| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Tegra30 External Memory Controller driver |
| * |
| * Based on downstream driver from NVIDIA and tegra124-emc.c |
| * Copyright (C) 2011-2014 NVIDIA Corporation |
| * |
| * Author: Dmitry Osipenko <digetx@gmail.com> |
| * Copyright (C) 2019 GRATE-DRIVER project |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/clk.h> |
| #include <linux/clk/tegra.h> |
| #include <linux/debugfs.h> |
| #include <linux/delay.h> |
| #include <linux/err.h> |
| #include <linux/interconnect-provider.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/iopoll.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/mutex.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_opp.h> |
| #include <linux/slab.h> |
| #include <linux/sort.h> |
| #include <linux/types.h> |
| |
| #include <soc/tegra/common.h> |
| #include <soc/tegra/fuse.h> |
| |
| #include "../jedec_ddr.h" |
| #include "../of_memory.h" |
| |
| #include "mc.h" |
| |
| #define EMC_INTSTATUS 0x000 |
| #define EMC_INTMASK 0x004 |
| #define EMC_DBG 0x008 |
| #define EMC_ADR_CFG 0x010 |
| #define EMC_CFG 0x00c |
| #define EMC_REFCTRL 0x020 |
| #define EMC_TIMING_CONTROL 0x028 |
| #define EMC_RC 0x02c |
| #define EMC_RFC 0x030 |
| #define EMC_RAS 0x034 |
| #define EMC_RP 0x038 |
| #define EMC_R2W 0x03c |
| #define EMC_W2R 0x040 |
| #define EMC_R2P 0x044 |
| #define EMC_W2P 0x048 |
| #define EMC_RD_RCD 0x04c |
| #define EMC_WR_RCD 0x050 |
| #define EMC_RRD 0x054 |
| #define EMC_REXT 0x058 |
| #define EMC_WDV 0x05c |
| #define EMC_QUSE 0x060 |
| #define EMC_QRST 0x064 |
| #define EMC_QSAFE 0x068 |
| #define EMC_RDV 0x06c |
| #define EMC_REFRESH 0x070 |
| #define EMC_BURST_REFRESH_NUM 0x074 |
| #define EMC_PDEX2WR 0x078 |
| #define EMC_PDEX2RD 0x07c |
| #define EMC_PCHG2PDEN 0x080 |
| #define EMC_ACT2PDEN 0x084 |
| #define EMC_AR2PDEN 0x088 |
| #define EMC_RW2PDEN 0x08c |
| #define EMC_TXSR 0x090 |
| #define EMC_TCKE 0x094 |
| #define EMC_TFAW 0x098 |
| #define EMC_TRPAB 0x09c |
| #define EMC_TCLKSTABLE 0x0a0 |
| #define EMC_TCLKSTOP 0x0a4 |
| #define EMC_TREFBW 0x0a8 |
| #define EMC_QUSE_EXTRA 0x0ac |
| #define EMC_ODT_WRITE 0x0b0 |
| #define EMC_ODT_READ 0x0b4 |
| #define EMC_WEXT 0x0b8 |
| #define EMC_CTT 0x0bc |
| #define EMC_MRS_WAIT_CNT 0x0c8 |
| #define EMC_MRS 0x0cc |
| #define EMC_EMRS 0x0d0 |
| #define EMC_SELF_REF 0x0e0 |
| #define EMC_MRW 0x0e8 |
| #define EMC_MRR 0x0ec |
| #define EMC_XM2DQSPADCTRL3 0x0f8 |
| #define EMC_FBIO_SPARE 0x100 |
| #define EMC_FBIO_CFG5 0x104 |
| #define EMC_FBIO_CFG6 0x114 |
| #define EMC_CFG_RSV 0x120 |
| #define EMC_AUTO_CAL_CONFIG 0x2a4 |
| #define EMC_AUTO_CAL_INTERVAL 0x2a8 |
| #define EMC_AUTO_CAL_STATUS 0x2ac |
| #define EMC_STATUS 0x2b4 |
| #define EMC_CFG_2 0x2b8 |
| #define EMC_CFG_DIG_DLL 0x2bc |
| #define EMC_CFG_DIG_DLL_PERIOD 0x2c0 |
| #define EMC_CTT_DURATION 0x2d8 |
| #define EMC_CTT_TERM_CTRL 0x2dc |
| #define EMC_ZCAL_INTERVAL 0x2e0 |
| #define EMC_ZCAL_WAIT_CNT 0x2e4 |
| #define EMC_ZQ_CAL 0x2ec |
| #define EMC_XM2CMDPADCTRL 0x2f0 |
| #define EMC_XM2DQSPADCTRL2 0x2fc |
| #define EMC_XM2DQPADCTRL2 0x304 |
| #define EMC_XM2CLKPADCTRL 0x308 |
| #define EMC_XM2COMPPADCTRL 0x30c |
| #define EMC_XM2VTTGENPADCTRL 0x310 |
| #define EMC_XM2VTTGENPADCTRL2 0x314 |
| #define EMC_XM2QUSEPADCTRL 0x318 |
| #define EMC_DLL_XFORM_DQS0 0x328 |
| #define EMC_DLL_XFORM_DQS1 0x32c |
| #define EMC_DLL_XFORM_DQS2 0x330 |
| #define EMC_DLL_XFORM_DQS3 0x334 |
| #define EMC_DLL_XFORM_DQS4 0x338 |
| #define EMC_DLL_XFORM_DQS5 0x33c |
| #define EMC_DLL_XFORM_DQS6 0x340 |
| #define EMC_DLL_XFORM_DQS7 0x344 |
| #define EMC_DLL_XFORM_QUSE0 0x348 |
| #define EMC_DLL_XFORM_QUSE1 0x34c |
| #define EMC_DLL_XFORM_QUSE2 0x350 |
| #define EMC_DLL_XFORM_QUSE3 0x354 |
| #define EMC_DLL_XFORM_QUSE4 0x358 |
| #define EMC_DLL_XFORM_QUSE5 0x35c |
| #define EMC_DLL_XFORM_QUSE6 0x360 |
| #define EMC_DLL_XFORM_QUSE7 0x364 |
| #define EMC_DLL_XFORM_DQ0 0x368 |
| #define EMC_DLL_XFORM_DQ1 0x36c |
| #define EMC_DLL_XFORM_DQ2 0x370 |
| #define EMC_DLL_XFORM_DQ3 0x374 |
| #define EMC_DLI_TRIM_TXDQS0 0x3a8 |
| #define EMC_DLI_TRIM_TXDQS1 0x3ac |
| #define EMC_DLI_TRIM_TXDQS2 0x3b0 |
| #define EMC_DLI_TRIM_TXDQS3 0x3b4 |
| #define EMC_DLI_TRIM_TXDQS4 0x3b8 |
| #define EMC_DLI_TRIM_TXDQS5 0x3bc |
| #define EMC_DLI_TRIM_TXDQS6 0x3c0 |
| #define EMC_DLI_TRIM_TXDQS7 0x3c4 |
| #define EMC_STALL_THEN_EXE_BEFORE_CLKCHANGE 0x3c8 |
| #define EMC_STALL_THEN_EXE_AFTER_CLKCHANGE 0x3cc |
| #define EMC_UNSTALL_RW_AFTER_CLKCHANGE 0x3d0 |
| #define EMC_SEL_DPD_CTRL 0x3d8 |
| #define EMC_PRE_REFRESH_REQ_CNT 0x3dc |
| #define EMC_DYN_SELF_REF_CONTROL 0x3e0 |
| #define EMC_TXSRDLL 0x3e4 |
| |
| #define EMC_STATUS_TIMING_UPDATE_STALLED BIT(23) |
| |
| #define EMC_MODE_SET_DLL_RESET BIT(8) |
| #define EMC_MODE_SET_LONG_CNT BIT(26) |
| |
| #define EMC_SELF_REF_CMD_ENABLED BIT(0) |
| |
| #define DRAM_DEV_SEL_ALL (0 << 30) |
| #define DRAM_DEV_SEL_0 BIT(31) |
| #define DRAM_DEV_SEL_1 BIT(30) |
| #define DRAM_BROADCAST(num) \ |
| ((num) > 1 ? DRAM_DEV_SEL_ALL : DRAM_DEV_SEL_0) |
| |
| #define EMC_ZQ_CAL_CMD BIT(0) |
| #define EMC_ZQ_CAL_LONG BIT(4) |
| #define EMC_ZQ_CAL_LONG_CMD_DEV0 \ |
| (DRAM_DEV_SEL_0 | EMC_ZQ_CAL_LONG | EMC_ZQ_CAL_CMD) |
| #define EMC_ZQ_CAL_LONG_CMD_DEV1 \ |
| (DRAM_DEV_SEL_1 | EMC_ZQ_CAL_LONG | EMC_ZQ_CAL_CMD) |
| |
| #define EMC_DBG_READ_MUX_ASSEMBLY BIT(0) |
| #define EMC_DBG_WRITE_MUX_ACTIVE BIT(1) |
| #define EMC_DBG_FORCE_UPDATE BIT(2) |
| #define EMC_DBG_CFG_PRIORITY BIT(24) |
| |
| #define EMC_CFG5_QUSE_MODE_SHIFT 13 |
| #define EMC_CFG5_QUSE_MODE_MASK (7 << EMC_CFG5_QUSE_MODE_SHIFT) |
| |
| #define EMC_CFG5_QUSE_MODE_INTERNAL_LPBK 2 |
| #define EMC_CFG5_QUSE_MODE_PULSE_INTERN 3 |
| |
| #define EMC_SEL_DPD_CTRL_QUSE_DPD_ENABLE BIT(9) |
| |
| #define EMC_XM2COMPPADCTRL_VREF_CAL_ENABLE BIT(10) |
| |
| #define EMC_XM2QUSEPADCTRL_IVREF_ENABLE BIT(4) |
| |
| #define EMC_XM2DQSPADCTRL2_VREF_ENABLE BIT(5) |
| #define EMC_XM2DQSPADCTRL3_VREF_ENABLE BIT(5) |
| |
| #define EMC_AUTO_CAL_STATUS_ACTIVE BIT(31) |
| |
| #define EMC_FBIO_CFG5_DRAM_TYPE_MASK 0x3 |
