blob: 739298d2dff3b99a1ed296edd5d4a16fa6bdb117 [file] [log] [blame]
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "core_types.h"
#include "dce_aux.h"
#include "dce/dce_11_0_sh_mask.h"
#include "dm_event_log.h"
#include "dm_helpers.h"
#include "dmub/inc/dmub_cmd.h"
#define CTX \
aux110->base.ctx
#define REG(reg_name)\
(aux110->regs->reg_name)
#define DC_LOGGER \
engine->ctx->logger
#define DC_TRACE_LEVEL_MESSAGE(...) do { } while (0)
#define IS_DC_I2CAUX_LOGGING_ENABLED() (false)
#define LOG_FLAG_Error_I2cAux LOG_ERROR
#define LOG_FLAG_I2cAux_DceAux LOG_I2C_AUX
#include "reg_helper.h"
#undef FN
#define FN(reg_name, field_name) \
aux110->shift->field_name, aux110->mask->field_name
#define FROM_AUX_ENGINE(ptr) \
container_of((ptr), struct aux_engine_dce110, base)
#define FROM_ENGINE(ptr) \
FROM_AUX_ENGINE(container_of((ptr), struct dce_aux, base))
#define FROM_AUX_ENGINE_ENGINE(ptr) \
container_of((ptr), struct dce_aux, base)
enum {
AUX_INVALID_REPLY_RETRY_COUNTER = 1,
AUX_TIMED_OUT_RETRY_COUNTER = 2,
AUX_DEFER_RETRY_COUNTER = 6
};
#define TIME_OUT_INCREMENT 1016
#define TIME_OUT_MULTIPLIER_8 8
#define TIME_OUT_MULTIPLIER_16 16
#define TIME_OUT_MULTIPLIER_32 32
#define TIME_OUT_MULTIPLIER_64 64
#define MAX_TIMEOUT_LENGTH 127
#define DEFAULT_AUX_ENGINE_MULT 0
#define DEFAULT_AUX_ENGINE_LENGTH 69
#define DC_TRACE_LEVEL_MESSAGE(...) do { } while (0)
static void release_engine(
struct dce_aux *engine)
{
struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(engine);
dal_ddc_close(engine->ddc);
engine->ddc = NULL;
REG_UPDATE_2(AUX_ARB_CONTROL, AUX_SW_DONE_USING_AUX_REG, 1,
AUX_SW_USE_AUX_REG_REQ, 0);
}
#define SW_CAN_ACCESS_AUX 1
#define DMCU_CAN_ACCESS_AUX 2
static bool is_engine_available(
struct dce_aux *engine)
{
struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(engine);
uint32_t value = REG_READ(AUX_ARB_CONTROL);
uint32_t field = get_reg_field_value(
value,
AUX_ARB_CONTROL,
AUX_REG_RW_CNTL_STATUS);
return (field != DMCU_CAN_ACCESS_AUX);
}
static bool acquire_engine(
struct dce_aux *engine)
{
struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(engine);
uint32_t value = REG_READ(AUX_ARB_CONTROL);
uint32_t field = get_reg_field_value(
value,
AUX_ARB_CONTROL,
AUX_REG_RW_CNTL_STATUS);
if (field == DMCU_CAN_ACCESS_AUX)
return false;
/* enable AUX before request SW to access AUX */
value = REG_READ(AUX_CONTROL);
field = get_reg_field_value(value,
AUX_CONTROL,
AUX_EN);
if (field == 0) {
set_reg_field_value(
value,
1,
AUX_CONTROL,
AUX_EN);
if (REG(AUX_RESET_MASK)) {
/*DP_AUX block as part of the enable sequence*/
set_reg_field_value(
value,
1,
AUX_CONTROL,
AUX_RESET);
}
REG_WRITE(AUX_CONTROL, value);
if (REG(AUX_RESET_MASK)) {
/*poll HW to make sure reset it done*/
REG_WAIT(AUX_CONTROL, AUX_RESET_DONE, 1,
1, 11);
set_reg_field_value(
value,
0,
AUX_CONTROL,
AUX_RESET);
REG_WRITE(AUX_CONTROL, value);
