blob: 3a0dac962e4d51df19fdcd98ee415debfb110dd8 [file] [log] [blame]
/**************************************************************************
*
* Copyright (C) 2000-2008 Alacritech, Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY ALACRITECH, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ALACRITECH, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation
* are those of the authors and should not be interpreted as representing
* official policies, either expressed or implied, of Alacritech, Inc.
*
* Parts developed by LinSysSoft Sahara team
*
**************************************************************************/
/*
* FILENAME: sxg.c
*
* The SXG driver for Alacritech's 10Gbe products.
*
* NOTE: This is the standard, non-accelerated version of Alacritech's
* IS-NIC driver.
*/
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/firmware.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/timer.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/skbuff.h>
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/dma-mapping.h>
#include <linux/mii.h>
#include <linux/ip.h>
#include <linux/in.h>
#include <linux/tcp.h>
#include <linux/ipv6.h>
#define SLIC_GET_STATS_ENABLED 0
#define LINUX_FREES_ADAPTER_RESOURCES 1
#define SXG_OFFLOAD_IP_CHECKSUM 0
#define SXG_POWER_MANAGEMENT_ENABLED 0
#define VPCI 0
#define ATK_DEBUG 1
#define SXG_UCODE_DEBUG 0
#include "sxg_os.h"
#include "sxghw.h"
#include "sxghif.h"
#include "sxg.h"
#include "sxgdbg.h"
#include "sxgphycode-1.2.h"
static int sxg_allocate_buffer_memory(struct adapter_t *adapter, u32 Size,
enum sxg_buffer_type BufferType);
static int sxg_allocate_rcvblock_complete(struct adapter_t *adapter,
void *RcvBlock,
dma_addr_t PhysicalAddress,
u32 Length);
static void sxg_allocate_sgl_buffer_complete(struct adapter_t *adapter,
struct sxg_scatter_gather *SxgSgl,
dma_addr_t PhysicalAddress,
u32 Length);
static void sxg_mcast_init_crc32(void);
static int sxg_entry_open(struct net_device *dev);
static int sxg_second_open(struct net_device * dev);
static int sxg_entry_halt(struct net_device *dev);
static int sxg_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static int sxg_send_packets(struct sk_buff *skb, struct net_device *dev);
static int sxg_transmit_packet(struct adapter_t *adapter, struct sk_buff *skb);
static int sxg_dumb_sgl(struct sxg_x64_sgl *pSgl,
struct sxg_scatter_gather *SxgSgl);
static void sxg_handle_interrupt(struct adapter_t *adapter, int *work_done,
int budget);
static void sxg_interrupt(struct adapter_t *adapter);
static int sxg_poll(struct napi_struct *napi, int budget);
static int sxg_process_isr(struct adapter_t *adapter, u32 MessageId);
static u32 sxg_process_event_queue(struct adapter_t *adapter, u32 RssId,
int *sxg_napi_continue, int *work_done, int budget);
static void sxg_complete_slow_send(struct adapter_t *adapter);
static struct sk_buff *sxg_slow_receive(struct adapter_t *adapter,
struct sxg_event *Event);
static void sxg_process_rcv_error(struct adapter_t *adapter, u32 ErrorStatus);
static bool sxg_mac_filter(struct adapter_t *adapter,
struct ether_header *EtherHdr, ushort length);
static struct net_device_stats *sxg_get_stats(struct net_device * dev);
void sxg_free_resources(struct adapter_t *adapter);
void sxg_free_rcvblocks(struct adapter_t *adapter);
void sxg_free_sgl_buffers(struct adapter_t *adapter);
void sxg_unmap_resources(struct adapter_t *adapter);
void sxg_free_mcast_addrs(struct adapter_t *adapter);
void sxg_collect_statistics(struct adapter_t *adapter);
static int sxg_register_interrupt(struct adapter_t *adapter);
static void sxg_remove_isr(struct adapter_t *adapter);
static irqreturn_t sxg_isr(int irq, void *dev_id);
static void sxg_watchdog(unsigned long data);
static void sxg_update_link_status (struct work_struct *work);
#define XXXTODO 0
#if XXXTODO
static int sxg_mac_set_address(struct net_device *dev, void *ptr);
#endif
static void sxg_mcast_set_list(struct net_device *dev);
static int sxg_adapter_set_hwaddr(struct adapter_t *adapter);
static int sxg_initialize_adapter(struct adapter_t *adapter);
static void sxg_stock_rcv_buffers(struct adapter_t *adapter);
static void sxg_complete_descriptor_blocks(struct adapter_t *adapter,
unsigned char Index);
int sxg_change_mtu (struct net_device *netdev, int new_mtu);
static int sxg_initialize_link(struct adapter_t *adapter);
static int sxg_phy_init(struct adapter_t *adapter);
static void sxg_link_event(struct adapter_t *adapter);
static enum SXG_LINK_STATE sxg_get_link_state(struct adapter_t *adapter);
static void sxg_link_state(struct adapter_t *adapter,
enum SXG_LINK_STATE LinkState);
static int sxg_write_mdio_reg(struct adapter_t *adapter,
u32 DevAddr, u32 RegAddr, u32 Value);
static int sxg_read_mdio_reg(struct adapter_t *adapter,
u32 DevAddr, u32 RegAddr, u32 *pValue);
static void sxg_set_mcast_addr(struct adapter_t *adapter);
static unsigned int sxg_first_init = 1;
static char *sxg_banner =
"Alacritech SLIC Technology(tm) Server and Storage \
10Gbe Accelerator (Non-Accelerated)\n";
static int sxg_debug = 1;
static int debug = -1;
static struct net_device *head_netdevice = NULL;
static struct sxgbase_driver sxg_global = {
.dynamic_intagg = 1,
};
static int intagg_delay = 100;
static u32 dynamic_intagg = 0;
char sxg_driver_name[] = "sxg_nic";
#define DRV_AUTHOR "Alacritech, Inc. Engineering"
#define DRV_DESCRIPTION \
"Alacritech SLIC Techonology(tm) Non-Accelerated 10Gbe Driver"
#define DRV_COPYRIGHT \
"Copyright 2000-2008 Alacritech, Inc. All rights reserved."