| |
| #define EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK 0x3ff |
| #define EMC_MRS_WAIT_CNT_LONG_WAIT_SHIFT 16 |
| #define EMC_MRS_WAIT_CNT_LONG_WAIT_MASK \ |
| (0x3ff << EMC_MRS_WAIT_CNT_LONG_WAIT_SHIFT) |
| |
| #define EMC_REFCTRL_DEV_SEL_MASK 0x3 |
| #define EMC_REFCTRL_ENABLE BIT(31) |
| #define EMC_REFCTRL_ENABLE_ALL(num) \ |
| (((num) > 1 ? 0 : 2) | EMC_REFCTRL_ENABLE) |
| #define EMC_REFCTRL_DISABLE_ALL(num) ((num) > 1 ? 0 : 2) |
| |
| #define EMC_CFG_PERIODIC_QRST BIT(21) |
| #define EMC_CFG_DYN_SREF_ENABLE BIT(28) |
| |
| #define EMC_CLKCHANGE_REQ_ENABLE BIT(0) |
| #define EMC_CLKCHANGE_PD_ENABLE BIT(1) |
| #define EMC_CLKCHANGE_SR_ENABLE BIT(2) |
| |
| #define EMC_TIMING_UPDATE BIT(0) |
| |
| #define EMC_REFRESH_OVERFLOW_INT BIT(3) |
| #define EMC_CLKCHANGE_COMPLETE_INT BIT(4) |
| #define EMC_MRR_DIVLD_INT BIT(5) |
| |
| #define EMC_MRR_DEV_SELECTN GENMASK(31, 30) |
| #define EMC_MRR_MRR_MA GENMASK(23, 16) |
| #define EMC_MRR_MRR_DATA GENMASK(15, 0) |
| |
| #define EMC_ADR_CFG_EMEM_NUMDEV BIT(0) |
| |
| enum emc_dram_type { |
| DRAM_TYPE_DDR3, |
| DRAM_TYPE_DDR1, |
| DRAM_TYPE_LPDDR2, |
| DRAM_TYPE_DDR2, |
| }; |
| |
| enum emc_dll_change { |
| DLL_CHANGE_NONE, |
| DLL_CHANGE_ON, |
| DLL_CHANGE_OFF |
| }; |
| |
| static const u16 emc_timing_registers[] = { |
| [0] = EMC_RC, |
| [1] = EMC_RFC, |
| [2] = EMC_RAS, |
| [3] = EMC_RP, |
| [4] = EMC_R2W, |
| [5] = EMC_W2R, |
| [6] = EMC_R2P, |
| [7] = EMC_W2P, |
| [8] = EMC_RD_RCD, |
| [9] = EMC_WR_RCD, |
| [10] = EMC_RRD, |
| [11] = EMC_REXT, |
| [12] = EMC_WEXT, |
| [13] = EMC_WDV, |
| [14] = EMC_QUSE, |
| [15] = EMC_QRST, |
| [16] = EMC_QSAFE, |
| [17] = EMC_RDV, |
| [18] = EMC_REFRESH, |
| [19] = EMC_BURST_REFRESH_NUM, |
| [20] = EMC_PRE_REFRESH_REQ_CNT, |
| [21] = EMC_PDEX2WR, |
| [22] = EMC_PDEX2RD, |
| [23] = EMC_PCHG2PDEN, |
| [24] = EMC_ACT2PDEN, |
| [25] = EMC_AR2PDEN, |
| [26] = EMC_RW2PDEN, |
| [27] = EMC_TXSR, |
| [28] = EMC_TXSRDLL, |
| [29] = EMC_TCKE, |
| [30] = EMC_TFAW, |
| [31] = EMC_TRPAB, |
| [32] = EMC_TCLKSTABLE, |
| [33] = EMC_TCLKSTOP, |
| [34] = EMC_TREFBW, |
| [35] = EMC_QUSE_EXTRA, |
| [36] = EMC_FBIO_CFG6, |
| [37] = EMC_ODT_WRITE, |
| [38] = EMC_ODT_READ, |
| [39] = EMC_FBIO_CFG5, |
| [40] = EMC_CFG_DIG_DLL, |
| [41] = EMC_CFG_DIG_DLL_PERIOD, |
| [42] = EMC_DLL_XFORM_DQS0, |
| [43] = EMC_DLL_XFORM_DQS1, |
| [44] = EMC_DLL_XFORM_DQS2, |
| [45] = EMC_DLL_XFORM_DQS3, |
| [46] = EMC_DLL_XFORM_DQS4, |
| [47] = EMC_DLL_XFORM_DQS5, |
| [48] = EMC_DLL_XFORM_DQS6, |
| [49] = EMC_DLL_XFORM_DQS7, |
| [50] = EMC_DLL_XFORM_QUSE0, |
| [51] = EMC_DLL_XFORM_QUSE1, |
| [52] = EMC_DLL_XFORM_QUSE2, |
| [53] = EMC_DLL_XFORM_QUSE3, |
| [54] = EMC_DLL_XFORM_QUSE4, |
| [55] = EMC_DLL_XFORM_QUSE5, |
| [56] = EMC_DLL_XFORM_QUSE6, |
| [57] = EMC_DLL_XFORM_QUSE7, |
| [58] = EMC_DLI_TRIM_TXDQS0, |
| [59] = EMC_DLI_TRIM_TXDQS1, |
| [60] = EMC_DLI_TRIM_TXDQS2, |
| [61] = EMC_DLI_TRIM_TXDQS3, |
| [62] = EMC_DLI_TRIM_TXDQS4, |
| [63] = EMC_DLI_TRIM_TXDQS5, |
| [64] = EMC_DLI_TRIM_TXDQS6, |
| [65] = EMC_DLI_TRIM_TXDQS7, |
| [66] = EMC_DLL_XFORM_DQ0, |
| [67] = EMC_DLL_XFORM_DQ1, |
| [68] = EMC_DLL_XFORM_DQ2, |
| [69] = EMC_DLL_XFORM_DQ3, |
| [70] = EMC_XM2CMDPADCTRL, |
| [71] = EMC_XM2DQSPADCTRL2, |
| [72] = EMC_XM2DQPADCTRL2, |
| [73] = EMC_XM2CLKPADCTRL, |
| [74] = EMC_XM2COMPPADCTRL, |
| [75] = EMC_XM2VTTGENPADCTRL, |
| [76] = EMC_XM2VTTGENPADCTRL2, |
| [77] = EMC_XM2QUSEPADCTRL, |
| [78] = EMC_XM2DQSPADCTRL3, |
| [79] = EMC_CTT_TERM_CTRL, |
| [80] = EMC_ZCAL_INTERVAL, |
| [81] = EMC_ZCAL_WAIT_CNT, |
| [82] = EMC_MRS_WAIT_CNT, |
| [83] = EMC_AUTO_CAL_CONFIG, |
| [84] = EMC_CTT, |
| [85] = EMC_CTT_DURATION, |
| [86] = EMC_DYN_SELF_REF_CONTROL, |
| [87] = EMC_FBIO_SPARE, |
| [88] = EMC_CFG_RSV, |
| }; |
| |
| struct emc_timing { |
| unsigned long rate; |
| |
| u32 data[ARRAY_SIZE(emc_timing_registers)]; |
| |
| u32 emc_auto_cal_interval; |
| u32 emc_mode_1; |
| u32 emc_mode_2; |
| u32 emc_mode_reset; |
| u32 emc_zcal_cnt_long; |
| bool emc_cfg_periodic_qrst; |
| bool emc_cfg_dyn_self_ref; |
| }; |
| |
| enum emc_rate_request_type { |
| EMC_RATE_DEBUG, |
| EMC_RATE_ICC, |
| EMC_RATE_TYPE_MAX, |
| }; |
| |
| struct emc_rate_request { |
| unsigned long min_rate; |
| unsigned long max_rate; |
| }; |
| |
| struct tegra_emc { |
| struct device *dev; |
| struct tegra_mc *mc; |
| struct icc_provider provider; |
| struct notifier_block clk_nb; |
| struct clk *clk; |
| void __iomem *regs; |
| unsigned int irq; |
| bool bad_state; |
| |
| struct emc_timing *new_timing; |
| struct emc_timing *timings; |
| unsigned int num_timings; |
| |
| u32 mc_override; |
| u32 emc_cfg; |
| |
| u32 emc_mode_1; |
| u32 emc_mode_2; |
| u32 emc_mode_reset; |
| |
| bool vref_cal_toggle : 1; |
| bool zcal_long : 1; |
| bool dll_on : 1; |
| |
| struct { |
| struct dentry *root; |
| unsigned long min_rate; |
| unsigned long max_rate; |
| } debugfs; |
| |
| /* |
| * There are multiple sources in the EMC driver which could request |
| * a min/max clock rate, these rates are contained in this array. |
| */ |
| struct emc_rate_request requested_rate[EMC_RATE_TYPE_MAX]; |
| |
| /* protect shared rate-change code path */ |
| struct mutex rate_lock; |
| |
| bool mrr_error; |
| }; |
| |
| static int emc_seq_update_timing(struct tegra_emc *emc) |
| { |
| u32 val; |
| int err; |
| |
| writel_relaxed(EMC_TIMING_UPDATE, emc->regs + EMC_TIMING_CONTROL); |
| |
| err = readl_relaxed_poll_timeout_atomic(emc->regs + EMC_STATUS, val, |
| !(val & EMC_STATUS_TIMING_UPDATE_STALLED), |
| 1, 200); |
| if (err) { |
| dev_err(emc->dev, "failed to update timing: %d\n", err); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static irqreturn_t tegra_emc_isr(int irq, void *data) |
| { |
| struct tegra_emc *emc = data; |
| u32 intmask = EMC_REFRESH_OVERFLOW_INT; |
| u32 status; |
| |
| status = readl_relaxed(emc->regs + EMC_INTSTATUS) & intmask; |
| if (!status) |
| return IRQ_NONE; |
| |
| /* notify about HW problem */ |
| if (status & EMC_REFRESH_OVERFLOW_INT) |
| dev_err_ratelimited(emc->dev, |
| "refresh request overflow timeout\n"); |
