| /* | 
 |  * Xen mmu operations | 
 |  * | 
 |  * This file contains the various mmu fetch and update operations. | 
 |  * The most important job they must perform is the mapping between the | 
 |  * domain's pfn and the overall machine mfns. | 
 |  * | 
 |  * Xen allows guests to directly update the pagetable, in a controlled | 
 |  * fashion.  In other words, the guest modifies the same pagetable | 
 |  * that the CPU actually uses, which eliminates the overhead of having | 
 |  * a separate shadow pagetable. | 
 |  * | 
 |  * In order to allow this, it falls on the guest domain to map its | 
 |  * notion of a "physical" pfn - which is just a domain-local linear | 
 |  * address - into a real "machine address" which the CPU's MMU can | 
 |  * use. | 
 |  * | 
 |  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be | 
 |  * inserted directly into the pagetable.  When creating a new | 
 |  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely, | 
 |  * when reading the content back with __(pgd|pmd|pte)_val, it converts | 
 |  * the mfn back into a pfn. | 
 |  * | 
 |  * The other constraint is that all pages which make up a pagetable | 
 |  * must be mapped read-only in the guest.  This prevents uncontrolled | 
 |  * guest updates to the pagetable.  Xen strictly enforces this, and | 
 |  * will disallow any pagetable update which will end up mapping a | 
 |  * pagetable page RW, and will disallow using any writable page as a | 
 |  * pagetable. | 
 |  * | 
 |  * Naively, when loading %cr3 with the base of a new pagetable, Xen | 
 |  * would need to validate the whole pagetable before going on. | 
 |  * Naturally, this is quite slow.  The solution is to "pin" a | 
 |  * pagetable, which enforces all the constraints on the pagetable even | 
 |  * when it is not actively in use.  This menas that Xen can be assured | 
 |  * that it is still valid when you do load it into %cr3, and doesn't | 
 |  * need to revalidate it. | 
 |  * | 
 |  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 | 
 |  */ | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/debugfs.h> | 
 | #include <linux/bug.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/export.h> | 
 | #include <linux/init.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/crash_dump.h> | 
 | #ifdef CONFIG_KEXEC_CORE | 
 | #include <linux/kexec.h> | 
 | #endif | 
 |  | 
 | #include <trace/events/xen.h> | 
 |  | 
 | #include <asm/pgtable.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/fixmap.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/setup.h> | 
 | #include <asm/paravirt.h> | 
 | #include <asm/e820/api.h> | 
 | #include <asm/linkage.h> | 
 | #include <asm/page.h> | 
 | #include <asm/init.h> | 
 | #include <asm/pat.h> | 
 | #include <asm/smp.h> | 
 |  | 
 | #include <asm/xen/hypercall.h> | 
 | #include <asm/xen/hypervisor.h> | 
 |  | 
 | #include <xen/xen.h> | 
 | #include <xen/page.h> | 
 | #include <xen/interface/xen.h> | 
 | #include <xen/interface/hvm/hvm_op.h> | 
 | #include <xen/interface/version.h> | 
 | #include <xen/interface/memory.h> | 
 | #include <xen/hvc-console.h> | 
 |  | 
 | #include "multicalls.h" | 
 | #include "mmu.h" | 
 | #include "debugfs.h" | 
 |  | 
 | #ifdef CONFIG_X86_32 | 
 | /* | 
 |  * Identity map, in addition to plain kernel map.  This needs to be | 
 |  * large enough to allocate page table pages to allocate the rest. | 
 |  * Each page can map 2MB. | 
 |  */ | 
 | #define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4) | 
 | static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES); | 
 | #endif | 
 | #ifdef CONFIG_X86_64 | 
 | /* l3 pud for userspace vsyscall mapping */ | 
 | static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; | 
 | #endif /* CONFIG_X86_64 */ | 
 |  | 
 | /* | 
 |  * Note about cr3 (pagetable base) values: | 
 |  * | 
 |  * xen_cr3 contains the current logical cr3 value; it contains the | 
 |  * last set cr3.  This may not be the current effective cr3, because | 
 |  * its update may be being lazily deferred.  However, a vcpu looking | 
 |  * at its own cr3 can use this value knowing that it everything will | 
 |  * be self-consistent. | 
 |  * | 
 |  * xen_current_cr3 contains the actual vcpu cr3; it is set once the | 
 |  * hypercall to set the vcpu cr3 is complete (so it may be a little | 
 |  * out of date, but it will never be set early).  If one vcpu is | 
 |  * looking at another vcpu's cr3 value, it should use this variable. | 
 |  */ | 
 | DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */ | 
 | DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */ | 
 |  | 
 | static phys_addr_t xen_pt_base, xen_pt_size __initdata; | 
 |  | 
 | /* | 
 |  * Just beyond the highest usermode address.  STACK_TOP_MAX has a | 
 |  * redzone above it, so round it up to a PGD boundary. | 
 |  */ | 
 | #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK) | 
 |  | 
 | void make_lowmem_page_readonly(void *vaddr) | 
 | { | 
 | 	pte_t *pte, ptev; | 
 | 	unsigned long address = (unsigned long)vaddr; | 
 | 	unsigned int level; | 
 |  | 
 | 	pte = lookup_address(address, &level); | 
 | 	if (pte == NULL) | 
 | 		return;		/* vaddr missing */ | 
 |  | 
 | 	ptev = pte_wrprotect(*pte); | 
 |  | 
 | 	if (HYPERVISOR_update_va_mapping(address, ptev, 0)) | 
 | 		BUG(); | 
 | } | 
 |  | 
 | void make_lowmem_page_readwrite(void *vaddr) | 
 | { | 
 | 	pte_t *pte, ptev; | 
 | 	unsigned long address = (unsigned long)vaddr; | 
 | 	unsigned int level; | 
 |  | 
 | 	pte = lookup_address(address, &level); | 
 | 	if (pte == NULL) | 
 | 		return;		/* vaddr missing */ | 
 |  | 
 | 	ptev = pte_mkwrite(*pte); | 
 |  | 
 | 	if (HYPERVISOR_update_va_mapping(address, ptev, 0)) | 
 | 		BUG(); | 
 | } | 
 |  | 
 |  | 
 | static bool xen_page_pinned(void *ptr) | 
 | { | 
 | 	struct page *page = virt_to_page(ptr); | 
 |  | 
 | 	return PagePinned(page); | 
 | } | 
 |  | 
 | void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid) | 
 | { | 
 | 	struct multicall_space mcs; | 
 | 	struct mmu_update *u; | 
 |  | 
 | 	trace_xen_mmu_set_domain_pte(ptep, pteval, domid); | 
 |  | 
 | 	mcs = xen_mc_entry(sizeof(*u)); | 
 | 	u = mcs.args; | 
 |  | 
 | 	/* ptep might be kmapped when using 32-bit HIGHPTE */ | 
 | 	u->ptr = virt_to_machine(ptep).maddr; | 
 | 	u->val = pte_val_ma(pteval); | 
 |  | 
 | 	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid); | 
 |  | 
 | 	xen_mc_issue(PARAVIRT_LAZY_MMU); | 
 | } | 
 | EXPORT_SYMBOL_GPL(xen_set_domain_pte); | 
 |  | 
 | static void xen_extend_mmu_update(const struct mmu_update *update) | 
 | { | 
 | 	struct multicall_space mcs; | 
 | 	struct mmu_update *u; | 
 |  | 
 | 	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u)); | 
 |  | 
 | 	if (mcs.mc != NULL) { | 
 | 		mcs.mc->args[1]++; | 
 | 	} else { | 
 | 		mcs = __xen_mc_entry(sizeof(*u)); | 
 | 		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); | 
 | 	} | 
 |  | 
 | 	u = mcs.args; | 
 | 	*u = *update; | 
 | } | 
 |  | 
 | static void xen_extend_mmuext_op(const struct mmuext_op *op) | 
 | { | 
 | 	struct multicall_space mcs; | 
 | 	struct mmuext_op *u; | 
 |  | 
 | 	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u)); | 
 |  | 
 | 	if (mcs.mc != NULL) { | 
 | 		mcs.mc->args[1]++; | 
 | 	} else { | 
 | 		mcs = __xen_mc_entry(sizeof(*u)); | 
 | 		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); | 
 | 	} | 
 |  | 
 | 	u = mcs.args; | 
 | 	*u = *op; | 
 | } | 
 |  | 
 | static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val) | 
 | { | 
 | 	struct mmu_update u; | 
 |  | 
 | 	preempt_disable(); | 
 |  | 
 | 	xen_mc_batch(); | 
 |  | 
 | 	/* ptr may be ioremapped for 64-bit pagetable setup */ | 
 | 	u.ptr = arbitrary_virt_to_machine(ptr).maddr; | 
 | 	u.val = pmd_val_ma(val); | 
 | 	xen_extend_mmu_update(&u); | 
 |  | 
 | 	xen_mc_issue(PARAVIRT_LAZY_MMU); | 
 |  | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | static void xen_set_pmd(pmd_t *ptr, pmd_t val) | 
 | { | 
 | 	trace_xen_mmu_set_pmd(ptr, val); | 
 |  | 
 | 	/* If page is not pinned, we can just update the entry | 
 | 	   directly */ | 
 | 	if (!xen_page_pinned(ptr)) { | 
 | 		*ptr = val; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	xen_set_pmd_hyper(ptr, val); | 
 | } | 
 |  | 
 | /* | 
 |  * Associate a virtual page frame with a given physical page frame | 
 |  * and protection flags for that frame. | 
 |  */ | 
 | void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags) | 
 | { | 
 | 	set_pte_vaddr(vaddr, mfn_pte(mfn, flags)); | 
 | } | 
 |  | 
 | static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval) | 
 | { | 
 | 	struct mmu_update u; | 
 |  | 
 | 	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) | 
 | 		return false; | 
 |  | 
 | 	xen_mc_batch(); | 
 |  | 
 | 	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; | 
 | 	u.val = pte_val_ma(pteval); | 
 | 	xen_extend_mmu_update(&u); | 
 |  | 
 | 	xen_mc_issue(PARAVIRT_LAZY_MMU); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static inline void __xen_set_pte(pte_t *ptep, pte_t pteval) | 
 | { | 
 | 	if (!xen_batched_set_pte(ptep, pteval)) { | 
 | 		/* | 
 | 		 * Could call native_set_pte() here and trap and | 
 | 		 * emulate the PTE write but with 32-bit guests this | 
 | 		 * needs two traps (one for each of the two 32-bit | 
 | 		 * words in the PTE) so do one hypercall directly | 
 | 		 * instead. | 
 | 		 */ | 
 | 		struct mmu_update u; | 
 |  | 
 | 		u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; | 
 | 		u.val = pte_val_ma(pteval); | 
 | 		HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF); | 
 | 	} | 
 | } | 
 |  | 
 | static void xen_set_pte(pte_t *ptep, pte_t pteval) | 
 | { | 
 | 	trace_xen_mmu_set_pte(ptep, pteval); | 
 | 	__xen_set_pte(ptep, pteval); | 
 | } | 
 |  | 
 | static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr, | 
 | 		    pte_t *ptep, pte_t pteval) | 
 | { | 
 | 	trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval); | 
 | 	__xen_set_pte(ptep, pteval); | 
 | } | 
 |  | 
 | pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, | 
 | 				 unsigned long addr, pte_t *ptep) | 
 | { | 
 | 	/* Just return the pte as-is.  We preserve the bits on commit */ | 
 | 	trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep); | 
 | 	return *ptep; | 
 | } | 
 |  | 
 | void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr, | 
 | 				 pte_t *ptep, pte_t pte) | 
 | { | 
 | 	struct mmu_update u; | 
 |  | 
 | 	trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte); | 
 | 	xen_mc_batch(); | 
 |  | 
 | 	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD; | 
 | 	u.val = pte_val_ma(pte); | 
 | 	xen_extend_mmu_update(&u); | 
 |  | 
 | 	xen_mc_issue(PARAVIRT_LAZY_MMU); | 
 | } | 
 |  | 
 | /* Assume pteval_t is equivalent to all the other *val_t types. */ | 
 | static pteval_t pte_mfn_to_pfn(pteval_t val) | 
 | { | 
 | 	if (val & _PAGE_PRESENT) { | 