MODULE_AUTHOR(DRV_AUTHOR);
MODULE_DESCRIPTION(DRV_DESCRIPTION);
MODULE_LICENSE("GPL");
module_param(dynamic_intagg, int, 0);
MODULE_PARM_DESC(dynamic_intagg, "Dynamic Interrupt Aggregation Setting");
module_param(intagg_delay, int, 0);
MODULE_PARM_DESC(intagg_delay, "uSec Interrupt Aggregation Delay");
static struct pci_device_id sxg_pci_tbl[] __devinitdata = {
{PCI_DEVICE(SXG_VENDOR_ID, SXG_DEVICE_ID)},
{0,}
};
MODULE_DEVICE_TABLE(pci, sxg_pci_tbl);
static inline void sxg_reg32_write(void __iomem *reg, u32 value, bool flush)
{
writel(value, reg);
if (flush)
mb();
}
static inline void sxg_reg64_write(struct adapter_t *adapter, void __iomem *reg,
u64 value, u32 cpu)
{
u32 value_high = (u32) (value >> 32);
u32 value_low = (u32) (value & 0x00000000FFFFFFFF);
unsigned long flags;
spin_lock_irqsave(&adapter->Bit64RegLock, flags);
writel(value_high, (void __iomem *)(&adapter->UcodeRegs[cpu].Upper));
writel(value_low, reg);
spin_unlock_irqrestore(&adapter->Bit64RegLock, flags);
}
static void sxg_init_driver(void)
{
if (sxg_first_init) {
DBG_ERROR("sxg: %s sxg_first_init set jiffies[%lx]\n",
__func__, jiffies);
sxg_first_init = 0;
spin_lock_init(&sxg_global.driver_lock);
}
}
static void sxg_dbg_macaddrs(struct adapter_t *adapter)
{
DBG_ERROR(" (%s) curr %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
adapter->netdev->name, adapter->currmacaddr[0],
adapter->currmacaddr[1], adapter->currmacaddr[2],
adapter->currmacaddr[3], adapter->currmacaddr[4],
adapter->currmacaddr[5]);
DBG_ERROR(" (%s) mac %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
adapter->netdev->name, adapter->macaddr[0],
adapter->macaddr[1], adapter->macaddr[2],
adapter->macaddr[3], adapter->macaddr[4],
adapter->macaddr[5]);
return;
}
/* SXG Globals */
static struct sxg_driver SxgDriver;
#ifdef ATKDBG
static struct sxg_trace_buffer LSxgTraceBuffer;
#endif /* ATKDBG */
static struct sxg_trace_buffer *SxgTraceBuffer = NULL;
/*
* MSI Related API's
*/
int sxg_register_intr(struct adapter_t *adapter);
int sxg_enable_msi_x(struct adapter_t *adapter);
int sxg_add_msi_isr(struct adapter_t *adapter);
void sxg_remove_msix_isr(struct adapter_t *adapter);
int sxg_set_interrupt_capability(struct adapter_t *adapter);
int sxg_set_interrupt_capability(struct adapter_t *adapter)
{
int ret;
ret = sxg_enable_msi_x(adapter);
if (ret != STATUS_SUCCESS) {
adapter->msi_enabled = FALSE;
DBG_ERROR("sxg_set_interrupt_capability MSI-X Disable\n");
} else {
adapter->msi_enabled = TRUE;
DBG_ERROR("sxg_set_interrupt_capability MSI-X Enable\n");
}
return ret;
}
int sxg_register_intr(struct adapter_t *adapter)
{
int ret = 0;
if (adapter->msi_enabled) {
ret = sxg_add_msi_isr(adapter);
}
else {
DBG_ERROR("MSI-X Enable Failed. Using Pin INT\n");
ret = sxg_register_interrupt(adapter);
if (ret != STATUS_SUCCESS) {
DBG_ERROR("sxg_register_interrupt Failed\n");
}
}
return ret;
}
int sxg_enable_msi_x(struct adapter_t *adapter)
{
int ret;
adapter->nr_msix_entries = 1;
adapter->msi_entries = kmalloc(adapter->nr_msix_entries *
sizeof(struct msix_entry),GFP_KERNEL);
if (!adapter->msi_entries) {
DBG_ERROR("%s:MSI Entries memory allocation Failed\n",__func__);
return -ENOMEM;
}
memset(adapter->msi_entries, 0, adapter->nr_msix_entries *
sizeof(struct msix_entry));
ret = pci_enable_msix(adapter->pcidev, adapter->msi_entries,
adapter->nr_msix_entries);
if (ret) {
DBG_ERROR("Enabling MSI-X with %d vectors failed\n",
adapter->nr_msix_entries);
/*Should try with less vector returned.*/
kfree(adapter->msi_entries);
return STATUS_FAILURE; /*MSI-X Enable failed.*/
}
return (STATUS_SUCCESS);
}
int sxg_add_msi_isr(struct adapter_t *adapter)
{
int ret,i;
if (!adapter->intrregistered) {
spin_unlock_irqrestore(&sxg_global.driver_lock,
sxg_global.flags);
for (i=0; i<adapter->nr_msix_entries; i++) {
ret = request_irq (adapter->msi_entries[i].vector,
sxg_isr,
IRQF_SHARED,
adapter->netdev->name,
adapter->netdev);
if (ret) {
spin_lock_irqsave(&sxg_global.driver_lock,
sxg_global.flags);
DBG_ERROR("sxg: MSI-X request_irq (%s) "
"FAILED [%x]\n", adapter->netdev->name,
ret);
return (ret);
}
}
}
spin_lock_irqsave(&sxg_global.driver_lock, sxg_global.flags);
adapter->msi_enabled = TRUE;
adapter->intrregistered = 1;
adapter->IntRegistered = TRUE;
return (STATUS_SUCCESS);
}
void sxg_remove_msix_isr(struct adapter_t *adapter)
{
int i,vector;
struct net_device *netdev = adapter->netdev;
for(i=0; i< adapter->nr_msix_entries;i++)
{
vector = adapter->msi_entries[i].vector;
DBG_ERROR("%s : Freeing IRQ vector#%d\n",__func__,vector);
free_irq(vector,netdev);
}
}
static void sxg_remove_isr(struct adapter_t *adapter)
{
struct net_device *netdev = adapter->netdev;
if (adapter->msi_enabled)
sxg_remove_msix_isr(adapter);
else
free_irq(adapter->netdev->irq, netdev);
}
void sxg_reset_interrupt_capability(struct adapter_t *adapter)
{
if (adapter->msi_enabled) {
pci_disable_msix(adapter->pcidev);
kfree(adapter->msi_entries);
adapter->msi_entries = NULL;
}
return;
}
/*
* sxg_download_microcode
*
* Download Microcode to Sahara adapter using the Linux
* Firmware module to get the ucode.sys file.