| |
| /* clear interrupts */ |
| writel_relaxed(status, emc->regs + EMC_INTSTATUS); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static struct emc_timing *emc_find_timing(struct tegra_emc *emc, |
| unsigned long rate) |
| { |
| struct emc_timing *timing = NULL; |
| unsigned int i; |
| |
| for (i = 0; i < emc->num_timings; i++) { |
| if (emc->timings[i].rate >= rate) { |
| timing = &emc->timings[i]; |
| break; |
| } |
| } |
| |
| if (!timing) { |
| dev_err(emc->dev, "no timing for rate %lu\n", rate); |
| return NULL; |
| } |
| |
| return timing; |
| } |
| |
| static bool emc_dqs_preset(struct tegra_emc *emc, struct emc_timing *timing, |
| bool *schmitt_to_vref) |
| { |
| bool preset = false; |
| u32 val; |
| |
| if (timing->data[71] & EMC_XM2DQSPADCTRL2_VREF_ENABLE) { |
| val = readl_relaxed(emc->regs + EMC_XM2DQSPADCTRL2); |
| |
| if (!(val & EMC_XM2DQSPADCTRL2_VREF_ENABLE)) { |
| val |= EMC_XM2DQSPADCTRL2_VREF_ENABLE; |
| writel_relaxed(val, emc->regs + EMC_XM2DQSPADCTRL2); |
| |
| preset = true; |
| } |
| } |
| |
| if (timing->data[78] & EMC_XM2DQSPADCTRL3_VREF_ENABLE) { |
| val = readl_relaxed(emc->regs + EMC_XM2DQSPADCTRL3); |
| |
| if (!(val & EMC_XM2DQSPADCTRL3_VREF_ENABLE)) { |
| val |= EMC_XM2DQSPADCTRL3_VREF_ENABLE; |
| writel_relaxed(val, emc->regs + EMC_XM2DQSPADCTRL3); |
| |
| preset = true; |
| } |
| } |
| |
| if (timing->data[77] & EMC_XM2QUSEPADCTRL_IVREF_ENABLE) { |
| val = readl_relaxed(emc->regs + EMC_XM2QUSEPADCTRL); |
| |
| if (!(val & EMC_XM2QUSEPADCTRL_IVREF_ENABLE)) { |
| val |= EMC_XM2QUSEPADCTRL_IVREF_ENABLE; |
| writel_relaxed(val, emc->regs + EMC_XM2QUSEPADCTRL); |
| |
| *schmitt_to_vref = true; |
| preset = true; |
| } |
| } |
| |
| return preset; |
| } |
| |
| static int emc_prepare_mc_clk_cfg(struct tegra_emc *emc, unsigned long rate) |
| { |
| struct tegra_mc *mc = emc->mc; |
| unsigned int misc0_index = 16; |
| unsigned int i; |
| bool same; |
| |
| for (i = 0; i < mc->num_timings; i++) { |
| if (mc->timings[i].rate != rate) |
| continue; |
| |
| if (mc->timings[i].emem_data[misc0_index] & BIT(27)) |
| same = true; |
| else |
| same = false; |
| |
| return tegra20_clk_prepare_emc_mc_same_freq(emc->clk, same); |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int emc_prepare_timing_change(struct tegra_emc *emc, unsigned long rate) |
| { |
| struct emc_timing *timing = emc_find_timing(emc, rate); |
| enum emc_dll_change dll_change; |
| enum emc_dram_type dram_type; |
| bool schmitt_to_vref = false; |
| unsigned int pre_wait = 0; |
| bool qrst_used = false; |
| unsigned int dram_num; |
| unsigned int i; |
| u32 fbio_cfg5; |
| u32 emc_dbg; |
| u32 val; |
| int err; |
| |
| if (!timing || emc->bad_state) |
| return -EINVAL; |
| |
| dev_dbg(emc->dev, "%s: using timing rate %lu for requested rate %lu\n", |
| __func__, timing->rate, rate); |
| |
| emc->bad_state = true; |
| |
| err = emc_prepare_mc_clk_cfg(emc, rate); |
| if (err) { |
| dev_err(emc->dev, "mc clock preparation failed: %d\n", err); |
| return err; |
| } |
| |
| emc->vref_cal_toggle = false; |
| emc->mc_override = mc_readl(emc->mc, MC_EMEM_ARB_OVERRIDE); |
| emc->emc_cfg = readl_relaxed(emc->regs + EMC_CFG); |
| emc_dbg = readl_relaxed(emc->regs + EMC_DBG); |
| |
| if (emc->dll_on == !!(timing->emc_mode_1 & 0x1)) |
| dll_change = DLL_CHANGE_NONE; |
| else if (timing->emc_mode_1 & 0x1) |
| dll_change = DLL_CHANGE_ON; |
| else |
| dll_change = DLL_CHANGE_OFF; |
| |
| emc->dll_on = !!(timing->emc_mode_1 & 0x1); |
| |
| if (timing->data[80] && !readl_relaxed(emc->regs + EMC_ZCAL_INTERVAL)) |
| emc->zcal_long = true; |
| else |
| emc->zcal_long = false; |
| |
| fbio_cfg5 = readl_relaxed(emc->regs + EMC_FBIO_CFG5); |
| dram_type = fbio_cfg5 & EMC_FBIO_CFG5_DRAM_TYPE_MASK; |
| |
| dram_num = tegra_mc_get_emem_device_count(emc->mc); |
| |
| /* disable dynamic self-refresh */ |
| if (emc->emc_cfg & EMC_CFG_DYN_SREF_ENABLE) { |
| emc->emc_cfg &= ~EMC_CFG_DYN_SREF_ENABLE; |
| writel_relaxed(emc->emc_cfg, emc->regs + EMC_CFG); |
| |
| pre_wait = 5; |
| } |
| |
| /* update MC arbiter settings */ |
| val = mc_readl(emc->mc, MC_EMEM_ARB_OUTSTANDING_REQ); |
| if (!(val & MC_EMEM_ARB_OUTSTANDING_REQ_HOLDOFF_OVERRIDE) || |
| ((val & MC_EMEM_ARB_OUTSTANDING_REQ_MAX_MASK) > 0x50)) { |
| |
| val = MC_EMEM_ARB_OUTSTANDING_REQ_LIMIT_ENABLE | |
| MC_EMEM_ARB_OUTSTANDING_REQ_HOLDOFF_OVERRIDE | 0x50; |
| mc_writel(emc->mc, val, MC_EMEM_ARB_OUTSTANDING_REQ); |
| mc_writel(emc->mc, MC_TIMING_UPDATE, MC_TIMING_CONTROL); |
| } |
| |
| if (emc->mc_override & MC_EMEM_ARB_OVERRIDE_EACK_MASK) |
| mc_writel(emc->mc, |
| emc->mc_override & ~MC_EMEM_ARB_OVERRIDE_EACK_MASK, |
| MC_EMEM_ARB_OVERRIDE); |
| |
| /* check DQ/DQS VREF delay */ |
| if (emc_dqs_preset(emc, timing, &schmitt_to_vref)) { |
| if (pre_wait < 3) |
| pre_wait = 3; |
| } |
| |
| if (pre_wait) { |
| err = emc_seq_update_timing(emc); |
| if (err) |
| return err; |
| |
| udelay(pre_wait); |
| } |
| |
| /* disable auto-calibration if VREF mode is switching */ |
| if (timing->emc_auto_cal_interval) { |
| val = readl_relaxed(emc->regs + EMC_XM2COMPPADCTRL); |
| val ^= timing->data[74]; |
| |
| if (val & EMC_XM2COMPPADCTRL_VREF_CAL_ENABLE) { |
| writel_relaxed(0, emc->regs + EMC_AUTO_CAL_INTERVAL); |
| |
| err = readl_relaxed_poll_timeout_atomic( |
| emc->regs + EMC_AUTO_CAL_STATUS, val, |
| !(val & EMC_AUTO_CAL_STATUS_ACTIVE), 1, 300); |
| if (err) { |
| dev_err(emc->dev, |
| "auto-cal finish timeout: %d\n", err); |
| return err; |
| } |
| |
| emc->vref_cal_toggle = true; |
| } |
| } |
| |
| /* program shadow registers */ |
| for (i = 0; i < ARRAY_SIZE(timing->data); i++) { |
| /* EMC_XM2CLKPADCTRL should be programmed separately */ |
| if (i != 73) |
| writel_relaxed(timing->data[i], |
| emc->regs + emc_timing_registers[i]); |
| } |
| |
| err = tegra_mc_write_emem_configuration(emc->mc, timing->rate); |
| if (err) |
| return err; |
| |
| /* DDR3: predict MRS long wait count */ |
| if (dram_type == DRAM_TYPE_DDR3 && dll_change == DLL_CHANGE_ON) { |
| u32 cnt = 512; |
| |
| if (emc->zcal_long) |
| cnt -= dram_num * 256; |
