| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * libata-sff.c - helper library for PCI IDE BMDMA |
| * |
| * Copyright 2003-2006 Red Hat, Inc. All rights reserved. |
| * Copyright 2003-2006 Jeff Garzik |
| * |
| * libata documentation is available via 'make {ps|pdf}docs', |
| * as Documentation/driver-api/libata.rst |
| * |
| * Hardware documentation available from http://www.t13.org/ and |
| * http://www.sata-io.org/ |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/gfp.h> |
| #include <linux/pci.h> |
| #include <linux/module.h> |
| #include <linux/libata.h> |
| #include <linux/highmem.h> |
| #include <trace/events/libata.h> |
| #include "libata.h" |
| |
| static struct workqueue_struct *ata_sff_wq; |
| |
| const struct ata_port_operations ata_sff_port_ops = { |
| .inherits = &ata_base_port_ops, |
| |
| .qc_issue = ata_sff_qc_issue, |
| .qc_fill_rtf = ata_sff_qc_fill_rtf, |
| |
| .freeze = ata_sff_freeze, |
| .thaw = ata_sff_thaw, |
| .prereset = ata_sff_prereset, |
| .softreset = ata_sff_softreset, |
| .hardreset = sata_sff_hardreset, |
| .postreset = ata_sff_postreset, |
| .error_handler = ata_sff_error_handler, |
| |
| .sff_dev_select = ata_sff_dev_select, |
| .sff_check_status = ata_sff_check_status, |
| .sff_tf_load = ata_sff_tf_load, |
| .sff_tf_read = ata_sff_tf_read, |
| .sff_exec_command = ata_sff_exec_command, |
| .sff_data_xfer = ata_sff_data_xfer, |
| .sff_drain_fifo = ata_sff_drain_fifo, |
| |
| .lost_interrupt = ata_sff_lost_interrupt, |
| }; |
| EXPORT_SYMBOL_GPL(ata_sff_port_ops); |
| |
| /** |
| * ata_sff_check_status - Read device status reg & clear interrupt |
| * @ap: port where the device is |
| * |
| * Reads ATA taskfile status register for currently-selected device |
| * and return its value. This also clears pending interrupts |
| * from this device |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| u8 ata_sff_check_status(struct ata_port *ap) |
| { |
| return ioread8(ap->ioaddr.status_addr); |
| } |
| EXPORT_SYMBOL_GPL(ata_sff_check_status); |
| |
| /** |
| * ata_sff_altstatus - Read device alternate status reg |
| * @ap: port where the device is |
| * @status: pointer to a status value |
| * |
| * Reads ATA alternate status register for currently-selected device |
| * and return its value. |
| * |
| * RETURN: |
| * true if the register exists, false if not. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static bool ata_sff_altstatus(struct ata_port *ap, u8 *status) |
| { |
| u8 tmp; |
| |
| if (ap->ops->sff_check_altstatus) { |
| tmp = ap->ops->sff_check_altstatus(ap); |
| goto read; |
| } |
| if (ap->ioaddr.altstatus_addr) { |
| tmp = ioread8(ap->ioaddr.altstatus_addr); |
| goto read; |
| } |
| return false; |
| |
| read: |
| if (status) |
| *status = tmp; |
| return true; |
| } |
| |
| /** |
| * ata_sff_irq_status - Check if the device is busy |
| * @ap: port where the device is |
| * |
| * Determine if the port is currently busy. Uses altstatus |
| * if available in order to avoid clearing shared IRQ status |
| * when finding an IRQ source. Non ctl capable devices don't |
| * share interrupt lines fortunately for us. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static u8 ata_sff_irq_status(struct ata_port *ap) |
| { |
| u8 status; |
| |
| /* Not us: We are busy */ |
| if (ata_sff_altstatus(ap, &status) && (status & ATA_BUSY)) |
| return status; |
| /* Clear INTRQ latch */ |
| status = ap->ops->sff_check_status(ap); |
| return status; |
| } |
| |
| /** |
| * ata_sff_sync - Flush writes |
| * @ap: Port to wait for. |
| * |
| * CAUTION: |
| * If we have an mmio device with no ctl and no altstatus |
| * method this will fail. No such devices are known to exist. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| |
| static void ata_sff_sync(struct ata_port *ap) |
| { |
| ata_sff_altstatus(ap, NULL); |
| } |
| |
| /** |
| * ata_sff_pause - Flush writes and wait 400nS |
| * @ap: Port to pause for. |
| * |
| * CAUTION: |
| * If we have an mmio device with no ctl and no altstatus |
| * method this will fail. No such devices are known to exist. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| |
| void ata_sff_pause(struct ata_port *ap) |
| { |
| ata_sff_sync(ap); |
| ndelay(400); |
| } |
| EXPORT_SYMBOL_GPL(ata_sff_pause); |
| |
| /** |
| * ata_sff_dma_pause - Pause before commencing DMA |
| * @ap: Port to pause for. |
| * |
| * Perform I/O fencing and ensure sufficient cycle delays occur |
| * for the HDMA1:0 transition |
| */ |
| |
| void ata_sff_dma_pause(struct ata_port *ap) |
| { |
| /* |
| * An altstatus read will cause the needed delay without |
| * messing up the IRQ status |
| */ |
| if (ata_sff_altstatus(ap, NULL)) |
| return; |
| /* There are no DMA controllers without ctl. BUG here to ensure |
| we never violate the HDMA1:0 transition timing and risk |
| corruption. */ |
| BUG(); |
| } |
| EXPORT_SYMBOL_GPL(ata_sff_dma_pause); |
| |
| static int ata_sff_check_ready(struct ata_link *link) |
| { |
| u8 status = link->ap->ops->sff_check_status(link->ap); |
| |
| return ata_check_ready(status); |
| } |
| |
| /** |
| * ata_sff_wait_ready - sleep until BSY clears, or timeout |
| * @link: SFF link to wait ready status for |
| * @deadline: deadline jiffies for the operation |
| * |
| * Sleep until ATA Status register bit BSY clears, or timeout |
| * occurs. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep). |
| * |
| * RETURNS: |
| * 0 on success, -errno otherwise. |
| */ |
| int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) |
| { |
| return ata_wait_ready(link, deadline, ata_sff_check_ready); |
| } |
| EXPORT_SYMBOL_GPL(ata_sff_wait_ready); |
| |
| /** |
| * ata_sff_set_devctl - Write device control reg |
| * @ap: port where the device is |
| * @ctl: value to write |
| * |
| * Writes ATA device control register. |
| * |
| * RETURN: |
| * true if the register exists, false if not. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static bool ata_sff_set_devctl(struct ata_port *ap, u8 ctl) |
| { |
| if (ap->ops->sff_set_devctl) { |
| ap->ops->sff_set_devctl(ap, ctl); |
| return true; |
| } |
| if (ap->ioaddr.ctl_addr) { |
| iowrite8(ctl, ap->ioaddr.ctl_addr); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /** |
| * ata_sff_dev_select - Select device 0/1 on ATA bus |
| * @ap: ATA channel to manipulate |
| * @device: ATA device (numbered from zero) to select |
| * |
| * Use the method defined in the ATA specification to |
| * make either device 0, or device 1, active on the |
| * ATA channel. Works with both PIO and MMIO. |
| * |
| * May be used as the dev_select() entry in ata_port_operations. |
| * |
| * LOCKING: |
| * caller. |
| */ |
| void ata_sff_dev_select(struct ata_port *ap, unsigned int device) |
| { |
| u8 tmp; |
| |
| if (device == 0) |
| tmp = ATA_DEVICE_OBS; |
| else |
| tmp = ATA_DEVICE_OBS | ATA_DEV1; |
| |
| iowrite8(tmp, ap->ioaddr.device_addr); |
| ata_sff_pause(ap); /* needed; also flushes, for mmio */ |
| } |
| EXPORT_SYMBOL_GPL(ata_sff_dev_select); |
| |
| /** |
| * ata_dev_select - Select device 0/1 on ATA bus |
| * @ap: ATA channel to manipulate |
| * @device: ATA device (numbered from zero) to select |
| * @wait: non-zero to wait for Status register BSY bit to clear |
| * @can_sleep: non-zero if context allows sleeping |
| * |
| * Use the method defined in the ATA specification to |
| * make either device 0, or device 1, active on the |
| * ATA channel. |
| * |
| * This is a high-level version of ata_sff_dev_select(), which |
| * additionally provides the services of inserting the proper |
| * pauses and status polling, where needed. |
| * |
| * LOCKING: |
| * caller. |
| */ |
| static void ata_dev_select(struct ata_port *ap, unsigned int device, |
| unsigned int wait, unsigned int can_sleep) |
| { |
| if (wait) |
| ata_wait_idle(ap); |
| |
| ap->ops->sff_dev_select(ap, device); |
| |
| if (wait) { |
| if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) |
| ata_msleep(ap, 150); |
| ata_wait_idle(ap); |
| } |
| } |
| |
| /** |
| * ata_sff_irq_on - Enable interrupts on a port. |
| * @ap: Port on which interrupts are enabled. |
| * |
| * Enable interrupts on a legacy IDE device using MMIO or PIO, |
| * wait for idle, clear any pending interrupts. |
| * |
| * Note: may NOT be used as the sff_irq_on() entry in |
| * ata_port_operations. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| void ata_sff_irq_on(struct ata_port *ap) |
| { |
| if (ap->ops->sff_irq_on) { |
| ap->ops->sff_irq_on(ap); |
| return; |
| } |
| |
| ap->ctl &= ~ATA_NIEN; |
| ap->last_ctl = ap->ctl; |
| |
| ata_sff_set_devctl(ap, ap->ctl); |
| ata_wait_idle(ap); |
| |
| if (ap->ops->sff_irq_clear) |
| ap->ops->sff_irq_clear(ap); |
| } |
| EXPORT_SYMBOL_GPL(ata_sff_irq_on); |
| |
| /** |
| * ata_sff_tf_load - send taskfile registers to host controller |
| * @ap: Port to which output is sent |
| * @tf: ATA taskfile register set |
| * |
| * Outputs ATA taskfile to standard ATA host controller. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) |
| { |
| struct ata_ioports *ioaddr = &ap->ioaddr; |
| unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; |
| |
| if (tf->ctl != ap->last_ctl) { |
| if (ioaddr->ctl_addr) |
| iowrite8(tf->ctl, ioaddr->ctl_addr); |
| ap->last_ctl = tf->ctl; |
| ata_wait_idle(ap); |
| } |
| |
| if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { |
| WARN_ON_ONCE(!ioaddr->ctl_addr); |
| iowrite8(tf->hob_feature, ioaddr->feature_addr); |
| iowrite8(tf->hob_nsect, ioaddr->nsect_addr); |
| iowrite8(tf->hob_lbal, ioaddr->lbal_addr); |
| iowrite8(tf->hob_lbam, ioaddr->lbam_addr); |
| iowrite8(tf->hob_lbah, ioaddr->lbah_addr); |
| } |
| |
| if (is_addr) { |
| iowrite8(tf->feature, ioaddr->feature_addr); |
| iowrite8(tf->nsect, ioaddr->nsect_addr); |
| iowrite8(tf->lbal, ioaddr->lbal_addr); |
| iowrite8(tf->lbam, ioaddr->lbam_addr); |
| iowrite8(tf->lbah, ioaddr->lbah_addr); |
| } |
| |
| if (tf->flags & ATA_TFLAG_DEVICE) |
| iowrite8(tf->device, ioaddr->device_addr); |
| |
| ata_wait_idle(ap); |
| } |
| EXPORT_SYMBOL_GPL(ata_sff_tf_load); |
| |
| /** |
| * ata_sff_tf_read - input device's ATA taskfile shadow registers |
| * @ap: Port from which input is read |
| * @tf: ATA taskfile register set for storing input |
| * |
| * Reads ATA taskfile registers for currently-selected device |
| * into @tf. Assumes the device has a fully SFF compliant task file |
| * layout and behaviour. If you device does not (eg has a different |
| * status method) then you will need to provide a replacement tf_read |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) |
| { |
| struct ata_ioports *ioaddr = &ap->ioaddr; |
| |
| tf->status = ata_sff_check_status(ap); |
| tf->error = ioread8(ioaddr->error_addr); |
| tf->nsect = ioread8(ioaddr->nsect_addr); |
| tf->lbal = ioread8(ioaddr->lbal_addr); |
| tf->lbam = ioread8(ioaddr->lbam_addr); |
| tf->lbah = ioread8(ioaddr->lbah_addr); |
| tf->device = ioread8(ioaddr->device_addr); |
| |
| if (tf->flags & ATA_TFLAG_LBA48) { |
| if (likely(ioaddr->ctl_addr)) { |
| iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); |
| tf->hob_feature = ioread8(ioaddr->error_addr); |