*
* Arguments -
* adapter - A pointer to our adapter structure
* UcodeSel - microcode file selection
*
* Return
* int
*/
static bool sxg_download_microcode(struct adapter_t *adapter,
enum SXG_UCODE_SEL UcodeSel)
{
const struct firmware *fw;
const char *file = "";
struct sxg_hw_regs *HwRegs = adapter->HwRegs;
int ret;
int ucode_start;
u32 Section;
u32 ThisSectionSize;
u32 instruction = 0;
u32 BaseAddress, AddressOffset, Address;
/* u32 Failure; */
u32 ValueRead;
u32 i;
u32 index = 0;
u32 num_sections = 0;
u32 sectionSize[16];
u32 sectionStart[16];
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DnldUcod",
adapter, 0, 0, 0);
/*
* This routine is only implemented to download the microcode
* for the Revision B Sahara chip. Rev A and Diagnostic
* microcode is not supported at this time. If Rev A or
* diagnostic ucode is required, this routine will obviously
* need to change. Also, eventually need to add support for
* Rev B checked version of ucode. That's easy enough once
* the free version of Rev B works.
*/
ASSERT(UcodeSel == SXG_UCODE_SYSTEM);
ASSERT(adapter->asictype == SAHARA_REV_B);
#if SXG_UCODE_DEBUG
file = "sxg/saharadbgdownloadB.sys";
#else
file = "sxg/saharadownloadB.sys";
#endif
ret = request_firmware(&fw, file, &adapter->pcidev->dev);
if (ret) {
DBG_ERROR("%s SXG_NIC: Failed to load firmware %s\n", __func__,file);
return ret;
}
/*
* The microcode .sys file contains starts with a 4 byte word containing
* the number of sections. That is followed by "num_sections" 4 byte
* words containing each "section" size. That is followed num_sections
* 4 byte words containing each section "start" address.
*
* Following the above header, the .sys file contains num_sections,
* where each section size is specified, newline delineatetd 12 byte
* microcode instructions.
*/
num_sections = *(u32 *)(fw->data + index);
index += 4;
ASSERT(num_sections <= 3);
for (i = 0; i < num_sections; i++) {
sectionSize[i] = *(u32 *)(fw->data + index);
index += 4;
}
for (i = 0; i < num_sections; i++) {
sectionStart[i] = *(u32 *)(fw->data + index);
index += 4;
}
/* First, reset the card */
WRITE_REG(HwRegs->Reset, 0xDEAD, FLUSH);
udelay(50);
HwRegs = adapter->HwRegs;
/*
* Download each section of the microcode as specified in
* sectionSize[index] to sectionStart[index] address. As
* described above, the .sys file contains 12 byte word
* microcode instructions. The *download.sys file is generated
* using the objtosys.exe utility that was built for Sahara
* microcode.
*/
/* See usage of this below when we read back for parity */
ucode_start = index;
instruction = *(u32 *)(fw->data + index);
index += 4;
for (Section = 0; Section < num_sections; Section++) {
BaseAddress = sectionStart[Section];
/* Size in instructions */
ThisSectionSize = sectionSize[Section] / 12;
for (AddressOffset = 0; AddressOffset < ThisSectionSize;
AddressOffset++) {
u32 first_instr = 0; /* See comment below */
Address = BaseAddress + AddressOffset;
ASSERT((Address & ~MICROCODE_ADDRESS_MASK) == 0);
/* Write instruction bits 31 - 0 (low) */
first_instr = instruction;
WRITE_REG(HwRegs->UcodeDataLow, instruction, FLUSH);
instruction = *(u32 *)(fw->data + index);
index += 4; /* Advance to the "next" instruction */
/* Write instruction bits 63-32 (middle) */
WRITE_REG(HwRegs->UcodeDataMiddle, instruction, FLUSH);
instruction = *(u32 *)(fw->data + index);
index += 4; /* Advance to the "next" instruction */
/* Write instruction bits 95-64 (high) */
WRITE_REG(HwRegs->UcodeDataHigh, instruction, FLUSH);
instruction = *(u32 *)(fw->data + index);
index += 4; /* Advance to the "next" instruction */
/* Write instruction address with the WRITE bit set */
WRITE_REG(HwRegs->UcodeAddr,
(Address | MICROCODE_ADDRESS_WRITE), FLUSH);
/*
* Sahara bug in the ucode download logic - the write to DataLow
* for the next instruction could get corrupted. To avoid this,
* write to DataLow again for this instruction (which may get
* corrupted, but it doesn't matter), then increment the address
* and write the data for the next instruction to DataLow. That
* write should succeed.
*/
WRITE_REG(HwRegs->UcodeDataLow, first_instr, FLUSH);
}
}
/*
* Now repeat the entire operation reading the instruction back and
* checking for parity errors
*/
index = ucode_start;
for (Section = 0; Section < num_sections; Section++) {
BaseAddress = sectionStart[Section];
/* Size in instructions */
ThisSectionSize = sectionSize[Section] / 12;
for (AddressOffset = 0; AddressOffset < ThisSectionSize;
AddressOffset++) {
Address = BaseAddress + AddressOffset;
/* Write the address with the READ bit set */
WRITE_REG(HwRegs->UcodeAddr,
(Address | MICROCODE_ADDRESS_READ), FLUSH);
/* Read it back and check parity bit. */
READ_REG(HwRegs->UcodeAddr, ValueRead);
if (ValueRead & MICROCODE_ADDRESS_PARITY) {
DBG_ERROR("sxg: %s PARITY ERROR\n",
__func__);
return FALSE; /* Parity error */
}
ASSERT((ValueRead & MICROCODE_ADDRESS_MASK) == Address);
/* Read the instruction back and compare */
/* First instruction */
instruction = *(u32 *)(fw->data + index);
index += 4;
READ_REG(HwRegs->UcodeDataLow, ValueRead);
if (ValueRead != instruction) {
DBG_ERROR("sxg: %s MISCOMPARE LOW\n",
__func__);
return FALSE; /* Miscompare */
}
instruction = *(u32 *)(fw->data + index);
index += 4;
READ_REG(HwRegs->UcodeDataMiddle, ValueRead);
if (ValueRead != instruction) {
DBG_ERROR("sxg: %s MISCOMPARE MIDDLE\n",
__func__);
return FALSE; /* Miscompare */
}
instruction = *(u32 *)(fw->data + index);
index += 4;
READ_REG(HwRegs->UcodeDataHigh, ValueRead);
if (ValueRead != instruction) {
DBG_ERROR("sxg: %s MISCOMPARE HIGH\n",
__func__);
return FALSE; /* Miscompare */
}
}
}
/* download finished */
release_firmware(fw);
/* Everything OK, Go. */
WRITE_REG(HwRegs->UcodeAddr, MICROCODE_ADDRESS_GO, FLUSH);
/*
* Poll the CardUp register to wait for microcode to initialize
* Give up after 10,000 attemps (500ms).