| |
| val = timing->data[82] & EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK; |
| if (cnt < val) |
| cnt = val; |
| |
| val = timing->data[82] & ~EMC_MRS_WAIT_CNT_LONG_WAIT_MASK; |
| val |= (cnt << EMC_MRS_WAIT_CNT_LONG_WAIT_SHIFT) & |
| EMC_MRS_WAIT_CNT_LONG_WAIT_MASK; |
| |
| writel_relaxed(val, emc->regs + EMC_MRS_WAIT_CNT); |
| } |
| |
| /* this read also completes the writes */ |
| val = readl_relaxed(emc->regs + EMC_SEL_DPD_CTRL); |
| |
| if (!(val & EMC_SEL_DPD_CTRL_QUSE_DPD_ENABLE) && schmitt_to_vref) { |
| u32 cur_mode, new_mode; |
| |
| cur_mode = fbio_cfg5 & EMC_CFG5_QUSE_MODE_MASK; |
| cur_mode >>= EMC_CFG5_QUSE_MODE_SHIFT; |
| |
| new_mode = timing->data[39] & EMC_CFG5_QUSE_MODE_MASK; |
| new_mode >>= EMC_CFG5_QUSE_MODE_SHIFT; |
| |
| if ((cur_mode != EMC_CFG5_QUSE_MODE_PULSE_INTERN && |
| cur_mode != EMC_CFG5_QUSE_MODE_INTERNAL_LPBK) || |
| (new_mode != EMC_CFG5_QUSE_MODE_PULSE_INTERN && |
| new_mode != EMC_CFG5_QUSE_MODE_INTERNAL_LPBK)) |
| qrst_used = true; |
| } |
| |
| /* flow control marker 1 */ |
| writel_relaxed(0x1, emc->regs + EMC_STALL_THEN_EXE_BEFORE_CLKCHANGE); |
| |
| /* enable periodic reset */ |
| if (qrst_used) { |
| writel_relaxed(emc_dbg | EMC_DBG_WRITE_MUX_ACTIVE, |
| emc->regs + EMC_DBG); |
| writel_relaxed(emc->emc_cfg | EMC_CFG_PERIODIC_QRST, |
| emc->regs + EMC_CFG); |
| writel_relaxed(emc_dbg, emc->regs + EMC_DBG); |
| } |
| |
| /* disable auto-refresh to save time after clock change */ |
| writel_relaxed(EMC_REFCTRL_DISABLE_ALL(dram_num), |
| emc->regs + EMC_REFCTRL); |
| |
| /* turn off DLL and enter self-refresh on DDR3 */ |
| if (dram_type == DRAM_TYPE_DDR3) { |
| if (dll_change == DLL_CHANGE_OFF) |
| writel_relaxed(timing->emc_mode_1, |
| emc->regs + EMC_EMRS); |
| |
| writel_relaxed(DRAM_BROADCAST(dram_num) | |
| EMC_SELF_REF_CMD_ENABLED, |
| emc->regs + EMC_SELF_REF); |
| } |
| |
| /* flow control marker 2 */ |
| writel_relaxed(0x1, emc->regs + EMC_STALL_THEN_EXE_AFTER_CLKCHANGE); |
| |
| /* enable write-active MUX, update unshadowed pad control */ |
| writel_relaxed(emc_dbg | EMC_DBG_WRITE_MUX_ACTIVE, emc->regs + EMC_DBG); |
| writel_relaxed(timing->data[73], emc->regs + EMC_XM2CLKPADCTRL); |
| |
| /* restore periodic QRST and disable write-active MUX */ |
| val = !!(emc->emc_cfg & EMC_CFG_PERIODIC_QRST); |
| if (qrst_used || timing->emc_cfg_periodic_qrst != val) { |
| if (timing->emc_cfg_periodic_qrst) |
| emc->emc_cfg |= EMC_CFG_PERIODIC_QRST; |
| else |
| emc->emc_cfg &= ~EMC_CFG_PERIODIC_QRST; |
| |
| writel_relaxed(emc->emc_cfg, emc->regs + EMC_CFG); |
| } |
| writel_relaxed(emc_dbg, emc->regs + EMC_DBG); |
| |
| /* exit self-refresh on DDR3 */ |
| if (dram_type == DRAM_TYPE_DDR3) |
| writel_relaxed(DRAM_BROADCAST(dram_num), |
| emc->regs + EMC_SELF_REF); |
| |
| /* set DRAM-mode registers */ |
| if (dram_type == DRAM_TYPE_DDR3) { |
| if (timing->emc_mode_1 != emc->emc_mode_1) |
| writel_relaxed(timing->emc_mode_1, |
| emc->regs + EMC_EMRS); |
| |
| if (timing->emc_mode_2 != emc->emc_mode_2) |
| writel_relaxed(timing->emc_mode_2, |
| emc->regs + EMC_EMRS); |
| |
| if (timing->emc_mode_reset != emc->emc_mode_reset || |
| dll_change == DLL_CHANGE_ON) { |
| val = timing->emc_mode_reset; |
| if (dll_change == DLL_CHANGE_ON) { |
| val |= EMC_MODE_SET_DLL_RESET; |
| val |= EMC_MODE_SET_LONG_CNT; |
| } else { |
| val &= ~EMC_MODE_SET_DLL_RESET; |
| } |
| writel_relaxed(val, emc->regs + EMC_MRS); |
| } |
| } else { |
| if (timing->emc_mode_2 != emc->emc_mode_2) |
| writel_relaxed(timing->emc_mode_2, |
| emc->regs + EMC_MRW); |
| |
| if (timing->emc_mode_1 != emc->emc_mode_1) |
| writel_relaxed(timing->emc_mode_1, |
| emc->regs + EMC_MRW); |
| } |
| |
| emc->emc_mode_1 = timing->emc_mode_1; |
| emc->emc_mode_2 = timing->emc_mode_2; |
| emc->emc_mode_reset = timing->emc_mode_reset; |
| |
| /* issue ZCAL command if turning ZCAL on */ |
| if (emc->zcal_long) { |
| writel_relaxed(EMC_ZQ_CAL_LONG_CMD_DEV0, |
| emc->regs + EMC_ZQ_CAL); |
| |
| if (dram_num > 1) |
| writel_relaxed(EMC_ZQ_CAL_LONG_CMD_DEV1, |
| emc->regs + EMC_ZQ_CAL); |
| } |
| |
| /* flow control marker 3 */ |
| writel_relaxed(0x1, emc->regs + EMC_UNSTALL_RW_AFTER_CLKCHANGE); |
| |
| /* |
| * Read and discard an arbitrary MC register (Note: EMC registers |
| * can't be used) to ensure the register writes are completed. |
| */ |
| mc_readl(emc->mc, MC_EMEM_ARB_OVERRIDE); |
| |
| return 0; |
| } |
| |
| static int emc_complete_timing_change(struct tegra_emc *emc, |
| unsigned long rate) |
| { |
| struct emc_timing *timing = emc_find_timing(emc, rate); |
| unsigned int dram_num; |
| int err; |
| u32 v; |
| |
| err = readl_relaxed_poll_timeout_atomic(emc->regs + EMC_INTSTATUS, v, |
| v & EMC_CLKCHANGE_COMPLETE_INT, |
| 1, 100); |
| if (err) { |
| dev_err(emc->dev, "emc-car handshake timeout: %d\n", err); |
| return err; |
| } |
| |
| /* re-enable auto-refresh */ |
| dram_num = tegra_mc_get_emem_device_count(emc->mc); |
| writel_relaxed(EMC_REFCTRL_ENABLE_ALL(dram_num), |
| emc->regs + EMC_REFCTRL); |
| |
| /* restore auto-calibration */ |
| if (emc->vref_cal_toggle) |
| writel_relaxed(timing->emc_auto_cal_interval, |
| emc->regs + EMC_AUTO_CAL_INTERVAL); |
| |
| /* restore dynamic self-refresh */ |
| if (timing->emc_cfg_dyn_self_ref) { |
| emc->emc_cfg |= EMC_CFG_DYN_SREF_ENABLE; |
| writel_relaxed(emc->emc_cfg, emc->regs + EMC_CFG); |
| } |
| |
| /* set number of clocks to wait after each ZQ command */ |
| if (emc->zcal_long) |
| writel_relaxed(timing->emc_zcal_cnt_long, |
| emc->regs + EMC_ZCAL_WAIT_CNT); |
| |
| /* wait for writes to settle */ |
| udelay(2); |
| |
| /* update restored timing */ |
| err = emc_seq_update_timing(emc); |
| if (!err) |
| emc->bad_state = false; |
| |
| /* restore early ACK */ |
| mc_writel(emc->mc, emc->mc_override, MC_EMEM_ARB_OVERRIDE); |
| |
| return err; |
| } |
| |
| static int emc_unprepare_timing_change(struct tegra_emc *emc, |
| unsigned long rate) |
| { |
| if (!emc->bad_state) { |
| /* shouldn't ever happen in practice */ |
| dev_err(emc->dev, "timing configuration can't be reverted\n"); |
