate from MAX_POWER */
for (policy = ATA_LPM_MAX_POWER;
policy < ARRAY_SIZE(ata_lpm_policy_names); policy++) {
const char *name = ata_lpm_policy_names[policy];
if (strncmp(name, buf, strlen(name)) == 0)
break;
}
if (policy == ARRAY_SIZE(ata_lpm_policy_names))
return -EINVAL;
spin_lock_irqsave(ap->lock, flags);
ata_for_each_link(link, ap, EDGE) {
ata_for_each_dev(dev, &ap->link, ENABLED) {
if (dev->quirks & ATA_QUIRK_NOLPM) {
count = -EOPNOTSUPP;
goto out_unlock;
}
}
}
ap->target_lpm_policy = policy;
ata_port_schedule_eh(ap);
out_unlock:
spin_unlock_irqrestore(ap->lock, flags);
return count;
}
static ssize_t ata_scsi_lpm_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct ata_port *ap = ata_shost_to_port(shost);
if (ap->target_lpm_policy >= ARRAY_SIZE(ata_lpm_policy_names))
return -EINVAL;
return sysfs_emit(buf, "%s\n",
ata_lpm_policy_names[ap->target_lpm_policy]);
}
DEVICE_ATTR(link_power_management_policy, S_IRUGO | S_IWUSR,
ata_scsi_lpm_show, ata_scsi_lpm_store);
EXPORT_SYMBOL_GPL(dev_attr_link_power_management_policy);
/**
* ata_ncq_prio_supported - Check if device supports NCQ Priority
* @ap: ATA port of the target device
* @sdev: SCSI device
* @supported: Address of a boolean to store the result
*
* Helper to check if device supports NCQ Priority feature.
*
* Context: Any context. Takes and releases @ap->lock.
*
* Return:
* * %0 - OK. Status is stored into @supported
* * %-ENODEV - Failed to find the ATA device
*/
int ata_ncq_prio_supported(struct ata_port *ap, struct scsi_device *sdev,
bool *supported)
{
struct ata_device *dev;
unsigned long flags;
int rc = 0;
spin_lock_irqsave(ap->lock, flags);
dev = ata_scsi_find_dev(ap, sdev);
if (!dev)
rc = -ENODEV;
else
*supported = dev->flags & ATA_DFLAG_NCQ_PRIO;
spin_unlock_irqrestore(ap->lock, flags);
return rc;
}
EXPORT_SYMBOL_GPL(ata_ncq_prio_supported);
static ssize_t ata_ncq_prio_supported_show(struct device *device,
struct device_attribute *attr,
char *buf)
{
struct scsi_device *sdev = to_scsi_device(device);
struct ata_port *ap = ata_shost_to_port(sdev->host);
bool supported;
int rc;
rc = ata_ncq_prio_supported(ap, sdev, &supported);
if (rc)
return rc;
return sysfs_emit(buf, "%d\n", supported);
}
DEVICE_ATTR(ncq_prio_supported, S_IRUGO, ata_ncq_prio_supported_show, NULL);
EXPORT_SYMBOL_GPL(dev_attr_ncq_prio_supported);
/**
* ata_ncq_prio_enabled - Check if NCQ Priority is enabled
* @ap: ATA port of the target device
* @sdev: SCSI device
* @enabled: Address of a boolean to store the result
*
* Helper to check if NCQ Priority feature is enabled.
*
* Context: Any context. Takes and releases @ap->lock.