REG_WAIT(AUX_CONTROL, AUX_RESET_DONE, 0,
1, 11);
}
} /*if (field)*/
/* request SW to access AUX */
REG_UPDATE(AUX_ARB_CONTROL, AUX_SW_USE_AUX_REG_REQ, 1);
value = REG_READ(AUX_ARB_CONTROL);
field = get_reg_field_value(
value,
AUX_ARB_CONTROL,
AUX_REG_RW_CNTL_STATUS);
return (field == SW_CAN_ACCESS_AUX);
}
#define COMPOSE_AUX_SW_DATA_16_20(command, address) \
((command) | ((0xF0000 & (address)) >> 16))
#define COMPOSE_AUX_SW_DATA_8_15(address) \
((0xFF00 & (address)) >> 8)
#define COMPOSE_AUX_SW_DATA_0_7(address) \
(0xFF & (address))
static void submit_channel_request(
struct dce_aux *engine,
struct aux_request_transaction_data *request)
{
struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(engine);
uint32_t value;
uint32_t length;
bool is_write =
((request->type == AUX_TRANSACTION_TYPE_DP) &&
(request->action == I2CAUX_TRANSACTION_ACTION_DP_WRITE)) ||
((request->type == AUX_TRANSACTION_TYPE_I2C) &&
((request->action == I2CAUX_TRANSACTION_ACTION_I2C_WRITE) ||
(request->action == I2CAUX_TRANSACTION_ACTION_I2C_WRITE_MOT)));
if (REG(AUXN_IMPCAL)) {
/* clear_aux_error */
REG_UPDATE_SEQ_2(AUXN_IMPCAL,
AUXN_CALOUT_ERROR_AK, 1,
AUXN_CALOUT_ERROR_AK, 0);
REG_UPDATE_SEQ_2(AUXP_IMPCAL,
AUXP_CALOUT_ERROR_AK, 1,
AUXP_CALOUT_ERROR_AK, 0);
/* force_default_calibrate */
REG_UPDATE_SEQ_2(AUXN_IMPCAL,
AUXN_IMPCAL_ENABLE, 1,
AUXN_IMPCAL_OVERRIDE_ENABLE, 0);
/* bug? why AUXN update EN and OVERRIDE_EN 1 by 1 while AUX P toggles OVERRIDE? */
REG_UPDATE_SEQ_2(AUXP_IMPCAL,
AUXP_IMPCAL_OVERRIDE_ENABLE, 1,
AUXP_IMPCAL_OVERRIDE_ENABLE, 0);
}
REG_UPDATE(AUX_INTERRUPT_CONTROL, AUX_SW_DONE_ACK, 1);
REG_WAIT(AUX_SW_STATUS, AUX_SW_DONE, 0,
10, aux110->polling_timeout_period/10);
/* set the delay and the number of bytes to write */
/* The length include
* the 4 bit header and the 20 bit address
* (that is 3 byte).
* If the requested length is non zero this means
* an addition byte specifying the length is required.
*/
length = request->length ? 4 : 3;
if (is_write)
length += request->length;
REG_UPDATE_2(AUX_SW_CONTROL,
AUX_SW_START_DELAY, request->delay,
AUX_SW_WR_BYTES, length);
/* program action and address and payload data (if 'is_write') */
value = REG_UPDATE_4(AUX_SW_DATA,
AUX_SW_INDEX, 0,
AUX_SW_DATA_RW, 0,
AUX_SW_AUTOINCREMENT_DISABLE, 1,
AUX_SW_DATA, COMPOSE_AUX_SW_DATA_16_20(request->action, request->address));
value = REG_SET_2(AUX_SW_DATA, value,
AUX_SW_AUTOINCREMENT_DISABLE, 0,
AUX_SW_DATA, COMPOSE_AUX_SW_DATA_8_15(request->address));
value = REG_SET(AUX_SW_DATA, value,
AUX_SW_DATA, COMPOSE_AUX_SW_DATA_0_7(request->address));
if (request->length) {
value = REG_SET(AUX_SW_DATA, value,
AUX_SW_DATA, request->length - 1);
}
if (is_write) {
/* Load the HW buffer with the Data to be sent.
* This is relevant for write operation.
* For read, the data recived data will be
* processed in process_channel_reply().