| tf->hob_nsect = ioread8(ioaddr->nsect_addr); |
| tf->hob_lbal = ioread8(ioaddr->lbal_addr); |
| tf->hob_lbam = ioread8(ioaddr->lbam_addr); |
| tf->hob_lbah = ioread8(ioaddr->lbah_addr); |
| iowrite8(tf->ctl, ioaddr->ctl_addr); |
| ap->last_ctl = tf->ctl; |
| } else |
| WARN_ON_ONCE(1); |
| } |
| } |
| EXPORT_SYMBOL_GPL(ata_sff_tf_read); |
| |
| /** |
| * ata_sff_exec_command - issue ATA command to host controller |
| * @ap: port to which command is being issued |
| * @tf: ATA taskfile register set |
| * |
| * Issues ATA command, with proper synchronization with interrupt |
| * handler / other threads. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) |
| { |
| iowrite8(tf->command, ap->ioaddr.command_addr); |
| ata_sff_pause(ap); |
| } |
| EXPORT_SYMBOL_GPL(ata_sff_exec_command); |
| |
| /** |
| * ata_tf_to_host - issue ATA taskfile to host controller |
| * @ap: port to which command is being issued |
| * @tf: ATA taskfile register set |
| * @tag: tag of the associated command |
| * |
| * Issues ATA taskfile register set to ATA host controller, |
| * with proper synchronization with interrupt handler and |
| * other threads. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| static inline void ata_tf_to_host(struct ata_port *ap, |
| const struct ata_taskfile *tf, |
| unsigned int tag) |
| { |
| trace_ata_tf_load(ap, tf); |
| ap->ops->sff_tf_load(ap, tf); |
| trace_ata_exec_command(ap, tf, tag); |
| ap->ops->sff_exec_command(ap, tf); |
| } |
| |
| /** |
| * ata_sff_data_xfer - Transfer data by PIO |
| * @qc: queued command |
| * @buf: data buffer |
| * @buflen: buffer length |
| * @rw: read/write |
| * |
| * Transfer data from/to the device data register by PIO. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| * |
| * RETURNS: |
| * Bytes consumed. |
| */ |
| unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf, |
| unsigned int buflen, int rw) |
| { |
| struct ata_port *ap = qc->dev->link->ap; |
| void __iomem *data_addr = ap->ioaddr.data_addr; |
| unsigned int words = buflen >> 1; |
| |
| /* Transfer multiple of 2 bytes */ |
| if (rw == READ) |
| ioread16_rep(data_addr, buf, words); |
| else |
| iowrite16_rep(data_addr, buf, words); |
| |
| /* Transfer trailing byte, if any. */ |
| if (unlikely(buflen & 0x01)) { |
| unsigned char pad[2] = { }; |
| |
| /* Point buf to the tail of buffer */ |
| buf += buflen - 1; |
| |
| /* |
| * Use io*16_rep() accessors here as well to avoid pointlessly |
| * swapping bytes to and from on the big endian machines... |
| */ |
| if (rw == READ) { |
| ioread16_rep(data_addr, pad, 1); |
| *buf = pad[0]; |
| } else { |
| pad[0] = *buf; |
| iowrite16_rep(data_addr, pad, 1); |
| } |
| words++; |
| } |
| |
| return words << 1; |
| } |
| EXPORT_SYMBOL_GPL(ata_sff_data_xfer); |
| |
| /** |
| * ata_sff_data_xfer32 - Transfer data by PIO |
| * @qc: queued command |
| * @buf: data buffer |
| * @buflen: buffer length |
| * @rw: read/write |
| * |
| * Transfer data from/to the device data register by PIO using 32bit |
| * I/O operations. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| * |
| * RETURNS: |
| * Bytes consumed. |
| */ |
| |
| unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf, |
| unsigned int buflen, int rw) |
| { |
| struct ata_device *dev = qc->dev; |
| struct ata_port *ap = dev->link->ap; |
| void __iomem *data_addr = ap->ioaddr.data_addr; |
| unsigned int words = buflen >> 2; |
| int slop = buflen & 3; |
| |
| if (!(ap->pflags & ATA_PFLAG_PIO32)) |
| return ata_sff_data_xfer(qc, buf, buflen, rw); |
| |
| /* Transfer multiple of 4 bytes */ |
| if (rw == READ) |
| ioread32_rep(data_addr, buf, words); |
| else |
| iowrite32_rep(data_addr, buf, words); |
| |
| /* Transfer trailing bytes, if any */ |
| if (unlikely(slop)) { |
| unsigned char pad[4] = { }; |
| |
| /* Point buf to the tail of buffer */ |
| buf += buflen - slop; |
| |
| /* |
| * Use io*_rep() accessors here as well to avoid pointlessly |
| * swapping bytes to and from on the big endian machines... |
| */ |
| if (rw == READ) { |
| if (slop < 3) |
| ioread16_rep(data_addr, pad, 1); |
| else |
| ioread32_rep(data_addr, pad, 1); |
| memcpy(buf, pad, slop); |
| } else { |
| memcpy(pad, buf, slop); |
| if (slop < 3) |
| iowrite16_rep(data_addr, pad, 1); |
| else |
| iowrite32_rep(data_addr, pad, 1); |
| } |
| } |
| return (buflen + 1) & ~1; |
| } |
| EXPORT_SYMBOL_GPL(ata_sff_data_xfer32); |
| |
| static void ata_pio_xfer(struct ata_queued_cmd *qc, struct page *page, |
| unsigned int offset, size_t xfer_size) |
| { |
| bool do_write = (qc->tf.flags & ATA_TFLAG_WRITE); |
| unsigned char *buf; |
| |
| buf = kmap_atomic(page); |
| qc->ap->ops->sff_data_xfer(qc, buf + offset, xfer_size, do_write); |
| kunmap_atomic(buf); |
| |
| if (!do_write && !PageSlab(page)) |
| flush_dcache_page(page); |
| } |
| |
| /** |
| * ata_pio_sector - Transfer a sector of data. |
| * @qc: Command on going |
| * |
| * Transfer qc->sect_size bytes of data from/to the ATA device. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void ata_pio_sector(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| struct page *page; |
| unsigned int offset; |
| |
| if (!qc->cursg) { |
| qc->curbytes = qc->nbytes; |
| return; |
| } |
| if (qc->curbytes == qc->nbytes - qc->sect_size) |
| ap->hsm_task_state = HSM_ST_LAST; |
| |
| page = sg_page(qc->cursg); |
| offset = qc->cursg->offset + qc->cursg_ofs; |
| |
| /* get the current page and offset */ |
| page = nth_page(page, (offset >> PAGE_SHIFT)); |
| offset %= PAGE_SIZE; |
| |
| trace_ata_sff_pio_transfer_data(qc, offset, qc->sect_size); |
| |
| /* |
| * Split the transfer when it splits a page boundary. Note that the |
| * split still has to be dword aligned like all ATA data transfers. |
| */ |
| WARN_ON_ONCE(offset % 4); |
| if (offset + qc->sect_size > PAGE_SIZE) { |
| unsigned int split_len = PAGE_SIZE - offset; |
| |
| ata_pio_xfer(qc, page, offset, split_len); |
| ata_pio_xfer(qc, nth_page(page, 1), 0, |
| qc->sect_size - split_len); |
| } else { |
| ata_pio_xfer(qc, page, offset, qc->sect_size); |
| } |
| |
| qc->curbytes += qc->sect_size; |
| qc->cursg_ofs += qc->sect_size; |
| |
| if (qc->cursg_ofs == qc->cursg->length) { |
| qc->cursg = sg_next(qc->cursg); |
| if (!qc->cursg) |
| ap->hsm_task_state = HSM_ST_LAST; |
| qc->cursg_ofs = 0; |
| } |
| } |
| |
| /** |
| * ata_pio_sectors - Transfer one or many sectors. |
| * @qc: Command on going |
| * |
| * Transfer one or many sectors of data from/to the |
| * ATA device for the DRQ request. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void ata_pio_sectors(struct ata_queued_cmd *qc) |
| { |
| if (is_multi_taskfile(&qc->tf)) { |
| /* READ/WRITE MULTIPLE */ |
| unsigned int nsect; |
| |
| WARN_ON_ONCE(qc->dev->multi_count == 0); |
| |
| nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, |
| qc->dev->multi_count); |
| while (nsect--) |
| ata_pio_sector(qc); |
| } else |
| ata_pio_sector(qc); |
| |
| ata_sff_sync(qc->ap); /* flush */ |
| } |
| |
| /** |
| * atapi_send_cdb - Write CDB bytes to hardware |
| * @ap: Port to which ATAPI device is attached. |
| * @qc: Taskfile currently active |
| * |
| * When device has indicated its readiness to accept |
| * a CDB, this function is called. Send the CDB. |
| * |
| * LOCKING: |
| * caller. |
| */ |
| static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) |
| { |
| /* send SCSI cdb */ |
| trace_atapi_send_cdb(qc, 0, qc->dev->cdb_len); |
| WARN_ON_ONCE(qc->dev->cdb_len < 12); |
| |
| ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1); |
| ata_sff_sync(ap); |
| /* FIXME: If the CDB is for DMA do we need to do the transition delay |
| or is bmdma_start guaranteed to do it ? */ |
| switch (qc->tf.protocol) { |
| case ATAPI_PROT_PIO: |
| ap->hsm_task_state = HSM_ST; |
| break; |
| case ATAPI_PROT_NODATA: |
| ap->hsm_task_state = HSM_ST_LAST; |
| break; |
| #ifdef CONFIG_ATA_BMDMA |
| case ATAPI_PROT_DMA: |
| ap->hsm_task_state = HSM_ST_LAST; |
| /* initiate bmdma */ |
| trace_ata_bmdma_start(ap, &qc->tf, qc->tag); |
| ap->ops->bmdma_start(qc); |
| break; |
| #endif /* CONFIG_ATA_BMDMA */ |
| default: |
| BUG(); |
| } |
| } |
| |
| /** |
| * __atapi_pio_bytes - Transfer data from/to the ATAPI device. |
| * @qc: Command on going |
| * @bytes: number of bytes |
| * |
| * Transfer data from/to the ATAPI device. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| * |
| */ |
| static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) |
| { |
| int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; |
| struct ata_port *ap = qc->ap; |
| struct ata_device *dev = qc->dev; |
| struct ata_eh_info *ehi = &dev->link->eh_info; |
| struct scatterlist *sg; |
| struct page *page; |
| unsigned char *buf; |
| unsigned int offset, count, consumed; |
| |
| next_sg: |
| sg = qc->cursg; |
| if (unlikely(!sg)) { |
| ata_ehi_push_desc(ehi, "unexpected or too much trailing data " |
| "buf=%u cur=%u bytes=%u", |
| qc->nbytes, qc->curbytes, bytes); |
| return -1; |
| } |
| |
| page = sg_page(sg); |
| offset = sg->offset + qc->cursg_ofs; |
| |
| /* get the current page and offset */ |
| page = nth_page(page, (offset >> PAGE_SHIFT)); |
| offset %= PAGE_SIZE; |
| |
| /* don't overrun current sg */ |
| count = min(sg->length - qc->cursg_ofs, bytes); |
| |
| /* don't cross page boundaries */ |
| count = min(count, (unsigned int)PAGE_SIZE - offset); |
| |
| trace_atapi_pio_transfer_data(qc, offset, count); |
| |
| /* do the actual data transfer */ |
| buf = kmap_atomic(page); |
| consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw); |
| kunmap_atomic(buf); |
| |
| bytes -= min(bytes, consumed); |
| qc->curbytes += count; |
| qc->cursg_ofs += count; |
| |
| if (qc->cursg_ofs == sg->length) { |
| qc->cursg = sg_next(qc->cursg); |
| qc->cursg_ofs = 0; |
| } |
| |
| /* |
| * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed); |
| * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN |
| * check correctly as it doesn't know if it is the last request being |
| * made. Somebody should implement a proper sanity check. |
| */ |
| if (bytes) |
| goto next_sg; |
| return 0; |
| } |
| |
| /** |
| * atapi_pio_bytes - Transfer data from/to the ATAPI device. |
| * @qc: Command on going |
| * |
| * Transfer Transfer data from/to the ATAPI device. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void atapi_pio_bytes(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| struct ata_device *dev = qc->dev; |
| struct ata_eh_info *ehi = &dev->link->eh_info; |
| unsigned int ireason, bc_lo, bc_hi, bytes; |
| int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; |
| |
| /* Abuse qc->result_tf for temp storage of intermediate TF |
| * here to save some kernel stack usage. |
| * For normal completion, qc->result_tf is not relevant. For |
| * error, qc->result_tf is later overwritten by ata_qc_complete(). |
| * So, the correctness of qc->result_tf is not affected. |
| */ |
| ap->ops->sff_tf_read(ap, &qc->result_tf); |
| ireason = qc->result_tf.nsect; |
| bc_lo = qc->result_tf.lbam; |
| bc_hi = qc->result_tf.lbah; |
| bytes = (bc_hi << 8) | bc_lo; |
| |
| /* shall be cleared to zero, indicating xfer of data */ |