*
* Return:
* * %0 - OK. Status is stored into @enabled
* * %-ENODEV - Failed to find the ATA device
*/
int ata_ncq_prio_enabled(struct ata_port *ap, struct scsi_device *sdev,
bool *enabled)
{
struct ata_device *dev;
unsigned long flags;
int rc = 0;
spin_lock_irqsave(ap->lock, flags);
dev = ata_scsi_find_dev(ap, sdev);
if (!dev)
rc = -ENODEV;
else
*enabled = dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED;
spin_unlock_irqrestore(ap->lock, flags);
return rc;
}
EXPORT_SYMBOL_GPL(ata_ncq_prio_enabled);
static ssize_t ata_ncq_prio_enable_show(struct device *device,
struct device_attribute *attr,
char *buf)
{
struct scsi_device *sdev = to_scsi_device(device);
struct ata_port *ap = ata_shost_to_port(sdev->host);
bool enabled;
int rc;
rc = ata_ncq_prio_enabled(ap, sdev, &enabled);
if (rc)
return rc;
return sysfs_emit(buf, "%d\n", enabled);
}
/**
* ata_ncq_prio_enable - Enable/disable NCQ Priority
* @ap: ATA port of the target device
* @sdev: SCSI device
* @enable: true - enable NCQ Priority, false - disable NCQ Priority
*
* Helper to enable/disable NCQ Priority feature.
*
* Context: Any context. Takes and releases @ap->lock.
*
* Return:
* * %0 - OK. Status is stored into @enabled
* * %-ENODEV - Failed to find the ATA device
* * %-EINVAL - NCQ Priority is not supported or CDL is enabled
*/
int ata_ncq_prio_enable(struct ata_port *ap, struct scsi_device *sdev,
bool enable)
{
struct ata_device *dev;
unsigned long flags;
int rc = 0;
spin_lock_irqsave(ap->lock, flags);
dev = ata_scsi_find_dev(ap, sdev);
if (!dev) {
rc = -ENODEV;
goto unlock;
}
if (!(dev->flags & ATA_DFLAG_NCQ_PRIO)) {
rc = -EINVAL;
goto unlock;
}
if (enable) {
if (dev->flags & ATA_DFLAG_CDL_ENABLED) {
ata_dev_err(dev,
"CDL must be disabled to enable NCQ priority\n");
rc = -EINVAL;
goto unlock;
}
dev->flags |= ATA_DFLAG_NCQ_PRIO_ENABLED;
} else {
dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
}
unlock:
spin_unlock_irqrestore(ap->lock, flags);
return rc;
}
EXPORT_SYMBOL_GPL(ata_ncq_prio_enable);
static ssize_t ata_ncq_prio_enable_store(struct device *device,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct scsi_device *sdev = to_scsi_device(device);
struct ata_port *ap = ata_shost_to_port(sdev->host);
bool enable;
int rc;
rc = kstrtobool(buf, &enable);
if (rc)
return rc;
rc = ata_ncq_prio_enable(ap, sdev, enable);
if (rc)
return rc;
return len;
}
DEVICE_ATTR(ncq_prio_enable, S_IRUGO | S_IWUSR,
ata_ncq_prio_enable_show, ata_ncq_prio_enable_store);
EXPORT_SYMBOL_GPL(dev_attr_ncq_prio_enable);
static struct attribute *ata_ncq_sdev_attrs[] = {
&dev_attr_unload_heads.attr,
&dev_attr_ncq_prio_enable.attr,
&dev_attr_ncq_prio_supported.attr,
NULL
};
static const struct attribute_group ata_ncq_sdev_attr_group = {
.attrs = ata_ncq_sdev_attrs
};
const struct attribute_group *ata_ncq_sdev_groups[] = {
&ata_ncq_sdev_attr_group,
NULL
};
EXPORT_SYMBOL_GPL(ata_ncq_sdev_groups);
static ssize_t
ata_scsi_em_message_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct ata_port *ap = ata_shost_to_port(shost);
if (ap->ops->em_store && (ap->flags & ATA_FLAG_EM))
return ap->ops->em_store(ap, buf, count);
return -EINVAL;
}
static ssize_t
ata_scsi_em_message_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct ata_port *ap = ata_shost_to_port(shost);
if (ap->ops->em_show && (ap->flags & ATA_FLAG_EM))
