| /* |
| * Based on arch/arm/kernel/setup.c |
| * |
| * Copyright (C) 1995-2001 Russell King |
| * Copyright (C) 2012 ARM Ltd. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include <linux/export.h> |
| #include <linux/kernel.h> |
| #include <linux/stddef.h> |
| #include <linux/ioport.h> |
| #include <linux/delay.h> |
| #include <linux/utsname.h> |
| #include <linux/initrd.h> |
| #include <linux/console.h> |
| #include <linux/cache.h> |
| #include <linux/bootmem.h> |
| #include <linux/seq_file.h> |
| #include <linux/screen_info.h> |
| #include <linux/init.h> |
| #include <linux/kexec.h> |
| #include <linux/crash_dump.h> |
| #include <linux/root_dev.h> |
| #include <linux/clk-provider.h> |
| #include <linux/cpu.h> |
| #include <linux/interrupt.h> |
| #include <linux/smp.h> |
| #include <linux/fs.h> |
| #include <linux/proc_fs.h> |
| #include <linux/memblock.h> |
| #include <linux/of_fdt.h> |
| #include <linux/of_platform.h> |
| #include <linux/efi.h> |
| #include <linux/personality.h> |
| |
| #include <asm/fixmap.h> |
| #include <asm/cpu.h> |
| #include <asm/cputype.h> |
| #include <asm/elf.h> |
| #include <asm/cputable.h> |
| #include <asm/cpufeature.h> |
| #include <asm/cpu_ops.h> |
| #include <asm/sections.h> |
| #include <asm/setup.h> |
| #include <asm/smp_plat.h> |
| #include <asm/cacheflush.h> |
| #include <asm/tlbflush.h> |
| #include <asm/traps.h> |
| #include <asm/memblock.h> |
| #include <asm/psci.h> |
| #include <asm/efi.h> |
| |
| unsigned int processor_id; |
| EXPORT_SYMBOL(processor_id); |
| |
| unsigned long elf_hwcap __read_mostly; |
| EXPORT_SYMBOL_GPL(elf_hwcap); |
| |
| #ifdef CONFIG_COMPAT |
| #define COMPAT_ELF_HWCAP_DEFAULT \ |
| (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\ |
| COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\ |
| COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\ |
| COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\ |
| COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\ |
| COMPAT_HWCAP_LPAE) |
| unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT; |
| unsigned int compat_elf_hwcap2 __read_mostly; |
| #endif |
| |
| DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS); |
| |
| static const char *cpu_name; |
| phys_addr_t __fdt_pointer __initdata; |
| |
| /* |
| * Standard memory resources |
| */ |
| static struct resource mem_res[] = { |
| { |
| .name = "Kernel code", |
| .start = 0, |
| .end = 0, |
| .flags = IORESOURCE_MEM |
| }, |
| { |
| .name = "Kernel data", |
| .start = 0, |
| .end = 0, |
| .flags = IORESOURCE_MEM |
| } |
| }; |
| |
| #define kernel_code mem_res[0] |
| #define kernel_data mem_res[1] |
| |
| void __init early_print(const char *str, ...) |
| { |
| char buf[256]; |
| va_list ap; |
| |
| va_start(ap, str); |
| vsnprintf(buf, sizeof(buf), str, ap); |
| va_end(ap); |
| |
| printk("%s", buf); |
| } |
| |
| void __init smp_setup_processor_id(void) |
| { |
| u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; |
| cpu_logical_map(0) = mpidr; |
| |
| /* |
| * clear __my_cpu_offset on boot CPU to avoid hang caused by |
| * using percpu variable early, for example, lockdep will |
| * access percpu variable inside lock_release |
| */ |
| set_my_cpu_offset(0); |
| pr_info("Booting Linux on physical CPU 0x%lx\n", (unsigned long)mpidr); |
| } |
| |
| bool arch_match_cpu_phys_id(int cpu, u64 phys_id) |
| { |
| return phys_id == cpu_logical_map(cpu); |
| } |
| |
| struct mpidr_hash mpidr_hash; |
| #ifdef CONFIG_SMP |
| /** |
| * smp_build_mpidr_hash - Pre-compute shifts required at each affinity |
| * level in order to build a linear index from an |
| * MPIDR value. Resulting algorithm is a collision |
