| /* |
| * Copyright 2015 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| */ |
| #include "pp_debug.h" |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/pci.h> |
| |
| #include <drm/amdgpu_drm.h> |
| #include "processpptables.h" |
| #include <atom-types.h> |
| #include <atombios.h> |
| #include "pptable.h" |
| #include "power_state.h" |
| #include "hwmgr.h" |
| #include "hardwaremanager.h" |
| |
| |
| #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2 12 |
| #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3 14 |
| #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4 16 |
| #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5 18 |
| #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6 20 |
| #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7 22 |
| #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V8 24 |
| #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V9 26 |
| |
| #define NUM_BITS_CLOCK_INFO_ARRAY_INDEX 6 |
| |
| static uint16_t get_vce_table_offset(struct pp_hwmgr *hwmgr, |
| const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| { |
| uint16_t vce_table_offset = 0; |
| |
| if (le16_to_cpu(powerplay_table->usTableSize) >= |
| sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) { |
| const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 = |
| (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table; |
| |
| if (powerplay_table3->usExtendendedHeaderOffset > 0) { |
| const ATOM_PPLIB_EXTENDEDHEADER *extended_header = |
| (const ATOM_PPLIB_EXTENDEDHEADER *) |
| (((unsigned long)powerplay_table3) + |
| le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset)); |
| if (le16_to_cpu(extended_header->usSize) >= |
| SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2) |
| vce_table_offset = le16_to_cpu(extended_header->usVCETableOffset); |
| } |
| } |
| |
| return vce_table_offset; |
| } |
| |
| static uint16_t get_vce_clock_info_array_offset(struct pp_hwmgr *hwmgr, |
| const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| { |
| uint16_t table_offset = get_vce_table_offset(hwmgr, |
| powerplay_table); |
| |
| if (table_offset > 0) |
| return table_offset + 1; |
| |
| return 0; |
| } |
| |
| static uint16_t get_vce_clock_info_array_size(struct pp_hwmgr *hwmgr, |
| const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| { |
| uint16_t table_offset = get_vce_clock_info_array_offset(hwmgr, |
| powerplay_table); |
| uint16_t table_size = 0; |
| |
| if (table_offset > 0) { |
| const VCEClockInfoArray *p = (const VCEClockInfoArray *) |
| (((unsigned long) powerplay_table) + table_offset); |
| table_size = sizeof(uint8_t) + p->ucNumEntries * sizeof(VCEClockInfo); |
| } |
| |
| return table_size; |
| } |
| |
| static uint16_t get_vce_clock_voltage_limit_table_offset(struct pp_hwmgr *hwmgr, |
| const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| { |
| uint16_t table_offset = get_vce_clock_info_array_offset(hwmgr, |
| powerplay_table); |
| |
| if (table_offset > 0) |
| return table_offset + get_vce_clock_info_array_size(hwmgr, |
| powerplay_table); |
| |
| return 0; |
| } |
| |
| static uint16_t get_vce_clock_voltage_limit_table_size(struct pp_hwmgr *hwmgr, |
| const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| { |
| uint16_t table_offset = get_vce_clock_voltage_limit_table_offset(hwmgr, powerplay_table); |
| uint16_t table_size = 0; |
| |
| if (table_offset > 0) { |
| const ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *ptable = |
| (const ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *)(((unsigned long) powerplay_table) + table_offset); |
| |
| table_size = sizeof(uint8_t) + ptable->numEntries * sizeof(ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record); |
| } |
| return table_size; |
| } |
| |
| static uint16_t get_vce_state_table_offset(struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| { |
| uint16_t table_offset = get_vce_clock_voltage_limit_table_offset(hwmgr, powerplay_table); |
| |
| if (table_offset > 0) |
| return table_offset + get_vce_clock_voltage_limit_table_size(hwmgr, powerplay_table); |
| |
| return 0; |
| } |
| |
| static const ATOM_PPLIB_VCE_State_Table *get_vce_state_table( |
| struct pp_hwmgr *hwmgr, |
| const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| { |
| uint16_t table_offset = get_vce_state_table_offset(hwmgr, powerplay_table); |
| |
| if (table_offset > 0) |
| return (const ATOM_PPLIB_VCE_State_Table *)(((unsigned long) powerplay_table) + table_offset); |
| |
| return NULL; |
| } |
| |
| static uint16_t get_uvd_table_offset(struct pp_hwmgr *hwmgr, |
| const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| { |
| uint16_t uvd_table_offset = 0; |
| |
| if (le16_to_cpu(powerplay_table->usTableSize) >= |
| sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) { |
| const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 = |
| (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table; |
| if (powerplay_table3->usExtendendedHeaderOffset > 0) { |
| const ATOM_PPLIB_EXTENDEDHEADER *extended_header = |
| (const ATOM_PPLIB_EXTENDEDHEADER *) |
| (((unsigned long)powerplay_table3) + |
| le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset)); |
| if (le16_to_cpu(extended_header->usSize) >= |
| SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3) |
| uvd_table_offset = le16_to_cpu(extended_header->usUVDTableOffset); |
| } |
| } |
| return uvd_table_offset; |
| } |
| |
| static uint16_t get_uvd_clock_info_array_offset(struct pp_hwmgr *hwmgr, |
| const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| { |
| uint16_t table_offset = get_uvd_table_offset(hwmgr, |
| powerplay_table); |
| |
| if (table_offset > 0) |
| return table_offset + 1; |
| return 0; |
| } |
| |
| static uint16_t get_uvd_clock_info_array_size(struct pp_hwmgr *hwmgr, |
| const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| { |
| uint16_t table_offset = get_uvd_clock_info_array_offset(hwmgr, |
| powerplay_table); |
| uint16_t table_size = 0; |
| |
| if (table_offset > 0) { |
| const UVDClockInfoArray *p = (const UVDClockInfoArray *) |
| (((unsigned long) powerplay_table) |
| + table_offset); |
| table_size = sizeof(UCHAR) + |
| p->ucNumEntries * sizeof(UVDClockInfo); |
| } |
| |
| return table_size; |
| } |
| |
| static uint16_t get_uvd_clock_voltage_limit_table_offset( |
| struct pp_hwmgr *hwmgr, |
| const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| { |
| uint16_t table_offset = get_uvd_clock_info_array_offset(hwmgr, |
| powerplay_table); |
| |
| if (table_offset > 0) |
| return table_offset + |
| get_uvd_clock_info_array_size(hwmgr, powerplay_table); |
| |
| return 0; |
| } |
| |
| static uint16_t get_samu_table_offset(struct pp_hwmgr *hwmgr, |
| const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| { |
| uint16_t samu_table_offset = 0; |
| |
| if (le16_to_cpu(powerplay_table->usTableSize) >= |
| sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) { |
| const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 = |
| (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table; |
| if (powerplay_table3->usExtendendedHeaderOffset > 0) { |
| const ATOM_PPLIB_EXTENDEDHEADER *extended_header = |
| (const ATOM_PPLIB_EXTENDEDHEADER *) |
| (((unsigned long)powerplay_table3) + |
| le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset)); |
| if (le16_to_cpu(extended_header->usSize) >= |
| SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4) |
| samu_table_offset = le16_to_cpu(extended_header->usSAMUTableOffset); |
| } |
| } |
| |
| return samu_table_offset; |
| } |
| |
| static uint16_t get_samu_clock_voltage_limit_table_offset( |
| struct pp_hwmgr *hwmgr, |
| const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| { |
| uint16_t table_offset = get_samu_table_offset(hwmgr, |
| powerplay_table); |
| |
| if (table_offset > 0) |
| return table_offset + 1; |
| |
| return 0; |