 | 		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; | 
 | 		unsigned long pfn = mfn_to_pfn(mfn); | 
 |  | 
 | 		pteval_t flags = val & PTE_FLAGS_MASK; | 
 | 		if (unlikely(pfn == ~0)) | 
 | 			val = flags & ~_PAGE_PRESENT; | 
 | 		else | 
 | 			val = ((pteval_t)pfn << PAGE_SHIFT) | flags; | 
 | 	} | 
 |  | 
 | 	return val; | 
 | } | 
 |  | 
 | static pteval_t pte_pfn_to_mfn(pteval_t val) | 
 | { | 
 | 	if (val & _PAGE_PRESENT) { | 
 | 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; | 
 | 		pteval_t flags = val & PTE_FLAGS_MASK; | 
 | 		unsigned long mfn; | 
 |  | 
 | 		mfn = __pfn_to_mfn(pfn); | 
 |  | 
 | 		/* | 
 | 		 * If there's no mfn for the pfn, then just create an | 
 | 		 * empty non-present pte.  Unfortunately this loses | 
 | 		 * information about the original pfn, so | 
 | 		 * pte_mfn_to_pfn is asymmetric. | 
 | 		 */ | 
 | 		if (unlikely(mfn == INVALID_P2M_ENTRY)) { | 
 | 			mfn = 0; | 
 | 			flags = 0; | 
 | 		} else | 
 | 			mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT); | 
 | 		val = ((pteval_t)mfn << PAGE_SHIFT) | flags; | 
 | 	} | 
 |  | 
 | 	return val; | 
 | } | 
 |  | 
 | __visible pteval_t xen_pte_val(pte_t pte) | 
 | { | 
 | 	pteval_t pteval = pte.pte; | 
 |  | 
 | 	return pte_mfn_to_pfn(pteval); | 
 | } | 
 | PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val); | 
 |  | 
 | __visible pgdval_t xen_pgd_val(pgd_t pgd) | 
 | { | 
 | 	return pte_mfn_to_pfn(pgd.pgd); | 
 | } | 
 | PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val); | 
 |  | 
 | __visible pte_t xen_make_pte(pteval_t pte) | 
 | { | 
 | 	pte = pte_pfn_to_mfn(pte); | 
 |  | 
 | 	return native_make_pte(pte); | 
 | } | 
 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte); | 
 |  | 
 | __visible pgd_t xen_make_pgd(pgdval_t pgd) | 
 | { | 
 | 	pgd = pte_pfn_to_mfn(pgd); | 
 | 	return native_make_pgd(pgd); | 
 | } | 
 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd); | 
 |  | 
 | __visible pmdval_t xen_pmd_val(pmd_t pmd) | 
 | { | 
 | 	return pte_mfn_to_pfn(pmd.pmd); | 
 | } | 
 | PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val); | 
 |  | 
 | static void xen_set_pud_hyper(pud_t *ptr, pud_t val) | 
 | { | 
 | 	struct mmu_update u; | 
 |  | 
 | 	preempt_disable(); | 
 |  | 
 | 	xen_mc_batch(); | 
 |  | 
 | 	/* ptr may be ioremapped for 64-bit pagetable setup */ | 
 | 	u.ptr = arbitrary_virt_to_machine(ptr).maddr; | 
 | 	u.val = pud_val_ma(val); | 
 | 	xen_extend_mmu_update(&u); | 
 |  | 
 | 	xen_mc_issue(PARAVIRT_LAZY_MMU); | 
 |  | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | static void xen_set_pud(pud_t *ptr, pud_t val) | 
 | { | 
 | 	trace_xen_mmu_set_pud(ptr, val); | 
 |  | 
 | 	/* If page is not pinned, we can just update the entry | 
 | 	   directly */ | 
 | 	if (!xen_page_pinned(ptr)) { | 
 | 		*ptr = val; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	xen_set_pud_hyper(ptr, val); | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_PAE | 
 | static void xen_set_pte_atomic(pte_t *ptep, pte_t pte) | 
 | { | 
 | 	trace_xen_mmu_set_pte_atomic(ptep, pte); | 
 | 	set_64bit((u64 *)ptep, native_pte_val(pte)); | 
 | } | 
 |  | 
 | static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) | 
 | { | 
 | 	trace_xen_mmu_pte_clear(mm, addr, ptep); | 
 | 	if (!xen_batched_set_pte(ptep, native_make_pte(0))) | 
 | 		native_pte_clear(mm, addr, ptep); | 
 | } | 
 |  | 
 | static void xen_pmd_clear(pmd_t *pmdp) | 
 | { | 
 | 	trace_xen_mmu_pmd_clear(pmdp); | 
 | 	set_pmd(pmdp, __pmd(0)); | 
 | } | 
 | #endif	/* CONFIG_X86_PAE */ | 
 |  | 
 | __visible pmd_t xen_make_pmd(pmdval_t pmd) | 
 | { | 
 | 	pmd = pte_pfn_to_mfn(pmd); | 
 | 	return native_make_pmd(pmd); | 
 | } | 
 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd); | 
 |  | 
 | #if CONFIG_PGTABLE_LEVELS == 4 | 
 | __visible pudval_t xen_pud_val(pud_t pud) | 
 | { | 
 | 	return pte_mfn_to_pfn(pud.pud); | 
 | } | 
 | PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val); | 
 |  | 
 | __visible pud_t xen_make_pud(pudval_t pud) | 
 | { | 
 | 	pud = pte_pfn_to_mfn(pud); | 
 |  | 
 | 	return native_make_pud(pud); | 
 | } | 
 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud); | 
 |  | 
 | static pgd_t *xen_get_user_pgd(pgd_t *pgd) | 
 | { | 
 | 	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK); | 
 | 	unsigned offset = pgd - pgd_page; | 
 | 	pgd_t *user_ptr = NULL; | 
 |  | 
 | 	if (offset < pgd_index(USER_LIMIT)) { | 
 | 		struct page *page = virt_to_page(pgd_page); | 
 | 		user_ptr = (pgd_t *)page->private; | 
 | 		if (user_ptr) | 
 | 			user_ptr += offset; | 
 | 	} | 
 |  | 
 | 	return user_ptr; | 
 | } | 
 |  | 
 | static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val) | 
 | { | 
 | 	struct mmu_update u; | 
 |  | 
 | 	u.ptr = virt_to_machine(ptr).maddr; | 
 | 	u.val = p4d_val_ma(val); | 
 | 	xen_extend_mmu_update(&u); | 
 | } | 
 |  | 
 | /* | 
 |  * Raw hypercall-based set_p4d, intended for in early boot before | 
 |  * there's a page structure.  This implies: | 
 |  *  1. The only existing pagetable is the kernel's | 
 |  *  2. It is always pinned | 
 |  *  3. It has no user pagetable attached to it | 
 |  */ | 
 | static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val) | 
 | { | 
 | 	preempt_disable(); | 
 |  | 
 | 	xen_mc_batch(); | 
 |  | 
 | 	__xen_set_p4d_hyper(ptr, val); | 
 |  | 
 | 	xen_mc_issue(PARAVIRT_LAZY_MMU); | 
 |  | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | static void xen_set_p4d(p4d_t *ptr, p4d_t val) | 
 | { | 
 | 	pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr); | 
 | 	pgd_t pgd_val; | 
 |  | 
 | 	trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val); | 
 |  | 
 | 	/* If page is not pinned, we can just update the entry | 
 | 	   directly */ | 
 | 	if (!xen_page_pinned(ptr)) { | 
 | 		*ptr = val; | 
 | 		if (user_ptr) { | 
 | 			WARN_ON(xen_page_pinned(user_ptr)); | 
 | 			pgd_val.pgd = p4d_val_ma(val); | 
 | 			*user_ptr = pgd_val; | 
 | 		} | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* If it's pinned, then we can at least batch the kernel and | 
 | 	   user updates together. */ | 
 | 	xen_mc_batch(); | 
 |  | 
 | 	__xen_set_p4d_hyper(ptr, val); | 
 | 	if (user_ptr) | 
 | 		__xen_set_p4d_hyper((p4d_t *)user_ptr, val); | 
 |  | 
 | 	xen_mc_issue(PARAVIRT_LAZY_MMU); | 
 | } | 
 | #endif	/* CONFIG_PGTABLE_LEVELS == 4 */ | 
 |  | 
 | static int xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd, | 
 | 		int (*func)(struct mm_struct *mm, struct page *, enum pt_level), | 
 | 		bool last, unsigned long limit) | 
 | { | 
 | 	int i, nr, flush = 0; | 
 |  | 
 | 	nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD; | 
 | 	for (i = 0; i < nr; i++) { | 
 | 		if (!pmd_none(pmd[i])) | 
 | 			flush |= (*func)(mm, pmd_page(pmd[i]), PT_PTE); | 
 | 	} | 
 | 	return flush; | 
 | } | 
 |  | 
 | static int xen_pud_walk(struct mm_struct *mm, pud_t *pud, | 
 | 		int (*func)(struct mm_struct *mm, struct page *, enum pt_level), | 
 | 		bool last, unsigned long limit) | 
 | { | 
 | 	int i, nr, flush = 0; | 
 |  | 
 | 	nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD; | 
 | 	for (i = 0; i < nr; i++) { | 
 | 		pmd_t *pmd; | 
 |  | 
 | 		if (pud_none(pud[i])) | 
 | 			continue; | 
 |  | 
 | 		pmd = pmd_offset(&pud[i], 0); | 
 | 		if (PTRS_PER_PMD > 1) | 
 | 			flush |= (*func)(mm, virt_to_page(pmd), PT_PMD); | 
 | 		flush |= xen_pmd_walk(mm, pmd, func, | 
 | 				last && i == nr - 1, limit); | 
 | 	} | 
 | 	return flush; | 
 | } | 
 |  | 
 | static int xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d, | 
 | 		int (*func)(struct mm_struct *mm, struct page *, enum pt_level), | 
 | 		bool last, unsigned long limit) | 
 | { | 
 | 	int i, nr, flush = 0; | 
 |  | 
 | 	nr = last ? p4d_index(limit) + 1 : PTRS_PER_P4D; | 
 | 	for (i = 0; i < nr; i++) { | 
 | 		pud_t *pud; | 
 |  | 
 | 		if (p4d_none(p4d[i])) | 
 | 			continue; | 
 |  | 
 | 		pud = pud_offset(&p4d[i], 0); | 
 | 		if (PTRS_PER_PUD > 1) | 
 | 			flush |= (*func)(mm, virt_to_page(pud), PT_PUD); | 
 | 		flush |= xen_pud_walk(mm, pud, func, | 
 | 				last && i == nr - 1, limit); | 
 | 	} | 
 | 	return flush; | 
 | } | 
 |  | 
 | /* | 
 |  * (Yet another) pagetable walker.  This one is intended for pinning a | 
 |  * pagetable.  This means that it walks a pagetable and calls the | 
 |  * callback function on each page it finds making up the page table, | 
 |  * at every level.  It walks the entire pagetable, but it only bothers | 
 |  * pinning pte pages which are below limit.  In the normal case this | 
 |  * will be STACK_TOP_MAX, but at boot we need to pin up to | 
 |  * FIXADDR_TOP. | 
 |  * | 
 |  * For 32-bit the important bit is that we don't pin beyond there, | 
 |  * because then we start getting into Xen's ptes. | 
 |  * | 
 |  * For 64-bit, we must skip the Xen hole in the middle of the address | 
 |  * space, just after the big x86-64 virtual hole. | 
 |  */ | 
 | static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd, | 
 | 			  int (*func)(struct mm_struct *mm, struct page *, | 
 | 				      enum pt_level), | 
 | 			  unsigned long limit) | 
 | { | 
 | 	int i, nr, flush = 0; | 
 | 	unsigned hole_low, hole_high; | 
 |  | 
 | 	/* The limit is the last byte to be touched */ | 
 | 	limit--; | 
 | 	BUG_ON(limit >= FIXADDR_TOP); | 
 |  | 
 | 	/* | 
 | 	 * 64-bit has a great big hole in the middle of the address | 
 | 	 * space, which contains the Xen mappings.  On 32-bit these | 
 | 	 * will end up making a zero-sized hole and so is a no-op. | 
 | 	 */ | 
 | 	hole_low = pgd_index(USER_LIMIT); | 
 | 	hole_high = pgd_index(PAGE_OFFSET); | 
 |  | 
 | 	nr = pgd_index(limit) + 1; | 
 | 	for (i = 0; i < nr; i++) { | 
 | 		p4d_t *p4d; | 
 |  | 
 | 		if (i >= hole_low && i < hole_high) | 
 | 			continue; | 
 |  | 
 | 		if (pgd_none(pgd[i])) | 
 | 			continue; | 
 |  | 
 | 		p4d = p4d_offset(&pgd[i], 0); | 
 | 		if (PTRS_PER_P4D > 1) | 
 | 			flush |= (*func)(mm, virt_to_page(p4d), PT_P4D); | 
 | 		flush |= xen_p4d_walk(mm, p4d, func, i == nr - 1, limit); | 
 | 	} | 
 |  | 
 | 	/* Do the top level last, so that the callbacks can use it as | 
 | 	   a cue to do final things like tlb flushes. */ | 
 | 	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD); | 
 |  | 
 | 	return flush; | 
 | } | 
 |  | 
 | static int xen_pgd_walk(struct mm_struct *mm, | 
 | 			int (*func)(struct mm_struct *mm, struct page *, | 
 | 				    enum pt_level), | 
 | 			unsigned long limit) | 
 | { | 
 | 	return __xen_pgd_walk(mm, mm->pgd, func, limit); | 
 | } | 
 |  | 
 | /* If we're using split pte locks, then take the page's lock and | 
 |    return a pointer to it.  Otherwise return NULL. */ | 
 | static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm) | 
 | { | 
 | 	spinlock_t *ptl = NULL; | 
 |  | 
 | #if USE_SPLIT_PTE_PTLOCKS | 
 | 	ptl = ptlock_ptr(page); | 
 | 	spin_lock_nest_lock(ptl, &mm->page_table_lock); | 
 | #endif | 
 |  | 
 | 	return ptl; | 
 | } | 
 |  | 