return ap->ops->em_show(ap, buf);
return -EINVAL;
}
DEVICE_ATTR(em_message, S_IRUGO | S_IWUSR,
ata_scsi_em_message_show, ata_scsi_em_message_store);
EXPORT_SYMBOL_GPL(dev_attr_em_message);
static ssize_t
ata_scsi_em_message_type_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct ata_port *ap = ata_shost_to_port(shost);
return sysfs_emit(buf, "%d\n", ap->em_message_type);
}
DEVICE_ATTR(em_message_type, S_IRUGO,
ata_scsi_em_message_type_show, NULL);
EXPORT_SYMBOL_GPL(dev_attr_em_message_type);
static ssize_t
ata_scsi_activity_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct ata_port *ap = ata_shost_to_port(sdev->host);
struct ata_device *atadev = ata_scsi_find_dev(ap, sdev);
if (atadev && ap->ops->sw_activity_show &&
(ap->flags & ATA_FLAG_SW_ACTIVITY))
return ap->ops->sw_activity_show(atadev, buf);
return -EINVAL;
}
static ssize_t
ata_scsi_activity_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct ata_port *ap = ata_shost_to_port(sdev->host);
struct ata_device *atadev = ata_scsi_find_dev(ap, sdev);
enum sw_activity val;
int rc;
if (atadev && ap->ops->sw_activity_store &&
(ap->flags & ATA_FLAG_SW_ACTIVITY)) {
val = simple_strtoul(buf, NULL, 0);
switch (val) {
case OFF: case BLINK_ON: case BLINK_OFF:
rc = ap->ops->sw_activity_store(atadev, val);
if (!rc)
return count;
else
return rc;
}
}
return -EINVAL;
}
DEVICE_ATTR(sw_activity, S_IWUSR | S_IRUGO, ata_scsi_activity_show,
ata_scsi_activity_store);
EXPORT_SYMBOL_GPL(dev_attr_sw_activity);
/**
* ata_change_queue_depth - Set a device maximum queue depth
* @ap: ATA port of the target device
* @sdev: SCSI device to configure queue depth for
* @queue_depth: new queue depth
*
* Helper to set a device maximum queue depth, usable with both libsas
* and libata.
*
*/
int ata_change_queue_depth(struct ata_port *ap, struct scsi_device *sdev,
int queue_depth)
{
struct ata_device *dev;
unsigned long flags;
int max_queue_depth;
spin_lock_irqsave(ap->lock, flags);
dev = ata_scsi_find_dev(ap, sdev);
if (!dev || queue_depth < 1 || queue_depth == sdev->queue_depth) {
spin_unlock_irqrestore(ap->lock, flags);
return sdev->queue_depth;
}
/*
* Make sure that the queue depth requested does not exceed the device
* capabilities.
*/
max_queue_depth = min(ATA_MAX_QUEUE, sdev->host->can_queue);
max_queue_depth = min(max_queue_depth, ata_id_queue_depth(dev->id));
if (queue_depth > max_queue_depth) {
spin_unlock_irqrestore(ap->lock, flags);
return -EINVAL;
}
/*
* If NCQ is not supported by the device or if the target queue depth
* is 1 (to disable drive side command queueing), turn off NCQ.
*/
if (queue_depth == 1 || !ata_ncq_supported(dev)) {
dev->flags |= ATA_DFLAG_NCQ_OFF;
queue_depth = 1;
} else {
dev->flags &= ~ATA_DFLAG_NCQ_OFF;
}
spin_unlock_irqrestore(ap->lock, flags);
if (queue_depth == sdev->queue_depth)
return sdev->queue_depth;
return scsi_change_queue_depth(sdev, queue_depth);
}
EXPORT_SYMBOL_GPL(ata_change_queue_depth);
/**
* ata_scsi_change_queue_depth - SCSI callback for queue depth config
* @sdev: SCSI device to configure queue depth for
* @queue_depth: new queue depth
*
* This is libata standard hostt->change_queue_depth callback.
* SCSI will call into this callback when user tries to set queue
* depth via sysfs.
*
* LOCKING:
* SCSI layer (we don't care)
*
* RETURNS:
* Newly configured queue depth.