| if (unlikely(ireason & ATAPI_COD)) |
| goto atapi_check; |
| |
| /* make sure transfer direction matches expected */ |
| i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0; |
| if (unlikely(do_write != i_write)) |
| goto atapi_check; |
| |
| if (unlikely(!bytes)) |
| goto atapi_check; |
| |
| if (unlikely(__atapi_pio_bytes(qc, bytes))) |
| goto err_out; |
| ata_sff_sync(ap); /* flush */ |
| |
| return; |
| |
| atapi_check: |
| ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", |
| ireason, bytes); |
| err_out: |
| qc->err_mask |= AC_ERR_HSM; |
| ap->hsm_task_state = HSM_ST_ERR; |
| } |
| |
| /** |
| * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. |
| * @ap: the target ata_port |
| * @qc: qc on going |
| * |
| * RETURNS: |
| * 1 if ok in workqueue, 0 otherwise. |
| */ |
| static inline int ata_hsm_ok_in_wq(struct ata_port *ap, |
| struct ata_queued_cmd *qc) |
| { |
| if (qc->tf.flags & ATA_TFLAG_POLLING) |
| return 1; |
| |
| if (ap->hsm_task_state == HSM_ST_FIRST) { |
| if (qc->tf.protocol == ATA_PROT_PIO && |
| (qc->tf.flags & ATA_TFLAG_WRITE)) |
| return 1; |
| |
| if (ata_is_atapi(qc->tf.protocol) && |
| !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ata_hsm_qc_complete - finish a qc running on standard HSM |
| * @qc: Command to complete |
| * @in_wq: 1 if called from workqueue, 0 otherwise |
| * |
| * Finish @qc which is running on standard HSM. |
| * |
| * LOCKING: |
| * If @in_wq is zero, spin_lock_irqsave(host lock). |
| * Otherwise, none on entry and grabs host lock. |
| */ |
| static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) |
| { |
| struct ata_port *ap = qc->ap; |
| |
| if (in_wq) { |
| /* EH might have kicked in while host lock is released. */ |
| qc = ata_qc_from_tag(ap, qc->tag); |
| if (qc) { |
| if (likely(!(qc->err_mask & AC_ERR_HSM))) { |
| ata_sff_irq_on(ap); |
| ata_qc_complete(qc); |
| } else |
| ata_port_freeze(ap); |
| } |
| } else { |
| if (likely(!(qc->err_mask & AC_ERR_HSM))) |
| ata_qc_complete(qc); |
| else |
| ata_port_freeze(ap); |
| } |
| } |
| |
| /** |
| * ata_sff_hsm_move - move the HSM to the next state. |
| * @ap: the target ata_port |
| * @qc: qc on going |
| * @status: current device status |
| * @in_wq: 1 if called from workqueue, 0 otherwise |
| * |
| * RETURNS: |
| * 1 when poll next status needed, 0 otherwise. |
| */ |
| int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, |
| u8 status, int in_wq) |
| { |
| struct ata_link *link = qc->dev->link; |
| struct ata_eh_info *ehi = &link->eh_info; |
| int poll_next; |
| |
| lockdep_assert_held(ap->lock); |
| |
| WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0); |
| |
| /* Make sure ata_sff_qc_issue() does not throw things |
| * like DMA polling into the workqueue. Notice that |
| * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). |
| */ |
| WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc)); |
| |
| fsm_start: |
| trace_ata_sff_hsm_state(qc, status); |
| |
| switch (ap->hsm_task_state) { |
| case HSM_ST_FIRST: |
| /* Send first data block or PACKET CDB */ |
| |
| /* If polling, we will stay in the work queue after |
| * sending the data. Otherwise, interrupt handler |
| * takes over after sending the data. |
| */ |
| poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); |
| |
| /* check device status */ |
| if (unlikely((status & ATA_DRQ) == 0)) { |
| /* handle BSY=0, DRQ=0 as error */ |
| if (likely(status & (ATA_ERR | ATA_DF))) |
| /* device stops HSM for abort/error */ |
| qc->err_mask |= AC_ERR_DEV; |
| else { |
| /* HSM violation. Let EH handle this */ |
| ata_ehi_push_desc(ehi, |
| "ST_FIRST: !(DRQ|ERR|DF)"); |
| qc->err_mask |= AC_ERR_HSM; |
| } |
| |
| ap->hsm_task_state = HSM_ST_ERR; |
| goto fsm_start; |
| } |
| |
| /* Device should not ask for data transfer (DRQ=1) |
| * when it finds something wrong. |
| * We ignore DRQ here and stop the HSM by |
| * changing hsm_task_state to HSM_ST_ERR and |
| * let the EH abort the command or reset the device. |
| */ |
| if (unlikely(status & (ATA_ERR | ATA_DF))) { |
| /* Some ATAPI tape drives forget to clear the ERR bit |
| * when doing the next command (mostly request sense). |
| * We ignore ERR here to workaround and proceed sending |
| * the CDB. |
| */ |
| if (!(qc->dev->quirks & ATA_QUIRK_STUCK_ERR)) { |
| ata_ehi_push_desc(ehi, "ST_FIRST: " |
| "DRQ=1 with device error, " |
| "dev_stat 0x%X", status); |
| qc->err_mask |= AC_ERR_HSM; |
| ap->hsm_task_state = HSM_ST_ERR; |
| goto fsm_start; |
| } |
| } |
| |
| if (qc->tf.protocol == ATA_PROT_PIO) { |
| /* PIO data out protocol. |
| * send first data block. |
| */ |
| |
| /* ata_pio_sectors() might change the state |
| * to HSM_ST_LAST. so, the state is changed here |
| * before ata_pio_sectors(). |
| */ |
| ap->hsm_task_state = HSM_ST; |
| ata_pio_sectors(qc); |
| } else |
| /* send CDB */ |
| atapi_send_cdb(ap, qc); |
| |
| /* if polling, ata_sff_pio_task() handles the rest. |
| * otherwise, interrupt handler takes over from here. |
| */ |
| break; |
| |
| case HSM_ST: |
| /* complete command or read/write the data register */ |
| if (qc->tf.protocol == ATAPI_PROT_PIO) { |
| /* ATAPI PIO protocol */ |
| if ((status & ATA_DRQ) == 0) { |
| /* No more data to transfer or device error. |
| * Device error will be tagged in HSM_ST_LAST. |
| */ |
| ap->hsm_task_state = HSM_ST_LAST; |
| goto fsm_start; |
| } |
| |
| /* Device should not ask for data transfer (DRQ=1) |
| * when it finds something wrong. |
| * We ignore DRQ here and stop the HSM by |
| * changing hsm_task_state to HSM_ST_ERR and |
| * let the EH abort the command or reset the device. |
| */ |
| if (unlikely(status & (ATA_ERR | ATA_DF))) { |
| ata_ehi_push_desc(ehi, "ST-ATAPI: " |
| "DRQ=1 with device error, " |
| "dev_stat 0x%X", status); |
| qc->err_mask |= AC_ERR_HSM; |
| ap->hsm_task_state = HSM_ST_ERR; |
| goto fsm_start; |
| } |
| |
| atapi_pio_bytes(qc); |
| |
| if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) |
| /* bad ireason reported by device */ |
| goto fsm_start; |
| |
| } else { |
| /* ATA PIO protocol */ |
| if (unlikely((status & ATA_DRQ) == 0)) { |
| /* handle BSY=0, DRQ=0 as error */ |
| if (likely(status & (ATA_ERR | ATA_DF))) { |
| /* device stops HSM for abort/error */ |
| qc->err_mask |= AC_ERR_DEV; |
| |
| /* If diagnostic failed and this is |
| * IDENTIFY, it's likely a phantom |
| * device. Mark hint. |
| */ |
| if (qc->dev->quirks & |
| ATA_QUIRK_DIAGNOSTIC) |
| qc->err_mask |= |
| AC_ERR_NODEV_HINT; |
| } else { |
| /* HSM violation. Let EH handle this. |
| * Phantom devices also trigger this |
| * condition. Mark hint. |
| */ |
| ata_ehi_push_desc(ehi, "ST-ATA: " |
| "DRQ=0 without device error, " |
| "dev_stat 0x%X", status); |
| qc->err_mask |= AC_ERR_HSM | |
| AC_ERR_NODEV_HINT; |
| } |
| |
| ap->hsm_task_state = HSM_ST_ERR; |
| goto fsm_start; |
| } |
| |
| /* For PIO reads, some devices may ask for |
| * data transfer (DRQ=1) alone with ERR=1. |
| * We respect DRQ here and transfer one |
| * block of junk data before changing the |
| * hsm_task_state to HSM_ST_ERR. |
| * |
| * For PIO writes, ERR=1 DRQ=1 doesn't make |
| * sense since the data block has been |
| * transferred to the device. |
| */ |
| if (unlikely(status & (ATA_ERR | ATA_DF))) { |
| /* data might be corrputed */ |
| qc->err_mask |= AC_ERR_DEV; |
| |
| if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { |
| ata_pio_sectors(qc); |
| status = ata_wait_idle(ap); |
| } |
| |
| if (status & (ATA_BUSY | ATA_DRQ)) { |
| ata_ehi_push_desc(ehi, "ST-ATA: " |
| "BUSY|DRQ persists on ERR|DF, " |
| "dev_stat 0x%X", status); |
| qc->err_mask |= AC_ERR_HSM; |
| } |
| |
| /* There are oddball controllers with |
| * status register stuck at 0x7f and |
| * lbal/m/h at zero which makes it |
| * pass all other presence detection |
| * mechanisms we have. Set NODEV_HINT |
| * for it. Kernel bz#7241. |
| */ |
| if (status == 0x7f) |
| qc->err_mask |= AC_ERR_NODEV_HINT; |
| |
| /* ata_pio_sectors() might change the |
| * state to HSM_ST_LAST. so, the state |
| * is changed after ata_pio_sectors(). |
| */ |
| ap->hsm_task_state = HSM_ST_ERR; |
| goto fsm_start; |
| } |
| |
| ata_pio_sectors(qc); |
| |
| if (ap->hsm_task_state == HSM_ST_LAST && |
| (!(qc->tf.flags & ATA_TFLAG_WRITE))) { |
| /* all data read */ |
| status = ata_wait_idle(ap); |
| goto fsm_start; |
| } |
| } |
| |
| poll_next = 1; |
| break; |
| |
| case HSM_ST_LAST: |
| if (unlikely(!ata_ok(status))) { |
| qc->err_mask |= __ac_err_mask(status); |
| ap->hsm_task_state = HSM_ST_ERR; |
| goto fsm_start; |
| } |
| |
| /* no more data to transfer */ |
| trace_ata_sff_hsm_command_complete(qc, status); |
| |
| WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); |
| |
| ap->hsm_task_state = HSM_ST_IDLE; |
| |
| /* complete taskfile transaction */ |
| ata_hsm_qc_complete(qc, in_wq); |
| |
| poll_next = 0; |
| break; |
| |
| case HSM_ST_ERR: |
| ap->hsm_task_state = HSM_ST_IDLE; |
| |
| /* complete taskfile transaction */ |
| ata_hsm_qc_complete(qc, in_wq); |
| |
| poll_next = 0; |
| break; |
| default: |
| poll_next = 0; |
| WARN(true, "ata%d: SFF host state machine in invalid state %d", |
| ap->print_id, ap->hsm_task_state); |
| } |
| |
| return poll_next; |
| } |
| EXPORT_SYMBOL_GPL(ata_sff_hsm_move); |
| |
| void ata_sff_queue_work(struct work_struct *work) |
| { |
| queue_work(ata_sff_wq, work); |
| } |
| EXPORT_SYMBOL_GPL(ata_sff_queue_work); |
| |
| void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay) |
| { |
| queue_delayed_work(ata_sff_wq, dwork, delay); |
| } |
| EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work); |
| |
| void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay) |
| { |
| struct ata_port *ap = link->ap; |
| |
| WARN_ON((ap->sff_pio_task_link != NULL) && |
| (ap->sff_pio_task_link != link)); |
| ap->sff_pio_task_link = link; |
| |
| /* may fail if ata_sff_flush_pio_task() in progress */ |
| ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay)); |
| } |
| EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task); |
| |
| void ata_sff_flush_pio_task(struct ata_port *ap) |
| { |
| trace_ata_sff_flush_pio_task(ap); |
| |
| cancel_delayed_work_sync(&ap->sff_pio_task); |
| |
| /* |
| * We wanna reset the HSM state to IDLE. If we do so without |
| * grabbing the port lock, critical sections protected by it which |
| * expect the HSM state to stay stable may get surprised. For |
| * example, we may set IDLE in between the time |
| * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls |
| * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG(). |
| */ |
| spin_lock_irq(ap->lock); |
| ap->hsm_task_state = HSM_ST_IDLE; |
| spin_unlock_irq(ap->lock); |
| |
| ap->sff_pio_task_link = NULL; |
| } |
| |
| static void ata_sff_pio_task(struct work_struct *work) |
| { |
| struct ata_port *ap = |
| container_of(work, struct ata_port, sff_pio_task.work); |
| struct ata_link *link = ap->sff_pio_task_link; |
| struct ata_queued_cmd *qc; |
| u8 status; |
| int poll_next; |
| |
| spin_lock_irq(ap->lock); |
| |
| BUG_ON(ap->sff_pio_task_link == NULL); |