 | static void xen_pte_unlock(void *v) | 
 | { | 
 | 	spinlock_t *ptl = v; | 
 | 	spin_unlock(ptl); | 
 | } | 
 |  | 
 | static void xen_do_pin(unsigned level, unsigned long pfn) | 
 | { | 
 | 	struct mmuext_op op; | 
 |  | 
 | 	op.cmd = level; | 
 | 	op.arg1.mfn = pfn_to_mfn(pfn); | 
 |  | 
 | 	xen_extend_mmuext_op(&op); | 
 | } | 
 |  | 
 | static int xen_pin_page(struct mm_struct *mm, struct page *page, | 
 | 			enum pt_level level) | 
 | { | 
 | 	unsigned pgfl = TestSetPagePinned(page); | 
 | 	int flush; | 
 |  | 
 | 	if (pgfl) | 
 | 		flush = 0;		/* already pinned */ | 
 | 	else if (PageHighMem(page)) | 
 | 		/* kmaps need flushing if we found an unpinned | 
 | 		   highpage */ | 
 | 		flush = 1; | 
 | 	else { | 
 | 		void *pt = lowmem_page_address(page); | 
 | 		unsigned long pfn = page_to_pfn(page); | 
 | 		struct multicall_space mcs = __xen_mc_entry(0); | 
 | 		spinlock_t *ptl; | 
 |  | 
 | 		flush = 0; | 
 |  | 
 | 		/* | 
 | 		 * We need to hold the pagetable lock between the time | 
 | 		 * we make the pagetable RO and when we actually pin | 
 | 		 * it.  If we don't, then other users may come in and | 
 | 		 * attempt to update the pagetable by writing it, | 
 | 		 * which will fail because the memory is RO but not | 
 | 		 * pinned, so Xen won't do the trap'n'emulate. | 
 | 		 * | 
 | 		 * If we're using split pte locks, we can't hold the | 
 | 		 * entire pagetable's worth of locks during the | 
 | 		 * traverse, because we may wrap the preempt count (8 | 
 | 		 * bits).  The solution is to mark RO and pin each PTE | 
 | 		 * page while holding the lock.  This means the number | 
 | 		 * of locks we end up holding is never more than a | 
 | 		 * batch size (~32 entries, at present). | 
 | 		 * | 
 | 		 * If we're not using split pte locks, we needn't pin | 
 | 		 * the PTE pages independently, because we're | 
 | 		 * protected by the overall pagetable lock. | 
 | 		 */ | 
 | 		ptl = NULL; | 
 | 		if (level == PT_PTE) | 
 | 			ptl = xen_pte_lock(page, mm); | 
 |  | 
 | 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, | 
 | 					pfn_pte(pfn, PAGE_KERNEL_RO), | 
 | 					level == PT_PGD ? UVMF_TLB_FLUSH : 0); | 
 |  | 
 | 		if (ptl) { | 
 | 			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn); | 
 |  | 
 | 			/* Queue a deferred unlock for when this batch | 
 | 			   is completed. */ | 
 | 			xen_mc_callback(xen_pte_unlock, ptl); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return flush; | 
 | } | 
 |  | 
 | /* This is called just after a mm has been created, but it has not | 
 |    been used yet.  We need to make sure that its pagetable is all | 
 |    read-only, and can be pinned. */ | 
 | static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd) | 
 | { | 
 | 	trace_xen_mmu_pgd_pin(mm, pgd); | 
 |  | 
 | 	xen_mc_batch(); | 
 |  | 
 | 	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) { | 
 | 		/* re-enable interrupts for flushing */ | 
 | 		xen_mc_issue(0); | 
 |  | 
 | 		kmap_flush_unused(); | 
 |  | 
 | 		xen_mc_batch(); | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	{ | 
 | 		pgd_t *user_pgd = xen_get_user_pgd(pgd); | 
 |  | 
 | 		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd))); | 
 |  | 
 | 		if (user_pgd) { | 
 | 			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD); | 
 | 			xen_do_pin(MMUEXT_PIN_L4_TABLE, | 
 | 				   PFN_DOWN(__pa(user_pgd))); | 
 | 		} | 
 | 	} | 
 | #else /* CONFIG_X86_32 */ | 
 | #ifdef CONFIG_X86_PAE | 
 | 	/* Need to make sure unshared kernel PMD is pinnable */ | 
 | 	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), | 
 | 		     PT_PMD); | 
 | #endif | 
 | 	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd))); | 
 | #endif /* CONFIG_X86_64 */ | 
 | 	xen_mc_issue(0); | 
 | } | 
 |  | 
 | static void xen_pgd_pin(struct mm_struct *mm) | 
 | { | 
 | 	__xen_pgd_pin(mm, mm->pgd); | 
 | } | 
 |  | 
 | /* | 
 |  * On save, we need to pin all pagetables to make sure they get their | 
 |  * mfns turned into pfns.  Search the list for any unpinned pgds and pin | 
 |  * them (unpinned pgds are not currently in use, probably because the | 
 |  * process is under construction or destruction). | 
 |  * | 
 |  * Expected to be called in stop_machine() ("equivalent to taking | 
 |  * every spinlock in the system"), so the locking doesn't really | 
 |  * matter all that much. | 
 |  */ | 
 | void xen_mm_pin_all(void) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	spin_lock(&pgd_lock); | 
 |  | 
 | 	list_for_each_entry(page, &pgd_list, lru) { | 
 | 		if (!PagePinned(page)) { | 
 | 			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page)); | 
 | 			SetPageSavePinned(page); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_unlock(&pgd_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * The init_mm pagetable is really pinned as soon as its created, but | 
 |  * that's before we have page structures to store the bits.  So do all | 
 |  * the book-keeping now. | 
 |  */ | 
 | static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page, | 
 | 				  enum pt_level level) | 
 | { | 
 | 	SetPagePinned(page); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __init xen_mark_init_mm_pinned(void) | 
 | { | 
 | 	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP); | 
 | } | 
 |  | 
 | static int xen_unpin_page(struct mm_struct *mm, struct page *page, | 
 | 			  enum pt_level level) | 
 | { | 
 | 	unsigned pgfl = TestClearPagePinned(page); | 
 |  | 
 | 	if (pgfl && !PageHighMem(page)) { | 
 | 		void *pt = lowmem_page_address(page); | 
 | 		unsigned long pfn = page_to_pfn(page); | 
 | 		spinlock_t *ptl = NULL; | 
 | 		struct multicall_space mcs; | 
 |  | 
 | 		/* | 
 | 		 * Do the converse to pin_page.  If we're using split | 
 | 		 * pte locks, we must be holding the lock for while | 
 | 		 * the pte page is unpinned but still RO to prevent | 
 | 		 * concurrent updates from seeing it in this | 
 | 		 * partially-pinned state. | 
 | 		 */ | 
 | 		if (level == PT_PTE) { | 
 | 			ptl = xen_pte_lock(page, mm); | 
 |  | 
 | 			if (ptl) | 
 | 				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn); | 
 | 		} | 
 |  | 
 | 		mcs = __xen_mc_entry(0); | 
 |  | 
 | 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, | 
 | 					pfn_pte(pfn, PAGE_KERNEL), | 
 | 					level == PT_PGD ? UVMF_TLB_FLUSH : 0); | 
 |  | 
 | 		if (ptl) { | 
 | 			/* unlock when batch completed */ | 
 | 			xen_mc_callback(xen_pte_unlock, ptl); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0;		/* never need to flush on unpin */ | 
 | } | 
 |  | 
 | /* Release a pagetables pages back as normal RW */ | 
 | static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd) | 
 | { | 
 | 	trace_xen_mmu_pgd_unpin(mm, pgd); | 
 |  | 
 | 	xen_mc_batch(); | 
 |  | 
 | 	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	{ | 
 | 		pgd_t *user_pgd = xen_get_user_pgd(pgd); | 
 |  | 
 | 		if (user_pgd) { | 
 | 			xen_do_pin(MMUEXT_UNPIN_TABLE, | 
 | 				   PFN_DOWN(__pa(user_pgd))); | 
 | 			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD); | 
 | 		} | 
 | 	} | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_X86_PAE | 
 | 	/* Need to make sure unshared kernel PMD is unpinned */ | 
 | 	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), | 
 | 		       PT_PMD); | 
 | #endif | 
 |  | 
 | 	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT); | 
 |  | 
 | 	xen_mc_issue(0); | 
 | } | 
 |  | 
 | static void xen_pgd_unpin(struct mm_struct *mm) | 
 | { | 
 | 	__xen_pgd_unpin(mm, mm->pgd); | 
 | } | 
 |  | 
 | /* | 
 |  * On resume, undo any pinning done at save, so that the rest of the | 
 |  * kernel doesn't see any unexpected pinned pagetables. | 
 |  */ | 
 | void xen_mm_unpin_all(void) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	spin_lock(&pgd_lock); | 
 |  | 
 | 	list_for_each_entry(page, &pgd_list, lru) { | 
 | 		if (PageSavePinned(page)) { | 
 | 			BUG_ON(!PagePinned(page)); | 
 | 			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page)); | 
 | 			ClearPageSavePinned(page); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_unlock(&pgd_lock); | 
 | } | 
 |  | 
 | static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next) | 
 | { | 
 | 	spin_lock(&next->page_table_lock); | 
 | 	xen_pgd_pin(next); | 
 | 	spin_unlock(&next->page_table_lock); | 
 | } | 
 |  | 
 | static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) | 
 | { | 
 | 	spin_lock(&mm->page_table_lock); | 
 | 	xen_pgd_pin(mm); | 
 | 	spin_unlock(&mm->page_table_lock); | 
 | } | 
 |  | 
 | static void drop_mm_ref_this_cpu(void *info) | 
 | { | 
 | 	struct mm_struct *mm = info; | 
 |  | 
 | 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm) | 
 | 		leave_mm(smp_processor_id()); | 
 |  | 
 | 	/* | 
 | 	 * If this cpu still has a stale cr3 reference, then make sure | 
 | 	 * it has been flushed. | 
 | 	 */ | 
 | 	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd)) | 
 | 		xen_mc_flush(); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /* | 
 |  * Another cpu may still have their %cr3 pointing at the pagetable, so | 
 |  * we need to repoint it somewhere else before we can unpin it. | 
 |  */ | 
 | static void xen_drop_mm_ref(struct mm_struct *mm) | 
 | { | 
 | 	cpumask_var_t mask; | 
 | 	unsigned cpu; | 
 |  | 
 | 	drop_mm_ref_this_cpu(mm); | 
 |  | 
 | 	/* Get the "official" set of cpus referring to our pagetable. */ | 
 | 	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) { | 
 | 		for_each_online_cpu(cpu) { | 
 | 			if (!cpumask_test_cpu(cpu, mm_cpumask(mm)) | 
 | 			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd)) | 
 | 				continue; | 
 | 			smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1); | 
 | 		} | 
 | 		return; | 
 | 	} | 
 | 	cpumask_copy(mask, mm_cpumask(mm)); | 
 |  | 
 | 	/* | 
 | 	 * It's possible that a vcpu may have a stale reference to our | 
 | 	 * cr3, because its in lazy mode, and it hasn't yet flushed | 
 | 	 * its set of pending hypercalls yet.  In this case, we can | 
 | 	 * look at its actual current cr3 value, and force it to flush | 
 | 	 * if needed. | 
 | 	 */ | 
 | 	for_each_online_cpu(cpu) { | 
 | 		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd)) | 
 | 			cpumask_set_cpu(cpu, mask); | 
 | 	} | 
 |  | 
 | 	smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1); | 
 | 	free_cpumask_var(mask); | 
 | } | 
 | #else | 
 | static void xen_drop_mm_ref(struct mm_struct *mm) | 
 | { | 
 | 	drop_mm_ref_this_cpu(mm); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * While a process runs, Xen pins its pagetables, which means that the | 
 |  * hypervisor forces it to be read-only, and it controls all updates | 
 |  * to it.  This means that all pagetable updates have to go via the | 
 |  * hypervisor, which is moderately expensive. | 
 |  * | 
 |  * Since we're pulling the pagetable down, we switch to use init_mm, | 
 |  * unpin old process pagetable and mark it all read-write, which | 