*/
uint32_t i = 0;
while (i < request->length) {
value = REG_SET(AUX_SW_DATA, value,
AUX_SW_DATA, request->data[i]);
++i;
}
}
REG_UPDATE(AUX_SW_CONTROL, AUX_SW_GO, 1);
EVENT_LOG_AUX_REQ(engine->ddc->pin_data->en, EVENT_LOG_AUX_ORIGIN_NATIVE,
request->action, request->address, request->length, request->data);
}
static int read_channel_reply(struct dce_aux *engine, uint32_t size,
uint8_t *buffer, uint8_t *reply_result,
uint32_t *sw_status)
{
struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(engine);
uint32_t bytes_replied;
uint32_t reply_result_32;
*sw_status = REG_GET(AUX_SW_STATUS, AUX_SW_REPLY_BYTE_COUNT,
&bytes_replied);
/* In case HPD is LOW, exit AUX transaction */
if ((*sw_status & AUX_SW_STATUS__AUX_SW_HPD_DISCON_MASK))
return -1;
/* Need at least the status byte */
if (!bytes_replied)
return -1;
REG_UPDATE_SEQ_3(AUX_SW_DATA,
AUX_SW_INDEX, 0,
AUX_SW_AUTOINCREMENT_DISABLE, 1,
AUX_SW_DATA_RW, 1);
REG_GET(AUX_SW_DATA, AUX_SW_DATA, &reply_result_32);
reply_result_32 = reply_result_32 >> 4;
if (reply_result != NULL)
*reply_result = (uint8_t)reply_result_32;
if (reply_result_32 == 0) { /* ACK */
uint32_t i = 0;
/* First byte was already used to get the command status */
--bytes_replied;
/* Do not overflow buffer */
if (bytes_replied > size)
return -1;
while (i < bytes_replied) {
uint32_t aux_sw_data_val;
REG_GET(AUX_SW_DATA, AUX_SW_DATA, &aux_sw_data_val);
buffer[i] = aux_sw_data_val;
++i;
}
return i;
}
return 0;
}
static enum aux_return_code_type get_channel_status(
struct dce_aux *engine,
uint8_t *returned_bytes)
{
struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(engine);
uint32_t value;
if (returned_bytes == NULL) {
/*caller pass NULL pointer*/
ASSERT_CRITICAL(false);
return AUX_RET_ERROR_UNKNOWN;
}
*returned_bytes = 0;
/* poll to make sure that SW_DONE is asserted */
REG_WAIT(AUX_SW_STATUS, AUX_SW_DONE, 1,
10, aux110->polling_timeout_period/10);
value = REG_READ(AUX_SW_STATUS);
/* in case HPD is LOW, exit AUX transaction */
if ((value & AUX_SW_STATUS__AUX_SW_HPD_DISCON_MASK))
return AUX_RET_ERROR_HPD_DISCON;
/* Note that the following bits are set in 'status.bits'
* during CTS 4.2.1.2 (FW 3.3.1):
* AUX_SW_RX_MIN_COUNT_VIOL, AUX_SW_RX_INVALID_STOP,
* AUX_SW_RX_RECV_NO_DET, AUX_SW_RX_RECV_INVALID_H.
*
* AUX_SW_RX_MIN_COUNT_VIOL is an internal,
* HW debugging bit and should be ignored.
*/
if (value & AUX_SW_STATUS__AUX_SW_DONE_MASK) {
if ((value & AUX_SW_STATUS__AUX_SW_RX_TIMEOUT_STATE_MASK) ||
(value & AUX_SW_STATUS__AUX_SW_RX_TIMEOUT_MASK))
return AUX_RET_ERROR_TIMEOUT;
else if ((value & AUX_SW_STATUS__AUX_SW_RX_INVALID_STOP_MASK) ||
(value & AUX_SW_STATUS__AUX_SW_RX_RECV_NO_DET_MASK) ||
(value &
AUX_SW_STATUS__AUX_SW_RX_RECV_INVALID_H_MASK) ||
(value & AUX_SW_STATUS__AUX_SW_RX_RECV_INVALID_L_MASK))
return AUX_RET_ERROR_INVALID_REPLY;
*returned_bytes = get_reg_field_value(value,
AUX_SW_STATUS,
AUX_SW_REPLY_BYTE_COUNT);
if (*returned_bytes == 0)
return
AUX_RET_ERROR_INVALID_REPLY;
else {
*returned_bytes -= 1;
return AUX_RET_SUCCESS;
}
} else {
/*time_elapsed >= aux_engine->timeout_period
* AUX_SW_STATUS__AUX_SW_HPD_DISCON = at this point
*/
ASSERT_CRITICAL(false);
return AUX_RET_ERROR_TIMEOUT;
}
}
static bool acquire(
struct dce_aux *engine,
struct ddc *ddc)
{