| /* qc can be NULL if timeout occurred */ |
| qc = ata_qc_from_tag(ap, link->active_tag); |
| if (!qc) { |
| ap->sff_pio_task_link = NULL; |
| goto out_unlock; |
| } |
| |
| fsm_start: |
| WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE); |
| |
| /* |
| * This is purely heuristic. This is a fast path. |
| * Sometimes when we enter, BSY will be cleared in |
| * a chk-status or two. If not, the drive is probably seeking |
| * or something. Snooze for a couple msecs, then |
| * chk-status again. If still busy, queue delayed work. |
| */ |
| status = ata_sff_busy_wait(ap, ATA_BUSY, 5); |
| if (status & ATA_BUSY) { |
| spin_unlock_irq(ap->lock); |
| ata_msleep(ap, 2); |
| spin_lock_irq(ap->lock); |
| |
| status = ata_sff_busy_wait(ap, ATA_BUSY, 10); |
| if (status & ATA_BUSY) { |
| ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE); |
| goto out_unlock; |
| } |
| } |
| |
| /* |
| * hsm_move() may trigger another command to be processed. |
| * clean the link beforehand. |
| */ |
| ap->sff_pio_task_link = NULL; |
| /* move the HSM */ |
| poll_next = ata_sff_hsm_move(ap, qc, status, 1); |
| |
| /* another command or interrupt handler |
| * may be running at this point. |
| */ |
| if (poll_next) |
| goto fsm_start; |
| out_unlock: |
| spin_unlock_irq(ap->lock); |
| } |
| |
| /** |
| * ata_sff_qc_issue - issue taskfile to a SFF controller |
| * @qc: command to issue to device |
| * |
| * This function issues a PIO or NODATA command to a SFF |
| * controller. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| * |
| * RETURNS: |
| * Zero on success, AC_ERR_* mask on failure |
| */ |
| unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| struct ata_link *link = qc->dev->link; |
| |
| /* Use polling pio if the LLD doesn't handle |
| * interrupt driven pio and atapi CDB interrupt. |
| */ |
| if (ap->flags & ATA_FLAG_PIO_POLLING) |
| qc->tf.flags |= ATA_TFLAG_POLLING; |
| |
| /* select the device */ |
| ata_dev_select(ap, qc->dev->devno, 1, 0); |
| |
| /* start the command */ |
| switch (qc->tf.protocol) { |
| case ATA_PROT_NODATA: |
| if (qc->tf.flags & ATA_TFLAG_POLLING) |
| ata_qc_set_polling(qc); |
| |
| ata_tf_to_host(ap, &qc->tf, qc->tag); |
| ap->hsm_task_state = HSM_ST_LAST; |
| |
| if (qc->tf.flags & ATA_TFLAG_POLLING) |
| ata_sff_queue_pio_task(link, 0); |
| |
| break; |
| |
| case ATA_PROT_PIO: |
| if (qc->tf.flags & ATA_TFLAG_POLLING) |
| ata_qc_set_polling(qc); |
| |
| ata_tf_to_host(ap, &qc->tf, qc->tag); |
| |
| if (qc->tf.flags & ATA_TFLAG_WRITE) { |
| /* PIO data out protocol */ |
| ap->hsm_task_state = HSM_ST_FIRST; |
| ata_sff_queue_pio_task(link, 0); |
| |
| /* always send first data block using the |
| * ata_sff_pio_task() codepath. |
| */ |
| } else { |
| /* PIO data in protocol */ |
| ap->hsm_task_state = HSM_ST; |
| |
| if (qc->tf.flags & ATA_TFLAG_POLLING) |
| ata_sff_queue_pio_task(link, 0); |
| |
| /* if polling, ata_sff_pio_task() handles the |
| * rest. otherwise, interrupt handler takes |
| * over from here. |
| */ |
| } |
| |
| break; |
| |
| case ATAPI_PROT_PIO: |
| case ATAPI_PROT_NODATA: |
| if (qc->tf.flags & ATA_TFLAG_POLLING) |
| ata_qc_set_polling(qc); |
| |
| ata_tf_to_host(ap, &qc->tf, qc->tag); |
| |
| ap->hsm_task_state = HSM_ST_FIRST; |
| |
| /* send cdb by polling if no cdb interrupt */ |
| if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || |
| (qc->tf.flags & ATA_TFLAG_POLLING)) |
| ata_sff_queue_pio_task(link, 0); |
| break; |
| |
| default: |
| return AC_ERR_SYSTEM; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(ata_sff_qc_issue); |
| |
| /** |
| * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read |
| * @qc: qc to fill result TF for |
| * |
| * @qc is finished and result TF needs to be filled. Fill it |
| * using ->sff_tf_read. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| void ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) |
| { |
| qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); |
| } |
| EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); |
| |
| static unsigned int ata_sff_idle_irq(struct ata_port *ap) |
| { |
| ap->stats.idle_irq++; |
| |
| #ifdef ATA_IRQ_TRAP |
| if ((ap->stats.idle_irq % 1000) == 0) { |
| ap->ops->sff_check_status(ap); |
| if (ap->ops->sff_irq_clear) |
| ap->ops->sff_irq_clear(ap); |
| ata_port_warn(ap, "irq trap\n"); |
| return 1; |
| } |
| #endif |
| return 0; /* irq not handled */ |
| } |
| |
| static unsigned int __ata_sff_port_intr(struct ata_port *ap, |
| struct ata_queued_cmd *qc, |
| bool hsmv_on_idle) |
| { |
| u8 status; |
| |
| trace_ata_sff_port_intr(qc, hsmv_on_idle); |
| |
| /* Check whether we are expecting interrupt in this state */ |
| switch (ap->hsm_task_state) { |
| case HSM_ST_FIRST: |
| /* Some pre-ATAPI-4 devices assert INTRQ |
| * at this state when ready to receive CDB. |
| */ |
| |
| /* Check the ATA_DFLAG_CDB_INTR flag is enough here. |
| * The flag was turned on only for atapi devices. No |
| * need to check ata_is_atapi(qc->tf.protocol) again. |
| */ |
| if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) |
| return ata_sff_idle_irq(ap); |
| break; |
| case HSM_ST_IDLE: |
| return ata_sff_idle_irq(ap); |
| default: |
| break; |
| } |
| |
| /* check main status, clearing INTRQ if needed */ |
| status = ata_sff_irq_status(ap); |
| if (status & ATA_BUSY) { |
| if (hsmv_on_idle) { |
| /* BMDMA engine is already stopped, we're screwed */ |
| qc->err_mask |= AC_ERR_HSM; |
| ap->hsm_task_state = HSM_ST_ERR; |
| } else |
| return ata_sff_idle_irq(ap); |
| } |
| |
| /* clear irq events */ |
| if (ap->ops->sff_irq_clear) |
| ap->ops->sff_irq_clear(ap); |
| |
| ata_sff_hsm_move(ap, qc, status, 0); |
| |
| return 1; /* irq handled */ |
| } |
| |
| /** |
| * ata_sff_port_intr - Handle SFF port interrupt |
| * @ap: Port on which interrupt arrived (possibly...) |
| * @qc: Taskfile currently active in engine |
| * |
| * Handle port interrupt for given queued command. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| * |
| * RETURNS: |
| * One if interrupt was handled, zero if not (shared irq). |
| */ |
| unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) |
| { |
| return __ata_sff_port_intr(ap, qc, false); |
| } |
| EXPORT_SYMBOL_GPL(ata_sff_port_intr); |
| |
| static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance, |
| unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *)) |
| { |
| struct ata_host *host = dev_instance; |
| bool retried = false; |
| unsigned int i; |
| unsigned int handled, idle, polling; |
| unsigned long flags; |
| |
| /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ |
| spin_lock_irqsave(&host->lock, flags); |
| |
| retry: |
| handled = idle = polling = 0; |
| for (i = 0; i < host->n_ports; i++) { |
| struct ata_port *ap = host->ports[i]; |
| struct ata_queued_cmd *qc; |
| |
| qc = ata_qc_from_tag(ap, ap->link.active_tag); |
| if (qc) { |
| if (!(qc->tf.flags & ATA_TFLAG_POLLING)) |
| handled |= port_intr(ap, qc); |
| else |
| polling |= 1 << i; |
| } else |
| idle |= 1 << i; |
| } |
| |
| /* |
| * If no port was expecting IRQ but the controller is actually |
| * asserting IRQ line, nobody cared will ensue. Check IRQ |
| * pending status if available and clear spurious IRQ. |
| */ |
| if (!handled && !retried) { |
| bool retry = false; |
| |
| for (i = 0; i < host->n_ports; i++) { |
| struct ata_port *ap = host->ports[i]; |
| |
| if (polling & (1 << i)) |
| continue; |
| |
| if (!ap->ops->sff_irq_check || |
| !ap->ops->sff_irq_check(ap)) |
| continue; |
| |
| if (idle & (1 << i)) { |
| ap->ops->sff_check_status(ap); |
| if (ap->ops->sff_irq_clear) |
| ap->ops->sff_irq_clear(ap); |
| } else { |
| /* clear INTRQ and check if BUSY cleared */ |
| if (!(ap->ops->sff_check_status(ap) & ATA_BUSY)) |
| retry |= true; |
| /* |
| * With command in flight, we can't do |
| * sff_irq_clear() w/o racing with completion. |
| */ |
| } |
| } |
| |
| if (retry) { |
| retried = true; |
| goto retry; |
| } |
| } |
| |
| spin_unlock_irqrestore(&host->lock, flags); |
| |
| return IRQ_RETVAL(handled); |
| } |
| |
| /** |
| * ata_sff_interrupt - Default SFF ATA host interrupt handler |
| * @irq: irq line (unused) |
| * @dev_instance: pointer to our ata_host information structure |
| * |
| * Default interrupt handler for PCI IDE devices. Calls |
| * ata_sff_port_intr() for each port that is not disabled. |
| * |
| * LOCKING: |
| * Obtains host lock during operation. |
| * |
| * RETURNS: |
| * IRQ_NONE or IRQ_HANDLED. |
| */ |
| irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) |
| { |
| return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr); |
| } |
| EXPORT_SYMBOL_GPL(ata_sff_interrupt); |
| |
| /** |
| * ata_sff_lost_interrupt - Check for an apparent lost interrupt |
| * @ap: port that appears to have timed out |
| * |
| * Called from the libata error handlers when the core code suspects |
| * an interrupt has been lost. If it has complete anything we can and |
| * then return. Interface must support altstatus for this faster |
| * recovery to occur. |
| * |
| * Locking: |
| * Caller holds host lock |
| */ |
| |
| void ata_sff_lost_interrupt(struct ata_port *ap) |
| { |
| u8 status = 0; |
| struct ata_queued_cmd *qc; |
| |
| /* Only one outstanding command per SFF channel */ |
| qc = ata_qc_from_tag(ap, ap->link.active_tag); |
| /* We cannot lose an interrupt on a non-existent or polled command */ |
| if (!qc || qc->tf.flags & ATA_TFLAG_POLLING) |
| return; |
| /* See if the controller thinks it is still busy - if so the command |
| isn't a lost IRQ but is still in progress */ |
| if (WARN_ON_ONCE(!ata_sff_altstatus(ap, &status))) |
| return; |
| if (status & ATA_BUSY) |
| return; |
| |
| /* There was a command running, we are no longer busy and we have |
| no interrupt. */ |
| ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", status); |
| /* Run the host interrupt logic as if the interrupt had not been |
| lost */ |
| ata_sff_port_intr(ap, qc); |
| } |
| EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt); |
| |
| /** |
| * ata_sff_freeze - Freeze SFF controller port |
| * @ap: port to freeze |
| * |
| * Freeze SFF controller port. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| void ata_sff_freeze(struct ata_port *ap) |
| { |
| ap->ctl |= ATA_NIEN; |
| ap->last_ctl = ap->ctl; |
| |
| ata_sff_set_devctl(ap, ap->ctl); |
| |
| /* Under certain circumstances, some controllers raise IRQ on |
| * ATA_NIEN manipulation. Also, many controllers fail to mask |
| * previously pending IRQ on ATA_NIEN assertion. Clear it. |
| */ |
| ap->ops->sff_check_status(ap); |
| |
| if (ap->ops->sff_irq_clear) |
| ap->ops->sff_irq_clear(ap); |
| } |
| EXPORT_SYMBOL_GPL(ata_sff_freeze); |
| |
| /** |
| * ata_sff_thaw - Thaw SFF controller port |
| * @ap: port to thaw |
| * |
| * Thaw SFF controller port. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| void ata_sff_thaw(struct ata_port *ap) |
| { |
| /* clear & re-enable interrupts */ |
| ap->ops->sff_check_status(ap); |
| if (ap->ops->sff_irq_clear) |
| ap->ops->sff_irq_clear(ap); |
| ata_sff_irq_on(ap); |
| } |
| EXPORT_SYMBOL_GPL(ata_sff_thaw); |
| |
| /** |
