blob: 8fa2797d4169a9f21136bbf73daa818da6c4ac49 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* PCI Endpoint *Function* (EPF) library
*
* Copyright (C) 2017 Texas Instruments
* Author: Kishon Vijay Abraham I <kishon@ti.com>
*/
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/pci-epc.h>
#include <linux/pci-epf.h>
#include <linux/pci-ep-cfs.h>
static DEFINE_MUTEX(pci_epf_mutex);
static const struct bus_type pci_epf_bus_type;
static const struct device_type pci_epf_type;
/**
* pci_epf_unbind() - Notify the function driver that the binding between the
* EPF device and EPC device has been lost
* @epf: the EPF device which has lost the binding with the EPC device
*
* Invoke to notify the function driver that the binding between the EPF device
* and EPC device has been lost.
*/
void pci_epf_unbind(struct pci_epf *epf)
{
struct pci_epf *epf_vf;
if (!epf->driver) {
dev_WARN(&epf->dev, "epf device not bound to driver\n");
return;
}
mutex_lock(&epf->lock);
list_for_each_entry(epf_vf, &epf->pci_vepf, list) {
if (epf_vf->is_bound)
epf_vf->driver->ops->unbind(epf_vf);
}
if (epf->is_bound)
epf->driver->ops->unbind(epf);
mutex_unlock(&epf->lock);
module_put(epf->driver->owner);
}
EXPORT_SYMBOL_GPL(pci_epf_unbind);
/**
* pci_epf_bind() - Notify the function driver that the EPF device has been
* bound to a EPC device
* @epf: the EPF device which has been bound to the EPC device
*
* Invoke to notify the function driver that it has been bound to a EPC device
*/
int pci_epf_bind(struct pci_epf *epf)
{
struct device *dev = &epf->dev;
struct pci_epf *epf_vf;
u8 func_no, vfunc_no;
struct pci_epc *epc;
int ret;
if (!epf->driver) {
dev_WARN(dev, "epf device not bound to driver\n");
return -EINVAL;
}
if (!try_module_get(epf->driver->owner))
return -EAGAIN;
mutex_lock(&epf->lock);
list_for_each_entry(epf_vf, &epf->pci_vepf, list) {
vfunc_no = epf_vf->vfunc_no;
if (vfunc_no < 1) {
dev_err(dev, "Invalid virtual function number\n");
ret = -EINVAL;
goto ret;
}
epc = epf->epc;
func_no = epf->func_no;
if (!IS_ERR_OR_NULL(epc)) {
if (!epc->max_vfs) {
dev_err(dev, "No support for virt function\n");
ret = -EINVAL;
goto ret;
}
if (vfunc_no > epc->max_vfs[func_no]) {
dev_err(dev, "PF%d: Exceeds max vfunc number\n",
func_no);
ret = -EINVAL;
goto ret;
}
}
epc = epf->sec_epc;
func_no = epf->sec_epc_func_no;
if (!IS_ERR_OR_NULL(epc)) {
if (!epc->max_vfs) {
dev_err(dev, "No support for virt function\n");
ret = -EINVAL;
goto ret;
}
if (vfunc_no > epc->max_vfs[func_no]) {
dev_err(dev, "PF%d: Exceeds max vfunc number\n",
func_no);
ret = -EINVAL;
goto ret;
}
}
epf_vf->func_no = epf->func_no;
epf_vf->sec_epc_func_no = epf->sec_epc_func_no;
epf_vf->epc = epf->epc;
epf_vf->sec_epc = epf->sec_epc;
ret = epf_vf->driver->ops->bind(epf_vf);
if (ret)
goto ret;
epf_vf->is_bound = true;
}
ret = epf->driver->ops->bind(epf);
if (ret)
goto ret;
epf->is_bound = true;
mutex_unlock(&epf->lock);
return 0;
ret:
mutex_unlock(&epf->lock);
pci_epf_unbind(epf);
return ret;
}
EXPORT_SYMBOL_GPL(pci_epf_bind);
/**
* pci_epf_add_vepf() - associate virtual EP function to physical EP function
* @epf_pf: the physical EP function to which the virtual EP function should be
* associated
* @epf_vf: the virtual EP function to be added
*
* A physical endpoint function can be associated with multiple virtual
* endpoint functions. Invoke pci_epf_add_epf() to add a virtual PCI endpoint
* function to a physical PCI endpoint function.