*/
for (i = 0; i < 10000; i++) {
udelay(50);
READ_REG(adapter->UcodeRegs[0].CardUp, ValueRead);
if (ValueRead == 0xCAFE) {
break;
}
}
if (i == 10000) {
DBG_ERROR("sxg: %s TIMEOUT bringing up card - verify MICROCODE\n", __func__);
return FALSE; /* Timeout */
}
/*
* Now write the LoadSync register. This is used to
* synchronize with the card so it can scribble on the memory
* that contained 0xCAFE from the "CardUp" step above
*/
if (UcodeSel == SXG_UCODE_SYSTEM) {
WRITE_REG(adapter->UcodeRegs[0].LoadSync, 0, FLUSH);
}
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XDnldUcd",
adapter, 0, 0, 0);
return (TRUE);
}
/*
* sxg_allocate_resources - Allocate memory and locks
*
* Arguments -
* adapter - A pointer to our adapter structure
*
* Return - int
*/
static int sxg_allocate_resources(struct adapter_t *adapter)
{
int status = STATUS_SUCCESS;
u32 RssIds, IsrCount;
/* struct sxg_xmt_ring *XmtRing; */
/* struct sxg_rcv_ring *RcvRing; */
DBG_ERROR("%s ENTER\n", __func__);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AllocRes",
adapter, 0, 0, 0);
/* Windows tells us how many CPUs it plans to use for */
/* RSS */
RssIds = SXG_RSS_CPU_COUNT(adapter);
IsrCount = adapter->msi_enabled ? RssIds : 1;
DBG_ERROR("%s Setup the spinlocks\n", __func__);
/* Allocate spinlocks and initialize listheads first. */
spin_lock_init(&adapter->RcvQLock);
spin_lock_init(&adapter->SglQLock);
spin_lock_init(&adapter->XmtZeroLock);
spin_lock_init(&adapter->Bit64RegLock);
spin_lock_init(&adapter->AdapterLock);
atomic_set(&adapter->pending_allocations, 0);
DBG_ERROR("%s Setup the lists\n", __func__);
InitializeListHead(&adapter->FreeRcvBuffers);
InitializeListHead(&adapter->FreeRcvBlocks);
InitializeListHead(&adapter->AllRcvBlocks);
InitializeListHead(&adapter->FreeSglBuffers);
InitializeListHead(&adapter->AllSglBuffers);
/*
* Mark these basic allocations done. This flags essentially
* tells the SxgFreeResources routine that it can grab spinlocks
* and reference listheads.
*/
adapter->BasicAllocations = TRUE;
/*
* Main allocation loop. Start with the maximum supported by
* the microcode and back off if memory allocation
* fails. If we hit a minimum, fail.
*/
for (;;) {
DBG_ERROR("%s Allocate XmtRings size[%x]\n", __func__,
(unsigned int)(sizeof(struct sxg_xmt_ring) * 1));
/*
* Start with big items first - receive and transmit rings.
* At the moment I'm going to keep the ring size fixed and
* adjust the TCBs if we fail. Later we might
* consider reducing the ring size as well..
*/
adapter->XmtRings = pci_alloc_consistent(adapter->pcidev,
sizeof(struct sxg_xmt_ring) *
1,
&adapter->PXmtRings);
DBG_ERROR("%s XmtRings[%p]\n", __func__, adapter->XmtRings);
if (!adapter->XmtRings) {
goto per_tcb_allocation_failed;
}
memset(adapter->XmtRings, 0, sizeof(struct sxg_xmt_ring) * 1);
DBG_ERROR("%s Allocate RcvRings size[%x]\n", __func__,
(unsigned int)(sizeof(struct sxg_rcv_ring) * 1));
adapter->RcvRings =
pci_alloc_consistent(adapter->pcidev,
sizeof(struct sxg_rcv_ring) * 1,
&adapter->PRcvRings);
DBG_ERROR("%s RcvRings[%p]\n", __func__, adapter->RcvRings);
if (!adapter->RcvRings) {
goto per_tcb_allocation_failed;
}
memset(adapter->RcvRings, 0, sizeof(struct sxg_rcv_ring) * 1);
adapter->ucode_stats = kzalloc(sizeof(struct sxg_ucode_stats), GFP_ATOMIC);
adapter->pucode_stats = pci_map_single(adapter->pcidev,
adapter->ucode_stats,
sizeof(struct sxg_ucode_stats),
PCI_DMA_FROMDEVICE);
// memset(adapter->ucode_stats, 0, sizeof(struct sxg_ucode_stats));
break;
per_tcb_allocation_failed:
/* an allocation failed. Free any successful allocations. */
if (adapter->XmtRings) {
pci_free_consistent(adapter->pcidev,
sizeof(struct sxg_xmt_ring) * 1,
adapter->XmtRings,
adapter->PXmtRings);
adapter->XmtRings = NULL;
}
if (adapter->RcvRings) {
pci_free_consistent(adapter->pcidev,
sizeof(struct sxg_rcv_ring) * 1,
adapter->RcvRings,
adapter->PRcvRings);
adapter->RcvRings = NULL;
}
/* Loop around and try again.... */
if (adapter->ucode_stats) {
pci_unmap_single(adapter->pcidev,
sizeof(struct sxg_ucode_stats),
adapter->pucode_stats, PCI_DMA_FROMDEVICE);
adapter->ucode_stats = NULL;
}
}
DBG_ERROR("%s Initialize RCV ZERO and XMT ZERO rings\n", __func__);
/* Initialize rcv zero and xmt zero rings */
SXG_INITIALIZE_RING(adapter->RcvRingZeroInfo, SXG_RCV_RING_SIZE);
SXG_INITIALIZE_RING(adapter->XmtRingZeroInfo, SXG_XMT_RING_SIZE);
/* Sanity check receive data structure format */
/* ASSERT((adapter->ReceiveBufferSize == SXG_RCV_DATA_BUFFER_SIZE) ||
(adapter->ReceiveBufferSize == SXG_RCV_JUMBO_BUFFER_SIZE)); */
ASSERT(sizeof(struct sxg_rcv_descriptor_block) ==
SXG_RCV_DESCRIPTOR_BLOCK_SIZE);
DBG_ERROR("%s Allocate EventRings size[%x]\n", __func__,
(unsigned int)(sizeof(struct sxg_event_ring) * RssIds));
/* Allocate event queues. */
adapter->EventRings = pci_alloc_consistent(adapter->pcidev,