| * ata_sff_prereset - prepare SFF link for reset |
| * @link: SFF link to be reset |
| * @deadline: deadline jiffies for the operation |
| * |
| * SFF link @link is about to be reset. Initialize it. It first |
| * calls ata_std_prereset() and wait for !BSY if the port is |
| * being softreset. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| * |
| * RETURNS: |
| * Always 0. |
| */ |
| int ata_sff_prereset(struct ata_link *link, unsigned long deadline) |
| { |
| struct ata_eh_context *ehc = &link->eh_context; |
| int rc; |
| |
| /* The standard prereset is best-effort and always returns 0 */ |
| ata_std_prereset(link, deadline); |
| |
| /* if we're about to do hardreset, nothing more to do */ |
| if (ehc->i.action & ATA_EH_HARDRESET) |
| return 0; |
| |
| /* wait for !BSY if we don't know that no device is attached */ |
| if (!ata_link_offline(link)) { |
| rc = ata_sff_wait_ready(link, deadline); |
| if (rc && rc != -ENODEV) { |
| ata_link_warn(link, |
| "device not ready (errno=%d), forcing hardreset\n", |
| rc); |
| ehc->i.action |= ATA_EH_HARDRESET; |
| } |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(ata_sff_prereset); |
| |
| /** |
| * ata_devchk - PATA device presence detection |
| * @ap: ATA channel to examine |
| * @device: Device to examine (starting at zero) |
| * |
| * This technique was originally described in |
| * Hale Landis's ATADRVR (www.ata-atapi.com), and |
| * later found its way into the ATA/ATAPI spec. |
| * |
| * Write a pattern to the ATA shadow registers, |
| * and if a device is present, it will respond by |
| * correctly storing and echoing back the |
| * ATA shadow register contents. |
| * |
| * RETURN: |
| * true if device is present, false if not. |
| * |
| * LOCKING: |
| * caller. |
| */ |
| static bool ata_devchk(struct ata_port *ap, unsigned int device) |
| { |
| struct ata_ioports *ioaddr = &ap->ioaddr; |
| u8 nsect, lbal; |
| |
| ap->ops->sff_dev_select(ap, device); |
| |
| iowrite8(0x55, ioaddr->nsect_addr); |
| iowrite8(0xaa, ioaddr->lbal_addr); |
| |
| iowrite8(0xaa, ioaddr->nsect_addr); |
| iowrite8(0x55, ioaddr->lbal_addr); |
| |
| iowrite8(0x55, ioaddr->nsect_addr); |
| iowrite8(0xaa, ioaddr->lbal_addr); |
| |
| nsect = ioread8(ioaddr->nsect_addr); |
| lbal = ioread8(ioaddr->lbal_addr); |
| |
| if ((nsect == 0x55) && (lbal == 0xaa)) |
| return true; /* we found a device */ |
| |
| return false; /* nothing found */ |
| } |
| |
| /** |
| * ata_sff_dev_classify - Parse returned ATA device signature |
| * @dev: ATA device to classify (starting at zero) |
| * @present: device seems present |
| * @r_err: Value of error register on completion |
| * |
| * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, |
| * an ATA/ATAPI-defined set of values is placed in the ATA |
| * shadow registers, indicating the results of device detection |
| * and diagnostics. |
| * |
| * Select the ATA device, and read the values from the ATA shadow |
| * registers. Then parse according to the Error register value, |
| * and the spec-defined values examined by ata_dev_classify(). |
| * |
| * LOCKING: |
| * caller. |
| * |
| * RETURNS: |
| * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. |
| */ |
| unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, |
| u8 *r_err) |
| { |
| struct ata_port *ap = dev->link->ap; |
| struct ata_taskfile tf; |
| unsigned int class; |
| u8 err; |
| |
| ap->ops->sff_dev_select(ap, dev->devno); |
| |
| memset(&tf, 0, sizeof(tf)); |
| |
| ap->ops->sff_tf_read(ap, &tf); |
| err = tf.error; |
| if (r_err) |
| *r_err = err; |
| |
| /* see if device passed diags: continue and warn later */ |
| if (err == 0) |
| /* diagnostic fail : do nothing _YET_ */ |
| dev->quirks |= ATA_QUIRK_DIAGNOSTIC; |
| else if (err == 1) |
| /* do nothing */ ; |
| else if ((dev->devno == 0) && (err == 0x81)) |
| /* do nothing */ ; |
| else |
| return ATA_DEV_NONE; |
| |
| /* determine if device is ATA or ATAPI */ |
| class = ata_port_classify(ap, &tf); |
| switch (class) { |
| case ATA_DEV_UNKNOWN: |
| /* |
| * If the device failed diagnostic, it's likely to |
| * have reported incorrect device signature too. |
| * Assume ATA device if the device seems present but |
| * device signature is invalid with diagnostic |
| * failure. |
| */ |
| if (present && (dev->quirks & ATA_QUIRK_DIAGNOSTIC)) |
| class = ATA_DEV_ATA; |
| else |
| class = ATA_DEV_NONE; |
| break; |
| case ATA_DEV_ATA: |
| if (ap->ops->sff_check_status(ap) == 0) |
| class = ATA_DEV_NONE; |
| break; |
| } |
| return class; |
| } |
| EXPORT_SYMBOL_GPL(ata_sff_dev_classify); |
| |
| /** |
| * ata_sff_wait_after_reset - wait for devices to become ready after reset |
| * @link: SFF link which is just reset |
| * @devmask: mask of present devices |
| * @deadline: deadline jiffies for the operation |
| * |
| * Wait devices attached to SFF @link to become ready after |
| * reset. It contains preceding 150ms wait to avoid accessing TF |
| * status register too early. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep). |
| * |
| * RETURNS: |
| * 0 on success, -ENODEV if some or all of devices in @devmask |
| * don't seem to exist. -errno on other errors. |
| */ |
| int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, |
| unsigned long deadline) |
| { |
| struct ata_port *ap = link->ap; |
| struct ata_ioports *ioaddr = &ap->ioaddr; |
| unsigned int dev0 = devmask & (1 << 0); |
| unsigned int dev1 = devmask & (1 << 1); |
| int rc, ret = 0; |
| |
| ata_msleep(ap, ATA_WAIT_AFTER_RESET); |
| |
| /* always check readiness of the master device */ |
| rc = ata_sff_wait_ready(link, deadline); |
| /* -ENODEV means the odd clown forgot the D7 pulldown resistor |
| * and TF status is 0xff, bail out on it too. |
| */ |
| if (rc) |
| return rc; |
| |
| /* if device 1 was found in ata_devchk, wait for register |
| * access briefly, then wait for BSY to clear. |
| */ |
| if (dev1) { |
| int i; |
| |
| ap->ops->sff_dev_select(ap, 1); |
| |
| /* Wait for register access. Some ATAPI devices fail |
| * to set nsect/lbal after reset, so don't waste too |
| * much time on it. We're gonna wait for !BSY anyway. |
| */ |
| for (i = 0; i < 2; i++) { |
| u8 nsect, lbal; |
| |
| nsect = ioread8(ioaddr->nsect_addr); |
| lbal = ioread8(ioaddr->lbal_addr); |
| if ((nsect == 1) && (lbal == 1)) |
| break; |
| ata_msleep(ap, 50); /* give drive a breather */ |
| } |
| |
| rc = ata_sff_wait_ready(link, deadline); |
| if (rc) { |
| if (rc != -ENODEV) |
| return rc; |
| ret = rc; |
| } |
| } |
| |
| /* is all this really necessary? */ |
| ap->ops->sff_dev_select(ap, 0); |
| if (dev1) |
| ap->ops->sff_dev_select(ap, 1); |
| if (dev0) |
| ap->ops->sff_dev_select(ap, 0); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); |
| |
| static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, |
| unsigned long deadline) |
| { |
| struct ata_ioports *ioaddr = &ap->ioaddr; |
| |
| if (ap->ioaddr.ctl_addr) { |
| /* software reset. causes dev0 to be selected */ |
| iowrite8(ap->ctl, ioaddr->ctl_addr); |
| udelay(20); /* FIXME: flush */ |
| iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); |
| udelay(20); /* FIXME: flush */ |
| iowrite8(ap->ctl, ioaddr->ctl_addr); |
| ap->last_ctl = ap->ctl; |
| } |
| |
| /* wait the port to become ready */ |
| return ata_sff_wait_after_reset(&ap->link, devmask, deadline); |
| } |
| |
| /** |
| * ata_sff_softreset - reset host port via ATA SRST |
| * @link: ATA link to reset |
| * @classes: resulting classes of attached devices |
| * @deadline: deadline jiffies for the operation |
| * |
| * Reset host port using ATA SRST. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| * |
| * RETURNS: |
| * 0 on success, -errno otherwise. |
| */ |
| int ata_sff_softreset(struct ata_link *link, unsigned int *classes, |
| unsigned long deadline) |
| { |
| struct ata_port *ap = link->ap; |
| unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; |
| unsigned int devmask = 0; |
| int rc; |
| u8 err; |
| |
| /* determine if device 0/1 are present */ |
| if (ata_devchk(ap, 0)) |
| devmask |= (1 << 0); |
| if (slave_possible && ata_devchk(ap, 1)) |
| devmask |= (1 << 1); |
| |
| /* select device 0 again */ |
| ap->ops->sff_dev_select(ap, 0); |
| |
| /* issue bus reset */ |
| rc = ata_bus_softreset(ap, devmask, deadline); |
| /* if link is occupied, -ENODEV too is an error */ |
| if (rc && (rc != -ENODEV || sata_scr_valid(link))) { |
| ata_link_err(link, "SRST failed (errno=%d)\n", rc); |
| return rc; |
| } |
| |
| /* determine by signature whether we have ATA or ATAPI devices */ |
| classes[0] = ata_sff_dev_classify(&link->device[0], |
| devmask & (1 << 0), &err); |
| if (slave_possible && err != 0x81) |
| classes[1] = ata_sff_dev_classify(&link->device[1], |
| devmask & (1 << 1), &err); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(ata_sff_softreset); |
| |
| /** |
| * sata_sff_hardreset - reset host port via SATA phy reset |
| * @link: link to reset |
| * @class: resulting class of attached device |
| * @deadline: deadline jiffies for the operation |
| * |
| * SATA phy-reset host port using DET bits of SControl register, |
| * wait for !BSY and classify the attached device. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| * |
| * RETURNS: |
| * 0 on success, -errno otherwise. |
| */ |
| int sata_sff_hardreset(struct ata_link *link, unsigned int *class, |
| unsigned long deadline) |
| { |
| struct ata_eh_context *ehc = &link->eh_context; |
| const unsigned int *timing = sata_ehc_deb_timing(ehc); |
| bool online; |
| int rc; |
| |
| rc = sata_link_hardreset(link, timing, deadline, &online, |
| ata_sff_check_ready); |
| if (online) |
| *class = ata_sff_dev_classify(link->device, 1, NULL); |
| |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(sata_sff_hardreset); |
| |
| /** |
| * ata_sff_postreset - SFF postreset callback |
| * @link: the target SFF ata_link |
| * @classes: classes of attached devices |
| * |
| * This function is invoked after a successful reset. It first |
| * calls ata_std_postreset() and performs SFF specific postreset |
| * processing. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| */ |
| void ata_sff_postreset(struct ata_link *link, unsigned int *classes) |
| { |
| struct ata_port *ap = link->ap; |
| |
| ata_std_postreset(link, classes); |
| |
| /* is double-select really necessary? */ |
| if (classes[0] != ATA_DEV_NONE) |
| ap->ops->sff_dev_select(ap, 1); |
| if (classes[1] != ATA_DEV_NONE) |
| ap->ops->sff_dev_select(ap, 0); |
| |
| /* bail out if no device is present */ |
| if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) |
| return; |
| |
| /* set up device control */ |
| if (ata_sff_set_devctl(ap, ap->ctl)) |
| ap->last_ctl = ap->ctl; |
| } |
| EXPORT_SYMBOL_GPL(ata_sff_postreset); |
| |
| /** |
| * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers |
| * @qc: command |
| * |
| * Drain the FIFO and device of any stuck data following a command |
| * failing to complete. In some cases this is necessary before a |
| * reset will recover the device. |
| * |
| */ |
| |
| void ata_sff_drain_fifo(struct ata_queued_cmd *qc) |
| { |
| int count; |
| struct ata_port *ap; |
| |