| * free hash carried out through shifting and ORing |
| */ |
| static void __init smp_build_mpidr_hash(void) |
| { |
| u32 i, affinity, fs[4], bits[4], ls; |
| u64 mask = 0; |
| /* |
| * Pre-scan the list of MPIDRS and filter out bits that do |
| * not contribute to affinity levels, ie they never toggle. |
| */ |
| for_each_possible_cpu(i) |
| mask |= (cpu_logical_map(i) ^ cpu_logical_map(0)); |
| pr_debug("mask of set bits %#llx\n", mask); |
| /* |
| * Find and stash the last and first bit set at all affinity levels to |
| * check how many bits are required to represent them. |
| */ |
| for (i = 0; i < 4; i++) { |
| affinity = MPIDR_AFFINITY_LEVEL(mask, i); |
| /* |
| * Find the MSB bit and LSB bits position |
| * to determine how many bits are required |
| * to express the affinity level. |
| */ |
| ls = fls(affinity); |
| fs[i] = affinity ? ffs(affinity) - 1 : 0; |
| bits[i] = ls - fs[i]; |
| } |
| /* |
| * An index can be created from the MPIDR_EL1 by isolating the |
| * significant bits at each affinity level and by shifting |
| * them in order to compress the 32 bits values space to a |
| * compressed set of values. This is equivalent to hashing |
| * the MPIDR_EL1 through shifting and ORing. It is a collision free |
| * hash though not minimal since some levels might contain a number |
| * of CPUs that is not an exact power of 2 and their bit |
| * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}. |
| */ |
| mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0]; |
| mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0]; |
| mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] - |
| (bits[1] + bits[0]); |
| mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) + |
| fs[3] - (bits[2] + bits[1] + bits[0]); |
| mpidr_hash.mask = mask; |
| mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0]; |
| pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n", |
| mpidr_hash.shift_aff[0], |
| mpidr_hash.shift_aff[1], |
| mpidr_hash.shift_aff[2], |
| mpidr_hash.shift_aff[3], |
| mpidr_hash.mask, |
| mpidr_hash.bits); |
| /* |
| * 4x is an arbitrary value used to warn on a hash table much bigger |
| * than expected on most systems. |
| */ |
| if (mpidr_hash_size() > 4 * num_possible_cpus()) |
| pr_warn("Large number of MPIDR hash buckets detected\n"); |
| __flush_dcache_area(&mpidr_hash, sizeof(struct mpidr_hash)); |
| } |
| #endif |
| |
| static void __init setup_processor(void) |
| { |
| struct cpu_info *cpu_info; |
| u64 features, block; |
| u32 cwg; |
| int cls; |
| |
| cpu_info = lookup_processor_type(read_cpuid_id()); |
| if (!cpu_info) { |
| printk("CPU configuration botched (ID %08x), unable to continue.\n", |
| read_cpuid_id()); |
| while (1); |
| } |
| |
| cpu_name = cpu_info->cpu_name; |
| |
| printk("CPU: %s [%08x] revision %d\n", |
| cpu_name, read_cpuid_id(), read_cpuid_id() & 15); |
| |
| sprintf(init_utsname()->machine, ELF_PLATFORM); |
| elf_hwcap = 0; |
| |
| cpuinfo_store_boot_cpu(); |
| |
| /* |
| * Check for sane CTR_EL0.CWG value. |
| */ |
| cwg = cache_type_cwg(); |
| cls = cache_line_size(); |
| if (!cwg) |
| pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n", |
| cls); |
| if (L1_CACHE_BYTES < cls) |
| pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n", |
| L1_CACHE_BYTES, cls); |
| |
| /* |
| * ID_AA64ISAR0_EL1 contains 4-bit wide signed feature blocks. |
| * The blocks we test below represent incremental functionality |
| * for non-negative values. Negative values are reserved. |
| */ |
| features = read_cpuid(ID_AA64ISAR0_EL1); |
| block = (features >> 4) & 0xf; |
| if (!(block & 0x8)) { |
| switch (block) { |
| default: |
| case 2: |
| elf_hwcap |= HWCAP_PMULL; |
| case 1: |