*/
int pci_epf_add_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf)
{
u32 vfunc_no;
if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf))
return -EINVAL;
if (epf_pf->epc || epf_vf->epc || epf_vf->epf_pf)
return -EBUSY;
if (epf_pf->sec_epc || epf_vf->sec_epc)
return -EBUSY;
mutex_lock(&epf_pf->lock);
vfunc_no = find_first_zero_bit(&epf_pf->vfunction_num_map,
BITS_PER_LONG);
if (vfunc_no >= BITS_PER_LONG) {
mutex_unlock(&epf_pf->lock);
return -EINVAL;
}
set_bit(vfunc_no, &epf_pf->vfunction_num_map);
epf_vf->vfunc_no = vfunc_no;
epf_vf->epf_pf = epf_pf;
epf_vf->is_vf = true;
list_add_tail(&epf_vf->list, &epf_pf->pci_vepf);
mutex_unlock(&epf_pf->lock);
return 0;
}
EXPORT_SYMBOL_GPL(pci_epf_add_vepf);
/**
* pci_epf_remove_vepf() - remove virtual EP function from physical EP function
* @epf_pf: the physical EP function from which the virtual EP function should
* be removed
* @epf_vf: the virtual EP function to be removed
*
* Invoke to remove a virtual endpoint function from the physical endpoint
* function.
*/
void pci_epf_remove_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf)
{
if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf))
return;
mutex_lock(&epf_pf->lock);
clear_bit(epf_vf->vfunc_no, &epf_pf->vfunction_num_map);
list_del(&epf_vf->list);
mutex_unlock(&epf_pf->lock);
}
EXPORT_SYMBOL_GPL(pci_epf_remove_vepf);
/**
* pci_epf_free_space() - free the allocated PCI EPF register space
* @epf: the EPF device from whom to free the memory
* @addr: the virtual address of the PCI EPF register space
* @bar: the BAR number corresponding to the register space
* @type: Identifies if the allocated space is for primary EPC or secondary EPC
*
* Invoke to free the allocated PCI EPF register space.
*/
void pci_epf_free_space(struct pci_epf *epf, void *addr, enum pci_barno bar,
enum pci_epc_interface_type type)
{
struct device *dev;
struct pci_epf_bar *epf_bar;
struct pci_epc *epc;
if (!addr)
return;
if (type == PRIMARY_INTERFACE) {
epc = epf->epc;
epf_bar = epf->bar;
} else {
epc = epf->sec_epc;
epf_bar = epf->sec_epc_bar;
}
dev = epc->dev.parent;
dma_free_coherent(dev, epf_bar[bar].size, addr,
epf_bar[bar].phys_addr);
epf_bar[bar].phys_addr = 0;
epf_bar[bar].addr = NULL;
epf_bar[bar].size = 0;
epf_bar[bar].barno = 0;
epf_bar[bar].flags = 0;
}
EXPORT_SYMBOL_GPL(pci_epf_free_space);
/**
* pci_epf_alloc_space() - allocate memory for the PCI EPF register space
* @epf: the EPF device to whom allocate the memory
* @size: the size of the memory that has to be allocated
* @bar: the BAR number corresponding to the allocated register space
* @epc_features: the features provided by the EPC specific to this EPF
* @type: Identifies if the allocation is for primary EPC or secondary EPC
*
* Invoke to allocate memory for the PCI EPF register space.
* Flag PCI_BASE_ADDRESS_MEM_TYPE_64 will automatically get set if the BAR
* can only be a 64-bit BAR, or if the requested size is larger than 2 GB.