| /* We only need to flush incoming data when a command was running */ |
| if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE) |
| return; |
| |
| ap = qc->ap; |
| /* Drain up to 64K of data before we give up this recovery method */ |
| for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) |
| && count < 65536; count += 2) |
| ioread16(ap->ioaddr.data_addr); |
| |
| if (count) |
| ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count); |
| |
| } |
| EXPORT_SYMBOL_GPL(ata_sff_drain_fifo); |
| |
| /** |
| * ata_sff_error_handler - Stock error handler for SFF controller |
| * @ap: port to handle error for |
| * |
| * Stock error handler for SFF controller. It can handle both |
| * PATA and SATA controllers. Many controllers should be able to |
| * use this EH as-is or with some added handling before and |
| * after. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| */ |
| void ata_sff_error_handler(struct ata_port *ap) |
| { |
| ata_reset_fn_t softreset = ap->ops->softreset; |
| ata_reset_fn_t hardreset = ap->ops->hardreset; |
| struct ata_queued_cmd *qc; |
| unsigned long flags; |
| |
| qc = __ata_qc_from_tag(ap, ap->link.active_tag); |
| if (qc && !(qc->flags & ATA_QCFLAG_EH)) |
| qc = NULL; |
| |
| spin_lock_irqsave(ap->lock, flags); |
| |
| /* |
| * We *MUST* do FIFO draining before we issue a reset as |
| * several devices helpfully clear their internal state and |
| * will lock solid if we touch the data port post reset. Pass |
| * qc in case anyone wants to do different PIO/DMA recovery or |
| * has per command fixups |
| */ |
| if (ap->ops->sff_drain_fifo) |
| ap->ops->sff_drain_fifo(qc); |
| |
| spin_unlock_irqrestore(ap->lock, flags); |
| |
| /* ignore built-in hardresets if SCR access is not available */ |
| if ((hardreset == sata_std_hardreset || |
| hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link)) |
| hardreset = NULL; |
| |
| ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, |
| ap->ops->postreset); |
| } |
| EXPORT_SYMBOL_GPL(ata_sff_error_handler); |
| |
| /** |
| * ata_sff_std_ports - initialize ioaddr with standard port offsets. |
| * @ioaddr: IO address structure to be initialized |
| * |
| * Utility function which initializes data_addr, error_addr, |
| * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, |
| * device_addr, status_addr, and command_addr to standard offsets |
| * relative to cmd_addr. |
| * |
| * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. |
| */ |
| void ata_sff_std_ports(struct ata_ioports *ioaddr) |
| { |
| ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; |
| ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; |
| ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; |
| ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; |
| ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; |
| ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; |
| ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; |
| ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; |
| ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; |
| ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; |
| } |
| EXPORT_SYMBOL_GPL(ata_sff_std_ports); |
| |
| #ifdef CONFIG_PCI |
| |
| static bool ata_resources_present(struct pci_dev *pdev, int port) |
| { |
| int i; |
| |
| /* Check the PCI resources for this channel are enabled */ |
| port *= 2; |
| for (i = 0; i < 2; i++) { |
| if (pci_resource_start(pdev, port + i) == 0 || |
| pci_resource_len(pdev, port + i) == 0) |
| return false; |
| } |
| return true; |
| } |
| |
| /** |
| * ata_pci_sff_init_host - acquire native PCI ATA resources and init host |
| * @host: target ATA host |
| * |
| * Acquire native PCI ATA resources for @host and initialize the |
| * first two ports of @host accordingly. Ports marked dummy are |
| * skipped and allocation failure makes the port dummy. |
| * |
| * Note that native PCI resources are valid even for legacy hosts |
| * as we fix up pdev resources array early in boot, so this |
| * function can be used for both native and legacy SFF hosts. |
| * |
| * LOCKING: |
| * Inherited from calling layer (may sleep). |
| * |
| * RETURNS: |
| * 0 if at least one port is initialized, -ENODEV if no port is |
| * available. |
| */ |
| int ata_pci_sff_init_host(struct ata_host *host) |
| { |
| struct device *gdev = host->dev; |
| struct pci_dev *pdev = to_pci_dev(gdev); |
| unsigned int mask = 0; |
| int i, rc; |
| |
| /* request, iomap BARs and init port addresses accordingly */ |
| for (i = 0; i < 2; i++) { |
| struct ata_port *ap = host->ports[i]; |
| int base = i * 2; |
| void __iomem * const *iomap; |
| |
| if (ata_port_is_dummy(ap)) |
| continue; |
| |
| /* Discard disabled ports. Some controllers show |
| * their unused channels this way. Disabled ports are |
| * made dummy. |
| */ |
| if (!ata_resources_present(pdev, i)) { |
| ap->ops = &ata_dummy_port_ops; |
| continue; |
| } |
| |
| rc = pcim_iomap_regions(pdev, 0x3 << base, |
| dev_driver_string(gdev)); |
| if (rc) { |
| dev_warn(gdev, |
| "failed to request/iomap BARs for port %d (errno=%d)\n", |
| i, rc); |
| if (rc == -EBUSY) |
| pcim_pin_device(pdev); |
| ap->ops = &ata_dummy_port_ops; |
| continue; |
| } |
| host->iomap = iomap = pcim_iomap_table(pdev); |
| |
| ap->ioaddr.cmd_addr = iomap[base]; |
| ap->ioaddr.altstatus_addr = |
| ap->ioaddr.ctl_addr = (void __iomem *) |
| ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); |
| ata_sff_std_ports(&ap->ioaddr); |
| |
| ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", |
| (unsigned long long)pci_resource_start(pdev, base), |
| (unsigned long long)pci_resource_start(pdev, base + 1)); |
| |
| mask |= 1 << i; |
| } |
| |
| if (!mask) { |
| dev_err(gdev, "no available native port\n"); |
| return -ENODEV; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); |
| |
| /** |
| * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host |
| * @pdev: target PCI device |
| * @ppi: array of port_info, must be enough for two ports |
| * @r_host: out argument for the initialized ATA host |
| * |
| * Helper to allocate PIO-only SFF ATA host for @pdev, acquire |
| * all PCI resources and initialize it accordingly in one go. |
| * |
| * LOCKING: |
| * Inherited from calling layer (may sleep). |
| * |
| * RETURNS: |
| * 0 on success, -errno otherwise. |
| */ |
| int ata_pci_sff_prepare_host(struct pci_dev *pdev, |
| const struct ata_port_info * const *ppi, |
| struct ata_host **r_host) |
| { |
| struct ata_host *host; |
| int rc; |
| |
| if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); |
| if (!host) { |
| dev_err(&pdev->dev, "failed to allocate ATA host\n"); |
| rc = -ENOMEM; |
| goto err_out; |
| } |
| |
| rc = ata_pci_sff_init_host(host); |
| if (rc) |
| goto err_out; |
| |
| devres_remove_group(&pdev->dev, NULL); |
| *r_host = host; |
| return 0; |
| |
| err_out: |
| devres_release_group(&pdev->dev, NULL); |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); |
| |
| /** |
| * ata_pci_sff_activate_host - start SFF host, request IRQ and register it |
| * @host: target SFF ATA host |
| * @irq_handler: irq_handler used when requesting IRQ(s) |
| * @sht: scsi_host_template to use when registering the host |
| * |
| * This is the counterpart of ata_host_activate() for SFF ATA |
| * hosts. This separate helper is necessary because SFF hosts |
| * use two separate interrupts in legacy mode. |
| * |
| * LOCKING: |
| * Inherited from calling layer (may sleep). |
| * |
| * RETURNS: |
| * 0 on success, -errno otherwise. |
| */ |
| int ata_pci_sff_activate_host(struct ata_host *host, |
| irq_handler_t irq_handler, |
| const struct scsi_host_template *sht) |
| { |
| struct device *dev = host->dev; |
| struct pci_dev *pdev = to_pci_dev(dev); |
| const char *drv_name = dev_driver_string(host->dev); |
| int legacy_mode = 0, rc; |
| |
| rc = ata_host_start(host); |
| if (rc) |
| return rc; |
| |
| if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { |
| u8 tmp8, mask = 0; |
| |
| /* |
| * ATA spec says we should use legacy mode when one |
| * port is in legacy mode, but disabled ports on some |
| * PCI hosts appear as fixed legacy ports, e.g SB600/700 |
| * on which the secondary port is not wired, so |
| * ignore ports that are marked as 'dummy' during |
| * this check |
| */ |
| pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); |
| if (!ata_port_is_dummy(host->ports[0])) |
| mask |= (1 << 0); |
| if (!ata_port_is_dummy(host->ports[1])) |
| mask |= (1 << 2); |
| if ((tmp8 & mask) != mask) |
| legacy_mode = 1; |
| } |
| |
| if (!devres_open_group(dev, NULL, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| if (!legacy_mode && pdev->irq) { |
| int i; |
| |
| rc = devm_request_irq(dev, pdev->irq, irq_handler, |
| IRQF_SHARED, drv_name, host); |
| if (rc) |
| goto out; |
| |
| for (i = 0; i < 2; i++) { |
| if (ata_port_is_dummy(host->ports[i])) |
| continue; |
| ata_port_desc_misc(host->ports[i], pdev->irq); |
| } |
| } else if (legacy_mode) { |
| if (!ata_port_is_dummy(host->ports[0])) { |
| rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), |
| irq_handler, IRQF_SHARED, |
| drv_name, host); |
| if (rc) |
| goto out; |
| |
| ata_port_desc_misc(host->ports[0], |
| ATA_PRIMARY_IRQ(pdev)); |
| } |
| |
| if (!ata_port_is_dummy(host->ports[1])) { |
| rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), |
| irq_handler, IRQF_SHARED, |
| drv_name, host); |
| if (rc) |
| goto out; |
| |
| ata_port_desc_misc(host->ports[1], |
| ATA_SECONDARY_IRQ(pdev)); |
| } |
| } |
| |
| rc = ata_host_register(host, sht); |
| out: |
| if (rc == 0) |
| devres_remove_group(dev, NULL); |
| else |
| devres_release_group(dev, NULL); |
| |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); |
| |
| static const struct ata_port_info *ata_sff_find_valid_pi( |
| const struct ata_port_info * const *ppi) |
| { |
| int i; |
| |
| /* look up the first valid port_info */ |
| for (i = 0; i < 2 && ppi[i]; i++) |
| if (ppi[i]->port_ops != &ata_dummy_port_ops) |
| return ppi[i]; |
| |
| return NULL; |
| } |
| |
| static int ata_pci_init_one(struct pci_dev *pdev, |
| const struct ata_port_info * const *ppi, |
| const struct scsi_host_template *sht, void *host_priv, |
| int hflags, bool bmdma) |
| { |
| struct device *dev = &pdev->dev; |
| const struct ata_port_info *pi; |
| struct ata_host *host = NULL; |
| int rc; |
| |
| pi = ata_sff_find_valid_pi(ppi); |
| if (!pi) { |
| dev_err(&pdev->dev, "no valid port_info specified\n"); |
| return -EINVAL; |
| } |
| |
| if (!devres_open_group(dev, NULL, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| rc = pcim_enable_device(pdev); |
| if (rc) |
| goto out; |
| |
| #ifdef CONFIG_ATA_BMDMA |
| if (bmdma) |
| /* prepare and activate BMDMA host */ |
| rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host); |
| else |
| #endif |
| /* prepare and activate SFF host */ |
| rc = ata_pci_sff_prepare_host(pdev, ppi, &host); |
| if (rc) |
| goto out; |
| host->private_data = host_priv; |
| host->flags |= hflags; |
| |
| #ifdef CONFIG_ATA_BMDMA |
| if (bmdma) { |
| pci_set_master(pdev); |
| rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht); |