| elf_hwcap |= HWCAP_AES; |
| case 0: |
| break; |
| } |
| } |
| |
| block = (features >> 8) & 0xf; |
| if (block && !(block & 0x8)) |
| elf_hwcap |= HWCAP_SHA1; |
| |
| block = (features >> 12) & 0xf; |
| if (block && !(block & 0x8)) |
| elf_hwcap |= HWCAP_SHA2; |
| |
| block = (features >> 16) & 0xf; |
| if (block && !(block & 0x8)) |
| elf_hwcap |= HWCAP_CRC32; |
| |
| #ifdef CONFIG_COMPAT |
| /* |
| * ID_ISAR5_EL1 carries similar information as above, but pertaining to |
| * the Aarch32 32-bit execution state. |
| */ |
| features = read_cpuid(ID_ISAR5_EL1); |
| block = (features >> 4) & 0xf; |
| if (!(block & 0x8)) { |
| switch (block) { |
| default: |
| case 2: |
| compat_elf_hwcap2 |= COMPAT_HWCAP2_PMULL; |
| case 1: |
| compat_elf_hwcap2 |= COMPAT_HWCAP2_AES; |
| case 0: |
| break; |
| } |
| } |
| |
| block = (features >> 8) & 0xf; |
| if (block && !(block & 0x8)) |
| compat_elf_hwcap2 |= COMPAT_HWCAP2_SHA1; |
| |
| block = (features >> 12) & 0xf; |
| if (block && !(block & 0x8)) |
| compat_elf_hwcap2 |= COMPAT_HWCAP2_SHA2; |
| |
| block = (features >> 16) & 0xf; |
| if (block && !(block & 0x8)) |
| compat_elf_hwcap2 |= COMPAT_HWCAP2_CRC32; |
| #endif |
| } |
| |
| static void __init setup_machine_fdt(phys_addr_t dt_phys) |
| { |
| if (!dt_phys || !early_init_dt_scan(phys_to_virt(dt_phys))) { |
| early_print("\n" |
| "Error: invalid device tree blob at physical address 0x%p (virtual address 0x%p)\n" |
| "The dtb must be 8-byte aligned and passed in the first 512MB of memory\n" |
| "\nPlease check your bootloader.\n", |
| dt_phys, phys_to_virt(dt_phys)); |
| |
| while (true) |
| cpu_relax(); |
| } |
| |
| dump_stack_set_arch_desc("%s (DT)", of_flat_dt_get_machine_name()); |
| } |
| |
| /* |
| * Limit the memory size that was specified via FDT. |
| */ |
| static int __init early_mem(char *p) |
| { |
| phys_addr_t limit; |
| |
| if (!p) |
| return 1; |
| |
| limit = memparse(p, &p) & PAGE_MASK; |
| pr_notice("Memory limited to %lldMB\n", limit >> 20); |
| |
| memblock_enforce_memory_limit(limit); |
| |
| return 0; |
| } |
| early_param("mem", early_mem); |
| |
| static void __init request_standard_resources(void) |
| { |
| struct memblock_region *region; |
| struct resource *res; |
| |
| kernel_code.start = virt_to_phys(_text); |
| kernel_code.end = virt_to_phys(_etext - 1); |
| kernel_data.start = virt_to_phys(_sdata); |
| kernel_data.end = virt_to_phys(_end - 1); |
| |
| for_each_memblock(memory, region) { |
| res = alloc_bootmem_low(sizeof(*res)); |
| res->name = "System RAM"; |
| res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region)); |
| res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1; |
| res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; |
| |
| request_resource(&iomem_resource, res); |
| |
| if (kernel_code.start >= res->start && |
| kernel_code.end <= res->end) |
| request_resource(res, &kernel_code); |
| if (kernel_data.start >= res->start && |
| kernel_data.end <= res->end) |
| request_resource(res, &kernel_data); |
| } |
| } |
| |
| u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID }; |
| |
| void __init setup_arch(char **cmdline_p) |
| { |
| setup_processor(); |
| |
| setup_machine_fdt(__fdt_pointer); |
| |
| init_mm.start_code = (unsigned long) _text; |
| init_mm.end_code = (unsigned long) _etext; |
| init_mm.end_data = (unsigned long) _edata; |
| init_mm.brk = (unsigned long) _end; |
| |
| *cmdline_p = boot_command_line; |
| |
| early_fixmap_init(); |
| early_ioremap_init(); |
| |
| parse_early_param(); |
| |
| /* |
| * Unmask asynchronous aborts after bringing up possible earlycon. |
| * (Report possible System Errors once we can report this occurred) |
| */ |
| local_async_enable(); |