 |  * allows further operations on it to be simple memory accesses. | 
 |  * | 
 |  * The only subtle point is that another CPU may be still using the | 
 |  * pagetable because of lazy tlb flushing.  This means we need need to | 
 |  * switch all CPUs off this pagetable before we can unpin it. | 
 |  */ | 
 | static void xen_exit_mmap(struct mm_struct *mm) | 
 | { | 
 | 	get_cpu();		/* make sure we don't move around */ | 
 | 	xen_drop_mm_ref(mm); | 
 | 	put_cpu(); | 
 |  | 
 | 	spin_lock(&mm->page_table_lock); | 
 |  | 
 | 	/* pgd may not be pinned in the error exit path of execve */ | 
 | 	if (xen_page_pinned(mm->pgd)) | 
 | 		xen_pgd_unpin(mm); | 
 |  | 
 | 	spin_unlock(&mm->page_table_lock); | 
 | } | 
 |  | 
 | static void xen_post_allocator_init(void); | 
 |  | 
 | static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn) | 
 | { | 
 | 	struct mmuext_op op; | 
 |  | 
 | 	op.cmd = cmd; | 
 | 	op.arg1.mfn = pfn_to_mfn(pfn); | 
 | 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) | 
 | 		BUG(); | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | static void __init xen_cleanhighmap(unsigned long vaddr, | 
 | 				    unsigned long vaddr_end) | 
 | { | 
 | 	unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1; | 
 | 	pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr); | 
 |  | 
 | 	/* NOTE: The loop is more greedy than the cleanup_highmap variant. | 
 | 	 * We include the PMD passed in on _both_ boundaries. */ | 
 | 	for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD)); | 
 | 			pmd++, vaddr += PMD_SIZE) { | 
 | 		if (pmd_none(*pmd)) | 
 | 			continue; | 
 | 		if (vaddr < (unsigned long) _text || vaddr > kernel_end) | 
 | 			set_pmd(pmd, __pmd(0)); | 
 | 	} | 
 | 	/* In case we did something silly, we should crash in this function | 
 | 	 * instead of somewhere later and be confusing. */ | 
 | 	xen_mc_flush(); | 
 | } | 
 |  | 
 | /* | 
 |  * Make a page range writeable and free it. | 
 |  */ | 
 | static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size) | 
 | { | 
 | 	void *vaddr = __va(paddr); | 
 | 	void *vaddr_end = vaddr + size; | 
 |  | 
 | 	for (; vaddr < vaddr_end; vaddr += PAGE_SIZE) | 
 | 		make_lowmem_page_readwrite(vaddr); | 
 |  | 
 | 	memblock_free(paddr, size); | 
 | } | 
 |  | 
 | static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin) | 
 | { | 
 | 	unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK; | 
 |  | 
 | 	if (unpin) | 
 | 		pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa)); | 
 | 	ClearPagePinned(virt_to_page(__va(pa))); | 
 | 	xen_free_ro_pages(pa, PAGE_SIZE); | 
 | } | 
 |  | 
 | static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin) | 
 | { | 
 | 	unsigned long pa; | 
 | 	pte_t *pte_tbl; | 
 | 	int i; | 
 |  | 
 | 	if (pmd_large(*pmd)) { | 
 | 		pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK; | 
 | 		xen_free_ro_pages(pa, PMD_SIZE); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	pte_tbl = pte_offset_kernel(pmd, 0); | 
 | 	for (i = 0; i < PTRS_PER_PTE; i++) { | 
 | 		if (pte_none(pte_tbl[i])) | 
 | 			continue; | 
 | 		pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT; | 
 | 		xen_free_ro_pages(pa, PAGE_SIZE); | 
 | 	} | 
 | 	set_pmd(pmd, __pmd(0)); | 
 | 	xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin); | 
 | } | 
 |  | 
 | static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin) | 
 | { | 
 | 	unsigned long pa; | 
 | 	pmd_t *pmd_tbl; | 
 | 	int i; | 
 |  | 
 | 	if (pud_large(*pud)) { | 
 | 		pa = pud_val(*pud) & PHYSICAL_PAGE_MASK; | 
 | 		xen_free_ro_pages(pa, PUD_SIZE); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	pmd_tbl = pmd_offset(pud, 0); | 
 | 	for (i = 0; i < PTRS_PER_PMD; i++) { | 
 | 		if (pmd_none(pmd_tbl[i])) | 
 | 			continue; | 
 | 		xen_cleanmfnmap_pmd(pmd_tbl + i, unpin); | 
 | 	} | 
 | 	set_pud(pud, __pud(0)); | 
 | 	xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin); | 
 | } | 
 |  | 
 | static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin) | 
 | { | 
 | 	unsigned long pa; | 
 | 	pud_t *pud_tbl; | 
 | 	int i; | 
 |  | 
 | 	if (p4d_large(*p4d)) { | 
 | 		pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK; | 
 | 		xen_free_ro_pages(pa, P4D_SIZE); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	pud_tbl = pud_offset(p4d, 0); | 
 | 	for (i = 0; i < PTRS_PER_PUD; i++) { | 
 | 		if (pud_none(pud_tbl[i])) | 
 | 			continue; | 
 | 		xen_cleanmfnmap_pud(pud_tbl + i, unpin); | 
 | 	} | 
 | 	set_p4d(p4d, __p4d(0)); | 
 | 	xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin); | 
 | } | 
 |  | 
 | /* | 
 |  * Since it is well isolated we can (and since it is perhaps large we should) | 
 |  * also free the page tables mapping the initial P->M table. | 
 |  */ | 
 | static void __init xen_cleanmfnmap(unsigned long vaddr) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	p4d_t *p4d; | 
 | 	unsigned int i; | 
 | 	bool unpin; | 
 |  | 
 | 	unpin = (vaddr == 2 * PGDIR_SIZE); | 
 | 	vaddr &= PMD_MASK; | 
 | 	pgd = pgd_offset_k(vaddr); | 
 | 	p4d = p4d_offset(pgd, 0); | 
 | 	for (i = 0; i < PTRS_PER_P4D; i++) { | 
 | 		if (p4d_none(p4d[i])) | 
 | 			continue; | 
 | 		xen_cleanmfnmap_p4d(p4d + i, unpin); | 
 | 	} | 
 | 	if (IS_ENABLED(CONFIG_X86_5LEVEL)) { | 
 | 		set_pgd(pgd, __pgd(0)); | 
 | 		xen_cleanmfnmap_free_pgtbl(p4d, unpin); | 
 | 	} | 
 | } | 
 |  | 
 | static void __init xen_pagetable_p2m_free(void) | 
 | { | 
 | 	unsigned long size; | 
 | 	unsigned long addr; | 
 |  | 
 | 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); | 
 |  | 
 | 	/* No memory or already called. */ | 
 | 	if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list) | 
 | 		return; | 
 |  | 
 | 	/* using __ka address and sticking INVALID_P2M_ENTRY! */ | 
 | 	memset((void *)xen_start_info->mfn_list, 0xff, size); | 
 |  | 
 | 	addr = xen_start_info->mfn_list; | 
 | 	/* | 
 | 	 * We could be in __ka space. | 
 | 	 * We roundup to the PMD, which means that if anybody at this stage is | 
 | 	 * using the __ka address of xen_start_info or | 
 | 	 * xen_start_info->shared_info they are in going to crash. Fortunatly | 
 | 	 * we have already revectored in xen_setup_kernel_pagetable and in | 
 | 	 * xen_setup_shared_info. | 
 | 	 */ | 
 | 	size = roundup(size, PMD_SIZE); | 
 |  | 
 | 	if (addr >= __START_KERNEL_map) { | 
 | 		xen_cleanhighmap(addr, addr + size); | 
 | 		size = PAGE_ALIGN(xen_start_info->nr_pages * | 
 | 				  sizeof(unsigned long)); | 
 | 		memblock_free(__pa(addr), size); | 
 | 	} else { | 
 | 		xen_cleanmfnmap(addr); | 
 | 	} | 
 | } | 
 |  | 
 | static void __init xen_pagetable_cleanhighmap(void) | 
 | { | 
 | 	unsigned long size; | 
 | 	unsigned long addr; | 
 |  | 
 | 	/* At this stage, cleanup_highmap has already cleaned __ka space | 
 | 	 * from _brk_limit way up to the max_pfn_mapped (which is the end of | 
 | 	 * the ramdisk). We continue on, erasing PMD entries that point to page | 
 | 	 * tables - do note that they are accessible at this stage via __va. | 
 | 	 * For good measure we also round up to the PMD - which means that if | 
 | 	 * anybody is using __ka address to the initial boot-stack - and try | 
 | 	 * to use it - they are going to crash. The xen_start_info has been | 
 | 	 * taken care of already in xen_setup_kernel_pagetable. */ | 
 | 	addr = xen_start_info->pt_base; | 
 | 	size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE); | 
 |  | 
 | 	xen_cleanhighmap(addr, addr + size); | 
 | 	xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base)); | 
 | #ifdef DEBUG | 
 | 	/* This is superfluous and is not necessary, but you know what | 
 | 	 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of | 
 | 	 * anything at this stage. */ | 
 | 	xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1); | 
 | #endif | 
 | } | 
 | #endif | 
 |  | 
 | static void __init xen_pagetable_p2m_setup(void) | 
 | { | 
 | 	xen_vmalloc_p2m_tree(); | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	xen_pagetable_p2m_free(); | 
 |  | 
 | 	xen_pagetable_cleanhighmap(); | 
 | #endif | 
 | 	/* And revector! Bye bye old array */ | 
 | 	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr; | 
 | } | 
 |  | 
 | static void __init xen_pagetable_init(void) | 
 | { | 
 | 	paging_init(); | 
 | 	xen_post_allocator_init(); | 
 |  | 
 | 	xen_pagetable_p2m_setup(); | 
 |  | 
 | 	/* Allocate and initialize top and mid mfn levels for p2m structure */ | 
 | 	xen_build_mfn_list_list(); | 
 |  | 
 | 	/* Remap memory freed due to conflicts with E820 map */ | 
 | 	xen_remap_memory(); | 
 |  | 
 | 	xen_setup_shared_info(); | 
 | } | 
 | static void xen_write_cr2(unsigned long cr2) | 
 | { | 
 | 	this_cpu_read(xen_vcpu)->arch.cr2 = cr2; | 
 | } | 
 |  | 
 | static unsigned long xen_read_cr2(void) | 
 | { | 
 | 	return this_cpu_read(xen_vcpu)->arch.cr2; | 
 | } | 
 |  | 
 | unsigned long xen_read_cr2_direct(void) | 
 | { | 
 | 	return this_cpu_read(xen_vcpu_info.arch.cr2); | 
 | } | 
 |  | 
 | static void xen_flush_tlb(void) | 
 | { | 
 | 	struct mmuext_op *op; | 
 | 	struct multicall_space mcs; | 
 |  | 
 | 	trace_xen_mmu_flush_tlb(0); | 
 |  | 
 | 	preempt_disable(); | 
 |  | 
 | 	mcs = xen_mc_entry(sizeof(*op)); | 
 |  | 
 | 	op = mcs.args; | 
 | 	op->cmd = MMUEXT_TLB_FLUSH_LOCAL; | 
 | 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | 
 |  | 
 | 	xen_mc_issue(PARAVIRT_LAZY_MMU); | 
 |  | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | static void xen_flush_tlb_single(unsigned long addr) | 
 | { | 
 | 	struct mmuext_op *op; | 
 | 	struct multicall_space mcs; | 
 |  | 
 | 	trace_xen_mmu_flush_tlb_single(addr); | 
 |  | 
 | 	preempt_disable(); | 
 |  | 
 | 	mcs = xen_mc_entry(sizeof(*op)); | 
 | 	op = mcs.args; | 
 | 	op->cmd = MMUEXT_INVLPG_LOCAL; | 
 | 	op->arg1.linear_addr = addr & PAGE_MASK; | 
 | 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | 
 |  | 
 | 	xen_mc_issue(PARAVIRT_LAZY_MMU); | 
 |  | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | static void xen_flush_tlb_others(const struct cpumask *cpus, | 
 | 				 const struct flush_tlb_info *info) | 
 | { | 
 | 	struct { | 
 | 		struct mmuext_op op; | 
 | #ifdef CONFIG_SMP | 
 | 		DECLARE_BITMAP(mask, num_processors); | 
 | #else | 
 | 		DECLARE_BITMAP(mask, NR_CPUS); | 
 | #endif | 
 | 	} *args; | 
 | 	struct multicall_space mcs; | 
 |  | 
 | 	trace_xen_mmu_flush_tlb_others(cpus, info->mm, info->start, info->end); | 
 |  | 
 | 	if (cpumask_empty(cpus)) | 
 | 		return;		/* nothing to do */ | 
 |  | 
 | 	mcs = xen_mc_entry(sizeof(*args)); | 
 | 	args = mcs.args; | 
 | 	args->op.arg2.vcpumask = to_cpumask(args->mask); | 
 |  | 
 | 	/* Remove us, and any offline CPUS. */ | 
 | 	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask); | 
 | 	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask)); | 
 |  | 
 | 	args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; | 
 | 	if (info->end != TLB_FLUSH_ALL && | 
 | 	    (info->end - info->start) <= PAGE_SIZE) { | 