| } |
| |
| static uint16_t get_acp_table_offset(struct pp_hwmgr *hwmgr, |
| const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| { |
| uint16_t acp_table_offset = 0; |
| |
| if (le16_to_cpu(powerplay_table->usTableSize) >= |
| sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) { |
| const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 = |
| (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table; |
| if (powerplay_table3->usExtendendedHeaderOffset > 0) { |
| const ATOM_PPLIB_EXTENDEDHEADER *pExtendedHeader = |
| (const ATOM_PPLIB_EXTENDEDHEADER *) |
| (((unsigned long)powerplay_table3) + |
| le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset)); |
| if (le16_to_cpu(pExtendedHeader->usSize) >= |
| SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6) |
| acp_table_offset = le16_to_cpu(pExtendedHeader->usACPTableOffset); |
| } |
| } |
| |
| return acp_table_offset; |
| } |
| |
| static uint16_t get_acp_clock_voltage_limit_table_offset( |
| struct pp_hwmgr *hwmgr, |
| const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| { |
| uint16_t tableOffset = get_acp_table_offset(hwmgr, powerplay_table); |
| |
| if (tableOffset > 0) |
| return tableOffset + 1; |
| |
| return 0; |
| } |
| |
| static uint16_t get_cacp_tdp_table_offset( |
| struct pp_hwmgr *hwmgr, |
| const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| { |
| uint16_t cacTdpTableOffset = 0; |
| |
| if (le16_to_cpu(powerplay_table->usTableSize) >= |
| sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) { |
| const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 = |
| (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table; |
| if (powerplay_table3->usExtendendedHeaderOffset > 0) { |
| const ATOM_PPLIB_EXTENDEDHEADER *pExtendedHeader = |
| (const ATOM_PPLIB_EXTENDEDHEADER *) |
| (((unsigned long)powerplay_table3) + |
| le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset)); |
| if (le16_to_cpu(pExtendedHeader->usSize) >= |
| SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7) |
| cacTdpTableOffset = le16_to_cpu(pExtendedHeader->usPowerTuneTableOffset); |
| } |
| } |
| |
| return cacTdpTableOffset; |
| } |
| |
| static int get_cac_tdp_table(struct pp_hwmgr *hwmgr, |
| struct phm_cac_tdp_table **ptable, |
| const ATOM_PowerTune_Table *table, |
| uint16_t us_maximum_power_delivery_limit) |
| { |
| unsigned long table_size; |
| struct phm_cac_tdp_table *tdp_table; |
| |
| table_size = sizeof(unsigned long) + sizeof(struct phm_cac_tdp_table); |
| |
| tdp_table = kzalloc(table_size, GFP_KERNEL); |
| if (NULL == tdp_table) |
| return -ENOMEM; |
| |
| tdp_table->usTDP = le16_to_cpu(table->usTDP); |
| tdp_table->usConfigurableTDP = le16_to_cpu(table->usConfigurableTDP); |
| tdp_table->usTDC = le16_to_cpu(table->usTDC); |
| tdp_table->usBatteryPowerLimit = le16_to_cpu(table->usBatteryPowerLimit); |
| tdp_table->usSmallPowerLimit = le16_to_cpu(table->usSmallPowerLimit); |
| tdp_table->usLowCACLeakage = le16_to_cpu(table->usLowCACLeakage); |
| tdp_table->usHighCACLeakage = le16_to_cpu(table->usHighCACLeakage); |
| tdp_table->usMaximumPowerDeliveryLimit = us_maximum_power_delivery_limit; |
| |
| *ptable = tdp_table; |
| |
| return 0; |
| } |
| |
| static uint16_t get_sclk_vdd_gfx_table_offset(struct pp_hwmgr *hwmgr, |
| const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| { |
| uint16_t sclk_vdd_gfx_table_offset = 0; |
| |
| if (le16_to_cpu(powerplay_table->usTableSize) >= |
| sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) { |
| const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 = |
| (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table; |
| if (powerplay_table3->usExtendendedHeaderOffset > 0) { |
| const ATOM_PPLIB_EXTENDEDHEADER *pExtendedHeader = |
| (const ATOM_PPLIB_EXTENDEDHEADER *) |
| (((unsigned long)powerplay_table3) + |
| le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset)); |
| if (le16_to_cpu(pExtendedHeader->usSize) >= |
| SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V8) |
| sclk_vdd_gfx_table_offset = |
| le16_to_cpu(pExtendedHeader->usSclkVddgfxTableOffset); |
| } |
| } |
| |
| return sclk_vdd_gfx_table_offset; |
| } |
| |
| static uint16_t get_sclk_vdd_gfx_clock_voltage_dependency_table_offset( |
| struct pp_hwmgr *hwmgr, |
| const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| { |
| uint16_t tableOffset = get_sclk_vdd_gfx_table_offset(hwmgr, powerplay_table); |
| |
| if (tableOffset > 0) |
| return tableOffset; |
| |
| return 0; |
| } |
| |
| |
| static int get_clock_voltage_dependency_table(struct pp_hwmgr *hwmgr, |
| struct phm_clock_voltage_dependency_table **ptable, |
| const ATOM_PPLIB_Clock_Voltage_Dependency_Table *table) |
| { |
| |
| unsigned long i; |
| struct phm_clock_voltage_dependency_table *dep_table; |
| |
| dep_table = kzalloc(struct_size(dep_table, entries, table->ucNumEntries), |
| GFP_KERNEL); |
| if (NULL == dep_table) |
| return -ENOMEM; |
| |
| dep_table->count = (unsigned long)table->ucNumEntries; |
| |
| for (i = 0; i < dep_table->count; i++) { |
| dep_table->entries[i].clk = |
| ((unsigned long)table->entries[i].ucClockHigh << 16) | |
| le16_to_cpu(table->entries[i].usClockLow); |
| dep_table->entries[i].v = |
| (unsigned long)le16_to_cpu(table->entries[i].usVoltage); |
| } |
| |
| *ptable = dep_table; |
| |
| return 0; |
| } |
| |
| static int get_valid_clk(struct pp_hwmgr *hwmgr, |
| struct phm_clock_array **ptable, |
| const struct phm_clock_voltage_dependency_table *table) |
| { |
| unsigned long i; |
| struct phm_clock_array *clock_table; |
| |
| clock_table = kzalloc(struct_size(clock_table, values, table->count), GFP_KERNEL); |
| if (!clock_table) |
| return -ENOMEM; |
| |
| clock_table->count = (unsigned long)table->count; |
| |
| for (i = 0; i < clock_table->count; i++) |
| clock_table->values[i] = (unsigned long)table->entries[i].clk; |
| |
| *ptable = clock_table; |
| |
| return 0; |
| } |
| |
| static int get_clock_voltage_limit(struct pp_hwmgr *hwmgr, |
| struct phm_clock_and_voltage_limits *limits, |
| const ATOM_PPLIB_Clock_Voltage_Limit_Table *table) |
| { |
| limits->sclk = ((unsigned long)table->entries[0].ucSclkHigh << 16) | |
| le16_to_cpu(table->entries[0].usSclkLow); |
| limits->mclk = ((unsigned long)table->entries[0].ucMclkHigh << 16) | |
| le16_to_cpu(table->entries[0].usMclkLow); |
| limits->vddc = (unsigned long)le16_to_cpu(table->entries[0].usVddc); |
| limits->vddci = (unsigned long)le16_to_cpu(table->entries[0].usVddci); |
| |
| return 0; |
| } |
| |
| |
| static void set_hw_cap(struct pp_hwmgr *hwmgr, bool enable, |
| enum phm_platform_caps cap) |
| { |
| if (enable) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, cap); |
| else |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, cap); |
| } |
| |
| static int set_platform_caps(struct pp_hwmgr *hwmgr, |
| unsigned long powerplay_caps) |
| { |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_POWERPLAY), |
| PHM_PlatformCaps_PowerPlaySupport |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_SBIOSPOWERSOURCE), |
| PHM_PlatformCaps_BiosPowerSourceControl |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_ASPM_L0s), |
| PHM_PlatformCaps_EnableASPML0s |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_ASPM_L1), |
| PHM_PlatformCaps_EnableASPML1 |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_BACKBIAS), |
| PHM_PlatformCaps_EnableBackbias |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_HARDWAREDC), |
| PHM_PlatformCaps_AutomaticDCTransition |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_GEMINIPRIMARY), |
| PHM_PlatformCaps_GeminiPrimary |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_STEPVDDC), |
| PHM_PlatformCaps_StepVddc |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_VOLTAGECONTROL), |
| PHM_PlatformCaps_EnableVoltageControl |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_SIDEPORTCONTROL), |