| } else |
| #endif |
| rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); |
| out: |
| if (rc == 0) |
| devres_remove_group(&pdev->dev, NULL); |
| else |
| devres_release_group(&pdev->dev, NULL); |
| |
| return rc; |
| } |
| |
| /** |
| * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller |
| * @pdev: Controller to be initialized |
| * @ppi: array of port_info, must be enough for two ports |
| * @sht: scsi_host_template to use when registering the host |
| * @host_priv: host private_data |
| * @hflag: host flags |
| * |
| * This is a helper function which can be called from a driver's |
| * xxx_init_one() probe function if the hardware uses traditional |
| * IDE taskfile registers and is PIO only. |
| * |
| * ASSUMPTION: |
| * Nobody makes a single channel controller that appears solely as |
| * the secondary legacy port on PCI. |
| * |
| * LOCKING: |
| * Inherited from PCI layer (may sleep). |
| * |
| * RETURNS: |
| * Zero on success, negative on errno-based value on error. |
| */ |
| int ata_pci_sff_init_one(struct pci_dev *pdev, |
| const struct ata_port_info * const *ppi, |
| const struct scsi_host_template *sht, void *host_priv, int hflag) |
| { |
| return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0); |
| } |
| EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); |
| |
| #endif /* CONFIG_PCI */ |
| |
| /* |
| * BMDMA support |
| */ |
| |
| #ifdef CONFIG_ATA_BMDMA |
| |
| const struct ata_port_operations ata_bmdma_port_ops = { |
| .inherits = &ata_sff_port_ops, |
| |
| .error_handler = ata_bmdma_error_handler, |
| .post_internal_cmd = ata_bmdma_post_internal_cmd, |
| |
| .qc_prep = ata_bmdma_qc_prep, |
| .qc_issue = ata_bmdma_qc_issue, |
| |
| .sff_irq_clear = ata_bmdma_irq_clear, |
| .bmdma_setup = ata_bmdma_setup, |
| .bmdma_start = ata_bmdma_start, |
| .bmdma_stop = ata_bmdma_stop, |
| .bmdma_status = ata_bmdma_status, |
| |
| .port_start = ata_bmdma_port_start, |
| }; |
| EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); |
| |
| const struct ata_port_operations ata_bmdma32_port_ops = { |
| .inherits = &ata_bmdma_port_ops, |
| |
| .sff_data_xfer = ata_sff_data_xfer32, |
| .port_start = ata_bmdma_port_start32, |
| }; |
| EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops); |
| |
| /** |
| * ata_bmdma_fill_sg - Fill PCI IDE PRD table |
| * @qc: Metadata associated with taskfile to be transferred |
| * |
| * Fill PCI IDE PRD (scatter-gather) table with segments |
| * associated with the current disk command. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| * |
| */ |
| static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| struct ata_bmdma_prd *prd = ap->bmdma_prd; |
| struct scatterlist *sg; |
| unsigned int si, pi; |
| |
| pi = 0; |
| for_each_sg(qc->sg, sg, qc->n_elem, si) { |
| u32 addr, offset; |
| u32 sg_len, len; |
| |
| /* determine if physical DMA addr spans 64K boundary. |
| * Note h/w doesn't support 64-bit, so we unconditionally |
| * truncate dma_addr_t to u32. |
| */ |
| addr = (u32) sg_dma_address(sg); |
| sg_len = sg_dma_len(sg); |
| |
| while (sg_len) { |
| offset = addr & 0xffff; |
| len = sg_len; |
| if ((offset + sg_len) > 0x10000) |
| len = 0x10000 - offset; |
| |
| prd[pi].addr = cpu_to_le32(addr); |
| prd[pi].flags_len = cpu_to_le32(len & 0xffff); |
| |
| pi++; |
| sg_len -= len; |
| addr += len; |
| } |
| } |
| |
| prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); |
| } |
| |
| /** |
| * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table |
| * @qc: Metadata associated with taskfile to be transferred |
| * |
| * Fill PCI IDE PRD (scatter-gather) table with segments |
| * associated with the current disk command. Perform the fill |
| * so that we avoid writing any length 64K records for |
| * controllers that don't follow the spec. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| * |
| */ |
| static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| struct ata_bmdma_prd *prd = ap->bmdma_prd; |
| struct scatterlist *sg; |
| unsigned int si, pi; |
| |
| pi = 0; |
| for_each_sg(qc->sg, sg, qc->n_elem, si) { |
| u32 addr, offset; |
| u32 sg_len, len, blen; |
| |
| /* determine if physical DMA addr spans 64K boundary. |
| * Note h/w doesn't support 64-bit, so we unconditionally |
| * truncate dma_addr_t to u32. |
| */ |
| addr = (u32) sg_dma_address(sg); |
| sg_len = sg_dma_len(sg); |
| |
| while (sg_len) { |
| offset = addr & 0xffff; |
| len = sg_len; |
| if ((offset + sg_len) > 0x10000) |
| len = 0x10000 - offset; |
| |
| blen = len & 0xffff; |
| prd[pi].addr = cpu_to_le32(addr); |
| if (blen == 0) { |
| /* Some PATA chipsets like the CS5530 can't |
| cope with 0x0000 meaning 64K as the spec |
| says */ |
| prd[pi].flags_len = cpu_to_le32(0x8000); |
| blen = 0x8000; |
| prd[++pi].addr = cpu_to_le32(addr + 0x8000); |
| } |
| prd[pi].flags_len = cpu_to_le32(blen); |
| |
| pi++; |
| sg_len -= len; |
| addr += len; |
| } |
| } |
| |
| prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); |
| } |
| |
| /** |
| * ata_bmdma_qc_prep - Prepare taskfile for submission |
| * @qc: Metadata associated with taskfile to be prepared |
| * |
| * Prepare ATA taskfile for submission. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc) |
| { |
| if (!(qc->flags & ATA_QCFLAG_DMAMAP)) |
| return AC_ERR_OK; |
| |
| ata_bmdma_fill_sg(qc); |
| |
| return AC_ERR_OK; |
| } |
| EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep); |
| |
| /** |
| * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission |
| * @qc: Metadata associated with taskfile to be prepared |
| * |
| * Prepare ATA taskfile for submission. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc) |
| { |
| if (!(qc->flags & ATA_QCFLAG_DMAMAP)) |
| return AC_ERR_OK; |
| |
| ata_bmdma_fill_sg_dumb(qc); |
| |
| return AC_ERR_OK; |
| } |
| EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep); |
| |
| /** |
| * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller |
| * @qc: command to issue to device |
| * |
| * This function issues a PIO, NODATA or DMA command to a |
| * SFF/BMDMA controller. PIO and NODATA are handled by |
| * ata_sff_qc_issue(). |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| * |
| * RETURNS: |
| * Zero on success, AC_ERR_* mask on failure |
| */ |
| unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| struct ata_link *link = qc->dev->link; |
| |
| /* defer PIO handling to sff_qc_issue */ |
| if (!ata_is_dma(qc->tf.protocol)) |
| return ata_sff_qc_issue(qc); |
| |
| /* select the device */ |
| ata_dev_select(ap, qc->dev->devno, 1, 0); |
| |
| /* start the command */ |
| switch (qc->tf.protocol) { |
| case ATA_PROT_DMA: |
| WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); |
| |
| trace_ata_tf_load(ap, &qc->tf); |
| ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ |
| trace_ata_bmdma_setup(ap, &qc->tf, qc->tag); |
| ap->ops->bmdma_setup(qc); /* set up bmdma */ |
| trace_ata_bmdma_start(ap, &qc->tf, qc->tag); |
| ap->ops->bmdma_start(qc); /* initiate bmdma */ |
| ap->hsm_task_state = HSM_ST_LAST; |
| break; |
| |
| case ATAPI_PROT_DMA: |
| WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); |
| |
| trace_ata_tf_load(ap, &qc->tf); |
| ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ |
| trace_ata_bmdma_setup(ap, &qc->tf, qc->tag); |
| ap->ops->bmdma_setup(qc); /* set up bmdma */ |
| ap->hsm_task_state = HSM_ST_FIRST; |
| |
| /* send cdb by polling if no cdb interrupt */ |
| if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) |
| ata_sff_queue_pio_task(link, 0); |
| break; |
| |
| default: |
| WARN_ON(1); |
| return AC_ERR_SYSTEM; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue); |
| |
| /** |
| * ata_bmdma_port_intr - Handle BMDMA port interrupt |
| * @ap: Port on which interrupt arrived (possibly...) |
| * @qc: Taskfile currently active in engine |
| * |
| * Handle port interrupt for given queued command. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| * |
| * RETURNS: |
| * One if interrupt was handled, zero if not (shared irq). |
| */ |
| unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) |
| { |
| struct ata_eh_info *ehi = &ap->link.eh_info; |
| u8 host_stat = 0; |
| bool bmdma_stopped = false; |
| unsigned int handled; |
| |
| if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) { |
| /* check status of DMA engine */ |
| host_stat = ap->ops->bmdma_status(ap); |
| trace_ata_bmdma_status(ap, host_stat); |
| |
| /* if it's not our irq... */ |
| if (!(host_stat & ATA_DMA_INTR)) |
| return ata_sff_idle_irq(ap); |
| |
| /* before we do anything else, clear DMA-Start bit */ |
| trace_ata_bmdma_stop(ap, &qc->tf, qc->tag); |
| ap->ops->bmdma_stop(qc); |
| bmdma_stopped = true; |
| |
| if (unlikely(host_stat & ATA_DMA_ERR)) { |
| /* error when transferring data to/from memory */ |
| qc->err_mask |= AC_ERR_HOST_BUS; |
| ap->hsm_task_state = HSM_ST_ERR; |
| } |
| } |
| |
| handled = __ata_sff_port_intr(ap, qc, bmdma_stopped); |
| |
| if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol)) |
| ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); |
| |
| return handled; |
| } |
| EXPORT_SYMBOL_GPL(ata_bmdma_port_intr); |
| |
| /** |
| * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler |
| * @irq: irq line (unused) |
| * @dev_instance: pointer to our ata_host information structure |
| * |
| * Default interrupt handler for PCI IDE devices. Calls |
| * ata_bmdma_port_intr() for each port that is not disabled. |
| * |
| * LOCKING: |
| * Obtains host lock during operation. |
| * |
| * RETURNS: |
| * IRQ_NONE or IRQ_HANDLED. |
| */ |
| irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance) |
| { |
| return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr); |
| } |
| EXPORT_SYMBOL_GPL(ata_bmdma_interrupt); |
| |
| /** |
| * ata_bmdma_error_handler - Stock error handler for BMDMA controller |
| * @ap: port to handle error for |
| * |
| * Stock error handler for BMDMA controller. It can handle both |
| * PATA and SATA controllers. Most BMDMA controllers should be |
| * able to use this EH as-is or with some added handling before |
| * and after. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| */ |
| void ata_bmdma_error_handler(struct ata_port *ap) |
| { |
| struct ata_queued_cmd *qc; |
| unsigned long flags; |
| bool thaw = false; |
| |
| qc = __ata_qc_from_tag(ap, ap->link.active_tag); |
| if (qc && !(qc->flags & ATA_QCFLAG_EH)) |
| qc = NULL; |
| |
| /* reset PIO HSM and stop DMA engine */ |
| spin_lock_irqsave(ap->lock, flags); |
| |
| if (qc && ata_is_dma(qc->tf.protocol)) { |
| u8 host_stat; |
| |
| host_stat = ap->ops->bmdma_status(ap); |
| trace_ata_bmdma_status(ap, host_stat); |
| |
| /* BMDMA controllers indicate host bus error by |
| * setting DMA_ERR bit and timing out. As it wasn't |
| * really a timeout event, adjust error mask and |
| * cancel frozen state. |
| */ |
| if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { |
| qc->err_mask = AC_ERR_HOST_BUS; |
| thaw = true; |
| } |
| |
| trace_ata_bmdma_stop(ap, &qc->tf, qc->tag); |
| ap->ops->bmdma_stop(qc); |
| |
| /* if we're gonna thaw, make sure IRQ is clear */ |
| if (thaw) { |