 | 		args->op.cmd = MMUEXT_INVLPG_MULTI; | 
 | 		args->op.arg1.linear_addr = info->start; | 
 | 	} | 
 |  | 
 | 	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); | 
 |  | 
 | 	xen_mc_issue(PARAVIRT_LAZY_MMU); | 
 | } | 
 |  | 
 | static unsigned long xen_read_cr3(void) | 
 | { | 
 | 	return this_cpu_read(xen_cr3); | 
 | } | 
 |  | 
 | static void set_current_cr3(void *v) | 
 | { | 
 | 	this_cpu_write(xen_current_cr3, (unsigned long)v); | 
 | } | 
 |  | 
 | static void __xen_write_cr3(bool kernel, unsigned long cr3) | 
 | { | 
 | 	struct mmuext_op op; | 
 | 	unsigned long mfn; | 
 |  | 
 | 	trace_xen_mmu_write_cr3(kernel, cr3); | 
 |  | 
 | 	if (cr3) | 
 | 		mfn = pfn_to_mfn(PFN_DOWN(cr3)); | 
 | 	else | 
 | 		mfn = 0; | 
 |  | 
 | 	WARN_ON(mfn == 0 && kernel); | 
 |  | 
 | 	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; | 
 | 	op.arg1.mfn = mfn; | 
 |  | 
 | 	xen_extend_mmuext_op(&op); | 
 |  | 
 | 	if (kernel) { | 
 | 		this_cpu_write(xen_cr3, cr3); | 
 |  | 
 | 		/* Update xen_current_cr3 once the batch has actually | 
 | 		   been submitted. */ | 
 | 		xen_mc_callback(set_current_cr3, (void *)cr3); | 
 | 	} | 
 | } | 
 | static void xen_write_cr3(unsigned long cr3) | 
 | { | 
 | 	BUG_ON(preemptible()); | 
 |  | 
 | 	xen_mc_batch();  /* disables interrupts */ | 
 |  | 
 | 	/* Update while interrupts are disabled, so its atomic with | 
 | 	   respect to ipis */ | 
 | 	this_cpu_write(xen_cr3, cr3); | 
 |  | 
 | 	__xen_write_cr3(true, cr3); | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	{ | 
 | 		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); | 
 | 		if (user_pgd) | 
 | 			__xen_write_cr3(false, __pa(user_pgd)); | 
 | 		else | 
 | 			__xen_write_cr3(false, 0); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */ | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | /* | 
 |  * At the start of the day - when Xen launches a guest, it has already | 
 |  * built pagetables for the guest. We diligently look over them | 
 |  * in xen_setup_kernel_pagetable and graft as appropriate them in the | 
 |  * init_top_pgt and its friends. Then when we are happy we load | 
 |  * the new init_top_pgt - and continue on. | 
 |  * | 
 |  * The generic code starts (start_kernel) and 'init_mem_mapping' sets | 
 |  * up the rest of the pagetables. When it has completed it loads the cr3. | 
 |  * N.B. that baremetal would start at 'start_kernel' (and the early | 
 |  * #PF handler would create bootstrap pagetables) - so we are running | 
 |  * with the same assumptions as what to do when write_cr3 is executed | 
 |  * at this point. | 
 |  * | 
 |  * Since there are no user-page tables at all, we have two variants | 
 |  * of xen_write_cr3 - the early bootup (this one), and the late one | 
 |  * (xen_write_cr3). The reason we have to do that is that in 64-bit | 
 |  * the Linux kernel and user-space are both in ring 3 while the | 
 |  * hypervisor is in ring 0. | 
 |  */ | 
 | static void __init xen_write_cr3_init(unsigned long cr3) | 
 | { | 
 | 	BUG_ON(preemptible()); | 
 |  | 
 | 	xen_mc_batch();  /* disables interrupts */ | 
 |  | 
 | 	/* Update while interrupts are disabled, so its atomic with | 
 | 	   respect to ipis */ | 
 | 	this_cpu_write(xen_cr3, cr3); | 
 |  | 
 | 	__xen_write_cr3(true, cr3); | 
 |  | 
 | 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */ | 
 | } | 
 | #endif | 
 |  | 
 | static int xen_pgd_alloc(struct mm_struct *mm) | 
 | { | 
 | 	pgd_t *pgd = mm->pgd; | 
 | 	int ret = 0; | 
 |  | 
 | 	BUG_ON(PagePinned(virt_to_page(pgd))); | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	{ | 
 | 		struct page *page = virt_to_page(pgd); | 
 | 		pgd_t *user_pgd; | 
 |  | 
 | 		BUG_ON(page->private != 0); | 
 |  | 
 | 		ret = -ENOMEM; | 
 |  | 
 | 		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); | 
 | 		page->private = (unsigned long)user_pgd; | 
 |  | 
 | 		if (user_pgd != NULL) { | 
 | #ifdef CONFIG_X86_VSYSCALL_EMULATION | 
 | 			user_pgd[pgd_index(VSYSCALL_ADDR)] = | 
 | 				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); | 
 | #endif | 
 | 			ret = 0; | 
 | 		} | 
 |  | 
 | 		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); | 
 | 	} | 
 | #endif | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) | 
 | { | 
 | #ifdef CONFIG_X86_64 | 
 | 	pgd_t *user_pgd = xen_get_user_pgd(pgd); | 
 |  | 
 | 	if (user_pgd) | 
 | 		free_page((unsigned long)user_pgd); | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Init-time set_pte while constructing initial pagetables, which | 
 |  * doesn't allow RO page table pages to be remapped RW. | 
 |  * | 
 |  * If there is no MFN for this PFN then this page is initially | 
 |  * ballooned out so clear the PTE (as in decrease_reservation() in | 
 |  * drivers/xen/balloon.c). | 
 |  * | 
 |  * Many of these PTE updates are done on unpinned and writable pages | 
 |  * and doing a hypercall for these is unnecessary and expensive.  At | 
 |  * this point it is not possible to tell if a page is pinned or not, | 
 |  * so always write the PTE directly and rely on Xen trapping and | 
 |  * emulating any updates as necessary. | 
 |  */ | 
 | __visible pte_t xen_make_pte_init(pteval_t pte) | 
 | { | 
 | #ifdef CONFIG_X86_64 | 
 | 	unsigned long pfn; | 
 |  | 
 | 	/* | 
 | 	 * Pages belonging to the initial p2m list mapped outside the default | 
 | 	 * address range must be mapped read-only. This region contains the | 
 | 	 * page tables for mapping the p2m list, too, and page tables MUST be | 
 | 	 * mapped read-only. | 
 | 	 */ | 
 | 	pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT; | 
 | 	if (xen_start_info->mfn_list < __START_KERNEL_map && | 
 | 	    pfn >= xen_start_info->first_p2m_pfn && | 
 | 	    pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames) | 
 | 		pte &= ~_PAGE_RW; | 
 | #endif | 
 | 	pte = pte_pfn_to_mfn(pte); | 
 | 	return native_make_pte(pte); | 
 | } | 
 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init); | 
 |  | 
 | static void __init xen_set_pte_init(pte_t *ptep, pte_t pte) | 
 | { | 
 | #ifdef CONFIG_X86_32 | 
 | 	/* If there's an existing pte, then don't allow _PAGE_RW to be set */ | 
 | 	if (pte_mfn(pte) != INVALID_P2M_ENTRY | 
 | 	    && pte_val_ma(*ptep) & _PAGE_PRESENT) | 
 | 		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) & | 
 | 			       pte_val_ma(pte)); | 
 | #endif | 
 | 	native_set_pte(ptep, pte); | 
 | } | 
 |  | 
 | /* Early in boot, while setting up the initial pagetable, assume | 
 |    everything is pinned. */ | 
 | static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) | 
 | { | 
 | #ifdef CONFIG_FLATMEM | 
 | 	BUG_ON(mem_map);	/* should only be used early */ | 
 | #endif | 
 | 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); | 
 | 	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); | 
 | } | 
 |  | 
 | /* Used for pmd and pud */ | 
 | static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn) | 
 | { | 
 | #ifdef CONFIG_FLATMEM | 
 | 	BUG_ON(mem_map);	/* should only be used early */ | 
 | #endif | 
 | 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); | 
 | } | 
 |  | 
 | /* Early release_pte assumes that all pts are pinned, since there's | 
 |    only init_mm and anything attached to that is pinned. */ | 
 | static void __init xen_release_pte_init(unsigned long pfn) | 
 | { | 
 | 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); | 
 | 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); | 
 | } | 
 |  | 
 | static void __init xen_release_pmd_init(unsigned long pfn) | 
 | { | 
 | 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); | 
 | } | 
 |  | 
 | static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn) | 
 | { | 
 | 	struct multicall_space mcs; | 
 | 	struct mmuext_op *op; | 
 |  | 
 | 	mcs = __xen_mc_entry(sizeof(*op)); | 
 | 	op = mcs.args; | 
 | 	op->cmd = cmd; | 
 | 	op->arg1.mfn = pfn_to_mfn(pfn); | 
 |  | 
 | 	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); | 
 | } | 
 |  | 
 | static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot) | 
 | { | 
 | 	struct multicall_space mcs; | 
 | 	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT); | 
 |  | 
 | 	mcs = __xen_mc_entry(0); | 
 | 	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr, | 
 | 				pfn_pte(pfn, prot), 0); | 
 | } | 
 |  | 
 | /* This needs to make sure the new pte page is pinned iff its being | 
 |    attached to a pinned pagetable. */ | 
 | static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, | 
 | 				    unsigned level) | 
 | { | 
 | 	bool pinned = PagePinned(virt_to_page(mm->pgd)); | 
 |  | 
 | 	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned); | 
 |  | 
 | 	if (pinned) { | 
 | 		struct page *page = pfn_to_page(pfn); | 
 |  | 
 | 		SetPagePinned(page); | 
 |  | 
 | 		if (!PageHighMem(page)) { | 
 | 			xen_mc_batch(); | 
 |  | 
 | 			__set_pfn_prot(pfn, PAGE_KERNEL_RO); | 
 |  | 
 | 			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS) | 
 | 				__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); | 
 |  | 
 | 			xen_mc_issue(PARAVIRT_LAZY_MMU); | 
 | 		} else { | 
 | 			/* make sure there are no stray mappings of | 
 | 			   this page */ | 
 | 			kmap_flush_unused(); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) | 
 | { | 
 | 	xen_alloc_ptpage(mm, pfn, PT_PTE); | 
 | } | 
 |  | 
 | static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) | 
 | { | 
 | 	xen_alloc_ptpage(mm, pfn, PT_PMD); | 
 | } | 
 |  | 
 | /* This should never happen until we're OK to use struct page */ | 
 | static inline void xen_release_ptpage(unsigned long pfn, unsigned level) | 
 | { | 
 | 	struct page *page = pfn_to_page(pfn); | 
 | 	bool pinned = PagePinned(page); | 
 |  | 
 | 	trace_xen_mmu_release_ptpage(pfn, level, pinned); | 
 |  | 
 | 	if (pinned) { | 
 | 		if (!PageHighMem(page)) { | 
 | 			xen_mc_batch(); | 
 |  | 
 | 			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS) | 
 | 				__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); | 
 |  | 
 | 			__set_pfn_prot(pfn, PAGE_KERNEL); | 
 |  | 
 | 			xen_mc_issue(PARAVIRT_LAZY_MMU); | 
 | 		} | 
 | 		ClearPagePinned(page); | 
 | 	} | 
 | } | 
 |  | 
 | static void xen_release_pte(unsigned long pfn) | 
 | { | 
 | 	xen_release_ptpage(pfn, PT_PTE); | 
 | } | 
 |  | 
 | static void xen_release_pmd(unsigned long pfn) | 
 | { | 
 | 	xen_release_ptpage(pfn, PT_PMD); | 
 | } | 
 |  | 
 | #if CONFIG_PGTABLE_LEVELS >= 4 | 
 | static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) | 
 | { | 
 | 	xen_alloc_ptpage(mm, pfn, PT_PUD); | 
 | } | 
 |  | 
 | static void xen_release_pud(unsigned long pfn) | 
 | { | 
 | 	xen_release_ptpage(pfn, PT_PUD); | 
 | } | 
 | #endif | 
 |  | 
 | void __init xen_reserve_top(void) | 
 | { | 
 | #ifdef CONFIG_X86_32 | 
 | 	unsigned long top = HYPERVISOR_VIRT_START; | 
 | 	struct xen_platform_parameters pp; | 
 |  | 
 | 	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0) | 
 | 		top = pp.virt_start; | 