| PHM_PlatformCaps_EnableSideportControl |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_TURNOFFPLL_ASPML1), |
| PHM_PlatformCaps_TurnOffPll_ASPML1 |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_HTLINKCONTROL), |
| PHM_PlatformCaps_EnableHTLinkControl |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_MVDDCONTROL), |
| PHM_PlatformCaps_EnableMVDDControl |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_VDDCI_CONTROL), |
| PHM_PlatformCaps_ControlVDDCI |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_REGULATOR_HOT), |
| PHM_PlatformCaps_RegulatorHot |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_GOTO_BOOT_ON_ALERT), |
| PHM_PlatformCaps_BootStateOnAlert |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_DONT_WAIT_FOR_VBLANK_ON_ALERT), |
| PHM_PlatformCaps_DontWaitForVBlankOnAlert |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_BACO), |
| PHM_PlatformCaps_BACO |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_NEW_CAC_VOLTAGE), |
| PHM_PlatformCaps_NewCACVoltage |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_REVERT_GPIO5_POLARITY), |
| PHM_PlatformCaps_RevertGPIO5Polarity |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_OUTPUT_THERMAL2GPIO17), |
| PHM_PlatformCaps_Thermal2GPIO17 |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_VRHOT_GPIO_CONFIGURABLE), |
| PHM_PlatformCaps_VRHotGPIOConfigurable |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_TEMP_INVERSION), |
| PHM_PlatformCaps_TempInversion |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_EVV), |
| PHM_PlatformCaps_EVV |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_PP_PLATFORM_COMBINE_PCC_WITH_THERMAL_SIGNAL), |
| PHM_PlatformCaps_CombinePCCWithThermalSignal |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_PP_PLATFORM_LOAD_POST_PRODUCTION_FIRMWARE), |
| PHM_PlatformCaps_LoadPostProductionFirmware |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_DISABLE_USING_ACTUAL_TEMPERATURE_FOR_POWER_CALC), |
| PHM_PlatformCaps_DisableUsingActualTemperatureForPowerCalc |
| ); |
| |
| return 0; |
| } |
| |
| static PP_StateClassificationFlags make_classification_flags( |
| struct pp_hwmgr *hwmgr, |
| USHORT classification, |
| USHORT classification2) |
| { |
| PP_StateClassificationFlags result = 0; |
| |
| if (classification & ATOM_PPLIB_CLASSIFICATION_BOOT) |
| result |= PP_StateClassificationFlag_Boot; |
| |
| if (classification & ATOM_PPLIB_CLASSIFICATION_THERMAL) |
| result |= PP_StateClassificationFlag_Thermal; |
| |
| if (classification & |
| ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE) |
| result |= PP_StateClassificationFlag_LimitedPowerSource; |
| |
| if (classification & ATOM_PPLIB_CLASSIFICATION_REST) |
| result |= PP_StateClassificationFlag_Rest; |
| |
| if (classification & ATOM_PPLIB_CLASSIFICATION_FORCED) |
| result |= PP_StateClassificationFlag_Forced; |
| |
| if (classification & ATOM_PPLIB_CLASSIFICATION_3DPERFORMANCE) |
| result |= PP_StateClassificationFlag_3DPerformance; |
| |
| |
| if (classification & ATOM_PPLIB_CLASSIFICATION_OVERDRIVETEMPLATE) |
| result |= PP_StateClassificationFlag_ACOverdriveTemplate; |
| |
| if (classification & ATOM_PPLIB_CLASSIFICATION_UVDSTATE) |
| result |= PP_StateClassificationFlag_Uvd; |
| |
| if (classification & ATOM_PPLIB_CLASSIFICATION_HDSTATE) |
| result |= PP_StateClassificationFlag_UvdHD; |
| |
| if (classification & ATOM_PPLIB_CLASSIFICATION_SDSTATE) |
| result |= PP_StateClassificationFlag_UvdSD; |
| |
| if (classification & ATOM_PPLIB_CLASSIFICATION_HD2STATE) |
| result |= PP_StateClassificationFlag_HD2; |
| |
| if (classification & ATOM_PPLIB_CLASSIFICATION_ACPI) |
| result |= PP_StateClassificationFlag_ACPI; |
| |
| if (classification2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2) |
| result |= PP_StateClassificationFlag_LimitedPowerSource_2; |
| |
| |
| if (classification2 & ATOM_PPLIB_CLASSIFICATION2_ULV) |
| result |= PP_StateClassificationFlag_ULV; |
| |
| if (classification2 & ATOM_PPLIB_CLASSIFICATION2_MVC) |
| result |= PP_StateClassificationFlag_UvdMVC; |
| |
| return result; |
| } |
| |
| static int init_non_clock_fields(struct pp_hwmgr *hwmgr, |
| struct pp_power_state *ps, |
| uint8_t version, |
| const ATOM_PPLIB_NONCLOCK_INFO *pnon_clock_info) { |
| unsigned long rrr_index; |
| unsigned long tmp; |
| |
| ps->classification.ui_label = (le16_to_cpu(pnon_clock_info->usClassification) & |
| ATOM_PPLIB_CLASSIFICATION_UI_MASK) >> ATOM_PPLIB_CLASSIFICATION_UI_SHIFT; |
| ps->classification.flags = make_classification_flags(hwmgr, |
| le16_to_cpu(pnon_clock_info->usClassification), |
| le16_to_cpu(pnon_clock_info->usClassification2)); |
| |
| ps->classification.temporary_state = false; |
| ps->classification.to_be_deleted = false; |
| tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) & |
| ATOM_PPLIB_SINGLE_DISPLAY_ONLY; |
| |
| ps->validation.singleDisplayOnly = (0 != tmp); |
| |
| tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) & |
| ATOM_PPLIB_DISALLOW_ON_DC; |
| |
| ps->validation.disallowOnDC = (0 != tmp); |
| |
| ps->pcie.lanes = ((le32_to_cpu(pnon_clock_info->ulCapsAndSettings) & |
| ATOM_PPLIB_PCIE_LINK_WIDTH_MASK) >> |
| ATOM_PPLIB_PCIE_LINK_WIDTH_SHIFT) + 1; |
| |
| ps->pcie.lanes = 0; |
| |
| ps->display.disableFrameModulation = false; |
| |
| rrr_index = (le32_to_cpu(pnon_clock_info->ulCapsAndSettings) & |
| ATOM_PPLIB_LIMITED_REFRESHRATE_VALUE_MASK) >> |
| ATOM_PPLIB_LIMITED_REFRESHRATE_VALUE_SHIFT; |
| |
| if (rrr_index != ATOM_PPLIB_LIMITED_REFRESHRATE_UNLIMITED) { |
| static const uint8_t look_up[(ATOM_PPLIB_LIMITED_REFRESHRATE_VALUE_MASK >> ATOM_PPLIB_LIMITED_REFRESHRATE_VALUE_SHIFT) + 1] = \ |
| { 0, 50, 0 }; |
| |
| ps->display.refreshrateSource = PP_RefreshrateSource_Explicit; |
| ps->display.explicitRefreshrate = look_up[rrr_index]; |
| ps->display.limitRefreshrate = true; |
| |
| if (ps->display.explicitRefreshrate == 0) |
| ps->display.limitRefreshrate = false; |
| } else |
| ps->display.limitRefreshrate = false; |
| |
| tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) & |
| ATOM_PPLIB_ENABLE_VARIBRIGHT; |
| |
| ps->display.enableVariBright = (0 != tmp); |
| |
| tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) & |
| ATOM_PPLIB_SWSTATE_MEMORY_DLL_OFF; |
| |
| ps->memory.dllOff = (0 != tmp); |
| |
| ps->memory.m3arb = (le32_to_cpu(pnon_clock_info->ulCapsAndSettings) & |
| ATOM_PPLIB_M3ARB_MASK) >> ATOM_PPLIB_M3ARB_SHIFT; |
| |
| ps->temperatures.min = PP_TEMPERATURE_UNITS_PER_CENTIGRADES * |
| pnon_clock_info->ucMinTemperature; |
| |
| ps->temperatures.max = PP_TEMPERATURE_UNITS_PER_CENTIGRADES * |
| pnon_clock_info->ucMaxTemperature; |
| |
| tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) & |
| ATOM_PPLIB_SOFTWARE_DISABLE_LOADBALANCING; |
| |
| ps->software.disableLoadBalancing = tmp; |
| |
| tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) & |
| ATOM_PPLIB_SOFTWARE_ENABLE_SLEEP_FOR_TIMESTAMPS; |
| |
| ps->software.enableSleepForTimestamps = (0 != tmp); |
| |
| ps->validation.supportedPowerLevels = pnon_clock_info->ucRequiredPower; |
| |
| if (ATOM_PPLIB_NONCLOCKINFO_VER1 < version) { |
| ps->uvd_clocks.VCLK = le32_to_cpu(pnon_clock_info->ulVCLK); |
| ps->uvd_clocks.DCLK = le32_to_cpu(pnon_clock_info->ulDCLK); |
| } else { |
| ps->uvd_clocks.VCLK = 0; |
| ps->uvd_clocks.DCLK = 0; |
| } |
| |
| return 0; |
| } |
| |
| static ULONG size_of_entry_v2(ULONG num_dpm_levels) |
| { |
| return (sizeof(UCHAR) + sizeof(UCHAR) + |
| (num_dpm_levels * sizeof(UCHAR))); |
| } |
| |
| static const ATOM_PPLIB_STATE_V2 *get_state_entry_v2( |
| const StateArray * pstate_arrays, |
| ULONG entry_index) |
| { |
| ULONG i; |
| const ATOM_PPLIB_STATE_V2 *pstate; |
| |
| pstate = pstate_arrays->states; |
| if (entry_index <= pstate_arrays->ucNumEntries) { |
| for (i = 0; i < entry_index; i++) |
| pstate = (ATOM_PPLIB_STATE_V2 *)( |