| emc->bad_state = true; |
| } |
| |
| return 0; |
| } |
| |
| static int emc_clk_change_notify(struct notifier_block *nb, |
| unsigned long msg, void *data) |
| { |
| struct tegra_emc *emc = container_of(nb, struct tegra_emc, clk_nb); |
| struct clk_notifier_data *cnd = data; |
| int err; |
| |
| switch (msg) { |
| case PRE_RATE_CHANGE: |
| /* |
| * Disable interrupt since read accesses are prohibited after |
| * stalling. |
| */ |
| disable_irq(emc->irq); |
| err = emc_prepare_timing_change(emc, cnd->new_rate); |
| enable_irq(emc->irq); |
| break; |
| |
| case ABORT_RATE_CHANGE: |
| err = emc_unprepare_timing_change(emc, cnd->old_rate); |
| break; |
| |
| case POST_RATE_CHANGE: |
| err = emc_complete_timing_change(emc, cnd->new_rate); |
| break; |
| |
| default: |
| return NOTIFY_DONE; |
| } |
| |
| return notifier_from_errno(err); |
| } |
| |
| static int load_one_timing_from_dt(struct tegra_emc *emc, |
| struct emc_timing *timing, |
| struct device_node *node) |
| { |
| u32 value; |
| int err; |
| |
| err = of_property_read_u32(node, "clock-frequency", &value); |
| if (err) { |
| dev_err(emc->dev, "timing %pOF: failed to read rate: %d\n", |
| node, err); |
| return err; |
| } |
| |
| timing->rate = value; |
| |
| err = of_property_read_u32_array(node, "nvidia,emc-configuration", |
| timing->data, |
| ARRAY_SIZE(emc_timing_registers)); |
| if (err) { |
| dev_err(emc->dev, |
| "timing %pOF: failed to read emc timing data: %d\n", |
| node, err); |
| return err; |
| } |
| |
| #define EMC_READ_BOOL(prop, dtprop) \ |
| timing->prop = of_property_read_bool(node, dtprop); |
| |
| #define EMC_READ_U32(prop, dtprop) \ |
| err = of_property_read_u32(node, dtprop, &timing->prop); \ |
| if (err) { \ |
| dev_err(emc->dev, \ |
| "timing %pOFn: failed to read " #prop ": %d\n", \ |
| node, err); \ |
| return err; \ |
| } |
| |
| EMC_READ_U32(emc_auto_cal_interval, "nvidia,emc-auto-cal-interval") |
| EMC_READ_U32(emc_mode_1, "nvidia,emc-mode-1") |
| EMC_READ_U32(emc_mode_2, "nvidia,emc-mode-2") |
| EMC_READ_U32(emc_mode_reset, "nvidia,emc-mode-reset") |
| EMC_READ_U32(emc_zcal_cnt_long, "nvidia,emc-zcal-cnt-long") |
| EMC_READ_BOOL(emc_cfg_dyn_self_ref, "nvidia,emc-cfg-dyn-self-ref") |
| EMC_READ_BOOL(emc_cfg_periodic_qrst, "nvidia,emc-cfg-periodic-qrst") |
| |
| #undef EMC_READ_U32 |
| #undef EMC_READ_BOOL |
| |
| dev_dbg(emc->dev, "%s: %pOF: rate %lu\n", __func__, node, timing->rate); |
| |
| return 0; |
| } |
| |
| static int cmp_timings(const void *_a, const void *_b) |
| { |
| const struct emc_timing *a = _a; |
| const struct emc_timing *b = _b; |
| |
| if (a->rate < b->rate) |
| return -1; |
| |
| if (a->rate > b->rate) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int emc_check_mc_timings(struct tegra_emc *emc) |
| { |
| struct tegra_mc *mc = emc->mc; |
| unsigned int i; |
| |
| if (emc->num_timings != mc->num_timings) { |
| dev_err(emc->dev, "emc/mc timings number mismatch: %u %u\n", |
| emc->num_timings, mc->num_timings); |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < mc->num_timings; i++) { |
| if (emc->timings[i].rate != mc->timings[i].rate) { |
| dev_err(emc->dev, |
| "emc/mc timing rate mismatch: %lu %lu\n", |
| emc->timings[i].rate, mc->timings[i].rate); |
| return -EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int emc_load_timings_from_dt(struct tegra_emc *emc, |
| struct device_node *node) |
| { |
| struct emc_timing *timing; |
| int child_count; |
| int err; |
| |
| child_count = of_get_child_count(node); |
| if (!child_count) { |
| dev_err(emc->dev, "no memory timings in: %pOF\n", node); |
| return -EINVAL; |
| } |
| |
| emc->timings = devm_kcalloc(emc->dev, child_count, sizeof(*timing), |
| GFP_KERNEL); |
| if (!emc->timings) |
| return -ENOMEM; |
| |
| emc->num_timings = child_count; |
| timing = emc->timings; |
| |
| for_each_child_of_node_scoped(node, child) { |
| err = load_one_timing_from_dt(emc, timing++, child); |
| if (err) |
| return err; |
| } |
| |
| sort(emc->timings, emc->num_timings, sizeof(*timing), cmp_timings, |
| NULL); |
| |
| err = emc_check_mc_timings(emc); |
| if (err) |
| return err; |
| |
| dev_info_once(emc->dev, |
| "got %u timings for RAM code %u (min %luMHz max %luMHz)\n", |
| emc->num_timings, |
| tegra_read_ram_code(), |
| emc->timings[0].rate / 1000000, |
| emc->timings[emc->num_timings - 1].rate / 1000000); |
| |
| return 0; |
| } |
| |
| static struct device_node *emc_find_node_by_ram_code(struct tegra_emc *emc) |
| { |
| struct device *dev = emc->dev; |
| struct device_node *np; |
| u32 value, ram_code; |
| int err; |
| |
| if (emc->mrr_error) { |
| dev_warn(dev, "memory timings skipped due to MRR error\n"); |
| return NULL; |
| } |
| |
| if (of_get_child_count(dev->of_node) == 0) { |
| dev_info_once(dev, "device-tree doesn't have memory timings\n"); |
| return NULL; |
| } |
| |
| ram_code = tegra_read_ram_code(); |
| |
| for_each_child_of_node(dev->of_node, np) { |
| err = of_property_read_u32(np, "nvidia,ram-code", &value); |
| if (err || value != ram_code) |
| continue; |
| |
| return np; |
| } |
| |
| dev_err(dev, "no memory timings for RAM code %u found in device-tree\n", |
| ram_code); |
| |
| return NULL; |
| } |
| |
| static int emc_read_lpddr_mode_register(struct tegra_emc *emc, |
| unsigned int emem_dev, |
| unsigned int register_addr, |
| unsigned int *register_data) |
| { |
| u32 memory_dev = emem_dev ? 1 : 2; |
| u32 val, mr_mask = 0xff; |
| int err; |
| |
| /* clear data-valid interrupt status */ |
| writel_relaxed(EMC_MRR_DIVLD_INT, emc->regs + EMC_INTSTATUS); |
| |
| /* issue mode register read request */ |
| val = FIELD_PREP(EMC_MRR_DEV_SELECTN, memory_dev); |
| val |= FIELD_PREP(EMC_MRR_MRR_MA, register_addr); |
| |
| writel_relaxed(val, emc->regs + EMC_MRR); |
| |
| /* wait for the LPDDR2 data-valid interrupt */ |
| err = readl_relaxed_poll_timeout_atomic(emc->regs + EMC_INTSTATUS, val, |
| val & EMC_MRR_DIVLD_INT, |
| 1, 100); |
| if (err) { |
| dev_err(emc->dev, "mode register %u read failed: %d\n", |
| register_addr, err); |
| emc->mrr_error = true; |