 |  | 
 | 	reserve_top_address(-top); | 
 | #endif	/* CONFIG_X86_32 */ | 
 | } | 
 |  | 
 | /* | 
 |  * Like __va(), but returns address in the kernel mapping (which is | 
 |  * all we have until the physical memory mapping has been set up. | 
 |  */ | 
 | static void * __init __ka(phys_addr_t paddr) | 
 | { | 
 | #ifdef CONFIG_X86_64 | 
 | 	return (void *)(paddr + __START_KERNEL_map); | 
 | #else | 
 | 	return __va(paddr); | 
 | #endif | 
 | } | 
 |  | 
 | /* Convert a machine address to physical address */ | 
 | static unsigned long __init m2p(phys_addr_t maddr) | 
 | { | 
 | 	phys_addr_t paddr; | 
 |  | 
 | 	maddr &= PTE_PFN_MASK; | 
 | 	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; | 
 |  | 
 | 	return paddr; | 
 | } | 
 |  | 
 | /* Convert a machine address to kernel virtual */ | 
 | static void * __init m2v(phys_addr_t maddr) | 
 | { | 
 | 	return __ka(m2p(maddr)); | 
 | } | 
 |  | 
 | /* Set the page permissions on an identity-mapped pages */ | 
 | static void __init set_page_prot_flags(void *addr, pgprot_t prot, | 
 | 				       unsigned long flags) | 
 | { | 
 | 	unsigned long pfn = __pa(addr) >> PAGE_SHIFT; | 
 | 	pte_t pte = pfn_pte(pfn, prot); | 
 |  | 
 | 	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags)) | 
 | 		BUG(); | 
 | } | 
 | static void __init set_page_prot(void *addr, pgprot_t prot) | 
 | { | 
 | 	return set_page_prot_flags(addr, prot, UVMF_NONE); | 
 | } | 
 | #ifdef CONFIG_X86_32 | 
 | static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn) | 
 | { | 
 | 	unsigned pmdidx, pteidx; | 
 | 	unsigned ident_pte; | 
 | 	unsigned long pfn; | 
 |  | 
 | 	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES, | 
 | 				      PAGE_SIZE); | 
 |  | 
 | 	ident_pte = 0; | 
 | 	pfn = 0; | 
 | 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) { | 
 | 		pte_t *pte_page; | 
 |  | 
 | 		/* Reuse or allocate a page of ptes */ | 
 | 		if (pmd_present(pmd[pmdidx])) | 
 | 			pte_page = m2v(pmd[pmdidx].pmd); | 
 | 		else { | 
 | 			/* Check for free pte pages */ | 
 | 			if (ident_pte == LEVEL1_IDENT_ENTRIES) | 
 | 				break; | 
 |  | 
 | 			pte_page = &level1_ident_pgt[ident_pte]; | 
 | 			ident_pte += PTRS_PER_PTE; | 
 |  | 
 | 			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE); | 
 | 		} | 
 |  | 
 | 		/* Install mappings */ | 
 | 		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) { | 
 | 			pte_t pte; | 
 |  | 
 | 			if (pfn > max_pfn_mapped) | 
 | 				max_pfn_mapped = pfn; | 
 |  | 
 | 			if (!pte_none(pte_page[pteidx])) | 
 | 				continue; | 
 |  | 
 | 			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC); | 
 | 			pte_page[pteidx] = pte; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE) | 
 | 		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO); | 
 |  | 
 | 	set_page_prot(pmd, PAGE_KERNEL_RO); | 
 | } | 
 | #endif | 
 | void __init xen_setup_machphys_mapping(void) | 
 | { | 
 | 	struct xen_machphys_mapping mapping; | 
 |  | 
 | 	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) { | 
 | 		machine_to_phys_mapping = (unsigned long *)mapping.v_start; | 
 | 		machine_to_phys_nr = mapping.max_mfn + 1; | 
 | 	} else { | 
 | 		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES; | 
 | 	} | 
 | #ifdef CONFIG_X86_32 | 
 | 	WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1)) | 
 | 		< machine_to_phys_mapping); | 
 | #endif | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | static void __init convert_pfn_mfn(void *v) | 
 | { | 
 | 	pte_t *pte = v; | 
 | 	int i; | 
 |  | 
 | 	/* All levels are converted the same way, so just treat them | 
 | 	   as ptes. */ | 
 | 	for (i = 0; i < PTRS_PER_PTE; i++) | 
 | 		pte[i] = xen_make_pte(pte[i].pte); | 
 | } | 
 | static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end, | 
 | 				 unsigned long addr) | 
 | { | 
 | 	if (*pt_base == PFN_DOWN(__pa(addr))) { | 
 | 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); | 
 | 		clear_page((void *)addr); | 
 | 		(*pt_base)++; | 
 | 	} | 
 | 	if (*pt_end == PFN_DOWN(__pa(addr))) { | 
 | 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); | 
 | 		clear_page((void *)addr); | 
 | 		(*pt_end)--; | 
 | 	} | 
 | } | 
 | /* | 
 |  * Set up the initial kernel pagetable. | 
 |  * | 
 |  * We can construct this by grafting the Xen provided pagetable into | 
 |  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into | 
 |  * level2_ident_pgt, and level2_kernel_pgt.  This means that only the | 
 |  * kernel has a physical mapping to start with - but that's enough to | 
 |  * get __va working.  We need to fill in the rest of the physical | 
 |  * mapping once some sort of allocator has been set up. | 
 |  */ | 
 | void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) | 
 | { | 
 | 	pud_t *l3; | 
 | 	pmd_t *l2; | 
 | 	unsigned long addr[3]; | 
 | 	unsigned long pt_base, pt_end; | 
 | 	unsigned i; | 
 |  | 
 | 	/* max_pfn_mapped is the last pfn mapped in the initial memory | 
 | 	 * mappings. Considering that on Xen after the kernel mappings we | 
 | 	 * have the mappings of some pages that don't exist in pfn space, we | 
 | 	 * set max_pfn_mapped to the last real pfn mapped. */ | 
 | 	if (xen_start_info->mfn_list < __START_KERNEL_map) | 
 | 		max_pfn_mapped = xen_start_info->first_p2m_pfn; | 
 | 	else | 
 | 		max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list)); | 
 |  | 
 | 	pt_base = PFN_DOWN(__pa(xen_start_info->pt_base)); | 
 | 	pt_end = pt_base + xen_start_info->nr_pt_frames; | 
 |  | 
 | 	/* Zap identity mapping */ | 
 | 	init_top_pgt[0] = __pgd(0); | 
 |  | 
 | 	/* Pre-constructed entries are in pfn, so convert to mfn */ | 
 | 	/* L4[272] -> level3_ident_pgt  */ | 
 | 	/* L4[511] -> level3_kernel_pgt */ | 
 | 	convert_pfn_mfn(init_top_pgt); | 
 |  | 
 | 	/* L3_i[0] -> level2_ident_pgt */ | 
 | 	convert_pfn_mfn(level3_ident_pgt); | 
 | 	/* L3_k[510] -> level2_kernel_pgt */ | 
 | 	/* L3_k[511] -> level2_fixmap_pgt */ | 
 | 	convert_pfn_mfn(level3_kernel_pgt); | 
 |  | 
 | 	/* L3_k[511][506] -> level1_fixmap_pgt */ | 
 | 	convert_pfn_mfn(level2_fixmap_pgt); | 
 |  | 
 | 	/* We get [511][511] and have Xen's version of level2_kernel_pgt */ | 
 | 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); | 
 | 	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); | 
 |  | 
 | 	addr[0] = (unsigned long)pgd; | 
 | 	addr[1] = (unsigned long)l3; | 
 | 	addr[2] = (unsigned long)l2; | 
 | 	/* Graft it onto L4[272][0]. Note that we creating an aliasing problem: | 
 | 	 * Both L4[272][0] and L4[511][510] have entries that point to the same | 
 | 	 * L2 (PMD) tables. Meaning that if you modify it in __va space | 
 | 	 * it will be also modified in the __ka space! (But if you just | 
 | 	 * modify the PMD table to point to other PTE's or none, then you | 
 | 	 * are OK - which is what cleanup_highmap does) */ | 
 | 	copy_page(level2_ident_pgt, l2); | 
 | 	/* Graft it onto L4[511][510] */ | 
 | 	copy_page(level2_kernel_pgt, l2); | 
 |  | 
 | 	/* Copy the initial P->M table mappings if necessary. */ | 
 | 	i = pgd_index(xen_start_info->mfn_list); | 
 | 	if (i && i < pgd_index(__START_KERNEL_map)) | 
 | 		init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i]; | 
 |  | 
 | 	/* Make pagetable pieces RO */ | 
 | 	set_page_prot(init_top_pgt, PAGE_KERNEL_RO); | 
 | 	set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); | 
 | 	set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); | 
 | 	set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); | 
 | 	set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO); | 
 | 	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); | 
 | 	set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); | 
 | 	set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO); | 
 |  | 
 | 	/* Pin down new L4 */ | 
 | 	pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, | 
 | 			  PFN_DOWN(__pa_symbol(init_top_pgt))); | 
 |  | 
 | 	/* Unpin Xen-provided one */ | 
 | 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); | 
 |  | 
 | 	/* | 
 | 	 * At this stage there can be no user pgd, and no page structure to | 
 | 	 * attach it to, so make sure we just set kernel pgd. | 
 | 	 */ | 
 | 	xen_mc_batch(); | 
 | 	__xen_write_cr3(true, __pa(init_top_pgt)); | 
 | 	xen_mc_issue(PARAVIRT_LAZY_CPU); | 
 |  | 
 | 	/* We can't that easily rip out L3 and L2, as the Xen pagetables are | 
 | 	 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for | 
 | 	 * the initial domain. For guests using the toolstack, they are in: | 
 | 	 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only | 
 | 	 * rip out the [L4] (pgd), but for guests we shave off three pages. | 
 | 	 */ | 
 | 	for (i = 0; i < ARRAY_SIZE(addr); i++) | 
 | 		check_pt_base(&pt_base, &pt_end, addr[i]); | 
 |  | 
 | 	/* Our (by three pages) smaller Xen pagetable that we are using */ | 
 | 	xen_pt_base = PFN_PHYS(pt_base); | 
 | 	xen_pt_size = (pt_end - pt_base) * PAGE_SIZE; | 
 | 	memblock_reserve(xen_pt_base, xen_pt_size); | 
 |  | 
 | 	/* Revector the xen_start_info */ | 
 | 	xen_start_info = (struct start_info *)__va(__pa(xen_start_info)); | 
 | } | 
 |  | 
 | /* | 
 |  * Read a value from a physical address. | 
 |  */ | 
 | static unsigned long __init xen_read_phys_ulong(phys_addr_t addr) | 
 | { | 
 | 	unsigned long *vaddr; | 
 | 	unsigned long val; | 
 |  | 
 | 	vaddr = early_memremap_ro(addr, sizeof(val)); | 
 | 	val = *vaddr; | 
 | 	early_memunmap(vaddr, sizeof(val)); | 
 | 	return val; | 
 | } | 
 |  | 
 | /* | 
 |  * Translate a virtual address to a physical one without relying on mapped | 
 |  * page tables. Don't rely on big pages being aligned in (guest) physical | 
 |  * space! | 
 |  */ | 
 | static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr) | 
 | { | 
 | 	phys_addr_t pa; | 
 | 	pgd_t pgd; | 
 | 	pud_t pud; | 
 | 	pmd_t pmd; | 
 | 	pte_t pte; | 
 |  | 
 | 	pa = read_cr3_pa(); | 
 | 	pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) * | 
 | 						       sizeof(pgd))); | 
 | 	if (!pgd_present(pgd)) | 
 | 		return 0; | 
 |  | 
 | 	pa = pgd_val(pgd) & PTE_PFN_MASK; | 
 | 	pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) * | 
 | 						       sizeof(pud))); | 
 | 	if (!pud_present(pud)) | 
 | 		return 0; | 
 | 	pa = pud_val(pud) & PTE_PFN_MASK; | 
 | 	if (pud_large(pud)) | 
 | 		return pa + (vaddr & ~PUD_MASK); | 
 |  | 
 | 	pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) * | 
 | 						       sizeof(pmd))); | 
 | 	if (!pmd_present(pmd)) | 
 | 		return 0; | 
 | 	pa = pmd_val(pmd) & PTE_PFN_MASK; | 
 | 	if (pmd_large(pmd)) | 
 | 		return pa + (vaddr & ~PMD_MASK); | 
 |  | 
 | 	pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) * | 
 | 						       sizeof(pte))); | 
 | 	if (!pte_present(pte)) | 
 | 		return 0; | 
 | 	pa = pte_pfn(pte) << PAGE_SHIFT; | 
 |  | 
 | 	return pa | (vaddr & ~PAGE_MASK); | 
 | } | 
 |  | 
 | /* | 
 |  * Find a new area for the hypervisor supplied p2m list and relocate the p2m to | 