| (unsigned long)pstate + |
| size_of_entry_v2(pstate->ucNumDPMLevels)); |
| } |
| return pstate; |
| } |
| |
| static const unsigned char soft_dummy_pp_table[] = { |
| 0xe1, 0x01, 0x06, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x42, 0x00, 0x4a, 0x00, 0x6c, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x42, 0x00, 0x02, 0x00, 0x00, 0x00, 0x13, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, |
| 0x00, 0x4e, 0x00, 0x88, 0x00, 0x00, 0x9e, 0x00, 0x17, 0x00, 0x00, 0x00, 0x9e, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x02, 0x02, 0x00, 0x00, 0x01, 0x01, 0x01, 0x00, 0x08, 0x04, 0x00, 0x00, 0x00, 0x00, |
| 0x07, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, |
| 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x18, 0x05, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1a, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xe1, 0x00, 0x43, 0x01, 0x00, 0x00, 0x00, 0x00, |
| 0x8e, 0x01, 0x00, 0x00, 0xb8, 0x01, 0x00, 0x00, 0x08, 0x30, 0x75, 0x00, 0x80, 0x00, 0xa0, 0x8c, |
| 0x00, 0x7e, 0x00, 0x71, 0xa5, 0x00, 0x7c, 0x00, 0xe5, 0xc8, 0x00, 0x70, 0x00, 0x91, 0xf4, 0x00, |
| 0x64, 0x00, 0x40, 0x19, 0x01, 0x5a, 0x00, 0x0e, 0x28, 0x01, 0x52, 0x00, 0x80, 0x38, 0x01, 0x4a, |
| 0x00, 0x00, 0x09, 0x30, 0x75, 0x00, 0x30, 0x75, 0x00, 0x40, 0x9c, 0x00, 0x40, 0x9c, 0x00, 0x59, |
| 0xd8, 0x00, 0x59, 0xd8, 0x00, 0x91, 0xf4, 0x00, 0x91, 0xf4, 0x00, 0x0e, 0x28, 0x01, 0x0e, 0x28, |
| 0x01, 0x90, 0x5f, 0x01, 0x90, 0x5f, 0x01, 0x00, 0x77, 0x01, 0x00, 0x77, 0x01, 0xca, 0x91, 0x01, |
| 0xca, 0x91, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x80, 0x00, 0x00, 0x7e, 0x00, 0x01, |
| 0x7c, 0x00, 0x02, 0x70, 0x00, 0x03, 0x64, 0x00, 0x04, 0x5a, 0x00, 0x05, 0x52, 0x00, 0x06, 0x4a, |
| 0x00, 0x07, 0x08, 0x08, 0x00, 0x08, 0x00, 0x01, 0x02, 0x02, 0x02, 0x01, 0x02, 0x02, 0x02, 0x03, |
| 0x02, 0x04, 0x02, 0x00, 0x08, 0x40, 0x9c, 0x00, 0x30, 0x75, 0x00, 0x74, 0xb5, 0x00, 0xa0, 0x8c, |
| 0x00, 0x60, 0xea, 0x00, 0x74, 0xb5, 0x00, 0x0e, 0x28, 0x01, 0x60, 0xea, 0x00, 0x90, 0x5f, 0x01, |
| 0x40, 0x19, 0x01, 0xb2, 0xb0, 0x01, 0x90, 0x5f, 0x01, 0xc0, 0xd4, 0x01, 0x00, 0x77, 0x01, 0x5e, |
| 0xff, 0x01, 0xca, 0x91, 0x01, 0x08, 0x80, 0x00, 0x00, 0x7e, 0x00, 0x01, 0x7c, 0x00, 0x02, 0x70, |
| 0x00, 0x03, 0x64, 0x00, 0x04, 0x5a, 0x00, 0x05, 0x52, 0x00, 0x06, 0x4a, 0x00, 0x07, 0x00, 0x08, |
| 0x80, 0x00, 0x30, 0x75, 0x00, 0x7e, 0x00, 0x40, 0x9c, 0x00, 0x7c, 0x00, 0x59, 0xd8, 0x00, 0x70, |
| 0x00, 0xdc, 0x0b, 0x01, 0x64, 0x00, 0x80, 0x38, 0x01, 0x5a, 0x00, 0x80, 0x38, 0x01, 0x52, 0x00, |
| 0x80, 0x38, 0x01, 0x4a, 0x00, 0x80, 0x38, 0x01, 0x08, 0x30, 0x75, 0x00, 0x80, 0x00, 0xa0, 0x8c, |
| 0x00, 0x7e, 0x00, 0x71, 0xa5, 0x00, 0x7c, 0x00, 0xe5, 0xc8, 0x00, 0x74, 0x00, 0x91, 0xf4, 0x00, |
| 0x66, 0x00, 0x40, 0x19, 0x01, 0x58, 0x00, 0x0e, 0x28, 0x01, 0x52, 0x00, 0x80, 0x38, 0x01, 0x4a, |
| 0x00 |
| }; |
| |
| static const ATOM_PPLIB_POWERPLAYTABLE *get_powerplay_table( |
| struct pp_hwmgr *hwmgr) |
| { |
| const void *table_addr = hwmgr->soft_pp_table; |
| uint8_t frev, crev; |
| uint16_t size; |
| |
| if (!table_addr) { |
| if (hwmgr->chip_id == CHIP_RAVEN) { |
| table_addr = &soft_dummy_pp_table[0]; |
| hwmgr->soft_pp_table = &soft_dummy_pp_table[0]; |
| hwmgr->soft_pp_table_size = sizeof(soft_dummy_pp_table); |
| } else { |
| table_addr = smu_atom_get_data_table(hwmgr->adev, |
| GetIndexIntoMasterTable(DATA, PowerPlayInfo), |
| &size, &frev, &crev); |
| hwmgr->soft_pp_table = table_addr; |
| hwmgr->soft_pp_table_size = size; |
| } |
| } |
| |
| return (const ATOM_PPLIB_POWERPLAYTABLE *)table_addr; |
| } |
| |
| int pp_tables_get_response_times(struct pp_hwmgr *hwmgr, |
| uint32_t *vol_rep_time, uint32_t *bb_rep_time) |
| { |
| const ATOM_PPLIB_POWERPLAYTABLE *powerplay_tab = get_powerplay_table(hwmgr); |
| |
| PP_ASSERT_WITH_CODE(NULL != powerplay_tab, |
| "Missing PowerPlay Table!", return -EINVAL); |
| |
| *vol_rep_time = (uint32_t)le16_to_cpu(powerplay_tab->usVoltageTime); |
| *bb_rep_time = (uint32_t)le16_to_cpu(powerplay_tab->usBackbiasTime); |
| |
| return 0; |
| } |
| |
| int pp_tables_get_num_of_entries(struct pp_hwmgr *hwmgr, |
| unsigned long *num_of_entries) |
| { |
| const StateArray *pstate_arrays; |
| const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table = get_powerplay_table(hwmgr); |
| |
| if (powerplay_table == NULL) |
| return -1; |
| |
| if (powerplay_table->sHeader.ucTableFormatRevision >= 6) { |
| pstate_arrays = (StateArray *)(((unsigned long)powerplay_table) + |
| le16_to_cpu(powerplay_table->usStateArrayOffset)); |
| |
| *num_of_entries = (unsigned long)(pstate_arrays->ucNumEntries); |
| } else |
| *num_of_entries = (unsigned long)(powerplay_table->ucNumStates); |
| |
| return 0; |
| } |
| |
| int pp_tables_get_entry(struct pp_hwmgr *hwmgr, |
| unsigned long entry_index, |
| struct pp_power_state *ps, |
| pp_tables_hw_clock_info_callback func) |
| { |
| int i; |
| const StateArray *pstate_arrays; |
| const ATOM_PPLIB_STATE_V2 *pstate_entry_v2; |
| const ATOM_PPLIB_NONCLOCK_INFO *pnon_clock_info; |
| const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table = get_powerplay_table(hwmgr); |
| int result = 0; |
| int res = 0; |
| |
| const ClockInfoArray *pclock_arrays; |
| |
| const NonClockInfoArray *pnon_clock_arrays; |
| |
| const ATOM_PPLIB_STATE *pstate_entry; |
| |
| if (powerplay_table == NULL) |
| return -1; |
| |
| ps->classification.bios_index = entry_index; |
| |
| if (powerplay_table->sHeader.ucTableFormatRevision >= 6) { |
| pstate_arrays = (StateArray *)(((unsigned long)powerplay_table) + |
| le16_to_cpu(powerplay_table->usStateArrayOffset)); |
| |
| if (entry_index > pstate_arrays->ucNumEntries) |
| return -1; |
| |
| pstate_entry_v2 = get_state_entry_v2(pstate_arrays, entry_index); |
| pclock_arrays = (ClockInfoArray *)(((unsigned long)powerplay_table) + |
| le16_to_cpu(powerplay_table->usClockInfoArrayOffset)); |
| |
| pnon_clock_arrays = (NonClockInfoArray *)(((unsigned long)powerplay_table) + |
| le16_to_cpu(powerplay_table->usNonClockInfoArrayOffset)); |
| |
| pnon_clock_info = (ATOM_PPLIB_NONCLOCK_INFO *)((unsigned long)(pnon_clock_arrays->nonClockInfo) + |
| (pstate_entry_v2->nonClockInfoIndex * pnon_clock_arrays->ucEntrySize)); |
| |
| result = init_non_clock_fields(hwmgr, ps, pnon_clock_arrays->ucEntrySize, pnon_clock_info); |
| |
| for (i = 0; i < pstate_entry_v2->ucNumDPMLevels; i++) { |
| const void *pclock_info = (const void *)( |
| (unsigned long)(pclock_arrays->clockInfo) + |
| (pstate_entry_v2->clockInfoIndex[i] * pclock_arrays->ucEntrySize)); |
| res = func(hwmgr, &ps->hardware, i, pclock_info); |
| if ((0 == result) && (0 != res)) |
| result = res; |
| } |
| } else { |
| if (entry_index > powerplay_table->ucNumStates) |
| return -1; |
| |
| pstate_entry = (ATOM_PPLIB_STATE *)((unsigned long)powerplay_table + |
| le16_to_cpu(powerplay_table->usStateArrayOffset) + |
| entry_index * powerplay_table->ucStateEntrySize); |
| |
| pnon_clock_info = (ATOM_PPLIB_NONCLOCK_INFO *)((unsigned long)powerplay_table + |
| le16_to_cpu(powerplay_table->usNonClockInfoArrayOffset) + |
| pstate_entry->ucNonClockStateIndex * |
| powerplay_table->ucNonClockSize); |
| |
| result = init_non_clock_fields(hwmgr, ps, |
| powerplay_table->ucNonClockSize, |
| pnon_clock_info); |
| |
| for (i = 0; i < powerplay_table->ucStateEntrySize-1; i++) { |
| const void *pclock_info = (const void *)((unsigned long)powerplay_table + |
| le16_to_cpu(powerplay_table->usClockInfoArrayOffset) + |
| pstate_entry->ucClockStateIndices[i] * |
| powerplay_table->ucClockInfoSize); |
| |
| int res = func(hwmgr, &ps->hardware, i, pclock_info); |
| |
| if ((0 == result) && (0 != res)) |
| result = res; |
| } |
| } |
| |
| if ((0 == result) && (0 != (ps->classification.flags & PP_StateClassificationFlag_Boot))) { |
| if (hwmgr->chip_family < AMDGPU_FAMILY_RV) |
| result = hwmgr->hwmgr_func->patch_boot_state(hwmgr, &(ps->hardware)); |