| return err; |
| } |
| |
| /* read out mode register data */ |
| val = readl_relaxed(emc->regs + EMC_MRR); |
| *register_data = FIELD_GET(EMC_MRR_MRR_DATA, val) & mr_mask; |
| |
| return 0; |
| } |
| |
| static void emc_read_lpddr_sdram_info(struct tegra_emc *emc, |
| unsigned int emem_dev) |
| { |
| union lpddr2_basic_config4 basic_conf4; |
| unsigned int manufacturer_id; |
| unsigned int revision_id1; |
| unsigned int revision_id2; |
| |
| /* these registers are standard for all LPDDR JEDEC memory chips */ |
| emc_read_lpddr_mode_register(emc, emem_dev, 5, &manufacturer_id); |
| emc_read_lpddr_mode_register(emc, emem_dev, 6, &revision_id1); |
| emc_read_lpddr_mode_register(emc, emem_dev, 7, &revision_id2); |
| emc_read_lpddr_mode_register(emc, emem_dev, 8, &basic_conf4.value); |
| |
| dev_info(emc->dev, "SDRAM[dev%u]: manufacturer: 0x%x (%s) rev1: 0x%x rev2: 0x%x prefetch: S%u density: %uMbit iowidth: %ubit\n", |
| emem_dev, manufacturer_id, |
| lpddr2_jedec_manufacturer(manufacturer_id), |
| revision_id1, revision_id2, |
| 4 >> basic_conf4.arch_type, |
| 64 << basic_conf4.density, |
| 32 >> basic_conf4.io_width); |
| } |
| |
| static int emc_setup_hw(struct tegra_emc *emc) |
| { |
| u32 fbio_cfg5, emc_cfg, emc_dbg, emc_adr_cfg; |
| u32 intmask = EMC_REFRESH_OVERFLOW_INT; |
| static bool print_sdram_info_once; |
| enum emc_dram_type dram_type; |
| const char *dram_type_str; |
| unsigned int emem_numdev; |
| |
| fbio_cfg5 = readl_relaxed(emc->regs + EMC_FBIO_CFG5); |
| dram_type = fbio_cfg5 & EMC_FBIO_CFG5_DRAM_TYPE_MASK; |
| |
| emc_cfg = readl_relaxed(emc->regs + EMC_CFG_2); |
| |
| /* enable EMC and CAR to handshake on PLL divider/source changes */ |
| emc_cfg |= EMC_CLKCHANGE_REQ_ENABLE; |
| |
| /* configure clock change mode accordingly to DRAM type */ |
| switch (dram_type) { |
| case DRAM_TYPE_LPDDR2: |
| emc_cfg |= EMC_CLKCHANGE_PD_ENABLE; |
| emc_cfg &= ~EMC_CLKCHANGE_SR_ENABLE; |
| break; |
| |
| default: |
| emc_cfg &= ~EMC_CLKCHANGE_SR_ENABLE; |
| emc_cfg &= ~EMC_CLKCHANGE_PD_ENABLE; |
| break; |
| } |
| |
| writel_relaxed(emc_cfg, emc->regs + EMC_CFG_2); |
| |
| /* initialize interrupt */ |
| writel_relaxed(intmask, emc->regs + EMC_INTMASK); |
| writel_relaxed(0xffffffff, emc->regs + EMC_INTSTATUS); |
| |
| /* ensure that unwanted debug features are disabled */ |
| emc_dbg = readl_relaxed(emc->regs + EMC_DBG); |
| emc_dbg |= EMC_DBG_CFG_PRIORITY; |
| emc_dbg &= ~EMC_DBG_READ_MUX_ASSEMBLY; |
| emc_dbg &= ~EMC_DBG_WRITE_MUX_ACTIVE; |
| emc_dbg &= ~EMC_DBG_FORCE_UPDATE; |
| writel_relaxed(emc_dbg, emc->regs + EMC_DBG); |
| |
| switch (dram_type) { |
| case DRAM_TYPE_DDR1: |
| dram_type_str = "DDR1"; |
| break; |
| case DRAM_TYPE_LPDDR2: |
| dram_type_str = "LPDDR2"; |
| break; |
| case DRAM_TYPE_DDR2: |
| dram_type_str = "DDR2"; |
| break; |
| case DRAM_TYPE_DDR3: |
| dram_type_str = "DDR3"; |
| break; |
| } |
| |
| emc_adr_cfg = readl_relaxed(emc->regs + EMC_ADR_CFG); |
| emem_numdev = FIELD_GET(EMC_ADR_CFG_EMEM_NUMDEV, emc_adr_cfg) + 1; |
| |
| dev_info_once(emc->dev, "%u %s %s attached\n", emem_numdev, |
| dram_type_str, emem_numdev == 2 ? "devices" : "device"); |
| |
| if (dram_type == DRAM_TYPE_LPDDR2 && !print_sdram_info_once) { |
| while (emem_numdev--) |
| emc_read_lpddr_sdram_info(emc, emem_numdev); |
| |
| print_sdram_info_once = true; |
| } |
| |
| return 0; |
| } |
| |
| static long emc_round_rate(unsigned long rate, |
| unsigned long min_rate, |
| unsigned long max_rate, |
| void *arg) |
| { |
| struct emc_timing *timing = NULL; |
| struct tegra_emc *emc = arg; |
| unsigned int i; |
| |
| if (!emc->num_timings) |
| return clk_get_rate(emc->clk); |
| |
| min_rate = min(min_rate, emc->timings[emc->num_timings - 1].rate); |
| |
| for (i = 0; i < emc->num_timings; i++) { |
| if (emc->timings[i].rate < rate && i != emc->num_timings - 1) |
| continue; |
| |
| if (emc->timings[i].rate > max_rate) { |
| i = max(i, 1u) - 1; |
| |
| if (emc->timings[i].rate < min_rate) |
| break; |
| } |
| |
| if (emc->timings[i].rate < min_rate) |
| continue; |
| |
| timing = &emc->timings[i]; |
| break; |
| } |
| |
| if (!timing) { |
| dev_err(emc->dev, "no timing for rate %lu min %lu max %lu\n", |
| rate, min_rate, max_rate); |
| return -EINVAL; |
| } |
| |
| return timing->rate; |
| } |
| |
| static void tegra_emc_rate_requests_init(struct tegra_emc *emc) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < EMC_RATE_TYPE_MAX; i++) { |
| emc->requested_rate[i].min_rate = 0; |
| emc->requested_rate[i].max_rate = ULONG_MAX; |
| } |
| } |
| |
| static int emc_request_rate(struct tegra_emc *emc, |
| unsigned long new_min_rate, |
| unsigned long new_max_rate, |
| enum emc_rate_request_type type) |
| { |
| struct emc_rate_request *req = emc->requested_rate; |
| unsigned long min_rate = 0, max_rate = ULONG_MAX; |
| unsigned int i; |
| int err; |
| |
| /* select minimum and maximum rates among the requested rates */ |
| for (i = 0; i < EMC_RATE_TYPE_MAX; i++, req++) { |
| if (i == type) { |
| min_rate = max(new_min_rate, min_rate); |
| max_rate = min(new_max_rate, max_rate); |
| } else { |
| min_rate = max(req->min_rate, min_rate); |
| max_rate = min(req->max_rate, max_rate); |
| } |
| } |
| |
| if (min_rate > max_rate) { |
| dev_err_ratelimited(emc->dev, "%s: type %u: out of range: %lu %lu\n", |
| __func__, type, min_rate, max_rate); |
| return -ERANGE; |
| } |
| |
| /* |
| * EMC rate-changes should go via OPP API because it manages voltage |
| * changes. |
| */ |
| err = dev_pm_opp_set_rate(emc->dev, min_rate); |
| if (err) |
| return err; |
| |
| emc->requested_rate[type].min_rate = new_min_rate; |
| emc->requested_rate[type].max_rate = new_max_rate; |
| |
| return 0; |
| } |
| |
| static int emc_set_min_rate(struct tegra_emc *emc, unsigned long rate, |
| enum emc_rate_request_type type) |
| { |
| struct emc_rate_request *req = &emc->requested_rate[type]; |
| int ret; |
| |
| mutex_lock(&emc->rate_lock); |
| ret = emc_request_rate(emc, rate, req->max_rate, type); |
| mutex_unlock(&emc->rate_lock); |
| |
| return ret; |
| } |
| |