enum gpio_result result;
if ((engine == NULL) || !is_engine_available(engine))
return false;
result = dal_ddc_open(ddc, GPIO_MODE_HARDWARE,
GPIO_DDC_CONFIG_TYPE_MODE_AUX);
if (result != GPIO_RESULT_OK)
return false;
if (!acquire_engine(engine)) {
engine->ddc = ddc;
release_engine(engine);
return false;
}
engine->ddc = ddc;
return true;
}
void dce110_engine_destroy(struct dce_aux **engine)
{
struct aux_engine_dce110 *engine110 = FROM_AUX_ENGINE(*engine);
kfree(engine110);
*engine = NULL;
}
static uint32_t dce_aux_configure_timeout(struct ddc_service *ddc,
uint32_t timeout_in_us)
{
uint32_t multiplier = 0;
uint32_t length = 0;
uint32_t prev_length = 0;
uint32_t prev_mult = 0;
uint32_t prev_timeout_val = 0;
struct ddc *ddc_pin = ddc->ddc_pin;
struct dce_aux *aux_engine = ddc->ctx->dc->res_pool->engines[ddc_pin->pin_data->en];
struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(aux_engine);
/* 1-Update polling timeout period */
aux110->polling_timeout_period = timeout_in_us * SW_AUX_TIMEOUT_PERIOD_MULTIPLIER;
/* 2-Update aux timeout period length and multiplier */
if (timeout_in_us == 0) {
multiplier = DEFAULT_AUX_ENGINE_MULT;
length = DEFAULT_AUX_ENGINE_LENGTH;
} else if (timeout_in_us <= TIME_OUT_INCREMENT) {
multiplier = 0;
length = timeout_in_us/TIME_OUT_MULTIPLIER_8;
if (timeout_in_us % TIME_OUT_MULTIPLIER_8 != 0)
length++;
} else if (timeout_in_us <= 2 * TIME_OUT_INCREMENT) {
multiplier = 1;
length = timeout_in_us/TIME_OUT_MULTIPLIER_16;
if (timeout_in_us % TIME_OUT_MULTIPLIER_16 != 0)
length++;
} else if (timeout_in_us <= 4 * TIME_OUT_INCREMENT) {
multiplier = 2;
length = timeout_in_us/TIME_OUT_MULTIPLIER_32;
if (timeout_in_us % TIME_OUT_MULTIPLIER_32 != 0)
length++;
} else if (timeout_in_us > 4 * TIME_OUT_INCREMENT) {
multiplier = 3;
length = timeout_in_us/TIME_OUT_MULTIPLIER_64;
if (timeout_in_us % TIME_OUT_MULTIPLIER_64 != 0)
length++;
}
length = (length < MAX_TIMEOUT_LENGTH) ? length : MAX_TIMEOUT_LENGTH;
REG_GET_2(AUX_DPHY_RX_CONTROL1, AUX_RX_TIMEOUT_LEN, &prev_length, AUX_RX_TIMEOUT_LEN_MUL, &prev_mult);
switch (prev_mult) {
case 0:
prev_timeout_val = prev_length * TIME_OUT_MULTIPLIER_8;
break;
case 1:
prev_timeout_val = prev_length * TIME_OUT_MULTIPLIER_16;
break;
case 2:
prev_timeout_val = prev_length * TIME_OUT_MULTIPLIER_32;
break;
case 3:
prev_timeout_val = prev_length * TIME_OUT_MULTIPLIER_64;
break;
default:
prev_timeout_val = DEFAULT_AUX_ENGINE_LENGTH * TIME_OUT_MULTIPLIER_8;
break;
}
REG_UPDATE_SEQ_2(AUX_DPHY_RX_CONTROL1, AUX_RX_TIMEOUT_LEN, length, AUX_RX_TIMEOUT_LEN_MUL, multiplier);
return prev_timeout_val;
}
static struct dce_aux_funcs aux_functions = {
.configure_timeout = NULL,
.destroy = NULL,
};
struct dce_aux *dce110_aux_engine_construct(struct aux_engine_dce110 *aux_engine110,
struct dc_context *ctx,
uint32_t inst,
uint32_t timeout_period,
const struct dce110_aux_registers *regs,
const struct dce110_aux_registers_mask *mask,
const struct dce110_aux_registers_shift *shift,
bool is_ext_aux_timeout_configurable)
{
aux_engine110->base.ddc = NULL;
aux_engine110->base.ctx = ctx;
aux_engine110->base.delay = 0;
aux_engine110->base.max_defer_write_retry = 0;
aux_engine110->base.inst = inst;
aux_engine110->polling_timeout_period = timeout_period;