| } |
| |
| return result; |
| } |
| |
| static int init_powerplay_tables( |
| struct pp_hwmgr *hwmgr, |
| const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table |
| ) |
| { |
| return 0; |
| } |
| |
| |
| static int init_thermal_controller( |
| struct pp_hwmgr *hwmgr, |
| const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| { |
| struct amdgpu_device *adev = hwmgr->adev; |
| |
| hwmgr->thermal_controller.ucType = |
| powerplay_table->sThermalController.ucType; |
| hwmgr->thermal_controller.ucI2cLine = |
| powerplay_table->sThermalController.ucI2cLine; |
| hwmgr->thermal_controller.ucI2cAddress = |
| powerplay_table->sThermalController.ucI2cAddress; |
| |
| hwmgr->thermal_controller.fanInfo.bNoFan = |
| (0 != (powerplay_table->sThermalController.ucFanParameters & |
| ATOM_PP_FANPARAMETERS_NOFAN)); |
| |
| hwmgr->thermal_controller.fanInfo.ucTachometerPulsesPerRevolution = |
| powerplay_table->sThermalController.ucFanParameters & |
| ATOM_PP_FANPARAMETERS_TACHOMETER_PULSES_PER_REVOLUTION_MASK; |
| |
| hwmgr->thermal_controller.fanInfo.ulMinRPM |
| = powerplay_table->sThermalController.ucFanMinRPM * 100UL; |
| hwmgr->thermal_controller.fanInfo.ulMaxRPM |
| = powerplay_table->sThermalController.ucFanMaxRPM * 100UL; |
| |
| set_hw_cap(hwmgr, |
| ATOM_PP_THERMALCONTROLLER_NONE != hwmgr->thermal_controller.ucType, |
| PHM_PlatformCaps_ThermalController); |
| |
| if (powerplay_table->usTableSize >= sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) { |
| const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 = |
| (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table; |
| |
| if (0 == le16_to_cpu(powerplay_table3->usFanTableOffset)) { |
| hwmgr->thermal_controller.use_hw_fan_control = 1; |
| return 0; |
| } else { |
| const ATOM_PPLIB_FANTABLE *fan_table = |
| (const ATOM_PPLIB_FANTABLE *)(((unsigned long)powerplay_table) + |
| le16_to_cpu(powerplay_table3->usFanTableOffset)); |
| |
| if (1 <= fan_table->ucFanTableFormat) { |
| hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst = |
| fan_table->ucTHyst; |
| hwmgr->thermal_controller.advanceFanControlParameters.usTMin = |
| le16_to_cpu(fan_table->usTMin); |
| hwmgr->thermal_controller.advanceFanControlParameters.usTMed = |
| le16_to_cpu(fan_table->usTMed); |
| hwmgr->thermal_controller.advanceFanControlParameters.usTHigh = |
| le16_to_cpu(fan_table->usTHigh); |
| hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin = |
| le16_to_cpu(fan_table->usPWMMin); |
| hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed = |
| le16_to_cpu(fan_table->usPWMMed); |
| hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh = |
| le16_to_cpu(fan_table->usPWMHigh); |
| hwmgr->thermal_controller.advanceFanControlParameters.usTMax = 10900; |
| hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay = 100000; |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_MicrocodeFanControl); |
| } |
| |
| if (2 <= fan_table->ucFanTableFormat) { |
| const ATOM_PPLIB_FANTABLE2 *fan_table2 = |
| (const ATOM_PPLIB_FANTABLE2 *)(((unsigned long)powerplay_table) + |
| le16_to_cpu(powerplay_table3->usFanTableOffset)); |
| hwmgr->thermal_controller.advanceFanControlParameters.usTMax = |
| le16_to_cpu(fan_table2->usTMax); |
| } |
| |
| if (3 <= fan_table->ucFanTableFormat) { |
| const ATOM_PPLIB_FANTABLE3 *fan_table3 = |
| (const ATOM_PPLIB_FANTABLE3 *) (((unsigned long)powerplay_table) + |
| le16_to_cpu(powerplay_table3->usFanTableOffset)); |
| |
| hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode = |
| fan_table3->ucFanControlMode; |
| |
| if ((3 == fan_table->ucFanTableFormat) && |
| (0x67B1 == adev->pdev->device)) |
| hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM = |
| 47; |
| else |
| hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM = |
| le16_to_cpu(fan_table3->usFanPWMMax); |
| |
| hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity = |
| 4836; |
| hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity = |
| le16_to_cpu(fan_table3->usFanOutputSensitivity); |
| } |
| |
| if (6 <= fan_table->ucFanTableFormat) { |
| const ATOM_PPLIB_FANTABLE4 *fan_table4 = |
| (const ATOM_PPLIB_FANTABLE4 *)(((unsigned long)powerplay_table) + |
| le16_to_cpu(powerplay_table3->usFanTableOffset)); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_FanSpeedInTableIsRPM); |
| |
| hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM = |
| le16_to_cpu(fan_table4->usFanRPMMax); |
| } |
| |
| if (7 <= fan_table->ucFanTableFormat) { |
| const ATOM_PPLIB_FANTABLE5 *fan_table5 = |
| (const ATOM_PPLIB_FANTABLE5 *)(((unsigned long)powerplay_table) + |
| le16_to_cpu(powerplay_table3->usFanTableOffset)); |
| |
| if (0x67A2 == adev->pdev->device || |
| 0x67A9 == adev->pdev->device || |
| 0x67B9 == adev->pdev->device) { |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_GeminiRegulatorFanControlSupport); |
| hwmgr->thermal_controller.advanceFanControlParameters.usFanCurrentLow = |
| le16_to_cpu(fan_table5->usFanCurrentLow); |
| hwmgr->thermal_controller.advanceFanControlParameters.usFanCurrentHigh = |
| le16_to_cpu(fan_table5->usFanCurrentHigh); |
| hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMLow = |
| le16_to_cpu(fan_table5->usFanRPMLow); |
| hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMHigh = |
| le16_to_cpu(fan_table5->usFanRPMHigh); |
| } |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int init_overdrive_limits_V1_4(struct pp_hwmgr *hwmgr, |
| const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table, |
| const ATOM_FIRMWARE_INFO_V1_4 *fw_info) |
| { |
| hwmgr->platform_descriptor.overdriveLimit.engineClock = |
| le32_to_cpu(fw_info->ulASICMaxEngineClock); |
| |
| hwmgr->platform_descriptor.overdriveLimit.memoryClock = |
| le32_to_cpu(fw_info->ulASICMaxMemoryClock); |
| |
| hwmgr->platform_descriptor.maxOverdriveVDDC = |
| le32_to_cpu(fw_info->ul3DAccelerationEngineClock) & 0x7FF; |
| |
| hwmgr->platform_descriptor.minOverdriveVDDC = |
| le16_to_cpu(fw_info->usBootUpVDDCVoltage); |
| |
| hwmgr->platform_descriptor.maxOverdriveVDDC = |
| le16_to_cpu(fw_info->usBootUpVDDCVoltage); |
| |
| hwmgr->platform_descriptor.overdriveVDDCStep = 0; |
| return 0; |
| } |
| |
| static int init_overdrive_limits_V2_1(struct pp_hwmgr *hwmgr, |
| const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table, |
| const ATOM_FIRMWARE_INFO_V2_1 *fw_info) |
| { |
| const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3; |
| const ATOM_PPLIB_EXTENDEDHEADER *header; |
| |
| if (le16_to_cpu(powerplay_table->usTableSize) < |
| sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) |
| return 0; |
| |
| powerplay_table3 = (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table; |
| |
| if (0 == powerplay_table3->usExtendendedHeaderOffset) |
| return 0; |
| |
| header = (ATOM_PPLIB_EXTENDEDHEADER *)(((unsigned long) powerplay_table) + |
| le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset)); |
| |
| hwmgr->platform_descriptor.overdriveLimit.engineClock = le32_to_cpu(header->ulMaxEngineClock); |
| hwmgr->platform_descriptor.overdriveLimit.memoryClock = le32_to_cpu(header->ulMaxMemoryClock); |
| |
| |
| hwmgr->platform_descriptor.minOverdriveVDDC = 0; |
| hwmgr->platform_descriptor.maxOverdriveVDDC = 0; |
| hwmgr->platform_descriptor.overdriveVDDCStep = 0; |
| |
| return 0; |
| } |
| |
| static int init_overdrive_limits(struct pp_hwmgr *hwmgr, |
| const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| { |
| int result = 0; |
| uint8_t frev, crev; |
| uint16_t size; |
| |
| const ATOM_COMMON_TABLE_HEADER *fw_info = NULL; |
| |
| hwmgr->platform_descriptor.overdriveLimit.engineClock = 0; |
| hwmgr->platform_descriptor.overdriveLimit.memoryClock = 0; |
| hwmgr->platform_descriptor.minOverdriveVDDC = 0; |
| hwmgr->platform_descriptor.maxOverdriveVDDC = 0; |
| hwmgr->platform_descriptor.overdriveVDDCStep = 0; |
| |
| if (hwmgr->chip_id == CHIP_RAVEN) |