| static int emc_set_max_rate(struct tegra_emc *emc, unsigned long rate, |
| enum emc_rate_request_type type) |
| { |
| struct emc_rate_request *req = &emc->requested_rate[type]; |
| int ret; |
| |
| mutex_lock(&emc->rate_lock); |
| ret = emc_request_rate(emc, req->min_rate, rate, type); |
| mutex_unlock(&emc->rate_lock); |
| |
| return ret; |
| } |
| |
| /* |
| * debugfs interface |
| * |
| * The memory controller driver exposes some files in debugfs that can be used |
| * to control the EMC frequency. The top-level directory can be found here: |
| * |
| * /sys/kernel/debug/emc |
| * |
| * It contains the following files: |
| * |
| * - available_rates: This file contains a list of valid, space-separated |
| * EMC frequencies. |
| * |
| * - min_rate: Writing a value to this file sets the given frequency as the |
| * floor of the permitted range. If this is higher than the currently |
| * configured EMC frequency, this will cause the frequency to be |
| * increased so that it stays within the valid range. |
| * |
| * - max_rate: Similarily to the min_rate file, writing a value to this file |
| * sets the given frequency as the ceiling of the permitted range. If |
| * the value is lower than the currently configured EMC frequency, this |
| * will cause the frequency to be decreased so that it stays within the |
| * valid range. |
| */ |
| |
| static bool tegra_emc_validate_rate(struct tegra_emc *emc, unsigned long rate) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < emc->num_timings; i++) |
| if (rate == emc->timings[i].rate) |
| return true; |
| |
| return false; |
| } |
| |
| static int tegra_emc_debug_available_rates_show(struct seq_file *s, void *data) |
| { |
| struct tegra_emc *emc = s->private; |
| const char *prefix = ""; |
| unsigned int i; |
| |
| for (i = 0; i < emc->num_timings; i++) { |
| seq_printf(s, "%s%lu", prefix, emc->timings[i].rate); |
| prefix = " "; |
| } |
| |
| seq_puts(s, "\n"); |
| |
| return 0; |
| } |
| DEFINE_SHOW_ATTRIBUTE(tegra_emc_debug_available_rates); |
| |
| static int tegra_emc_debug_min_rate_get(void *data, u64 *rate) |
| { |
| struct tegra_emc *emc = data; |
| |
| *rate = emc->debugfs.min_rate; |
| |
| return 0; |
| } |
| |
| static int tegra_emc_debug_min_rate_set(void *data, u64 rate) |
| { |
| struct tegra_emc *emc = data; |
| int err; |
| |
| if (!tegra_emc_validate_rate(emc, rate)) |
| return -EINVAL; |
| |
| err = emc_set_min_rate(emc, rate, EMC_RATE_DEBUG); |
| if (err < 0) |
| return err; |
| |
| emc->debugfs.min_rate = rate; |
| |
| return 0; |
| } |
| |
| DEFINE_DEBUGFS_ATTRIBUTE(tegra_emc_debug_min_rate_fops, |
| tegra_emc_debug_min_rate_get, |
| tegra_emc_debug_min_rate_set, "%llu\n"); |
| |
| static int tegra_emc_debug_max_rate_get(void *data, u64 *rate) |
| { |
| struct tegra_emc *emc = data; |
| |
| *rate = emc->debugfs.max_rate; |
| |
| return 0; |
| } |
| |
| static int tegra_emc_debug_max_rate_set(void *data, u64 rate) |
| { |
| struct tegra_emc *emc = data; |
| int err; |
| |
| if (!tegra_emc_validate_rate(emc, rate)) |
| return -EINVAL; |
| |
| err = emc_set_max_rate(emc, rate, EMC_RATE_DEBUG); |
| if (err < 0) |
| return err; |
| |
| emc->debugfs.max_rate = rate; |
| |
| return 0; |
| } |
| |
| DEFINE_DEBUGFS_ATTRIBUTE(tegra_emc_debug_max_rate_fops, |
| tegra_emc_debug_max_rate_get, |
| tegra_emc_debug_max_rate_set, "%llu\n"); |
| |
| static void tegra_emc_debugfs_init(struct tegra_emc *emc) |
| { |
| struct device *dev = emc->dev; |
| unsigned int i; |
| int err; |
| |
| emc->debugfs.min_rate = ULONG_MAX; |
| emc->debugfs.max_rate = 0; |
| |
| for (i = 0; i < emc->num_timings; i++) { |
| if (emc->timings[i].rate < emc->debugfs.min_rate) |
| emc->debugfs.min_rate = emc->timings[i].rate; |
| |
| if (emc->timings[i].rate > emc->debugfs.max_rate) |
| emc->debugfs.max_rate = emc->timings[i].rate; |
| } |
| |
| if (!emc->num_timings) { |
| emc->debugfs.min_rate = clk_get_rate(emc->clk); |
| emc->debugfs.max_rate = emc->debugfs.min_rate; |
| } |
| |
| err = clk_set_rate_range(emc->clk, emc->debugfs.min_rate, |
| emc->debugfs.max_rate); |
| if (err < 0) { |
| dev_err(dev, "failed to set rate range [%lu-%lu] for %pC\n", |
| emc->debugfs.min_rate, emc->debugfs.max_rate, |
| emc->clk); |
| } |
| |
| emc->debugfs.root = debugfs_create_dir("emc", NULL); |
| |
| debugfs_create_file("available_rates", 0444, emc->debugfs.root, |
| emc, &tegra_emc_debug_available_rates_fops); |
| debugfs_create_file("min_rate", 0644, emc->debugfs.root, |
| emc, &tegra_emc_debug_min_rate_fops); |
| debugfs_create_file("max_rate", 0644, emc->debugfs.root, |
| emc, &tegra_emc_debug_max_rate_fops); |
| } |
| |
| static inline struct tegra_emc * |
| to_tegra_emc_provider(struct icc_provider *provider) |
| { |
| return container_of(provider, struct tegra_emc, provider); |
| } |
| |
| static struct icc_node_data * |
| emc_of_icc_xlate_extended(const struct of_phandle_args *spec, void *data) |
| { |
| struct icc_provider *provider = data; |
| struct icc_node_data *ndata; |
| struct icc_node *node; |
| |
| /* External Memory is the only possible ICC route */ |
| list_for_each_entry(node, &provider->nodes, node_list) { |
| if (node->id != TEGRA_ICC_EMEM) |
| continue; |
| |
| ndata = kzalloc(sizeof(*ndata), GFP_KERNEL); |
| if (!ndata) |
| return ERR_PTR(-ENOMEM); |
| |
| /* |
| * SRC and DST nodes should have matching TAG in order to have |
| * it set by default for a requested path. |
| */ |
| ndata->tag = TEGRA_MC_ICC_TAG_ISO; |
| ndata->node = node; |
| |
| return ndata; |
| } |
| |
| return ERR_PTR(-EPROBE_DEFER); |
| } |
| |
| static int emc_icc_set(struct icc_node *src, struct icc_node *dst) |
| { |
| struct tegra_emc *emc = to_tegra_emc_provider(dst->provider); |
| unsigned long long peak_bw = icc_units_to_bps(dst->peak_bw); |
| unsigned long long avg_bw = icc_units_to_bps(dst->avg_bw); |
| unsigned long long rate = max(avg_bw, peak_bw); |
| const unsigned int dram_data_bus_width_bytes = 4; |
| const unsigned int ddr = 2; |
| int err; |
| |
| /* |
| * Tegra30 EMC runs on a clock rate of SDRAM bus. This means that |