 |  * this area. | 
 |  */ | 
 | void __init xen_relocate_p2m(void) | 
 | { | 
 | 	phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys, p4d_phys; | 
 | 	unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end; | 
 | 	int n_pte, n_pt, n_pmd, n_pud, n_p4d, idx_pte, idx_pt, idx_pmd, idx_pud, idx_p4d; | 
 | 	pte_t *pt; | 
 | 	pmd_t *pmd; | 
 | 	pud_t *pud; | 
 | 	p4d_t *p4d = NULL; | 
 | 	pgd_t *pgd; | 
 | 	unsigned long *new_p2m; | 
 | 	int save_pud; | 
 |  | 
 | 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); | 
 | 	n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT; | 
 | 	n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT; | 
 | 	n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT; | 
 | 	n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT; | 
 | 	if (PTRS_PER_P4D > 1) | 
 | 		n_p4d = roundup(size, PGDIR_SIZE) >> PGDIR_SHIFT; | 
 | 	else | 
 | 		n_p4d = 0; | 
 | 	n_frames = n_pte + n_pt + n_pmd + n_pud + n_p4d; | 
 |  | 
 | 	new_area = xen_find_free_area(PFN_PHYS(n_frames)); | 
 | 	if (!new_area) { | 
 | 		xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n"); | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Setup the page tables for addressing the new p2m list. | 
 | 	 * We have asked the hypervisor to map the p2m list at the user address | 
 | 	 * PUD_SIZE. It may have done so, or it may have used a kernel space | 
 | 	 * address depending on the Xen version. | 
 | 	 * To avoid any possible virtual address collision, just use | 
 | 	 * 2 * PUD_SIZE for the new area. | 
 | 	 */ | 
 | 	p4d_phys = new_area; | 
 | 	pud_phys = p4d_phys + PFN_PHYS(n_p4d); | 
 | 	pmd_phys = pud_phys + PFN_PHYS(n_pud); | 
 | 	pt_phys = pmd_phys + PFN_PHYS(n_pmd); | 
 | 	p2m_pfn = PFN_DOWN(pt_phys) + n_pt; | 
 |  | 
 | 	pgd = __va(read_cr3_pa()); | 
 | 	new_p2m = (unsigned long *)(2 * PGDIR_SIZE); | 
 | 	idx_p4d = 0; | 
 | 	save_pud = n_pud; | 
 | 	do { | 
 | 		if (n_p4d > 0) { | 
 | 			p4d = early_memremap(p4d_phys, PAGE_SIZE); | 
 | 			clear_page(p4d); | 
 | 			n_pud = min(save_pud, PTRS_PER_P4D); | 
 | 		} | 
 | 		for (idx_pud = 0; idx_pud < n_pud; idx_pud++) { | 
 | 			pud = early_memremap(pud_phys, PAGE_SIZE); | 
 | 			clear_page(pud); | 
 | 			for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD); | 
 | 				 idx_pmd++) { | 
 | 				pmd = early_memremap(pmd_phys, PAGE_SIZE); | 
 | 				clear_page(pmd); | 
 | 				for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD); | 
 | 					 idx_pt++) { | 
 | 					pt = early_memremap(pt_phys, PAGE_SIZE); | 
 | 					clear_page(pt); | 
 | 					for (idx_pte = 0; | 
 | 						 idx_pte < min(n_pte, PTRS_PER_PTE); | 
 | 						 idx_pte++) { | 
 | 						set_pte(pt + idx_pte, | 
 | 								pfn_pte(p2m_pfn, PAGE_KERNEL)); | 
 | 						p2m_pfn++; | 
 | 					} | 
 | 					n_pte -= PTRS_PER_PTE; | 
 | 					early_memunmap(pt, PAGE_SIZE); | 
 | 					make_lowmem_page_readonly(__va(pt_phys)); | 
 | 					pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, | 
 | 							PFN_DOWN(pt_phys)); | 
 | 					set_pmd(pmd + idx_pt, | 
 | 							__pmd(_PAGE_TABLE | pt_phys)); | 
 | 					pt_phys += PAGE_SIZE; | 
 | 				} | 
 | 				n_pt -= PTRS_PER_PMD; | 
 | 				early_memunmap(pmd, PAGE_SIZE); | 
 | 				make_lowmem_page_readonly(__va(pmd_phys)); | 
 | 				pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE, | 
 | 						PFN_DOWN(pmd_phys)); | 
 | 				set_pud(pud + idx_pmd, __pud(_PAGE_TABLE | pmd_phys)); | 
 | 				pmd_phys += PAGE_SIZE; | 
 | 			} | 
 | 			n_pmd -= PTRS_PER_PUD; | 
 | 			early_memunmap(pud, PAGE_SIZE); | 
 | 			make_lowmem_page_readonly(__va(pud_phys)); | 
 | 			pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys)); | 
 | 			if (n_p4d > 0) | 
 | 				set_p4d(p4d + idx_pud, __p4d(_PAGE_TABLE | pud_phys)); | 
 | 			else | 
 | 				set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys)); | 
 | 			pud_phys += PAGE_SIZE; | 
 | 		} | 
 | 		if (n_p4d > 0) { | 
 | 			save_pud -= PTRS_PER_P4D; | 
 | 			early_memunmap(p4d, PAGE_SIZE); | 
 | 			make_lowmem_page_readonly(__va(p4d_phys)); | 
 | 			pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, PFN_DOWN(p4d_phys)); | 
 | 			set_pgd(pgd + 2 + idx_p4d, __pgd(_PAGE_TABLE | p4d_phys)); | 
 | 			p4d_phys += PAGE_SIZE; | 
 | 		} | 
 | 	} while (++idx_p4d < n_p4d); | 
 |  | 
 | 	/* Now copy the old p2m info to the new area. */ | 
 | 	memcpy(new_p2m, xen_p2m_addr, size); | 
 | 	xen_p2m_addr = new_p2m; | 
 |  | 
 | 	/* Release the old p2m list and set new list info. */ | 
 | 	p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list)); | 
 | 	BUG_ON(!p2m_pfn); | 
 | 	p2m_pfn_end = p2m_pfn + PFN_DOWN(size); | 
 |  | 
 | 	if (xen_start_info->mfn_list < __START_KERNEL_map) { | 
 | 		pfn = xen_start_info->first_p2m_pfn; | 
 | 		pfn_end = xen_start_info->first_p2m_pfn + | 
 | 			  xen_start_info->nr_p2m_frames; | 
 | 		set_pgd(pgd + 1, __pgd(0)); | 
 | 	} else { | 
 | 		pfn = p2m_pfn; | 
 | 		pfn_end = p2m_pfn_end; | 
 | 	} | 
 |  | 
 | 	memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn)); | 
 | 	while (pfn < pfn_end) { | 
 | 		if (pfn == p2m_pfn) { | 
 | 			pfn = p2m_pfn_end; | 
 | 			continue; | 
 | 		} | 
 | 		make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); | 
 | 		pfn++; | 
 | 	} | 
 |  | 
 | 	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr; | 
 | 	xen_start_info->first_p2m_pfn =  PFN_DOWN(new_area); | 
 | 	xen_start_info->nr_p2m_frames = n_frames; | 
 | } | 
 |  | 
 | #else	/* !CONFIG_X86_64 */ | 
 | static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD); | 
 | static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD); | 
 |  | 
 | static void __init xen_write_cr3_init(unsigned long cr3) | 
 | { | 
 | 	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir)); | 
 |  | 
 | 	BUG_ON(read_cr3_pa() != __pa(initial_page_table)); | 
 | 	BUG_ON(cr3 != __pa(swapper_pg_dir)); | 
 |  | 
 | 	/* | 
 | 	 * We are switching to swapper_pg_dir for the first time (from | 
 | 	 * initial_page_table) and therefore need to mark that page | 
 | 	 * read-only and then pin it. | 
 | 	 * | 
 | 	 * Xen disallows sharing of kernel PMDs for PAE | 
 | 	 * guests. Therefore we must copy the kernel PMD from | 
 | 	 * initial_page_table into a new kernel PMD to be used in | 
 | 	 * swapper_pg_dir. | 
 | 	 */ | 
 | 	swapper_kernel_pmd = | 
 | 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); | 
 | 	copy_page(swapper_kernel_pmd, initial_kernel_pmd); | 
 | 	swapper_pg_dir[KERNEL_PGD_BOUNDARY] = | 
 | 		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT); | 
 | 	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO); | 
 |  | 
 | 	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO); | 
 | 	xen_write_cr3(cr3); | 
 | 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn); | 
 |  | 
 | 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, | 
 | 			  PFN_DOWN(__pa(initial_page_table))); | 
 | 	set_page_prot(initial_page_table, PAGE_KERNEL); | 
 | 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL); | 
 |  | 
 | 	pv_mmu_ops.write_cr3 = &xen_write_cr3; | 
 | } | 
 |  | 
 | /* | 
 |  * For 32 bit domains xen_start_info->pt_base is the pgd address which might be | 
 |  * not the first page table in the page table pool. | 
 |  * Iterate through the initial page tables to find the real page table base. | 
 |  */ | 
 | static phys_addr_t xen_find_pt_base(pmd_t *pmd) | 
 | { | 
 | 	phys_addr_t pt_base, paddr; | 
 | 	unsigned pmdidx; | 
 |  | 
 | 	pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd)); | 
 |  | 
 | 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) | 
 | 		if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) { | 
 | 			paddr = m2p(pmd[pmdidx].pmd); | 
 | 			pt_base = min(pt_base, paddr); | 
 | 		} | 
 |  | 
 | 	return pt_base; | 
 | } | 
 |  | 
 | void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) | 
 | { | 
 | 	pmd_t *kernel_pmd; | 
 |  | 
 | 	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd); | 
 |  | 
 | 	xen_pt_base = xen_find_pt_base(kernel_pmd); | 
 | 	xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE; | 
 |  | 
 | 	initial_kernel_pmd = | 
 | 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); | 
 |  | 
 | 	max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024); | 
 |  | 
 | 	copy_page(initial_kernel_pmd, kernel_pmd); | 
 |  | 
 | 	xen_map_identity_early(initial_kernel_pmd, max_pfn); | 
 |  | 
 | 	copy_page(initial_page_table, pgd); | 
 | 	initial_page_table[KERNEL_PGD_BOUNDARY] = | 
 | 		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT); | 
 |  | 
 | 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO); | 
 | 	set_page_prot(initial_page_table, PAGE_KERNEL_RO); | 
 | 	set_page_prot(empty_zero_page, PAGE_KERNEL_RO); | 
 |  | 
 | 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); | 
 |  | 
 | 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, | 
 | 			  PFN_DOWN(__pa(initial_page_table))); | 
 | 	xen_write_cr3(__pa(initial_page_table)); | 
 |  | 
 | 	memblock_reserve(xen_pt_base, xen_pt_size); | 
 | } | 
 | #endif	/* CONFIG_X86_64 */ | 
 |  | 
 | void __init xen_reserve_special_pages(void) | 
 | { | 
 | 	phys_addr_t paddr; | 
 |  | 
 | 	memblock_reserve(__pa(xen_start_info), PAGE_SIZE); | 
 | 	if (xen_start_info->store_mfn) { | 
 | 		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn)); | 
 | 		memblock_reserve(paddr, PAGE_SIZE); | 
 | 	} | 
 | 	if (!xen_initial_domain()) { | 
 | 		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn)); | 
 | 		memblock_reserve(paddr, PAGE_SIZE); | 
 | 	} | 
 | } | 
 |  | 
 | void __init xen_pt_check_e820(void) | 
 | { | 
 | 	if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) { | 
 | 		xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n"); | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss; | 
 |  | 
 | static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot) | 
 | { | 
 | 	pte_t pte; | 
 |  | 
 | 	phys >>= PAGE_SHIFT; | 
 |  | 
 | 	switch (idx) { | 
 | 	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: | 
 | 	case FIX_RO_IDT: | 
 | #ifdef CONFIG_X86_32 | 
 | 	case FIX_WP_TEST: | 
 | # ifdef CONFIG_HIGHMEM | 
 | 	case FIX_KMAP_BEGIN ... FIX_KMAP_END: | 
 | # endif | 
 | #elif defined(CONFIG_X86_VSYSCALL_EMULATION) | 
 | 	case VSYSCALL_PAGE: | 
 | #endif | 
 | 	case FIX_TEXT_POKE0: | 
 | 	case FIX_TEXT_POKE1: | 
 | 	case FIX_GDT_REMAP_BEGIN ... FIX_GDT_REMAP_END: | 
 | 		/* All local page mappings */ | 
 | 		pte = pfn_pte(phys, prot); | 
 | 		break; | 
 |  | 
 | #ifdef CONFIG_X86_LOCAL_APIC | 
 | 	case FIX_APIC_BASE:	/* maps dummy local APIC */ | 
 | 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); | 
 | 		break; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_X86_IO_APIC | 
 | 	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END: | 
 | 		/* | 
 | 		 * We just don't map the IO APIC - all access is via | 
 | 		 * hypercalls.  Keep the address in the pte for reference. | 
 | 		 */ | 