| return 0; |
| |
| /* We assume here that fw_info is unchanged if this call fails.*/ |
| fw_info = smu_atom_get_data_table(hwmgr->adev, |
| GetIndexIntoMasterTable(DATA, FirmwareInfo), |
| &size, &frev, &crev); |
| |
| if ((fw_info->ucTableFormatRevision == 1) |
| && (le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V1_4))) |
| result = init_overdrive_limits_V1_4(hwmgr, |
| powerplay_table, |
| (const ATOM_FIRMWARE_INFO_V1_4 *)fw_info); |
| |
| else if ((fw_info->ucTableFormatRevision == 2) |
| && (le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) |
| result = init_overdrive_limits_V2_1(hwmgr, |
| powerplay_table, |
| (const ATOM_FIRMWARE_INFO_V2_1 *)fw_info); |
| |
| return result; |
| } |
| |
| static int get_uvd_clock_voltage_limit_table(struct pp_hwmgr *hwmgr, |
| struct phm_uvd_clock_voltage_dependency_table **ptable, |
| const ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *table, |
| const UVDClockInfoArray *array) |
| { |
| unsigned long i; |
| struct phm_uvd_clock_voltage_dependency_table *uvd_table; |
| |
| uvd_table = kzalloc(struct_size(uvd_table, entries, table->numEntries), |
| GFP_KERNEL); |
| if (!uvd_table) |
| return -ENOMEM; |
| |
| uvd_table->count = table->numEntries; |
| |
| for (i = 0; i < table->numEntries; i++) { |
| const UVDClockInfo *entry = |
| &array->entries[table->entries[i].ucUVDClockInfoIndex]; |
| uvd_table->entries[i].v = (unsigned long)le16_to_cpu(table->entries[i].usVoltage); |
| uvd_table->entries[i].vclk = ((unsigned long)entry->ucVClkHigh << 16) |
| | le16_to_cpu(entry->usVClkLow); |
| uvd_table->entries[i].dclk = ((unsigned long)entry->ucDClkHigh << 16) |
| | le16_to_cpu(entry->usDClkLow); |
| } |
| |
| *ptable = uvd_table; |
| |
| return 0; |
| } |
| |
| static int get_vce_clock_voltage_limit_table(struct pp_hwmgr *hwmgr, |
| struct phm_vce_clock_voltage_dependency_table **ptable, |
| const ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *table, |
| const VCEClockInfoArray *array) |
| { |
| unsigned long i; |
| struct phm_vce_clock_voltage_dependency_table *vce_table; |
| |
| vce_table = kzalloc(struct_size(vce_table, entries, table->numEntries), |
| GFP_KERNEL); |
| if (!vce_table) |
| return -ENOMEM; |
| |
| vce_table->count = table->numEntries; |
| for (i = 0; i < table->numEntries; i++) { |
| const VCEClockInfo *entry = &array->entries[table->entries[i].ucVCEClockInfoIndex]; |
| |
| vce_table->entries[i].v = (unsigned long)le16_to_cpu(table->entries[i].usVoltage); |
| vce_table->entries[i].evclk = ((unsigned long)entry->ucEVClkHigh << 16) |
| | le16_to_cpu(entry->usEVClkLow); |
| vce_table->entries[i].ecclk = ((unsigned long)entry->ucECClkHigh << 16) |
| | le16_to_cpu(entry->usECClkLow); |
| } |
| |
| *ptable = vce_table; |
| |
| return 0; |
| } |
| |
| static int get_samu_clock_voltage_limit_table(struct pp_hwmgr *hwmgr, |
| struct phm_samu_clock_voltage_dependency_table **ptable, |
| const ATOM_PPLIB_SAMClk_Voltage_Limit_Table *table) |
| { |
| unsigned long i; |
| struct phm_samu_clock_voltage_dependency_table *samu_table; |
| |
| samu_table = kzalloc(struct_size(samu_table, entries, table->numEntries), |
| GFP_KERNEL); |
| if (!samu_table) |
| return -ENOMEM; |
| |
| samu_table->count = table->numEntries; |
| |
| for (i = 0; i < table->numEntries; i++) { |
| samu_table->entries[i].v = (unsigned long)le16_to_cpu(table->entries[i].usVoltage); |
| samu_table->entries[i].samclk = ((unsigned long)table->entries[i].ucSAMClockHigh << 16) |
| | le16_to_cpu(table->entries[i].usSAMClockLow); |
| } |
| |
| *ptable = samu_table; |
| |
| return 0; |
| } |
| |
| static int get_acp_clock_voltage_limit_table(struct pp_hwmgr *hwmgr, |
| struct phm_acp_clock_voltage_dependency_table **ptable, |
| const ATOM_PPLIB_ACPClk_Voltage_Limit_Table *table) |
| { |
| unsigned long i; |
| struct phm_acp_clock_voltage_dependency_table *acp_table; |
| |
| acp_table = kzalloc(struct_size(acp_table, entries, table->numEntries), |
| GFP_KERNEL); |
| if (!acp_table) |
| return -ENOMEM; |
| |
| acp_table->count = (unsigned long)table->numEntries; |
| |
| for (i = 0; i < table->numEntries; i++) { |
| acp_table->entries[i].v = (unsigned long)le16_to_cpu(table->entries[i].usVoltage); |
| acp_table->entries[i].acpclk = ((unsigned long)table->entries[i].ucACPClockHigh << 16) |
| | le16_to_cpu(table->entries[i].usACPClockLow); |
| } |
| |
| *ptable = acp_table; |
| |
| return 0; |
| } |
| |
| static int init_clock_voltage_dependency(struct pp_hwmgr *hwmgr, |
| const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| { |
| ATOM_PPLIB_Clock_Voltage_Dependency_Table *table; |
| ATOM_PPLIB_Clock_Voltage_Limit_Table *limit_table; |
| int result = 0; |
| |
| uint16_t vce_clock_info_array_offset; |
| uint16_t uvd_clock_info_array_offset; |
| uint16_t table_offset; |
| |
| hwmgr->dyn_state.vddc_dependency_on_sclk = NULL; |
| hwmgr->dyn_state.vddci_dependency_on_mclk = NULL; |
| hwmgr->dyn_state.vddc_dependency_on_mclk = NULL; |
| hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL; |
| hwmgr->dyn_state.mvdd_dependency_on_mclk = NULL; |
| hwmgr->dyn_state.vce_clock_voltage_dependency_table = NULL; |
| hwmgr->dyn_state.uvd_clock_voltage_dependency_table = NULL; |
| hwmgr->dyn_state.samu_clock_voltage_dependency_table = NULL; |
| hwmgr->dyn_state.acp_clock_voltage_dependency_table = NULL; |
| hwmgr->dyn_state.ppm_parameter_table = NULL; |
| hwmgr->dyn_state.vdd_gfx_dependency_on_sclk = NULL; |
| |
| vce_clock_info_array_offset = get_vce_clock_info_array_offset( |
| hwmgr, powerplay_table); |
| table_offset = get_vce_clock_voltage_limit_table_offset(hwmgr, |
| powerplay_table); |
| if (vce_clock_info_array_offset > 0 && table_offset > 0) { |
| const VCEClockInfoArray *array = (const VCEClockInfoArray *) |
| (((unsigned long) powerplay_table) + |
| vce_clock_info_array_offset); |
| const ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *table = |
| (const ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *) |
| (((unsigned long) powerplay_table) + table_offset); |
| result = get_vce_clock_voltage_limit_table(hwmgr, |
| &hwmgr->dyn_state.vce_clock_voltage_dependency_table, |
| table, array); |
| } |
| |
| uvd_clock_info_array_offset = get_uvd_clock_info_array_offset(hwmgr, powerplay_table); |
| table_offset = get_uvd_clock_voltage_limit_table_offset(hwmgr, powerplay_table); |
| |
| if (uvd_clock_info_array_offset > 0 && table_offset > 0) { |
| const UVDClockInfoArray *array = (const UVDClockInfoArray *) |
| (((unsigned long) powerplay_table) + |
| uvd_clock_info_array_offset); |
| const ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *ptable = |
| (const ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *) |
| (((unsigned long) powerplay_table) + table_offset); |
| result = get_uvd_clock_voltage_limit_table(hwmgr, |
| &hwmgr->dyn_state.uvd_clock_voltage_dependency_table, ptable, array); |
| } |
| |
| table_offset = get_samu_clock_voltage_limit_table_offset(hwmgr, |
| powerplay_table); |
| |
| if (table_offset > 0) { |
| const ATOM_PPLIB_SAMClk_Voltage_Limit_Table *ptable = |
| (const ATOM_PPLIB_SAMClk_Voltage_Limit_Table *) |
| (((unsigned long) powerplay_table) + table_offset); |
| result = get_samu_clock_voltage_limit_table(hwmgr, |
| &hwmgr->dyn_state.samu_clock_voltage_dependency_table, ptable); |
| } |
| |
| table_offset = get_acp_clock_voltage_limit_table_offset(hwmgr, |
| powerplay_table); |
| |
| if (table_offset > 0) { |
| const ATOM_PPLIB_ACPClk_Voltage_Limit_Table *ptable = |
| (const ATOM_PPLIB_ACPClk_Voltage_Limit_Table *) |
| (((unsigned long) powerplay_table) + table_offset); |
| result = get_acp_clock_voltage_limit_table(hwmgr, |
| &hwmgr->dyn_state.acp_clock_voltage_dependency_table, ptable); |
| } |
| |
| table_offset = get_cacp_tdp_table_offset(hwmgr, powerplay_table); |
| if (table_offset > 0) { |
| UCHAR rev_id = *(UCHAR *)(((unsigned long)powerplay_table) + table_offset); |