*/
int ata_scsi_change_queue_depth(struct scsi_device *sdev, int queue_depth)
{
struct ata_port *ap = ata_shost_to_port(sdev->host);
return ata_change_queue_depth(ap, sdev, queue_depth);
}
EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
/**
* ata_sas_device_configure - Default device_configure routine for libata
* devices
* @sdev: SCSI device to configure
* @lim: queue limits
* @ap: ATA port to which SCSI device is attached
*
* RETURNS:
* Zero.
*/
int ata_sas_device_configure(struct scsi_device *sdev, struct queue_limits *lim,
struct ata_port *ap)
{
ata_scsi_sdev_config(sdev);
return ata_scsi_dev_config(sdev, lim, ap->link.device);
}
EXPORT_SYMBOL_GPL(ata_sas_device_configure);
/**
* ata_sas_queuecmd - Issue SCSI cdb to libata-managed device
* @cmd: SCSI command to be sent
* @ap: ATA port to which the command is being sent
*
* RETURNS:
* Return value from __ata_scsi_queuecmd() if @cmd can be queued,
* 0 otherwise.
*/
int ata_sas_queuecmd(struct scsi_cmnd *cmd, struct ata_port *ap)
{
int rc = 0;
if (likely(ata_dev_enabled(ap->link.device)))
rc = __ata_scsi_queuecmd(cmd, ap->link.device);
else {
cmd->result = (DID_BAD_TARGET << 16);
scsi_done(cmd);
}
return rc;
}
EXPORT_SYMBOL_GPL(ata_sas_queuecmd);
/**
* sata_async_notification - SATA async notification handler
* @ap: ATA port where async notification is received
*
* Handler to be called when async notification via SDB FIS is
* received. This function schedules EH if necessary.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
* RETURNS:
* 1 if EH is scheduled, 0 otherwise.
*/
int sata_async_notification(struct ata_port *ap)
{
u32 sntf;
int rc;
if (!(ap->flags & ATA_FLAG_AN))
return 0;
rc = sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf);
if (rc == 0)
sata_scr_write(&ap->link, SCR_NOTIFICATION, sntf);
if (!sata_pmp_attached(ap) || rc) {
/* PMP is not attached or SNTF is not available */
if (!sata_pmp_attached(ap)) {
/* PMP is not attached. Check whether ATAPI
* AN is configured. If so, notify media
* change.
*/
struct ata_device *dev = ap->link.device;
if ((dev->class == ATA_DEV_ATAPI) &&
(dev->flags & ATA_DFLAG_AN))
ata_scsi_media_change_notify(dev);
return 0;
} else {
/* PMP is attached but SNTF is not available.
* ATAPI async media change notification is
* not used. The PMP must be reporting PHY
* status change, schedule EH.
*/
ata_port_schedule_eh(ap);
return 1;
}
} else {
/* PMP is attached and SNTF is available */
struct ata_link *link;
/* check and notify ATAPI AN */
ata_for_each_link(link, ap, EDGE) {
if (!(sntf & (1 << link->pmp)))
continue;
if ((link->device->class == ATA_DEV_ATAPI) &&
(link->device->flags & ATA_DFLAG_AN))
ata_scsi_media_change_notify(link->device);
}
/* If PMP is reporting that PHY status of some
* downstream ports has changed, schedule EH.
*/
if (sntf & (1 << SATA_PMP_CTRL_PORT)) {
ata_port_schedule_eh(ap);
return 1;
}
return 0;
}
}
EXPORT_SYMBOL_GPL(sata_async_notification);
/**
* ata_eh_read_log_10h - Read log page 10h for NCQ error details
* @dev: Device to read log page 10h from
* @tag: Resulting tag of the failed command
* @tf: Resulting taskfile registers of the failed command
*
* Read log page 10h to obtain NCQ error details and clear error
* condition.
*
* LOCKING:
* Kernel thread context (may sleep).
*
* RETURNS:
* 0 on success, -errno otherwise.