aux_engine110->regs = regs;
aux_engine110->mask = mask;
aux_engine110->shift = shift;
aux_engine110->base.funcs = &aux_functions;
if (is_ext_aux_timeout_configurable)
aux_engine110->base.funcs->configure_timeout = &dce_aux_configure_timeout;
return &aux_engine110->base;
}
static enum i2caux_transaction_action i2caux_action_from_payload(struct aux_payload *payload)
{
if (payload->i2c_over_aux) {
if (payload->write_status_update) {
if (payload->mot)
return I2CAUX_TRANSACTION_ACTION_I2C_STATUS_REQUEST_MOT;
else
return I2CAUX_TRANSACTION_ACTION_I2C_STATUS_REQUEST;
}
if (payload->write) {
if (payload->mot)
return I2CAUX_TRANSACTION_ACTION_I2C_WRITE_MOT;
else
return I2CAUX_TRANSACTION_ACTION_I2C_WRITE;
}
if (payload->mot)
return I2CAUX_TRANSACTION_ACTION_I2C_READ_MOT;
return I2CAUX_TRANSACTION_ACTION_I2C_READ;
}
if (payload->write)
return I2CAUX_TRANSACTION_ACTION_DP_WRITE;
return I2CAUX_TRANSACTION_ACTION_DP_READ;
}
int dce_aux_transfer_raw(struct ddc_service *ddc,
struct aux_payload *payload,
enum aux_return_code_type *operation_result)
{
struct ddc *ddc_pin = ddc->ddc_pin;
struct dce_aux *aux_engine;
struct aux_request_transaction_data aux_req;
uint8_t returned_bytes = 0;
int res = -1;
uint32_t status;
memset(&aux_req, 0, sizeof(aux_req));
if (ddc_pin == NULL) {
*operation_result = AUX_RET_ERROR_ENGINE_ACQUIRE;
return -1;
}
aux_engine = ddc->ctx->dc->res_pool->engines[ddc_pin->pin_data->en];
if (!acquire(aux_engine, ddc_pin)) {
*operation_result = AUX_RET_ERROR_ENGINE_ACQUIRE;
return -1;
}
if (payload->i2c_over_aux)
aux_req.type = AUX_TRANSACTION_TYPE_I2C;
else
aux_req.type = AUX_TRANSACTION_TYPE_DP;
aux_req.action = i2caux_action_from_payload(payload);
aux_req.address = payload->address;
aux_req.delay = 0;
aux_req.length = payload->length;
aux_req.data = payload->data;
submit_channel_request(aux_engine, &aux_req);
*operation_result = get_channel_status(aux_engine, &returned_bytes);
if (*operation_result == AUX_RET_SUCCESS) {
int __maybe_unused bytes_replied = 0;
bytes_replied = read_channel_reply(aux_engine, payload->length,
payload->data, payload->reply,
&status);
EVENT_LOG_AUX_REP(aux_engine->ddc->pin_data->en,
EVENT_LOG_AUX_ORIGIN_NATIVE, *payload->reply,
bytes_replied, payload->data);
res = returned_bytes;
} else {
res = -1;
}
release_engine(aux_engine);
return res;
}
int dce_aux_transfer_dmub_raw(struct ddc_service *ddc,
struct aux_payload *payload,
enum aux_return_code_type *operation_result)
{
struct ddc *ddc_pin = ddc->ddc_pin;
if (ddc_pin != NULL) {
struct dce_aux *aux_engine = ddc->ctx->dc->res_pool->engines[ddc_pin->pin_data->en];
/* XXX: Workaround to configure ddc channels for aux transactions */
if (!acquire(aux_engine, ddc_pin)) {
*operation_result = AUX_RET_ERROR_ENGINE_ACQUIRE;
return -1;
}
release_engine(aux_engine);
}
return dm_helper_dmub_aux_transfer_sync(ddc->ctx, ddc->link, payload, operation_result);
}
#define AUX_MAX_RETRIES 7
#define AUX_MIN_DEFER_RETRIES 7
#define AUX_MAX_DEFER_TIMEOUT_MS 50
#define AUX_MAX_I2C_DEFER_RETRIES 7
#define AUX_MAX_INVALID_REPLY_RETRIES 2
#define AUX_MAX_TIMEOUT_RETRIES 3
#define AUX_DEFER_DELAY_FOR_DPIA 4 /*ms*/
static void dce_aux_log_payload(const char *payload_name,
unsigned char *payload, uint32_t length, uint32_t max_length_to_log)
{