| |
| if (rev_id > 0) { |
| const ATOM_PPLIB_POWERTUNE_Table_V1 *tune_table = |
| (const ATOM_PPLIB_POWERTUNE_Table_V1 *) |
| (((unsigned long) powerplay_table) + table_offset); |
| result = get_cac_tdp_table(hwmgr, &hwmgr->dyn_state.cac_dtp_table, |
| &tune_table->power_tune_table, |
| le16_to_cpu(tune_table->usMaximumPowerDeliveryLimit)); |
| hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp = |
| le16_to_cpu(tune_table->usTjMax); |
| } else { |
| const ATOM_PPLIB_POWERTUNE_Table *tune_table = |
| (const ATOM_PPLIB_POWERTUNE_Table *) |
| (((unsigned long) powerplay_table) + table_offset); |
| result = get_cac_tdp_table(hwmgr, |
| &hwmgr->dyn_state.cac_dtp_table, |
| &tune_table->power_tune_table, 255); |
| } |
| } |
| |
| if (le16_to_cpu(powerplay_table->usTableSize) >= |
| sizeof(ATOM_PPLIB_POWERPLAYTABLE4)) { |
| const ATOM_PPLIB_POWERPLAYTABLE4 *powerplay_table4 = |
| (const ATOM_PPLIB_POWERPLAYTABLE4 *)powerplay_table; |
| if (0 != powerplay_table4->usVddcDependencyOnSCLKOffset) { |
| table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *) |
| (((unsigned long) powerplay_table4) + |
| le16_to_cpu(powerplay_table4->usVddcDependencyOnSCLKOffset)); |
| result = get_clock_voltage_dependency_table(hwmgr, |
| &hwmgr->dyn_state.vddc_dependency_on_sclk, table); |
| } |
| |
| if (result == 0 && (0 != powerplay_table4->usVddciDependencyOnMCLKOffset)) { |
| table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *) |
| (((unsigned long) powerplay_table4) + |
| le16_to_cpu(powerplay_table4->usVddciDependencyOnMCLKOffset)); |
| result = get_clock_voltage_dependency_table(hwmgr, |
| &hwmgr->dyn_state.vddci_dependency_on_mclk, table); |
| } |
| |
| if (result == 0 && (0 != powerplay_table4->usVddcDependencyOnMCLKOffset)) { |
| table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *) |
| (((unsigned long) powerplay_table4) + |
| le16_to_cpu(powerplay_table4->usVddcDependencyOnMCLKOffset)); |
| result = get_clock_voltage_dependency_table(hwmgr, |
| &hwmgr->dyn_state.vddc_dependency_on_mclk, table); |
| } |
| |
| if (result == 0 && (0 != powerplay_table4->usMaxClockVoltageOnDCOffset)) { |
| limit_table = (ATOM_PPLIB_Clock_Voltage_Limit_Table *) |
| (((unsigned long) powerplay_table4) + |
| le16_to_cpu(powerplay_table4->usMaxClockVoltageOnDCOffset)); |
| result = get_clock_voltage_limit(hwmgr, |
| &hwmgr->dyn_state.max_clock_voltage_on_dc, limit_table); |
| } |
| |
| if (result == 0 && (NULL != hwmgr->dyn_state.vddc_dependency_on_mclk) && |
| (0 != hwmgr->dyn_state.vddc_dependency_on_mclk->count)) |
| result = get_valid_clk(hwmgr, &hwmgr->dyn_state.valid_mclk_values, |
| hwmgr->dyn_state.vddc_dependency_on_mclk); |
| |
| if(result == 0 && (NULL != hwmgr->dyn_state.vddc_dependency_on_sclk) && |
| (0 != hwmgr->dyn_state.vddc_dependency_on_sclk->count)) |
| result = get_valid_clk(hwmgr, |
| &hwmgr->dyn_state.valid_sclk_values, |
| hwmgr->dyn_state.vddc_dependency_on_sclk); |
| |
| if (result == 0 && (0 != powerplay_table4->usMvddDependencyOnMCLKOffset)) { |
| table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *) |
| (((unsigned long) powerplay_table4) + |
| le16_to_cpu(powerplay_table4->usMvddDependencyOnMCLKOffset)); |
| result = get_clock_voltage_dependency_table(hwmgr, |
| &hwmgr->dyn_state.mvdd_dependency_on_mclk, table); |
| } |
| } |
| |
| table_offset = get_sclk_vdd_gfx_clock_voltage_dependency_table_offset(hwmgr, |
| powerplay_table); |
| |
| if (table_offset > 0) { |
| table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *) |
| (((unsigned long) powerplay_table) + table_offset); |
| result = get_clock_voltage_dependency_table(hwmgr, |
| &hwmgr->dyn_state.vdd_gfx_dependency_on_sclk, table); |
| } |
| |
| return result; |
| } |
| |
| static int get_cac_leakage_table(struct pp_hwmgr *hwmgr, |
| struct phm_cac_leakage_table **ptable, |
| const ATOM_PPLIB_CAC_Leakage_Table *table) |
| { |
| struct phm_cac_leakage_table *cac_leakage_table; |
| unsigned long i; |
| |
| if (!hwmgr || !table || !ptable) |
| return -EINVAL; |
| |
| cac_leakage_table = kzalloc(struct_size(cac_leakage_table, entries, table->ucNumEntries), |
| GFP_KERNEL); |
| if (!cac_leakage_table) |
| return -ENOMEM; |
| |
| cac_leakage_table->count = (ULONG)table->ucNumEntries; |
| |
| for (i = 0; i < cac_leakage_table->count; i++) { |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_EVV)) { |
| cac_leakage_table->entries[i].Vddc1 = le16_to_cpu(table->entries[i].usVddc1); |
| cac_leakage_table->entries[i].Vddc2 = le16_to_cpu(table->entries[i].usVddc2); |
| cac_leakage_table->entries[i].Vddc3 = le16_to_cpu(table->entries[i].usVddc3); |
| } else { |
| cac_leakage_table->entries[i].Vddc = le16_to_cpu(table->entries[i].usVddc); |
| cac_leakage_table->entries[i].Leakage = le32_to_cpu(table->entries[i].ulLeakageValue); |
| } |
| } |
| |
| *ptable = cac_leakage_table; |
| |
| return 0; |
| } |
| |
| static int get_platform_power_management_table(struct pp_hwmgr *hwmgr, |
| ATOM_PPLIB_PPM_Table *atom_ppm_table) |
| { |
| struct phm_ppm_table *ptr = kzalloc(sizeof(struct phm_ppm_table), GFP_KERNEL); |
| |
| if (NULL == ptr) |
| return -ENOMEM; |
| |
| ptr->ppm_design = atom_ppm_table->ucPpmDesign; |
| ptr->cpu_core_number = le16_to_cpu(atom_ppm_table->usCpuCoreNumber); |
| ptr->platform_tdp = le32_to_cpu(atom_ppm_table->ulPlatformTDP); |
| ptr->small_ac_platform_tdp = le32_to_cpu(atom_ppm_table->ulSmallACPlatformTDP); |
| ptr->platform_tdc = le32_to_cpu(atom_ppm_table->ulPlatformTDC); |
| ptr->small_ac_platform_tdc = le32_to_cpu(atom_ppm_table->ulSmallACPlatformTDC); |
| ptr->apu_tdp = le32_to_cpu(atom_ppm_table->ulApuTDP); |
| ptr->dgpu_tdp = le32_to_cpu(atom_ppm_table->ulDGpuTDP); |
| ptr->dgpu_ulv_power = le32_to_cpu(atom_ppm_table->ulDGpuUlvPower); |
| ptr->tj_max = le32_to_cpu(atom_ppm_table->ulTjmax); |
| hwmgr->dyn_state.ppm_parameter_table = ptr; |
| |
| return 0; |
| } |
| |
| static int init_dpm2_parameters(struct pp_hwmgr *hwmgr, |
| const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| { |
| int result = 0; |
| |
| if (le16_to_cpu(powerplay_table->usTableSize) >= |
| sizeof(ATOM_PPLIB_POWERPLAYTABLE5)) { |
| const ATOM_PPLIB_POWERPLAYTABLE5 *ptable5 = |
| (const ATOM_PPLIB_POWERPLAYTABLE5 *)powerplay_table; |
| const ATOM_PPLIB_POWERPLAYTABLE4 *ptable4 = |
| (const ATOM_PPLIB_POWERPLAYTABLE4 *) |
| (&ptable5->basicTable4); |
| const ATOM_PPLIB_POWERPLAYTABLE3 *ptable3 = |
| (const ATOM_PPLIB_POWERPLAYTABLE3 *) |
| (&ptable4->basicTable3); |
| const ATOM_PPLIB_EXTENDEDHEADER *extended_header; |
| uint16_t table_offset; |
| ATOM_PPLIB_PPM_Table *atom_ppm_table; |
| |
| hwmgr->platform_descriptor.TDPLimit = le32_to_cpu(ptable5->ulTDPLimit); |
| hwmgr->platform_descriptor.nearTDPLimit = le32_to_cpu(ptable5->ulNearTDPLimit); |
| |
| hwmgr->platform_descriptor.TDPODLimit = le16_to_cpu(ptable5->usTDPODLimit); |
| hwmgr->platform_descriptor.TDPAdjustment = 0; |
| |
| hwmgr->platform_descriptor.VidAdjustment = 0; |
| hwmgr->platform_descriptor.VidAdjustmentPolarity = 0; |
| hwmgr->platform_descriptor.VidMinLimit = 0; |
| hwmgr->platform_descriptor.VidMaxLimit = 1500000; |
| hwmgr->platform_descriptor.VidStep = 6250; |
| |
| hwmgr->platform_descriptor.nearTDPLimitAdjusted = le32_to_cpu(ptable5->ulNearTDPLimit); |
| |
| if (hwmgr->platform_descriptor.TDPODLimit != 0) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_PowerControl); |
| |
| hwmgr->platform_descriptor.SQRampingThreshold = le32_to_cpu(ptable5->ulSQRampingThreshold); |
| |
| hwmgr->platform_descriptor.CACLeakage = le32_to_cpu(ptable5->ulCACLeakage); |
| |
| hwmgr->dyn_state.cac_leakage_table = NULL; |
| |
| if (0 != ptable5->usCACLeakageTableOffset) { |
| const ATOM_PPLIB_CAC_Leakage_Table *pCAC_leakage_table = |
| (ATOM_PPLIB_CAC_Leakage_Table *)(((unsigned long)ptable5) + |
| le16_to_cpu(ptable5->usCACLeakageTableOffset)); |
| result = get_cac_leakage_table(hwmgr, |