*/
static int ata_eh_read_log_10h(struct ata_device *dev,
int *tag, struct ata_taskfile *tf)
{
u8 *buf = dev->sector_buf;
unsigned int err_mask;
u8 csum;
int i;
err_mask = ata_read_log_page(dev, ATA_LOG_SATA_NCQ, 0, buf, 1);
if (err_mask)
return -EIO;
csum = 0;
for (i = 0; i < ATA_SECT_SIZE; i++)
csum += buf[i];
if (csum)
ata_dev_warn(dev, "invalid checksum 0x%x on log page 10h\n",
csum);
if (buf[0] & 0x80)
return -ENOENT;
*tag = buf[0] & 0x1f;
tf->status = buf[2];
tf->error = buf[3];
tf->lbal = buf[4];
tf->lbam = buf[5];
tf->lbah = buf[6];
tf->device = buf[7];
tf->hob_lbal = buf[8];
tf->hob_lbam = buf[9];
tf->hob_lbah = buf[10];
tf->nsect = buf[12];
tf->hob_nsect = buf[13];
if (ata_id_has_ncq_autosense(dev->id) && (tf->status & ATA_SENSE))
tf->auxiliary = buf[14] << 16 | buf[15] << 8 | buf[16];
return 0;
}
/**
* ata_eh_get_ncq_success_sense - Read and process the sense data for
* successful NCQ commands log page
* @link: ATA link to get sense data for
*
* Read the sense data for successful NCQ commands log page to obtain
* sense data for all NCQ commands that completed successfully with
* the sense data available bit set.
*
* LOCKING:
* Kernel thread context (may sleep).
*
* RETURNS:
* 0 on success, -errno otherwise.
*/
int ata_eh_get_ncq_success_sense(struct ata_link *link)
{
struct ata_device *dev = link->device;
struct ata_port *ap = dev->link->ap;
u8 *buf = dev->cdl->ncq_sense_log_buf;
struct ata_queued_cmd *qc;
unsigned int err_mask, tag;
u8 *sense, sk = 0, asc = 0, ascq = 0;
u64 sense_valid, val;
int ret = 0;
err_mask = ata_read_log_page(dev, ATA_LOG_SENSE_NCQ, 0, buf, 2);
if (err_mask) {
ata_dev_err(dev,
"Failed to read Sense Data for Successful NCQ Commands log\n");
return -EIO;
}
/* Check the log header */
val = get_unaligned_le64(&buf[0]);
if ((val & 0xffff) != 1 || ((val >> 16) & 0xff) != 0x0f) {
ata_dev_err(dev,
"Invalid Sense Data for Successful NCQ Commands log\n");
return -EIO;
}
sense_valid = (u64)buf[8] | ((u64)buf[9] << 8) |
((u64)buf[10] << 16) | ((u64)buf[11] << 24);
ata_qc_for_each_raw(ap, qc, tag) {
if (!(qc->flags & ATA_QCFLAG_EH) ||
!(qc->flags & ATA_QCFLAG_EH_SUCCESS_CMD) ||
qc->err_mask ||
ata_dev_phys_link(qc->dev) != link)
continue;
/*
* If the command does not have any sense data, clear ATA_SENSE.
* Keep ATA_QCFLAG_EH_SUCCESS_CMD so that command is finished.
*/
if (!(sense_valid & (1ULL << tag))) {
qc->result_tf.status &= ~ATA_SENSE;
continue;
}
sense = &buf[32 + 24 * tag];
sk = sense[0];
asc = sense[1];
ascq = sense[2];
if (!ata_scsi_sense_is_valid(sk, asc, ascq)) {
ret = -EIO;
continue;
}
/* Set sense without also setting scsicmd->result */
scsi_build_sense_buffer(dev->flags & ATA_DFLAG_D_SENSE,
qc->scsicmd->sense_buffer, sk,
asc, ascq);
qc->flags |= ATA_QCFLAG_SENSE_VALID;
/*
* No point in checking the return value, since the command has
* already completed successfully.