| |
| efi_init(); |
| arm64_memblock_init(); |
| |
| paging_init(); |
| request_standard_resources(); |
| |
| efi_idmap_init(); |
| |
| unflatten_device_tree(); |
| |
| psci_init(); |
| |
| cpu_read_bootcpu_ops(); |
| #ifdef CONFIG_SMP |
| smp_init_cpus(); |
| smp_build_mpidr_hash(); |
| #endif |
| |
| #ifdef CONFIG_VT |
| #if defined(CONFIG_VGA_CONSOLE) |
| conswitchp = &vga_con; |
| #elif defined(CONFIG_DUMMY_CONSOLE) |
| conswitchp = &dummy_con; |
| #endif |
| #endif |
| } |
| |
| static int __init arm64_device_init(void) |
| { |
| of_platform_populate(NULL, of_default_bus_match_table, NULL, NULL); |
| return 0; |
| } |
| arch_initcall_sync(arm64_device_init); |
| |
| static int __init topology_init(void) |
| { |
| int i; |
| |
| for_each_possible_cpu(i) { |
| struct cpu *cpu = &per_cpu(cpu_data.cpu, i); |
| cpu->hotpluggable = 1; |
| register_cpu(cpu, i); |
| } |
| |
| return 0; |
| } |
| subsys_initcall(topology_init); |
| |
| static const char *hwcap_str[] = { |
| "fp", |
| "asimd", |
| "evtstrm", |
| "aes", |
| "pmull", |
| "sha1", |
| "sha2", |
| "crc32", |
| NULL |
| }; |
| |
| #ifdef CONFIG_COMPAT |
| static const char *compat_hwcap_str[] = { |
| "swp", |
| "half", |
| "thumb", |
| "26bit", |
| "fastmult", |
| "fpa", |
| "vfp", |
| "edsp", |
| "java", |
| "iwmmxt", |
| "crunch", |
| "thumbee", |
| "neon", |
| "vfpv3", |
| "vfpv3d16", |
| "tls", |
| "vfpv4", |
| "idiva", |
| "idivt", |
| "vfpd32", |
| "lpae", |
| "evtstrm" |
| }; |
| |
| static const char *compat_hwcap2_str[] = { |
| "aes", |
| "pmull", |
| "sha1", |
| "sha2", |
| "crc32", |
| NULL |
| }; |
| #endif /* CONFIG_COMPAT */ |
| |
| static int c_show(struct seq_file *m, void *v) |
| { |
| int i, j; |
| |
| for_each_online_cpu(i) { |
| struct cpuinfo_arm64 *cpuinfo = &per_cpu(cpu_data, i); |
| u32 midr = cpuinfo->reg_midr; |
| |
| /* |
| * glibc reads /proc/cpuinfo to determine the number of |
| * online processors, looking for lines beginning with |
| * "processor". Give glibc what it expects. |
| */ |
| #ifdef CONFIG_SMP |
| seq_printf(m, "processor\t: %d\n", i); |
| #endif |
| |
| /* |
| * Dump out the common processor features in a single line. |
| * Userspace should read the hwcaps with getauxval(AT_HWCAP) |
| * rather than attempting to parse this, but there's a body of |
| * software which does already (at least for 32-bit). |
| */ |
| seq_puts(m, "Features\t:"); |
| if (personality(current->personality) == PER_LINUX32) { |
| #ifdef CONFIG_COMPAT |
| for (j = 0; compat_hwcap_str[j]; j++) |
| if (compat_elf_hwcap & (1 << j)) |
| seq_printf(m, " %s", compat_hwcap_str[j]); |
| |
| for (j = 0; compat_hwcap2_str[j]; j++) |
| if (compat_elf_hwcap2 & (1 << j)) |
| seq_printf(m, " %s", compat_hwcap2_str[j]); |
| #endif /* CONFIG_COMPAT */ |
| } else { |
| for (j = 0; hwcap_str[j]; j++) |
| if (elf_hwcap & (1 << j)) |
| seq_printf(m, " %s", hwcap_str[j]); |
| } |
| seq_puts(m, "\n"); |
| |
| seq_printf(m, "CPU implementer\t: 0x%02x\n", |
| MIDR_IMPLEMENTOR(midr)); |
| seq_printf(m, "CPU architecture: 8\n"); |
| seq_printf(m, "CPU variant\t: 0x%x\n", MIDR_VARIANT(midr)); |
| seq_printf(m, "CPU part\t: 0x%03x\n", MIDR_PARTNUM(midr)); |
| seq_printf(m, "CPU revision\t: %d\n\n", MIDR_REVISION(midr)); |
| } |
| |
| return 0; |
| } |
| |
| static void *c_start(struct seq_file *m, loff_t *pos) |
| { |
| return *pos < 1 ? (void *)1 : NULL; |
| } |
| |
| static void *c_next(struct seq_file *m, void *v, loff_t *pos) |
| { |
| ++*pos; |
| return NULL; |
| } |
| |
| static void c_stop(struct seq_file *m, void *v) |
| { |
| } |
| |
| const struct seq_operations cpuinfo_op = { |
| .start = c_start, |
| .next = c_next, |
| .stop = c_stop, |
| .show = c_show |
| }; |