sizeof(struct sxg_event_ring) *
RssIds,
&adapter->PEventRings);
if (!adapter->EventRings) {
/* Caller will call SxgFreeAdapter to clean up above
* allocations */
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF8",
adapter, SXG_MAX_ENTRIES, 0, 0);
status = STATUS_RESOURCES;
goto per_tcb_allocation_failed;
}
memset(adapter->EventRings, 0, sizeof(struct sxg_event_ring) * RssIds);
DBG_ERROR("%s Allocate ISR size[%x]\n", __func__, IsrCount);
/* Allocate ISR */
adapter->Isr = pci_alloc_consistent(adapter->pcidev,
IsrCount, &adapter->PIsr);
if (!adapter->Isr) {
/* Caller will call SxgFreeAdapter to clean up above
* allocations */
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF9",
adapter, SXG_MAX_ENTRIES, 0, 0);
status = STATUS_RESOURCES;
goto per_tcb_allocation_failed;
}
memset(adapter->Isr, 0, sizeof(u32) * IsrCount);
DBG_ERROR("%s Allocate shared XMT ring zero index location size[%x]\n",
__func__, (unsigned int)sizeof(u32));
/* Allocate shared XMT ring zero index location */
adapter->XmtRingZeroIndex = pci_alloc_consistent(adapter->pcidev,
sizeof(u32),
&adapter->
PXmtRingZeroIndex);
if (!adapter->XmtRingZeroIndex) {
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF10",
adapter, SXG_MAX_ENTRIES, 0, 0);
status = STATUS_RESOURCES;
goto per_tcb_allocation_failed;
}
memset(adapter->XmtRingZeroIndex, 0, sizeof(u32));
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlcResS",
adapter, SXG_MAX_ENTRIES, 0, 0);
return status;
}
/*
* sxg_config_pci -
*
* Set up PCI Configuration space
*
* Arguments -
* pcidev - A pointer to our adapter structure
*/
static void sxg_config_pci(struct pci_dev *pcidev)
{
u16 pci_command;
u16 new_command;
pci_read_config_word(pcidev, PCI_COMMAND, &pci_command);
DBG_ERROR("sxg: %s PCI command[%4.4x]\n", __func__, pci_command);
/* Set the command register */
new_command = pci_command | (
/* Memory Space Enable */
PCI_COMMAND_MEMORY |
/* Bus master enable */
PCI_COMMAND_MASTER |
/* Memory write and invalidate */
PCI_COMMAND_INVALIDATE |
/* Parity error response */
PCI_COMMAND_PARITY |
/* System ERR */
PCI_COMMAND_SERR |
/* Fast back-to-back */
PCI_COMMAND_FAST_BACK);
if (pci_command != new_command) {
DBG_ERROR("%s -- Updating PCI COMMAND register %4.4x->%4.4x.\n",
__func__, pci_command, new_command);
pci_write_config_word(pcidev, PCI_COMMAND, new_command);
}
}
/*
* sxg_read_config
* @adapter : Pointer to the adapter structure for the card
* This function will read the configuration data from EEPROM/FLASH
*/
static inline int sxg_read_config(struct adapter_t *adapter)
{
/* struct sxg_config data; */
struct sxg_config *config;
struct sw_cfg_data *data;
dma_addr_t p_addr;
unsigned long status;
unsigned long i;
config = pci_alloc_consistent(adapter->pcidev,
sizeof(struct sxg_config), &p_addr);
if(!config) {
/*
* We cant get even this much memory. Raise a hell
* Get out of here
*/
printk(KERN_ERR"%s : Could not allocate memory for reading \
EEPROM\n", __func__);
return -ENOMEM;
}
data = &config->SwCfg;
/* Initialize (reflective memory) status register */
WRITE_REG(adapter->UcodeRegs[0].ConfigStat, SXG_CFG_TIMEOUT, TRUE);
/* Send request to fetch configuration data */
WRITE_REG64(adapter, adapter->UcodeRegs[0].Config, p_addr, 0);
for(i=0; i<1000; i++) {
READ_REG(adapter->UcodeRegs[0].ConfigStat, status);
if (status != SXG_CFG_TIMEOUT)
break;
mdelay(1); /* Do we really need this */
}
switch(status) {
/* Config read from EEPROM succeeded */
case SXG_CFG_LOAD_EEPROM:
/* Config read from Flash succeeded */
case SXG_CFG_LOAD_FLASH:
/*
* Copy the MAC address to adapter structure
* TODO: We are not doing the remaining part : FRU, etc
*/
memcpy(adapter->macaddr, data->MacAddr[0].MacAddr,
sizeof(struct sxg_config_mac));
break;
case SXG_CFG_TIMEOUT:
case SXG_CFG_LOAD_INVALID:
case SXG_CFG_LOAD_ERROR:
default: /* Fix default handler later */
printk(KERN_WARNING"%s : We could not read the config \
word. Status = %ld\n", __func__, status);
break;
}
pci_free_consistent(adapter->pcidev, sizeof(struct sw_cfg_data), data,
p_addr);
if (adapter->netdev) {
memcpy(adapter->netdev->dev_addr, adapter->currmacaddr, 6);
memcpy(adapter->netdev->perm_addr, adapter->currmacaddr, 6);
}
sxg_dbg_macaddrs(adapter);
return status;
}
static const struct net_device_ops sxg_netdev_ops = {
.ndo_open = sxg_entry_open,
.ndo_stop = sxg_entry_halt,
.ndo_start_xmit = sxg_send_packets,
.ndo_do_ioctl = sxg_ioctl,
.ndo_change_mtu = sxg_change_mtu,
.ndo_get_stats = sxg_get_stats,
.ndo_set_multicast_list = sxg_mcast_set_list,
.ndo_validate_addr = eth_validate_addr,
#if XXXTODO
.ndo_set_mac_address = sxg_mac_set_address,
#else
.ndo_set_mac_address = eth_mac_addr,
#endif
};
static int sxg_entry_probe(struct pci_dev *pcidev,
const struct pci_device_id *pci_tbl_entry)
{
static int did_version = 0;
int err;
struct net_device *netdev;
struct adapter_t *adapter;