*/
ata_eh_decide_disposition(qc);
}
return ret;
}
/**
* ata_eh_analyze_ncq_error - analyze NCQ error
* @link: ATA link to analyze NCQ error for
*
* Read log page 10h, determine the offending qc and acquire
* error status TF. For NCQ device errors, all LLDDs have to do
* is setting AC_ERR_DEV in ehi->err_mask. This function takes
* care of the rest.
*
* LOCKING:
* Kernel thread context (may sleep).
*/
void ata_eh_analyze_ncq_error(struct ata_link *link)
{
struct ata_port *ap = link->ap;
struct ata_eh_context *ehc = &link->eh_context;
struct ata_device *dev = link->device;
struct ata_queued_cmd *qc;
struct ata_taskfile tf;
int tag, rc;
/* if frozen, we can't do much */
if (ata_port_is_frozen(ap))
return;
/* is it NCQ device error? */
if (!link->sactive || !(ehc->i.err_mask & AC_ERR_DEV))
return;
/* has LLDD analyzed already? */
ata_qc_for_each_raw(ap, qc, tag) {
if (!(qc->flags & ATA_QCFLAG_EH))
continue;
if (qc->err_mask)
return;
}
/* okay, this error is ours */
memset(&tf, 0, sizeof(tf));
rc = ata_eh_read_log_10h(dev, &tag, &tf);
if (rc) {
ata_link_err(link, "failed to read log page 10h (errno=%d)\n",
rc);
return;
}
if (!(link->sactive & (1 << tag))) {
ata_link_err(link, "log page 10h reported inactive tag %d\n",
tag);
return;
}
/* we've got the perpetrator, condemn it */
qc = __ata_qc_from_tag(ap, tag);
memcpy(&qc->result_tf, &tf, sizeof(tf));
qc->result_tf.flags = ATA_TFLAG_ISADDR | ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
qc->err_mask |= AC_ERR_DEV | AC_ERR_NCQ;
/*
* If the device supports NCQ autosense, ata_eh_read_log_10h() will have
* stored the sense data in qc->result_tf.auxiliary.
*/
if (qc->result_tf.auxiliary) {
char sense_key, asc, ascq;
sense_key = (qc->result_tf.auxiliary >> 16) & 0xff;
asc = (qc->result_tf.auxiliary >> 8) & 0xff;
ascq = qc->result_tf.auxiliary & 0xff;
if (ata_scsi_sense_is_valid(sense_key, asc, ascq)) {
ata_scsi_set_sense(dev, qc->scsicmd, sense_key, asc,
ascq);
ata_scsi_set_sense_information(dev, qc->scsicmd,
&qc->result_tf);
qc->flags |= ATA_QCFLAG_SENSE_VALID;
}
}
ata_qc_for_each_raw(ap, qc, tag) {
if (!(qc->flags & ATA_QCFLAG_EH) ||
qc->flags & ATA_QCFLAG_EH_SUCCESS_CMD ||
ata_dev_phys_link(qc->dev) != link)
continue;
/* Skip the single QC which caused the NCQ error. */
if (qc->err_mask)
continue;
/*
* For SATA, the STATUS and ERROR fields are shared for all NCQ
* commands that were completed with the same SDB FIS.
* Therefore, we have to clear the ATA_ERR bit for all QCs
* except the one that caused the NCQ error.
*/
qc->result_tf.status &= ~ATA_ERR;
qc->result_tf.error = 0;
/*
* If we get a NCQ error, that means that a single command was
* aborted. All other failed commands for our link should be
* retried and has no business of going though further scrutiny
* by ata_eh_link_autopsy().
*/
qc->flags |= ATA_QCFLAG_RETRY;
}
ehc->i.err_mask &= ~AC_ERR_DEV;
}
EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
const struct ata_port_operations sata_port_ops = {
.inherits = &ata_base_port_ops,
.qc_defer = ata_std_qc_defer,
.hardreset = sata_std_hardreset,
};
EXPORT_SYMBOL_GPL(sata_port_ops);