 | 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); | 
 | 		break; | 
 | #endif | 
 |  | 
 | 	case FIX_PARAVIRT_BOOTMAP: | 
 | 		/* This is an MFN, but it isn't an IO mapping from the | 
 | 		   IO domain */ | 
 | 		pte = mfn_pte(phys, prot); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		/* By default, set_fixmap is used for hardware mappings */ | 
 | 		pte = mfn_pte(phys, prot); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	__native_set_fixmap(idx, pte); | 
 |  | 
 | #ifdef CONFIG_X86_VSYSCALL_EMULATION | 
 | 	/* Replicate changes to map the vsyscall page into the user | 
 | 	   pagetable vsyscall mapping. */ | 
 | 	if (idx == VSYSCALL_PAGE) { | 
 | 		unsigned long vaddr = __fix_to_virt(idx); | 
 | 		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | static void __init xen_post_allocator_init(void) | 
 | { | 
 | 	pv_mmu_ops.set_pte = xen_set_pte; | 
 | 	pv_mmu_ops.set_pmd = xen_set_pmd; | 
 | 	pv_mmu_ops.set_pud = xen_set_pud; | 
 | #if CONFIG_PGTABLE_LEVELS >= 4 | 
 | 	pv_mmu_ops.set_p4d = xen_set_p4d; | 
 | #endif | 
 |  | 
 | 	/* This will work as long as patching hasn't happened yet | 
 | 	   (which it hasn't) */ | 
 | 	pv_mmu_ops.alloc_pte = xen_alloc_pte; | 
 | 	pv_mmu_ops.alloc_pmd = xen_alloc_pmd; | 
 | 	pv_mmu_ops.release_pte = xen_release_pte; | 
 | 	pv_mmu_ops.release_pmd = xen_release_pmd; | 
 | #if CONFIG_PGTABLE_LEVELS >= 4 | 
 | 	pv_mmu_ops.alloc_pud = xen_alloc_pud; | 
 | 	pv_mmu_ops.release_pud = xen_release_pud; | 
 | #endif | 
 | 	pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte); | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	pv_mmu_ops.write_cr3 = &xen_write_cr3; | 
 | 	SetPagePinned(virt_to_page(level3_user_vsyscall)); | 
 | #endif | 
 | 	xen_mark_init_mm_pinned(); | 
 | } | 
 |  | 
 | static void xen_leave_lazy_mmu(void) | 
 | { | 
 | 	preempt_disable(); | 
 | 	xen_mc_flush(); | 
 | 	paravirt_leave_lazy_mmu(); | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | static const struct pv_mmu_ops xen_mmu_ops __initconst = { | 
 | 	.read_cr2 = xen_read_cr2, | 
 | 	.write_cr2 = xen_write_cr2, | 
 |  | 
 | 	.read_cr3 = xen_read_cr3, | 
 | 	.write_cr3 = xen_write_cr3_init, | 
 |  | 
 | 	.flush_tlb_user = xen_flush_tlb, | 
 | 	.flush_tlb_kernel = xen_flush_tlb, | 
 | 	.flush_tlb_single = xen_flush_tlb_single, | 
 | 	.flush_tlb_others = xen_flush_tlb_others, | 
 |  | 
 | 	.pte_update = paravirt_nop, | 
 |  | 
 | 	.pgd_alloc = xen_pgd_alloc, | 
 | 	.pgd_free = xen_pgd_free, | 
 |  | 
 | 	.alloc_pte = xen_alloc_pte_init, | 
 | 	.release_pte = xen_release_pte_init, | 
 | 	.alloc_pmd = xen_alloc_pmd_init, | 
 | 	.release_pmd = xen_release_pmd_init, | 
 |  | 
 | 	.set_pte = xen_set_pte_init, | 
 | 	.set_pte_at = xen_set_pte_at, | 
 | 	.set_pmd = xen_set_pmd_hyper, | 
 |  | 
 | 	.ptep_modify_prot_start = __ptep_modify_prot_start, | 
 | 	.ptep_modify_prot_commit = __ptep_modify_prot_commit, | 
 |  | 
 | 	.pte_val = PV_CALLEE_SAVE(xen_pte_val), | 
 | 	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val), | 
 |  | 
 | 	.make_pte = PV_CALLEE_SAVE(xen_make_pte_init), | 
 | 	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd), | 
 |  | 
 | #ifdef CONFIG_X86_PAE | 
 | 	.set_pte_atomic = xen_set_pte_atomic, | 
 | 	.pte_clear = xen_pte_clear, | 
 | 	.pmd_clear = xen_pmd_clear, | 
 | #endif	/* CONFIG_X86_PAE */ | 
 | 	.set_pud = xen_set_pud_hyper, | 
 |  | 
 | 	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd), | 
 | 	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val), | 
 |  | 
 | #if CONFIG_PGTABLE_LEVELS >= 4 | 
 | 	.pud_val = PV_CALLEE_SAVE(xen_pud_val), | 
 | 	.make_pud = PV_CALLEE_SAVE(xen_make_pud), | 
 | 	.set_p4d = xen_set_p4d_hyper, | 
 |  | 
 | 	.alloc_pud = xen_alloc_pmd_init, | 
 | 	.release_pud = xen_release_pmd_init, | 
 | #endif	/* CONFIG_PGTABLE_LEVELS == 4 */ | 
 |  | 
 | 	.activate_mm = xen_activate_mm, | 
 | 	.dup_mmap = xen_dup_mmap, | 
 | 	.exit_mmap = xen_exit_mmap, | 
 |  | 
 | 	.lazy_mode = { | 
 | 		.enter = paravirt_enter_lazy_mmu, | 
 | 		.leave = xen_leave_lazy_mmu, | 
 | 		.flush = paravirt_flush_lazy_mmu, | 
 | 	}, | 
 |  | 
 | 	.set_fixmap = xen_set_fixmap, | 
 | }; | 
 |  | 
 | void __init xen_init_mmu_ops(void) | 
 | { | 
 | 	x86_init.paging.pagetable_init = xen_pagetable_init; | 
 |  | 
 | 	pv_mmu_ops = xen_mmu_ops; | 
 |  | 
 | 	memset(dummy_mapping, 0xff, PAGE_SIZE); | 
 | } | 
 |  | 
 | /* Protected by xen_reservation_lock. */ | 
 | #define MAX_CONTIG_ORDER 9 /* 2MB */ | 
 | static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER]; | 
 |  | 
 | #define VOID_PTE (mfn_pte(0, __pgprot(0))) | 
 | static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order, | 
 | 				unsigned long *in_frames, | 
 | 				unsigned long *out_frames) | 
 | { | 
 | 	int i; | 
 | 	struct multicall_space mcs; | 
 |  | 
 | 	xen_mc_batch(); | 
 | 	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) { | 
 | 		mcs = __xen_mc_entry(0); | 
 |  | 
 | 		if (in_frames) | 
 | 			in_frames[i] = virt_to_mfn(vaddr); | 
 |  | 
 | 		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0); | 
 | 		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY); | 
 |  | 
 | 		if (out_frames) | 
 | 			out_frames[i] = virt_to_pfn(vaddr); | 
 | 	} | 
 | 	xen_mc_issue(0); | 
 | } | 
 |  | 
 | /* | 
 |  * Update the pfn-to-mfn mappings for a virtual address range, either to | 
 |  * point to an array of mfns, or contiguously from a single starting | 
 |  * mfn. | 
 |  */ | 
 | static void xen_remap_exchanged_ptes(unsigned long vaddr, int order, | 
 | 				     unsigned long *mfns, | 
 | 				     unsigned long first_mfn) | 
 | { | 
 | 	unsigned i, limit; | 
 | 	unsigned long mfn; | 
 |  | 
 | 	xen_mc_batch(); | 
 |  | 
 | 	limit = 1u << order; | 
 | 	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) { | 
 | 		struct multicall_space mcs; | 
 | 		unsigned flags; | 
 |  | 
 | 		mcs = __xen_mc_entry(0); | 
 | 		if (mfns) | 
 | 			mfn = mfns[i]; | 
 | 		else | 
 | 			mfn = first_mfn + i; | 
 |  | 
 | 		if (i < (limit - 1)) | 
 | 			flags = 0; | 
 | 		else { | 
 | 			if (order == 0) | 
 | 				flags = UVMF_INVLPG | UVMF_ALL; | 
 | 			else | 
 | 				flags = UVMF_TLB_FLUSH | UVMF_ALL; | 
 | 		} | 
 |  | 
 | 		MULTI_update_va_mapping(mcs.mc, vaddr, | 
 | 				mfn_pte(mfn, PAGE_KERNEL), flags); | 
 |  | 
 | 		set_phys_to_machine(virt_to_pfn(vaddr), mfn); | 
 | 	} | 
 |  | 
 | 	xen_mc_issue(0); | 
 | } | 
 |  | 
 | /* | 
 |  * Perform the hypercall to exchange a region of our pfns to point to | 
 |  * memory with the required contiguous alignment.  Takes the pfns as | 
 |  * input, and populates mfns as output. | 
 |  * | 
 |  * Returns a success code indicating whether the hypervisor was able to | 
 |  * satisfy the request or not. | 
 |  */ | 
 | static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in, | 
 | 			       unsigned long *pfns_in, | 
 | 			       unsigned long extents_out, | 
 | 			       unsigned int order_out, | 
 | 			       unsigned long *mfns_out, | 
 | 			       unsigned int address_bits) | 
 | { | 
 | 	long rc; | 
 | 	int success; | 
 |  | 
 | 	struct xen_memory_exchange exchange = { | 
 | 		.in = { | 
 | 			.nr_extents   = extents_in, | 
 | 			.extent_order = order_in, | 
 | 			.extent_start = pfns_in, | 
 | 			.domid        = DOMID_SELF | 
 | 		}, | 
 | 		.out = { | 
 | 			.nr_extents   = extents_out, | 
 | 			.extent_order = order_out, | 
 | 			.extent_start = mfns_out, | 
 | 			.address_bits = address_bits, | 
 | 			.domid        = DOMID_SELF | 
 | 		} | 
 | 	}; | 
 |  | 
 | 	BUG_ON(extents_in << order_in != extents_out << order_out); | 
 |  | 
 | 	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange); | 
 | 	success = (exchange.nr_exchanged == extents_in); | 
 |  | 
 | 	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0))); | 
 | 	BUG_ON(success && (rc != 0)); | 
 |  | 
 | 	return success; | 
 | } | 
 |  | 
 | int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order, | 
 | 				 unsigned int address_bits, | 
 | 				 dma_addr_t *dma_handle) | 
 | { | 
 | 	unsigned long *in_frames = discontig_frames, out_frame; | 
 | 	unsigned long  flags; | 
 | 	int            success; | 
 | 	unsigned long vstart = (unsigned long)phys_to_virt(pstart); | 
 |  | 
 | 	/* | 
 | 	 * Currently an auto-translated guest will not perform I/O, nor will | 
 | 	 * it require PAE page directories below 4GB. Therefore any calls to | 
 | 	 * this function are redundant and can be ignored. | 
 | 	 */ | 
 |  | 
 | 	if (unlikely(order > MAX_CONTIG_ORDER)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	memset((void *) vstart, 0, PAGE_SIZE << order); | 
 |  | 
 | 	spin_lock_irqsave(&xen_reservation_lock, flags); | 
 |  | 
 | 	/* 1. Zap current PTEs, remembering MFNs. */ | 
 | 	xen_zap_pfn_range(vstart, order, in_frames, NULL); | 
 |  | 
 | 	/* 2. Get a new contiguous memory extent. */ | 
 | 	out_frame = virt_to_pfn(vstart); | 
 | 	success = xen_exchange_memory(1UL << order, 0, in_frames, | 
 | 				      1, order, &out_frame, | 
 | 				      address_bits); | 
 |  | 
 | 	/* 3. Map the new extent in place of old pages. */ | 
 | 	if (success) | 
 | 		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame); | 
 | 	else | 
 | 		xen_remap_exchanged_ptes(vstart, order, in_frames, 0); | 
 |  | 
 | 	spin_unlock_irqrestore(&xen_reservation_lock, flags); | 
 |  | 
 | 	*dma_handle = virt_to_machine(vstart).maddr; | 
 | 	return success ? 0 : -ENOMEM; | 
 | } | 
 | EXPORT_SYMBOL_GPL(xen_create_contiguous_region); | 
 |  | 
 | void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order) | 
 | { | 
 | 	unsigned long *out_frames = discontig_frames, in_frame; | 
 | 	unsigned long  flags; | 
 | 	int success; | 
 | 	unsigned long vstart; | 
 |  | 
 | 	if (unlikely(order > MAX_CONTIG_ORDER)) | 
 | 		return; | 
 |  | 
 | 	vstart = (unsigned long)phys_to_virt(pstart); | 
 | 	memset((void *) vstart, 0, PAGE_SIZE << order); | 
 |  | 
 | 	spin_lock_irqsave(&xen_reservation_lock, flags); | 
 |  | 
 | 	/* 1. Find start MFN of contiguous extent. */ | 
 | 	in_frame = virt_to_mfn(vstart); | 
 |  | 
 | 	/* 2. Zap current PTEs. */ | 
 | 	xen_zap_pfn_range(vstart, order, NULL, out_frames); | 
 |  | 
 | 	/* 3. Do the exchange for non-contiguous MFNs. */ | 
 | 	success = xen_exchange_memory(1, order, &in_frame, 1UL << order, | 
 | 					0, out_frames, 0); | 
 |  | 
 | 	/* 4. Map new pages in place of old pages. */ | 
 | 	if (success) | 
 | 		xen_remap_exchanged_ptes(vstart, order, out_frames, 0); | 
 | 	else | 
 | 		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame); | 
 |  | 
 | 	spin_unlock_irqrestore(&xen_reservation_lock, flags); | 
 | } | 
 | EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region); | 
 |  | 
 | #ifdef CONFIG_KEXEC_CORE | 
 | phys_addr_t paddr_vmcoreinfo_note(void) | 
 | { | 
 | 	if (xen_pv_domain()) | 
 | 		return virt_to_machine(&vmcoreinfo_note).maddr; | 
 | 	else | 
 | 		return __pa_symbol(&vmcoreinfo_note); | 
 | } | 
 | #endif /* CONFIG_KEXEC_CORE */ |