void __iomem *memmapped_ioaddr;
u32 status = 0;
ulong mmio_start = 0;
ulong mmio_len = 0;
unsigned char revision_id;
DBG_ERROR("sxg: %s 2.6 VERSION ENTER jiffies[%lx] cpu %d\n",
__func__, jiffies, smp_processor_id());
/* Initialize trace buffer */
#ifdef ATKDBG
SxgTraceBuffer = &LSxgTraceBuffer;
SXG_TRACE_INIT(SxgTraceBuffer, TRACE_NOISY);
#endif
sxg_global.dynamic_intagg = dynamic_intagg;
err = pci_enable_device(pcidev);
DBG_ERROR("Call pci_enable_device(%p) status[%x]\n", pcidev, err);
if (err) {
return err;
}
if (sxg_debug > 0 && did_version++ == 0) {
printk(KERN_INFO "%s\n", sxg_banner);
printk(KERN_INFO "%s\n", SXG_DRV_VERSION);
}
pci_read_config_byte(pcidev, PCI_REVISION_ID, &revision_id);
if (!(err = pci_set_dma_mask(pcidev, DMA_BIT_MASK(64)))) {
DBG_ERROR("pci_set_dma_mask(DMA_BIT_MASK(64)) successful\n");
} else {
if ((err = pci_set_dma_mask(pcidev, DMA_BIT_MASK(32)))) {
DBG_ERROR
("No usable DMA configuration, aborting err[%x]\n",
err);
return err;
}
DBG_ERROR("pci_set_dma_mask(DMA_BIT_MASK(32)) successful\n");
}
DBG_ERROR("Call pci_request_regions\n");
err = pci_request_regions(pcidev, sxg_driver_name);
if (err) {
DBG_ERROR("pci_request_regions FAILED err[%x]\n", err);
return err;
}
DBG_ERROR("call pci_set_master\n");
pci_set_master(pcidev);
DBG_ERROR("call alloc_etherdev\n");
netdev = alloc_etherdev(sizeof(struct adapter_t));
if (!netdev) {
err = -ENOMEM;
goto err_out_exit_sxg_probe;
}
DBG_ERROR("alloc_etherdev for slic netdev[%p]\n", netdev);
SET_NETDEV_DEV(netdev, &pcidev->dev);
pci_set_drvdata(pcidev, netdev);
adapter = netdev_priv(netdev);
if (revision_id == 1) {
adapter->asictype = SAHARA_REV_A;
} else if (revision_id == 2) {
adapter->asictype = SAHARA_REV_B;
} else {
ASSERT(0);
DBG_ERROR("%s Unexpected revision ID %x\n", __func__, revision_id);
goto err_out_exit_sxg_probe;
}
adapter->netdev = netdev;
adapter->pcidev = pcidev;
mmio_start = pci_resource_start(pcidev, 0);
mmio_len = pci_resource_len(pcidev, 0);
DBG_ERROR("sxg: call ioremap(mmio_start[%lx], mmio_len[%lx])\n",
mmio_start, mmio_len);
memmapped_ioaddr = ioremap(mmio_start, mmio_len);
DBG_ERROR("sxg: %s MEMMAPPED_IOADDR [%p]\n", __func__,
memmapped_ioaddr);
if (!memmapped_ioaddr) {
DBG_ERROR("%s cannot remap MMIO region %lx @ %lx\n",
__func__, mmio_len, mmio_start);
goto err_out_free_mmio_region_0;
}
DBG_ERROR("sxg: %s found Alacritech SXG PCI, MMIO at %p, start[%lx] \
len[%lx], IRQ %d.\n", __func__, memmapped_ioaddr, mmio_start,
mmio_len, pcidev->irq);
adapter->HwRegs = (void *)memmapped_ioaddr;
adapter->base_addr = memmapped_ioaddr;
mmio_start = pci_resource_start(pcidev, 2);
mmio_len = pci_resource_len(pcidev, 2);
DBG_ERROR("sxg: call ioremap(mmio_start[%lx], mmio_len[%lx])\n",
mmio_start, mmio_len);
memmapped_ioaddr = ioremap(mmio_start, mmio_len);
DBG_ERROR("sxg: %s MEMMAPPED_IOADDR [%p]\n", __func__,
memmapped_ioaddr);
if (!memmapped_ioaddr) {
DBG_ERROR("%s cannot remap MMIO region %lx @ %lx\n",
__func__, mmio_len, mmio_start);
goto err_out_free_mmio_region_2;
}
DBG_ERROR("sxg: %s found Alacritech SXG PCI, MMIO at %p, "
"start[%lx] len[%lx], IRQ %d.\n", __func__,
memmapped_ioaddr, mmio_start, mmio_len, pcidev->irq);
adapter->UcodeRegs = (void *)memmapped_ioaddr;
adapter->State = SXG_STATE_INITIALIZING;
/*
* Maintain a list of all adapters anchored by
* the global SxgDriver structure.
*/
adapter->Next = SxgDriver.Adapters;
SxgDriver.Adapters = adapter;
adapter->AdapterID = ++SxgDriver.AdapterID;
/* Initialize CRC table used to determine multicast hash */
sxg_mcast_init_crc32();
adapter->JumboEnabled = FALSE;
adapter->RssEnabled = FALSE;
if (adapter->JumboEnabled) {
adapter->FrameSize = JUMBOMAXFRAME;
adapter->ReceiveBufferSize = SXG_RCV_JUMBO_BUFFER_SIZE;
} else {
adapter->FrameSize = ETHERMAXFRAME;
adapter->ReceiveBufferSize = SXG_RCV_DATA_BUFFER_SIZE;
}
/*
* status = SXG_READ_EEPROM(adapter);
* if (!status) {
* goto sxg_init_bad;
* }
*/
DBG_ERROR("sxg: %s ENTER sxg_config_pci\n", __func__);
sxg_config_pci(pcidev);
DBG_ERROR("sxg: %s EXIT sxg_config_pci\n", __func__);
DBG_ERROR("sxg: %s ENTER sxg_init_driver\n", __func__);
sxg_init_driver();
DBG_ERROR("sxg: %s EXIT sxg_init_driver\n", __func__);
adapter->vendid = pci_tbl_entry->vendor;
adapter->devid = pci_tbl_entry->device;
adapter->subsysid = pci_tbl_entry->subdevice;
adapter->slotnumber = ((pcidev->devfn >> 3) & 0x1F);
adapter->functionnumber = (pcidev->devfn & 0x7);
adapter->memorylength = pci_resource_len(pcidev, 0);
adapter->irq = pcidev->irq;
adapter->next_netdevice = head_netdevice;
head_netdevice = netdev;
adapter->port = 0; /*adapter->functionnumber; */
/* Allocate memory and other resources */
DBG_ERROR("sxg: %s ENTER sxg_allocate_resources\n", __func__);
status = sxg_allocate_resources(adapter);
DBG_ERROR("sxg: %s EXIT sxg_allocate_resources status %x\n",