if (!IS_DC_I2CAUX_LOGGING_ENABLED())
return;
if (payload && length) {
char hex_str[128] = {0};
char *hex_str_ptr = &hex_str[0];
uint32_t hex_str_remaining = sizeof(hex_str);
unsigned char *payload_ptr = payload;
unsigned char *payload_max_to_log_ptr = payload_ptr + min(max_length_to_log, length);
unsigned int count;
char *padding = "";
while (payload_ptr < payload_max_to_log_ptr) {
count = snprintf_count(hex_str_ptr, hex_str_remaining, "%s%02X", padding, *payload_ptr);
padding = " ";
hex_str_remaining -= count;
hex_str_ptr += count;
payload_ptr++;
}
count = snprintf_count(hex_str_ptr, hex_str_remaining, " ");
hex_str_remaining -= count;
hex_str_ptr += count;
payload_ptr = payload;
while (payload_ptr < payload_max_to_log_ptr) {
count = snprintf_count(hex_str_ptr, hex_str_remaining, "%c",
*payload_ptr >= ' ' ? *payload_ptr : '.');
hex_str_remaining -= count;
hex_str_ptr += count;
payload_ptr++;
}
DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_VERBOSE,
LOG_FLAG_I2cAux_DceAux,
"dce_aux_log_payload: %s: length=%u: data: %s%s",
payload_name,
length,
hex_str,
(length > max_length_to_log ? " (...)" : " "));
} else {
DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_VERBOSE,
LOG_FLAG_I2cAux_DceAux,
"dce_aux_log_payload: %s: length=%u: data: <empty payload>",
payload_name,
length);
}
}
bool dce_aux_transfer_with_retries(struct ddc_service *ddc,
struct aux_payload *payload)
{
int i, ret = 0;
uint8_t reply;
bool payload_reply = true;
enum aux_return_code_type operation_result;
bool retry_on_defer = false;
struct ddc *ddc_pin = ddc->ddc_pin;
struct dce_aux *aux_engine = NULL;
struct aux_engine_dce110 *aux110 = NULL;
uint32_t defer_time_in_ms = 0;
int aux_ack_retries = 0,
aux_defer_retries = 0,
aux_i2c_defer_retries = 0,
aux_timeout_retries = 0,
aux_invalid_reply_retries = 0,
aux_ack_m_retries = 0;
if (ddc_pin) {
aux_engine = ddc->ctx->dc->res_pool->engines[ddc_pin->pin_data->en];
aux110 = FROM_AUX_ENGINE(aux_engine);
}
if (!payload->reply) {
payload_reply = false;
payload->reply = &reply;
}
for (i = 0; i < AUX_MAX_RETRIES; i++) {
DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_INFORMATION,
LOG_FLAG_I2cAux_DceAux,
"dce_aux_transfer_with_retries: link_index=%u: START: retry %d of %d: address=0x%04x length=%u write=%d mot=%d",
ddc && ddc->link ? ddc->link->link_index : UINT_MAX,
i + 1,
(int)AUX_MAX_RETRIES,
payload->address,
payload->length,
(unsigned int) payload->write,
(unsigned int) payload->mot);
if (payload->write)
dce_aux_log_payload(" write", payload->data, payload->length, 16);
ret = dce_aux_transfer_raw(ddc, payload, &operation_result);
DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_INFORMATION,
LOG_FLAG_I2cAux_DceAux,
"dce_aux_transfer_with_retries: link_index=%u: END: retry %d of %d: address=0x%04x length=%u write=%d mot=%d: ret=%d operation_result=%d payload->reply=%u",
ddc && ddc->link ? ddc->link->link_index : UINT_MAX,
i + 1,
(int)AUX_MAX_RETRIES,
payload->address,
payload->length,
(unsigned int) payload->write,
(unsigned int) payload->mot,
ret,
(int)operation_result,
(unsigned int) *payload->reply);
if (!payload->write)
dce_aux_log_payload(" read", payload->data, ret > 0 ? ret : 0, 16);
switch (operation_result) {
case AUX_RET_SUCCESS:
aux_timeout_retries = 0;