| &hwmgr->dyn_state.cac_leakage_table, pCAC_leakage_table); |
| } |
| |
| hwmgr->platform_descriptor.LoadLineSlope = le16_to_cpu(ptable5->usLoadLineSlope); |
| |
| hwmgr->dyn_state.ppm_parameter_table = NULL; |
| |
| if (0 != ptable3->usExtendendedHeaderOffset) { |
| extended_header = (const ATOM_PPLIB_EXTENDEDHEADER *) |
| (((unsigned long)powerplay_table) + |
| le16_to_cpu(ptable3->usExtendendedHeaderOffset)); |
| if ((extended_header->usPPMTableOffset > 0) && |
| le16_to_cpu(extended_header->usSize) >= |
| SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5) { |
| table_offset = le16_to_cpu(extended_header->usPPMTableOffset); |
| atom_ppm_table = (ATOM_PPLIB_PPM_Table *) |
| (((unsigned long)powerplay_table) + table_offset); |
| if (0 == get_platform_power_management_table(hwmgr, atom_ppm_table)) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_EnablePlatformPowerManagement); |
| } |
| } |
| } |
| return result; |
| } |
| |
| static int init_phase_shedding_table(struct pp_hwmgr *hwmgr, |
| const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| { |
| if (le16_to_cpu(powerplay_table->usTableSize) >= |
| sizeof(ATOM_PPLIB_POWERPLAYTABLE4)) { |
| const ATOM_PPLIB_POWERPLAYTABLE4 *powerplay_table4 = |
| (const ATOM_PPLIB_POWERPLAYTABLE4 *)powerplay_table; |
| |
| if (0 != powerplay_table4->usVddcPhaseShedLimitsTableOffset) { |
| const ATOM_PPLIB_PhaseSheddingLimits_Table *ptable = |
| (ATOM_PPLIB_PhaseSheddingLimits_Table *) |
| (((unsigned long)powerplay_table4) + |
| le16_to_cpu(powerplay_table4->usVddcPhaseShedLimitsTableOffset)); |
| struct phm_phase_shedding_limits_table *table; |
| unsigned long i; |
| |
| |
| table = kzalloc(struct_size(table, entries, ptable->ucNumEntries), |
| GFP_KERNEL); |
| if (!table) |
| return -ENOMEM; |
| |
| table->count = (unsigned long)ptable->ucNumEntries; |
| |
| for (i = 0; i < table->count; i++) { |
| table->entries[i].Voltage = (unsigned long)le16_to_cpu(ptable->entries[i].usVoltage); |
| table->entries[i].Sclk = ((unsigned long)ptable->entries[i].ucSclkHigh << 16) |
| | le16_to_cpu(ptable->entries[i].usSclkLow); |
| table->entries[i].Mclk = ((unsigned long)ptable->entries[i].ucMclkHigh << 16) |
| | le16_to_cpu(ptable->entries[i].usMclkLow); |
| } |
| hwmgr->dyn_state.vddc_phase_shed_limits_table = table; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int get_number_of_vce_state_table_entries( |
| struct pp_hwmgr *hwmgr) |
| { |
| const ATOM_PPLIB_POWERPLAYTABLE *table = |
| get_powerplay_table(hwmgr); |
| const ATOM_PPLIB_VCE_State_Table *vce_table = |
| get_vce_state_table(hwmgr, table); |
| |
| if (vce_table) |
| return vce_table->numEntries; |
| |
| return 0; |
| } |
| |
| static int get_vce_state_table_entry(struct pp_hwmgr *hwmgr, |
| unsigned long i, |
| struct amd_vce_state *vce_state, |
| void **clock_info, |
| unsigned long *flag) |
| { |
| const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table = get_powerplay_table(hwmgr); |
| |
| const ATOM_PPLIB_VCE_State_Table *vce_state_table = get_vce_state_table(hwmgr, powerplay_table); |
| |
| unsigned short vce_clock_info_array_offset = get_vce_clock_info_array_offset(hwmgr, powerplay_table); |
| |
| const VCEClockInfoArray *vce_clock_info_array = (const VCEClockInfoArray *)(((unsigned long) powerplay_table) + vce_clock_info_array_offset); |
| |
| const ClockInfoArray *clock_arrays = (ClockInfoArray *)(((unsigned long)powerplay_table) + |
| le16_to_cpu(powerplay_table->usClockInfoArrayOffset)); |
| |
| const ATOM_PPLIB_VCE_State_Record *record = &vce_state_table->entries[i]; |
| |
| const VCEClockInfo *vce_clock_info = &vce_clock_info_array->entries[record->ucVCEClockInfoIndex]; |
| |
| unsigned long clockInfoIndex = record->ucClockInfoIndex & 0x3F; |
| |
| *flag = (record->ucClockInfoIndex >> NUM_BITS_CLOCK_INFO_ARRAY_INDEX); |
| |
| vce_state->evclk = ((uint32_t)vce_clock_info->ucEVClkHigh << 16) | le16_to_cpu(vce_clock_info->usEVClkLow); |
| vce_state->ecclk = ((uint32_t)vce_clock_info->ucECClkHigh << 16) | le16_to_cpu(vce_clock_info->usECClkLow); |
| |
| *clock_info = (void *)((unsigned long)(clock_arrays->clockInfo) + (clockInfoIndex * clock_arrays->ucEntrySize)); |
| |
| return 0; |
| } |
| |
| |
| static int pp_tables_initialize(struct pp_hwmgr *hwmgr) |
| { |
| int result; |
| const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table; |
| |
| if (hwmgr->chip_id == CHIP_RAVEN) |
| return 0; |
| |
| hwmgr->need_pp_table_upload = true; |
| |
| powerplay_table = get_powerplay_table(hwmgr); |
| |
| result = init_powerplay_tables(hwmgr, powerplay_table); |
| |
| PP_ASSERT_WITH_CODE((result == 0), |
| "init_powerplay_tables failed", return result); |
| |
| result = set_platform_caps(hwmgr, |
| le32_to_cpu(powerplay_table->ulPlatformCaps)); |
| |
| PP_ASSERT_WITH_CODE((result == 0), |
| "set_platform_caps failed", return result); |
| |
| result = init_thermal_controller(hwmgr, powerplay_table); |
| |
| PP_ASSERT_WITH_CODE((result == 0), |
| "init_thermal_controller failed", return result); |
| |
| result = init_overdrive_limits(hwmgr, powerplay_table); |
| |
| PP_ASSERT_WITH_CODE((result == 0), |
| "init_overdrive_limits failed", return result); |
| |
| result = init_clock_voltage_dependency(hwmgr, |
| powerplay_table); |
| |
| PP_ASSERT_WITH_CODE((result == 0), |
| "init_clock_voltage_dependency failed", return result); |
| |
| result = init_dpm2_parameters(hwmgr, powerplay_table); |
| |
| PP_ASSERT_WITH_CODE((result == 0), |
| "init_dpm2_parameters failed", return result); |
| |
| result = init_phase_shedding_table(hwmgr, powerplay_table); |
| |
| PP_ASSERT_WITH_CODE((result == 0), |
| "init_phase_shedding_table failed", return result); |
| |
| return result; |
| } |
| |
| static int pp_tables_uninitialize(struct pp_hwmgr *hwmgr) |
| { |
| if (hwmgr->chip_id == CHIP_RAVEN) |
| return 0; |
| |
| kfree(hwmgr->dyn_state.vddc_dependency_on_sclk); |
| hwmgr->dyn_state.vddc_dependency_on_sclk = NULL; |
| |
| kfree(hwmgr->dyn_state.vddci_dependency_on_mclk); |
| hwmgr->dyn_state.vddci_dependency_on_mclk = NULL; |
| |
| kfree(hwmgr->dyn_state.vddc_dependency_on_mclk); |
| hwmgr->dyn_state.vddc_dependency_on_mclk = NULL; |
| |
| kfree(hwmgr->dyn_state.mvdd_dependency_on_mclk); |
| hwmgr->dyn_state.mvdd_dependency_on_mclk = NULL; |
| |
| kfree(hwmgr->dyn_state.valid_mclk_values); |
| hwmgr->dyn_state.valid_mclk_values = NULL; |
| |
| kfree(hwmgr->dyn_state.valid_sclk_values); |
| hwmgr->dyn_state.valid_sclk_values = NULL; |
| |
| kfree(hwmgr->dyn_state.cac_leakage_table); |
| hwmgr->dyn_state.cac_leakage_table = NULL; |
| |
| kfree(hwmgr->dyn_state.vddc_phase_shed_limits_table); |
| hwmgr->dyn_state.vddc_phase_shed_limits_table = NULL; |
| |
| kfree(hwmgr->dyn_state.vce_clock_voltage_dependency_table); |
| hwmgr->dyn_state.vce_clock_voltage_dependency_table = NULL; |
| |
| kfree(hwmgr->dyn_state.uvd_clock_voltage_dependency_table); |
| hwmgr->dyn_state.uvd_clock_voltage_dependency_table = NULL; |
| |
| kfree(hwmgr->dyn_state.samu_clock_voltage_dependency_table); |
| hwmgr->dyn_state.samu_clock_voltage_dependency_table = NULL; |
| |
| kfree(hwmgr->dyn_state.acp_clock_voltage_dependency_table); |
| hwmgr->dyn_state.acp_clock_voltage_dependency_table = NULL; |
| |
| kfree(hwmgr->dyn_state.cac_dtp_table); |
| hwmgr->dyn_state.cac_dtp_table = NULL; |
| |
| kfree(hwmgr->dyn_state.ppm_parameter_table); |
| hwmgr->dyn_state.ppm_parameter_table = NULL; |
| |
| kfree(hwmgr->dyn_state.vdd_gfx_dependency_on_sclk); |
| hwmgr->dyn_state.vdd_gfx_dependency_on_sclk = NULL; |
| |
| return 0; |
| } |
| |
| const struct pp_table_func pptable_funcs = { |
| .pptable_init = pp_tables_initialize, |
| .pptable_fini = pp_tables_uninitialize, |
| .pptable_get_number_of_vce_state_table_entries = |
| get_number_of_vce_state_table_entries, |
| .pptable_get_vce_state_table_entry = |
| get_vce_state_table_entry, |
| }; |
| |