__func__, status);
if (status != STATUS_SUCCESS) {
goto err_out_unmap;
}
DBG_ERROR("sxg: %s ENTER sxg_download_microcode\n", __func__);
if (sxg_download_microcode(adapter, SXG_UCODE_SYSTEM)) {
DBG_ERROR("sxg: %s ENTER sxg_adapter_set_hwaddr\n",
__func__);
sxg_read_config(adapter);
status = sxg_adapter_set_hwaddr(adapter);
} else {
adapter->state = ADAPT_FAIL;
adapter->linkstate = LINK_DOWN;
DBG_ERROR("sxg_download_microcode FAILED status[%x]\n", status);
}
netdev->base_addr = (unsigned long)adapter->base_addr;
netdev->irq = adapter->irq;
netdev->netdev_ops = &sxg_netdev_ops;
SET_ETHTOOL_OPS(netdev, &sxg_nic_ethtool_ops);
netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
err = sxg_set_interrupt_capability(adapter);
if (err != STATUS_SUCCESS)
DBG_ERROR("Cannot enable MSI-X capability\n");
strcpy(netdev->name, "eth%d");
/* strcpy(netdev->name, pci_name(pcidev)); */
if ((err = register_netdev(netdev))) {
DBG_ERROR("Cannot register net device, aborting. %s\n",
netdev->name);
goto err_out_unmap;
}
netif_napi_add(netdev, &adapter->napi,
sxg_poll, SXG_NETDEV_WEIGHT);
netdev->watchdog_timeo = 2 * HZ;
init_timer(&adapter->watchdog_timer);
adapter->watchdog_timer.function = &sxg_watchdog;
adapter->watchdog_timer.data = (unsigned long) adapter;
INIT_WORK(&adapter->update_link_status, sxg_update_link_status);
DBG_ERROR
("sxg: %s addr 0x%lx, irq %d, MAC addr \
%02X:%02X:%02X:%02X:%02X:%02X\n",
netdev->name, netdev->base_addr, pcidev->irq, netdev->dev_addr[0],
netdev->dev_addr[1], netdev->dev_addr[2], netdev->dev_addr[3],
netdev->dev_addr[4], netdev->dev_addr[5]);
/* sxg_init_bad: */
ASSERT(status == FALSE);
/* sxg_free_adapter(adapter); */
DBG_ERROR("sxg: %s EXIT status[%x] jiffies[%lx] cpu %d\n", __func__,
status, jiffies, smp_processor_id());
return status;
err_out_unmap:
sxg_free_resources(adapter);
err_out_free_mmio_region_2:
mmio_start = pci_resource_start(pcidev, 2);
mmio_len = pci_resource_len(pcidev, 2);
release_mem_region(mmio_start, mmio_len);
err_out_free_mmio_region_0:
mmio_start = pci_resource_start(pcidev, 0);
mmio_len = pci_resource_len(pcidev, 0);
release_mem_region(mmio_start, mmio_len);
err_out_exit_sxg_probe:
DBG_ERROR("%s EXIT jiffies[%lx] cpu %d\n", __func__, jiffies,
smp_processor_id());
pci_disable_device(pcidev);
DBG_ERROR("sxg: %s deallocate device\n", __func__);
kfree(netdev);
printk("Exit %s, Sxg driver loading failed..\n", __func__);
return -ENODEV;
}
/*
* LINE BASE Interrupt routines..
*
* sxg_disable_interrupt
*
* DisableInterrupt Handler
*
* Arguments:
*
* adapter: Our adapter structure
*
* Return Value:
* None.
*/
static void sxg_disable_interrupt(struct adapter_t *adapter)
{
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DisIntr",
adapter, adapter->InterruptsEnabled, 0, 0);
/* For now, RSS is disabled with line based interrupts */
ASSERT(adapter->RssEnabled == FALSE);
/* Turn off interrupts by writing to the icr register. */
WRITE_REG(adapter->UcodeRegs[0].Icr, SXG_ICR(0, SXG_ICR_DISABLE), TRUE);
adapter->InterruptsEnabled = 0;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XDisIntr",
adapter, adapter->InterruptsEnabled, 0, 0);
}
/*
* sxg_enable_interrupt
*
* EnableInterrupt Handler
*
* Arguments:
*
* adapter: Our adapter structure
*
* Return Value:
* None.
*/
static void sxg_enable_interrupt(struct adapter_t *adapter)
{
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "EnIntr",
adapter, adapter->InterruptsEnabled, 0, 0);
/* For now, RSS is disabled with line based interrupts */
ASSERT(adapter->RssEnabled == FALSE);
/* Turn on interrupts by writing to the icr register. */
WRITE_REG(adapter->UcodeRegs[0].Icr, SXG_ICR(0, SXG_ICR_ENABLE), TRUE);
adapter->InterruptsEnabled = 1;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XEnIntr",
adapter, 0, 0, 0);
}
/*
* sxg_isr - Process an line-based interrupt
*
* Arguments:
* Context - Our adapter structure
* QueueDefault - Output parameter to queue to default CPU
* TargetCpus - Output bitmap to schedule DPC's
*
* Return Value: TRUE if our interrupt
*/
static irqreturn_t sxg_isr(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *) dev_id;
struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
if(adapter->state != ADAPT_UP)
return IRQ_NONE;
adapter->Stats.NumInts++;
if (adapter->Isr[0] == 0) {
/*
* The SLIC driver used to experience a number of spurious
* interrupts due to the delay associated with the masking of
* the interrupt (we'd bounce back in here). If we see that
* again with Sahara,add a READ_REG of the Icr register after
* the WRITE_REG below.
*/
adapter->Stats.FalseInts++;
return IRQ_NONE;
}
/*
* Move the Isr contents and clear the value in
* shared memory, and mask interrupts
*/
/* ASSERT(adapter->IsrDpcsPending == 0); */
#if XXXTODO /* RSS Stuff */
/*
* If RSS is enabled and the ISR specifies SXG_ISR_EVENT, then
* schedule DPC's based on event queues.