aux_invalid_reply_retries = 0;
switch (*payload->reply) {
case AUX_TRANSACTION_REPLY_AUX_ACK:
DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_INFORMATION,
LOG_FLAG_I2cAux_DceAux,
"dce_aux_transfer_with_retries: AUX_RET_SUCCESS: AUX_TRANSACTION_REPLY_AUX_ACK");
if (!payload->write && payload->length != ret) {
if (++aux_ack_retries >= AUX_MAX_RETRIES) {
DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_ERROR,
LOG_FLAG_Error_I2cAux,
"dce_aux_transfer_with_retries: FAILURE: aux_ack_retries=%d >= AUX_MAX_RETRIES=%d",
aux_defer_retries,
AUX_MAX_RETRIES);
goto fail;
} else
udelay(300);
} else if (payload->write && ret > 0) {
/* sink requested more time to complete the write via AUX_ACKM */
if (++aux_ack_m_retries >= AUX_MAX_RETRIES) {
DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_ERROR,
LOG_FLAG_Error_I2cAux,
"dce_aux_transfer_with_retries: FAILURE: aux_ack_m_retries=%d >= AUX_MAX_RETRIES=%d",
aux_ack_m_retries,
AUX_MAX_RETRIES);
goto fail;
}
/* retry reading the write status until complete
* NOTE: payload is modified here
*/
payload->write = false;
payload->write_status_update = true;
payload->length = 0;
udelay(300);
} else
return true;
break;
case AUX_TRANSACTION_REPLY_AUX_DEFER:
DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_INFORMATION,
LOG_FLAG_I2cAux_DceAux,
"dce_aux_transfer_with_retries: AUX_RET_SUCCESS: AUX_TRANSACTION_REPLY_AUX_DEFER");
/* polling_timeout_period is in us */
if (aux110)
defer_time_in_ms += aux110->polling_timeout_period / 1000;
else
defer_time_in_ms += AUX_DEFER_DELAY_FOR_DPIA;
++aux_defer_retries;
fallthrough;
case AUX_TRANSACTION_REPLY_I2C_OVER_AUX_DEFER:
if (*payload->reply == AUX_TRANSACTION_REPLY_I2C_OVER_AUX_DEFER)
DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_INFORMATION,
LOG_FLAG_I2cAux_DceAux,
"dce_aux_transfer_with_retries: AUX_RET_SUCCESS: AUX_TRANSACTION_REPLY_I2C_OVER_AUX_DEFER");
retry_on_defer = true;
if (aux_defer_retries >= AUX_MIN_DEFER_RETRIES
&& defer_time_in_ms >= AUX_MAX_DEFER_TIMEOUT_MS) {
DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_ERROR,
LOG_FLAG_Error_I2cAux,
"dce_aux_transfer_with_retries: FAILURE: aux_defer_retries=%d >= AUX_MIN_DEFER_RETRIES=%d && defer_time_in_ms=%d >= AUX_MAX_DEFER_TIMEOUT_MS=%d",
aux_defer_retries,
AUX_MIN_DEFER_RETRIES,
defer_time_in_ms,
AUX_MAX_DEFER_TIMEOUT_MS);
goto fail;
} else {
if ((*payload->reply == AUX_TRANSACTION_REPLY_AUX_DEFER) ||
(*payload->reply == AUX_TRANSACTION_REPLY_I2C_OVER_AUX_DEFER)) {
DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_INFORMATION,
LOG_FLAG_I2cAux_DceAux,
"dce_aux_transfer_with_retries: payload->defer_delay=%u",
payload->defer_delay);
fsleep(payload->defer_delay * 1000);
defer_time_in_ms += payload->defer_delay;
}
}
break;
case AUX_TRANSACTION_REPLY_I2C_OVER_AUX_NACK:
DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_INFORMATION,
LOG_FLAG_I2cAux_DceAux,
"dce_aux_transfer_with_retries: FAILURE: AUX_TRANSACTION_REPLY_I2C_OVER_AUX_NACK");
goto fail;
case AUX_TRANSACTION_REPLY_I2C_DEFER:
DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_INFORMATION,
LOG_FLAG_I2cAux_DceAux,
"dce_aux_transfer_with_retries: AUX_RET_SUCCESS: AUX_TRANSACTION_REPLY_I2C_DEFER");
aux_defer_retries = 0;
if (++aux_i2c_defer_retries >= AUX_MAX_I2C_DEFER_RETRIES) {
DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_ERROR,
LOG_FLAG_Error_I2cAux,
"dce_aux_transfer_with_retries: FAILURE: aux_i2c_defer_retries=%d >= AUX_MAX_I2C_DEFER_RETRIES=%d",
aux_i2c_defer_retries,
AUX_MAX_I2C_DEFER_RETRIES);
goto fail;
}
break;
case AUX_TRANSACTION_REPLY_AUX_NACK:
DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_INFORMATION,
LOG_FLAG_I2cAux_DceAux,
"dce_aux_transfer_with_retries: AUX_RET_SUCCESS: AUX_TRANSACTION_REPLY_AUX_NACK");
goto fail;
case AUX_TRANSACTION_REPLY_HPD_DISCON:
DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_INFORMATION,
LOG_FLAG_I2cAux_DceAux,
"dce_aux_transfer_with_retries: AUX_RET_SUCCESS: AUX_TRANSACTION_REPLY_HPD_DISCON");
goto fail;
default:
DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_ERROR,
LOG_FLAG_Error_I2cAux,
"dce_aux_transfer_with_retries: AUX_RET_SUCCESS: FAILURE: AUX_TRANSACTION_REPLY_* unknown, default case. Reply: %d", *payload->reply);
goto fail;
}
break;
case AUX_RET_ERROR_INVALID_REPLY:
DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_INFORMATION,
LOG_FLAG_I2cAux_DceAux,
"dce_aux_transfer_with_retries: AUX_RET_ERROR_INVALID_REPLY");
if (++aux_invalid_reply_retries >= AUX_MAX_INVALID_REPLY_RETRIES) {
DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_ERROR,
LOG_FLAG_Error_I2cAux,
"dce_aux_transfer_with_retries: FAILURE: aux_invalid_reply_retries=%d >= AUX_MAX_INVALID_REPLY_RETRIES=%d",
aux_invalid_reply_retries,
AUX_MAX_INVALID_REPLY_RETRIES);
goto fail;
} else
udelay(400);
break;
case AUX_RET_ERROR_TIMEOUT:
DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_INFORMATION,
LOG_FLAG_I2cAux_DceAux,
"dce_aux_transfer_with_retries: AUX_RET_ERROR_TIMEOUT");
// Check whether a DEFER had occurred before the timeout.
// If so, treat timeout as a DEFER.
if (retry_on_defer) {
if (++aux_defer_retries >= AUX_MIN_DEFER_RETRIES) {
DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_ERROR,
LOG_FLAG_Error_I2cAux,
"dce_aux_transfer_with_retries: FAILURE: aux_defer_retries=%d >= AUX_MIN_DEFER_RETRIES=%d",
aux_defer_retries,
AUX_MIN_DEFER_RETRIES);
goto fail;
} else if (payload->defer_delay > 0) {
DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_INFORMATION,
LOG_FLAG_I2cAux_DceAux,
"dce_aux_transfer_with_retries: payload->defer_delay=%u",
payload->defer_delay);
msleep(payload->defer_delay);
}
} else {
if (++aux_timeout_retries >= AUX_MAX_TIMEOUT_RETRIES) {
DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_ERROR,
LOG_FLAG_Error_I2cAux,
"dce_aux_transfer_with_retries: FAILURE: aux_timeout_retries=%d >= AUX_MAX_TIMEOUT_RETRIES=%d",
aux_timeout_retries,
AUX_MAX_TIMEOUT_RETRIES);
goto fail;
} else {
/*
* DP 1.4, 2.8.2: AUX Transaction Response/Reply Timeouts
* According to the DP spec there should be 3 retries total
* with a 400us wait inbetween each. Hardware already waits
* for 550us therefore no wait is required here.
*/
}
}
break;
case AUX_RET_ERROR_HPD_DISCON:
case AUX_RET_ERROR_ENGINE_ACQUIRE:
case AUX_RET_ERROR_UNKNOWN:
default:
goto fail;
}
}
fail:
DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_ERROR,
LOG_FLAG_Error_I2cAux,
"%s: Failure: operation_result=%d",
__func__,
(int)operation_result);
if (!payload_reply)
payload->reply = NULL;
return false;
}