*/
void *pci_epf_alloc_space(struct pci_epf *epf, size_t size, enum pci_barno bar,
const struct pci_epc_features *epc_features,
enum pci_epc_interface_type type)
{
u64 bar_fixed_size = epc_features->bar[bar].fixed_size;
size_t align = epc_features->align;
struct pci_epf_bar *epf_bar;
dma_addr_t phys_addr;
struct pci_epc *epc;
struct device *dev;
void *space;
if (size < 128)
size = 128;
if (epc_features->bar[bar].type == BAR_FIXED && bar_fixed_size) {
if (size > bar_fixed_size) {
dev_err(&epf->dev,
"requested BAR size is larger than fixed size\n");
return NULL;
}
size = bar_fixed_size;
}
if (align)
size = ALIGN(size, align);
else
size = roundup_pow_of_two(size);
if (type == PRIMARY_INTERFACE) {
epc = epf->epc;
epf_bar = epf->bar;
} else {
epc = epf->sec_epc;
epf_bar = epf->sec_epc_bar;
}
dev = epc->dev.parent;
space = dma_alloc_coherent(dev, size, &phys_addr, GFP_KERNEL);
if (!space) {
dev_err(dev, "failed to allocate mem space\n");
return NULL;
}
epf_bar[bar].phys_addr = phys_addr;
epf_bar[bar].addr = space;
epf_bar[bar].size = size;
epf_bar[bar].barno = bar;
if (upper_32_bits(size) || epc_features->bar[bar].only_64bit)
epf_bar[bar].flags |= PCI_BASE_ADDRESS_MEM_TYPE_64;
else
epf_bar[bar].flags |= PCI_BASE_ADDRESS_MEM_TYPE_32;
return space;
}
EXPORT_SYMBOL_GPL(pci_epf_alloc_space);
static void pci_epf_remove_cfs(struct pci_epf_driver *driver)
{
struct config_group *group, *tmp;
if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS))
return;
mutex_lock(&pci_epf_mutex);
list_for_each_entry_safe(group, tmp, &driver->epf_group, group_entry)
pci_ep_cfs_remove_epf_group(group);
list_del(&driver->epf_group);
mutex_unlock(&pci_epf_mutex);
}
/**
* pci_epf_unregister_driver() - unregister the PCI EPF driver
* @driver: the PCI EPF driver that has to be unregistered
*
* Invoke to unregister the PCI EPF driver.
*/
void pci_epf_unregister_driver(struct pci_epf_driver *driver)
{
pci_epf_remove_cfs(driver);
driver_unregister(&driver->driver);
}
EXPORT_SYMBOL_GPL(pci_epf_unregister_driver);
static int pci_epf_add_cfs(struct pci_epf_driver *driver)
{
struct config_group *group;
const struct pci_epf_device_id *id;
if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS))
return 0;
INIT_LIST_HEAD(&driver->epf_group);
id = driver->id_table;
while (id->name[0]) {
group = pci_ep_cfs_add_epf_group(id->name);
if (IS_ERR(group)) {
pci_epf_remove_cfs(driver);
return PTR_ERR(group);
}
mutex_lock(&pci_epf_mutex);
list_add_tail(&group->group_entry, &driver->epf_group);
mutex_unlock(&pci_epf_mutex);
id++;
}
return 0;
}
/**
* __pci_epf_register_driver() - register a new PCI EPF driver
* @driver: structure representing PCI EPF driver
* @owner: the owner of the module that registers the PCI EPF driver
*
* Invoke to register a new PCI EPF driver.
*/
int __pci_epf_register_driver(struct pci_epf_driver *driver,
struct module *owner)
{
int ret;
if (!driver->ops)
return -EINVAL;
if (!driver->ops->bind || !driver->ops->unbind)
return -EINVAL;
driver->driver.bus = &pci_epf_bus_type;
driver->driver.owner = owner;
ret = driver_register(&driver->driver);
if (ret)
return ret;
pci_epf_add_cfs(driver);
return 0;
}
EXPORT_SYMBOL_GPL(__pci_epf_register_driver);
/**
* pci_epf_destroy() - destroy the created PCI EPF device
* @epf: the PCI EPF device that has to be destroyed.