| * EMC clock rate is twice smaller than the peak data rate because |
| * data is sampled on both EMC clock edges. |
| */ |
| do_div(rate, ddr * dram_data_bus_width_bytes); |
| rate = min_t(u64, rate, U32_MAX); |
| |
| err = emc_set_min_rate(emc, rate, EMC_RATE_ICC); |
| if (err) |
| return err; |
| |
| return 0; |
| } |
| |
| static int tegra_emc_interconnect_init(struct tegra_emc *emc) |
| { |
| const struct tegra_mc_soc *soc = emc->mc->soc; |
| struct icc_node *node; |
| int err; |
| |
| emc->provider.dev = emc->dev; |
| emc->provider.set = emc_icc_set; |
| emc->provider.data = &emc->provider; |
| emc->provider.aggregate = soc->icc_ops->aggregate; |
| emc->provider.xlate_extended = emc_of_icc_xlate_extended; |
| |
| icc_provider_init(&emc->provider); |
| |
| /* create External Memory Controller node */ |
| node = icc_node_create(TEGRA_ICC_EMC); |
| if (IS_ERR(node)) { |
| err = PTR_ERR(node); |
| goto err_msg; |
| } |
| |
| node->name = "External Memory Controller"; |
| icc_node_add(node, &emc->provider); |
| |
| /* link External Memory Controller to External Memory (DRAM) */ |
| err = icc_link_create(node, TEGRA_ICC_EMEM); |
| if (err) |
| goto remove_nodes; |
| |
| /* create External Memory node */ |
| node = icc_node_create(TEGRA_ICC_EMEM); |
| if (IS_ERR(node)) { |
| err = PTR_ERR(node); |
| goto remove_nodes; |
| } |
| |
| node->name = "External Memory (DRAM)"; |
| icc_node_add(node, &emc->provider); |
| |
| err = icc_provider_register(&emc->provider); |
| if (err) |
| goto remove_nodes; |
| |
| return 0; |
| |
| remove_nodes: |
| icc_nodes_remove(&emc->provider); |
| err_msg: |
| dev_err(emc->dev, "failed to initialize ICC: %d\n", err); |
| |
| return err; |
| } |
| |
| static void devm_tegra_emc_unset_callback(void *data) |
| { |
| tegra20_clk_set_emc_round_callback(NULL, NULL); |
| } |
| |
| static void devm_tegra_emc_unreg_clk_notifier(void *data) |
| { |
| struct tegra_emc *emc = data; |
| |
| clk_notifier_unregister(emc->clk, &emc->clk_nb); |
| } |
| |
| static int tegra_emc_init_clk(struct tegra_emc *emc) |
| { |
| int err; |
| |
| tegra20_clk_set_emc_round_callback(emc_round_rate, emc); |
| |
| err = devm_add_action_or_reset(emc->dev, devm_tegra_emc_unset_callback, |
| NULL); |
| if (err) |
| return err; |
| |
| emc->clk = devm_clk_get(emc->dev, NULL); |
| if (IS_ERR(emc->clk)) { |
| dev_err(emc->dev, "failed to get EMC clock: %pe\n", emc->clk); |
| return PTR_ERR(emc->clk); |
| } |
| |
| err = clk_notifier_register(emc->clk, &emc->clk_nb); |
| if (err) { |
| dev_err(emc->dev, "failed to register clk notifier: %d\n", err); |
| return err; |
| } |
| |
| err = devm_add_action_or_reset(emc->dev, |
| devm_tegra_emc_unreg_clk_notifier, emc); |
| if (err) |
| return err; |
| |
| return 0; |
| } |
| |
| static int tegra_emc_probe(struct platform_device *pdev) |
| { |
| struct tegra_core_opp_params opp_params = {}; |
| struct device_node *np; |
| struct tegra_emc *emc; |
| int err; |
| |
| emc = devm_kzalloc(&pdev->dev, sizeof(*emc), GFP_KERNEL); |
| if (!emc) |
| return -ENOMEM; |
| |
| emc->mc = devm_tegra_memory_controller_get(&pdev->dev); |
| if (IS_ERR(emc->mc)) |
| return PTR_ERR(emc->mc); |
| |
| mutex_init(&emc->rate_lock); |
| emc->clk_nb.notifier_call = emc_clk_change_notify; |
| emc->dev = &pdev->dev; |
| |
| emc->regs = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(emc->regs)) |
| return PTR_ERR(emc->regs); |
| |
| err = emc_setup_hw(emc); |
| if (err) |
| return err; |
| |
| np = emc_find_node_by_ram_code(emc); |
| if (np) { |
| err = emc_load_timings_from_dt(emc, np); |
| of_node_put(np); |
| if (err) |
| return err; |
| } |
| |
| err = platform_get_irq(pdev, 0); |
| if (err < 0) |
| return err; |
| |
| emc->irq = err; |
| |
| err = devm_request_irq(&pdev->dev, emc->irq, tegra_emc_isr, 0, |
| dev_name(&pdev->dev), emc); |
| if (err) { |
| dev_err(&pdev->dev, "failed to request irq: %d\n", err); |
| return err; |
| } |
| |
| err = tegra_emc_init_clk(emc); |
| if (err) |
| return err; |
| |
| opp_params.init_state = true; |
| |
| err = devm_tegra_core_dev_init_opp_table(&pdev->dev, &opp_params); |
| if (err) |
| return err; |
| |
| platform_set_drvdata(pdev, emc); |
| tegra_emc_rate_requests_init(emc); |
| tegra_emc_debugfs_init(emc); |
| tegra_emc_interconnect_init(emc); |
| |
| /* |
| * Don't allow the kernel module to be unloaded. Unloading adds some |
| * extra complexity which doesn't really worth the effort in a case of |
| * this driver. |
| */ |
| try_module_get(THIS_MODULE); |
| |
| return 0; |
| } |
| |
| static int tegra_emc_suspend(struct device *dev) |
| { |
| struct tegra_emc *emc = dev_get_drvdata(dev); |
| int err; |
| |
| /* take exclusive control over the clock's rate */ |
| err = clk_rate_exclusive_get(emc->clk); |
| if (err) { |
| dev_err(emc->dev, "failed to acquire clk: %d\n", err); |
| return err; |
| } |
| |
| /* suspending in a bad state will hang machine */ |
| if (WARN(emc->bad_state, "hardware in a bad state\n")) |
| return -EINVAL; |
| |
| emc->bad_state = true; |
| |
| return 0; |
| } |
| |
| static int tegra_emc_resume(struct device *dev) |
| { |
| struct tegra_emc *emc = dev_get_drvdata(dev); |
| |
| emc_setup_hw(emc); |
| emc->bad_state = false; |
| |
| clk_rate_exclusive_put(emc->clk); |
| |
| return 0; |
| } |
| |
| static const struct dev_pm_ops tegra_emc_pm_ops = { |
| .suspend = tegra_emc_suspend, |
| .resume = tegra_emc_resume, |
| }; |
| |
| static const struct of_device_id tegra_emc_of_match[] = { |
| { .compatible = "nvidia,tegra30-emc", }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, tegra_emc_of_match); |
| |
| static struct platform_driver tegra_emc_driver = { |
| .probe = tegra_emc_probe, |
| .driver = { |
| .name = "tegra30-emc", |
| .of_match_table = tegra_emc_of_match, |
| .pm = &tegra_emc_pm_ops, |
| .suppress_bind_attrs = true, |
| .sync_state = icc_sync_state, |
| }, |
| }; |
| module_platform_driver(tegra_emc_driver); |
| |
| MODULE_AUTHOR("Dmitry Osipenko <digetx@gmail.com>"); |
| MODULE_DESCRIPTION("NVIDIA Tegra30 EMC driver"); |
| MODULE_LICENSE("GPL v2"); |