| ap->ops->sff_check_status(ap); |
| if (ap->ops->sff_irq_clear) |
| ap->ops->sff_irq_clear(ap); |
| } |
| } |
| |
| spin_unlock_irqrestore(ap->lock, flags); |
| |
| if (thaw) |
| ata_eh_thaw_port(ap); |
| |
| ata_sff_error_handler(ap); |
| } |
| EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); |
| |
| /** |
| * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA |
| * @qc: internal command to clean up |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| */ |
| void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| unsigned long flags; |
| |
| if (ata_is_dma(qc->tf.protocol)) { |
| spin_lock_irqsave(ap->lock, flags); |
| trace_ata_bmdma_stop(ap, &qc->tf, qc->tag); |
| ap->ops->bmdma_stop(qc); |
| spin_unlock_irqrestore(ap->lock, flags); |
| } |
| } |
| EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); |
| |
| /** |
| * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt. |
| * @ap: Port associated with this ATA transaction. |
| * |
| * Clear interrupt and error flags in DMA status register. |
| * |
| * May be used as the irq_clear() entry in ata_port_operations. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| void ata_bmdma_irq_clear(struct ata_port *ap) |
| { |
| void __iomem *mmio = ap->ioaddr.bmdma_addr; |
| |
| if (!mmio) |
| return; |
| |
| iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); |
| } |
| EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); |
| |
| /** |
| * ata_bmdma_setup - Set up PCI IDE BMDMA transaction |
| * @qc: Info associated with this ATA transaction. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| void ata_bmdma_setup(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); |
| u8 dmactl; |
| |
| /* load PRD table addr. */ |
| mb(); /* make sure PRD table writes are visible to controller */ |
| iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); |
| |
| /* specify data direction, triple-check start bit is clear */ |
| dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); |
| dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); |
| if (!rw) |
| dmactl |= ATA_DMA_WR; |
| iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); |
| |
| /* issue r/w command */ |
| ap->ops->sff_exec_command(ap, &qc->tf); |
| } |
| EXPORT_SYMBOL_GPL(ata_bmdma_setup); |
| |
| /** |
| * ata_bmdma_start - Start a PCI IDE BMDMA transaction |
| * @qc: Info associated with this ATA transaction. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| void ata_bmdma_start(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| u8 dmactl; |
| |
| /* start host DMA transaction */ |
| dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); |
| iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); |
| |
| /* Strictly, one may wish to issue an ioread8() here, to |
| * flush the mmio write. However, control also passes |
| * to the hardware at this point, and it will interrupt |
| * us when we are to resume control. So, in effect, |
| * we don't care when the mmio write flushes. |
| * Further, a read of the DMA status register _immediately_ |
| * following the write may not be what certain flaky hardware |
| * is expected, so I think it is best to not add a readb() |
| * without first all the MMIO ATA cards/mobos. |
| * Or maybe I'm just being paranoid. |
| * |
| * FIXME: The posting of this write means I/O starts are |
| * unnecessarily delayed for MMIO |
| */ |
| } |
| EXPORT_SYMBOL_GPL(ata_bmdma_start); |
| |
| /** |
| * ata_bmdma_stop - Stop PCI IDE BMDMA transfer |
| * @qc: Command we are ending DMA for |
| * |
| * Clears the ATA_DMA_START flag in the dma control register |
| * |
| * May be used as the bmdma_stop() entry in ata_port_operations. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| void ata_bmdma_stop(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| void __iomem *mmio = ap->ioaddr.bmdma_addr; |
| |
| /* clear start/stop bit */ |
| iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, |
| mmio + ATA_DMA_CMD); |
| |
| /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ |
| ata_sff_dma_pause(ap); |
| } |
| EXPORT_SYMBOL_GPL(ata_bmdma_stop); |
| |
| /** |
| * ata_bmdma_status - Read PCI IDE BMDMA status |
| * @ap: Port associated with this ATA transaction. |
| * |
| * Read and return BMDMA status register. |
| * |
| * May be used as the bmdma_status() entry in ata_port_operations. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| u8 ata_bmdma_status(struct ata_port *ap) |
| { |
| return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); |
| } |
| EXPORT_SYMBOL_GPL(ata_bmdma_status); |
| |
| |
| /** |
| * ata_bmdma_port_start - Set port up for bmdma. |
| * @ap: Port to initialize |
| * |
| * Called just after data structures for each port are |
| * initialized. Allocates space for PRD table. |
| * |
| * May be used as the port_start() entry in ata_port_operations. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| int ata_bmdma_port_start(struct ata_port *ap) |
| { |
| if (ap->mwdma_mask || ap->udma_mask) { |
| ap->bmdma_prd = |
| dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ, |
| &ap->bmdma_prd_dma, GFP_KERNEL); |
| if (!ap->bmdma_prd) |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(ata_bmdma_port_start); |
| |
| /** |
| * ata_bmdma_port_start32 - Set port up for dma. |
| * @ap: Port to initialize |
| * |
| * Called just after data structures for each port are |
| * initialized. Enables 32bit PIO and allocates space for PRD |
| * table. |
| * |
| * May be used as the port_start() entry in ata_port_operations for |
| * devices that are capable of 32bit PIO. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| int ata_bmdma_port_start32(struct ata_port *ap) |
| { |
| ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE; |
| return ata_bmdma_port_start(ap); |
| } |
| EXPORT_SYMBOL_GPL(ata_bmdma_port_start32); |
| |
| #ifdef CONFIG_PCI |
| |
| /** |
| * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex |
| * @pdev: PCI device |
| * |
| * Some PCI ATA devices report simplex mode but in fact can be told to |
| * enter non simplex mode. This implements the necessary logic to |
| * perform the task on such devices. Calling it on other devices will |
| * have -undefined- behaviour. |
| */ |
| int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) |
| { |
| #ifdef CONFIG_HAS_IOPORT |
| unsigned long bmdma = pci_resource_start(pdev, 4); |
| u8 simplex; |
| |
| if (bmdma == 0) |
| return -ENOENT; |
| |
| simplex = inb(bmdma + 0x02); |
| outb(simplex & 0x60, bmdma + 0x02); |
| simplex = inb(bmdma + 0x02); |
| if (simplex & 0x80) |
| return -EOPNOTSUPP; |
| return 0; |
| #else |
| return -ENOENT; |
| #endif /* CONFIG_HAS_IOPORT */ |
| } |
| EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); |
| |
| static void ata_bmdma_nodma(struct ata_host *host, const char *reason) |
| { |
| int i; |
| |
| dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason); |
| |
| for (i = 0; i < 2; i++) { |
| host->ports[i]->mwdma_mask = 0; |
| host->ports[i]->udma_mask = 0; |
| } |
| } |
| |
| /** |
| * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host |
| * @host: target ATA host |
| * |
| * Acquire PCI BMDMA resources and initialize @host accordingly. |
| * |
| * LOCKING: |
| * Inherited from calling layer (may sleep). |
| */ |
| void ata_pci_bmdma_init(struct ata_host *host) |
| { |
| struct device *gdev = host->dev; |
| struct pci_dev *pdev = to_pci_dev(gdev); |
| int i, rc; |
| |
| /* No BAR4 allocation: No DMA */ |
| if (pci_resource_start(pdev, 4) == 0) { |
| ata_bmdma_nodma(host, "BAR4 is zero"); |
| return; |
| } |
| |
| /* |
| * Some controllers require BMDMA region to be initialized |
| * even if DMA is not in use to clear IRQ status via |
| * ->sff_irq_clear method. Try to initialize bmdma_addr |
| * regardless of dma masks. |
| */ |
| rc = dma_set_mask_and_coherent(&pdev->dev, ATA_DMA_MASK); |
| if (rc) |
| ata_bmdma_nodma(host, "failed to set dma mask"); |
| |
| /* request and iomap DMA region */ |
| rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); |
| if (rc) { |
| ata_bmdma_nodma(host, "failed to request/iomap BAR4"); |
| return; |
| } |
| host->iomap = pcim_iomap_table(pdev); |
| |
| for (i = 0; i < 2; i++) { |
| struct ata_port *ap = host->ports[i]; |
| void __iomem *bmdma = host->iomap[4] + 8 * i; |
| |
| if (ata_port_is_dummy(ap)) |
| continue; |
| |
| ap->ioaddr.bmdma_addr = bmdma; |
| if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && |
| (ioread8(bmdma + 2) & 0x80)) |
| host->flags |= ATA_HOST_SIMPLEX; |
| |
| ata_port_desc(ap, "bmdma 0x%llx", |
| (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); |
| } |
| } |
| EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); |
| |
| /** |
| * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host |
| * @pdev: target PCI device |
| * @ppi: array of port_info, must be enough for two ports |
| * @r_host: out argument for the initialized ATA host |
| * |
| * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI |
| * resources and initialize it accordingly in one go. |
| * |
| * LOCKING: |
| * Inherited from calling layer (may sleep). |
| * |
| * RETURNS: |
| * 0 on success, -errno otherwise. |
| */ |
| int ata_pci_bmdma_prepare_host(struct pci_dev *pdev, |
| const struct ata_port_info * const * ppi, |
| struct ata_host **r_host) |
| { |
| int rc; |
| |
| rc = ata_pci_sff_prepare_host(pdev, ppi, r_host); |
| if (rc) |
| return rc; |
| |
| ata_pci_bmdma_init(*r_host); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host); |
| |
| /** |
| * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller |
| * @pdev: Controller to be initialized |
| * @ppi: array of port_info, must be enough for two ports |
| * @sht: scsi_host_template to use when registering the host |
| * @host_priv: host private_data |
| * @hflags: host flags |
| * |
| * This function is similar to ata_pci_sff_init_one() but also |
| * takes care of BMDMA initialization. |
| * |
| * LOCKING: |
| * Inherited from PCI layer (may sleep). |
| * |
| * RETURNS: |
| * Zero on success, negative on errno-based value on error. |
| */ |
| int ata_pci_bmdma_init_one(struct pci_dev *pdev, |
| const struct ata_port_info * const * ppi, |
| const struct scsi_host_template *sht, void *host_priv, |
| int hflags) |
| { |
| return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1); |
| } |
| EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one); |
| |
| #endif /* CONFIG_PCI */ |
| #endif /* CONFIG_ATA_BMDMA */ |
| |
| /** |
| * ata_sff_port_init - Initialize SFF/BMDMA ATA port |
| * @ap: Port to initialize |
| * |
| * Called on port allocation to initialize SFF/BMDMA specific |
| * fields. |
| * |
| * LOCKING: |
| * None. |
| */ |
| void ata_sff_port_init(struct ata_port *ap) |
| { |
| INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task); |
| ap->ctl = ATA_DEVCTL_OBS; |
| ap->last_ctl = 0xFF; |
| } |
| |
| int __init ata_sff_init(void) |
| { |
| ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE); |
| if (!ata_sff_wq) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| void ata_sff_exit(void) |
| { |
| destroy_workqueue(ata_sff_wq); |
| } |