*
* Invoke to destroy the PCI EPF device created by invoking pci_epf_create().
*/
void pci_epf_destroy(struct pci_epf *epf)
{
device_unregister(&epf->dev);
}
EXPORT_SYMBOL_GPL(pci_epf_destroy);
/**
* pci_epf_create() - create a new PCI EPF device
* @name: the name of the PCI EPF device. This name will be used to bind the
* EPF device to a EPF driver
*
* Invoke to create a new PCI EPF device by providing the name of the function
* device.
*/
struct pci_epf *pci_epf_create(const char *name)
{
int ret;
struct pci_epf *epf;
struct device *dev;
int len;
epf = kzalloc(sizeof(*epf), GFP_KERNEL);
if (!epf)
return ERR_PTR(-ENOMEM);
len = strchrnul(name, '.') - name;
epf->name = kstrndup(name, len, GFP_KERNEL);
if (!epf->name) {
kfree(epf);
return ERR_PTR(-ENOMEM);
}
/* VFs are numbered starting with 1. So set BIT(0) by default */
epf->vfunction_num_map = 1;
INIT_LIST_HEAD(&epf->pci_vepf);
dev = &epf->dev;
device_initialize(dev);
dev->bus = &pci_epf_bus_type;
dev->type = &pci_epf_type;
mutex_init(&epf->lock);
ret = dev_set_name(dev, "%s", name);
if (ret) {
put_device(dev);
return ERR_PTR(ret);
}
ret = device_add(dev);
if (ret) {
put_device(dev);
return ERR_PTR(ret);
}
return epf;
}
EXPORT_SYMBOL_GPL(pci_epf_create);
static void pci_epf_dev_release(struct device *dev)
{
struct pci_epf *epf = to_pci_epf(dev);
kfree(epf->name);
kfree(epf);
}
static const struct device_type pci_epf_type = {
.release = pci_epf_dev_release,
};
static const struct pci_epf_device_id *
pci_epf_match_id(const struct pci_epf_device_id *id, const struct pci_epf *epf)
{
while (id->name[0]) {
if (strcmp(epf->name, id->name) == 0)
return id;
id++;
}
return NULL;
}
static int pci_epf_device_match(struct device *dev, const struct device_driver *drv)
{
struct pci_epf *epf = to_pci_epf(dev);
const struct pci_epf_driver *driver = to_pci_epf_driver(drv);
if (driver->id_table)
return !!pci_epf_match_id(driver->id_table, epf);
return !strcmp(epf->name, drv->name);
}
static int pci_epf_device_probe(struct device *dev)
{
struct pci_epf *epf = to_pci_epf(dev);
struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver);
if (!driver->probe)
return -ENODEV;
epf->driver = driver;
return driver->probe(epf, pci_epf_match_id(driver->id_table, epf));
}
static void pci_epf_device_remove(struct device *dev)
{
struct pci_epf *epf = to_pci_epf(dev);
struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver);
if (driver->remove)
driver->remove(epf);
epf->driver = NULL;
}
static const struct bus_type pci_epf_bus_type = {
.name = "pci-epf",
.match = pci_epf_device_match,
.probe = pci_epf_device_probe,
.remove = pci_epf_device_remove,
};
static int __init pci_epf_init(void)
{
int ret;
ret = bus_register(&pci_epf_bus_type);
if (ret) {
pr_err("failed to register pci epf bus --> %d\n", ret);
return ret;
}
return 0;
}
module_init(pci_epf_init);
static void __exit pci_epf_exit(void)
{
bus_unregister(&pci_epf_bus_type);
}
module_exit(pci_epf_exit);
MODULE_DESCRIPTION("PCI EPF Library");
MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");