*/
if (adapter->RssEnabled && (adapter->IsrCopy[0] & SXG_ISR_EVENT)) {
for (i = 0;
i < adapter->RssSystemInfo->ProcessorInfo.RssCpuCount;
i++) {
struct sxg_event_ring *EventRing =
&adapter->EventRings[i];
struct sxg_event *Event =
&EventRing->Ring[adapter->NextEvent[i]];
unsigned char Cpu =
adapter->RssSystemInfo->RssIdToCpu[i];
if (Event->Status & EVENT_STATUS_VALID) {
adapter->IsrDpcsPending++;
CpuMask |= (1 << Cpu);
}
}
}
/*
* Now, either schedule the CPUs specified by the CpuMask,
* or queue default
*/
if (CpuMask) {
*QueueDefault = FALSE;
} else {
adapter->IsrDpcsPending = 1;
*QueueDefault = TRUE;
}
*TargetCpus = CpuMask;
#endif
sxg_interrupt(adapter);
return IRQ_HANDLED;
}
static void sxg_interrupt(struct adapter_t *adapter)
{
WRITE_REG(adapter->UcodeRegs[0].Icr, SXG_ICR(0, SXG_ICR_MASK), TRUE);
if (napi_schedule_prep(&adapter->napi)) {
__napi_schedule(&adapter->napi);
}
}
static void sxg_handle_interrupt(struct adapter_t *adapter, int *work_done,
int budget)
{
/* unsigned char RssId = 0; */
u32 NewIsr;
int sxg_napi_continue = 1;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "HndlIntr",
adapter, adapter->IsrCopy[0], 0, 0);
/* For now, RSS is disabled with line based interrupts */
ASSERT(adapter->RssEnabled == FALSE);
adapter->IsrCopy[0] = adapter->Isr[0];
adapter->Isr[0] = 0;
/* Always process the event queue. */
while (sxg_napi_continue)
{
sxg_process_event_queue(adapter,
(adapter->RssEnabled ? /*RssId */ 0 : 0),
&sxg_napi_continue, work_done, budget);
}
#if XXXTODO /* RSS stuff */
if (--adapter->IsrDpcsPending) {
/* We're done. */
ASSERT(adapter->RssEnabled);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DPCsPend",
adapter, 0, 0, 0);
return;
}
#endif
/* Last (or only) DPC processes the ISR and clears the interrupt. */
NewIsr = sxg_process_isr(adapter, 0);
/* Reenable interrupts */
adapter->IsrCopy[0] = 0;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "ClearIsr",
adapter, NewIsr, 0, 0);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XHndlInt",
adapter, 0, 0, 0);
}
static int sxg_poll(struct napi_struct *napi, int budget)
{
struct adapter_t *adapter = container_of(napi, struct adapter_t, napi);
int work_done = 0;
sxg_handle_interrupt(adapter, &work_done, budget);
if (work_done < budget) {
napi_complete(napi);
WRITE_REG(adapter->UcodeRegs[0].Isr, 0, TRUE);
}
return work_done;
}
/*
* sxg_process_isr - Process an interrupt. Called from the line-based and
* message based interrupt DPC routines
*
* Arguments:
* adapter - Our adapter structure
* Queue - The ISR that needs processing
*
* Return Value:
* None
*/
static int sxg_process_isr(struct adapter_t *adapter, u32 MessageId)
{
u32 Isr = adapter->IsrCopy[MessageId];
u32 NewIsr = 0;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "ProcIsr",
adapter, Isr, 0, 0);
/* Error */
if (Isr & SXG_ISR_ERR) {
if (Isr & SXG_ISR_PDQF) {
adapter->Stats.PdqFull++;
DBG_ERROR("%s: SXG_ISR_ERR PDQF!!\n", __func__);
}
/* No host buffer */
if (Isr & SXG_ISR_RMISS) {
/*
* There is a bunch of code in the SLIC driver which
* attempts to process more receive events per DPC
* if we start to fall behind. We'll probablyd
* need to do something similar here, but hold
* off for now. I don't want to make the code more
* complicated than strictly needed.
*/
adapter->stats.rx_missed_errors++;
if (adapter->stats.rx_missed_errors< 5) {
DBG_ERROR("%s: SXG_ISR_ERR RMISS!!\n",
__func__);
}
}
/* Card crash */
if (Isr & SXG_ISR_DEAD) {
/*
* Set aside the crash info and set the adapter state
* to RESET
*/
adapter->CrashCpu = (unsigned char)
((Isr & SXG_ISR_CPU) >> SXG_ISR_CPU_SHIFT);
adapter->CrashLocation = (ushort) (Isr & SXG_ISR_CRASH);
adapter->Dead = TRUE;
DBG_ERROR("%s: ISR_DEAD %x, CPU: %d\n", __func__,
adapter->CrashLocation, adapter->CrashCpu);
}
/* Event ring full */
if (Isr & SXG_ISR_ERFULL) {
/*
* Same issue as RMISS, really. This means the
* host is falling behind the card. Need to increase
* event ring size, process more events per interrupt,
* and/or reduce/remove interrupt aggregation.
*/
adapter->Stats.EventRingFull++;
DBG_ERROR("%s: SXG_ISR_ERR EVENT RING FULL!!\n",
__func__);
}
/* Transmit drop - no DRAM buffers or XMT error */
if (Isr & SXG_ISR_XDROP) {
DBG_ERROR("%s: SXG_ISR_ERR XDROP!!\n", __func__);
}
}
/* Slowpath send completions */
if (Isr & SXG_ISR_SPSEND) {
sxg_complete_slow_send(adapter);
}
/* Dump */
if (Isr & SXG_ISR_UPC) {
/* Maybe change when debug is added.. */
// ASSERT(adapter->DumpCmdRunning);
adapter->DumpCmdRunning = FALSE;
}
/* Link event */
if (Isr & SXG_ISR_LINK) {
if (adapter->state != ADAPT_DOWN) {
adapter->link_status_changed = 1;
schedule_work(&adapter->update_link_status);
}
}
/* Debug - breakpoint hit */
if (Isr & SXG_ISR_BREAK) {
/*
* At the moment AGDB isn't written to support interactive
* debug sessions. When it is, this interrupt will be used to
* signal AGDB that it has hit a breakpoint. For now, ASSERT.
*/
ASSERT(0);
}
/* Heartbeat response */
if (Isr & SXG_ISR_PING) {
adapter->PingOutstanding = FALSE;
}
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XProcIsr",
adapter, Isr, NewIsr, 0);
return (NewIsr);
}
/*
* sxg_rcv_checksum - Set the checksum for received packet
*
* Arguements:
* @adapter - Adapter structure on which packet is received
* @skb - Packet which is receieved
* @Event - Event read from hardware
*/
void sxg_rcv_checksum(struct adapter_t *adapter, struct sk_buff *skb,
struct sxg_event *Event)
{
skb->ip_summed = CHECKSUM_NONE;
if (likely(adapter->flags & SXG_RCV_IP_CSUM_ENABLED)) {
if (likely(adapter->flags & SXG_RCV_TCP_CSUM_ENABLED)
&& (Event->Status & EVENT_STATUS_TCPIP)) {
if(!(Event->Status & EVENT_STATUS_TCPBAD))
skb->ip_summed = CHECKSUM_UNNECESSARY;
if(!(Event->Status & EVENT_STATUS_IPBAD))
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else if(Event->Status & EVENT_STATUS_IPONLY) {
if(!(Event->Status & EVENT_STATUS_IPBAD))
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
}
}
/*
* sxg_process_event_queue - Process our event queue
*
* Arguments:
* - adapter - Adapter structure
* - RssId - The event queue requiring processing
*
* Return Value:
* None.
*/
static u32 sxg_process_event_queue(struct adapter_t *adapter, u32 RssId,
int *sxg_napi_continue, int *work_done, int budget)
{
struct sxg_event_ring *EventRing = &adapter->EventRings[RssId];
struct sxg_event *Event = &EventRing->Ring[adapter->NextEvent[RssId]];
u32 EventsProcessed = 0, Batches = 0;
struct sk_buff *skb;
#ifdef LINUX_HANDLES_RCV_INDICATION_LISTS
struct sk_buff *prev_skb = NULL;
struct sk_buff *IndicationList[SXG_RCV_ARRAYSIZE];
u32 Index;
struct sxg_rcv_data_buffer_hdr *RcvDataBufferHdr;
#endif
u32 ReturnStatus = 0;
int sxg_rcv_data_buffers = SXG_RCV_DATA_BUFFERS;
ASSERT((adapter->State == SXG_STATE_RUNNING) ||
(adapter->State == SXG_STATE_PAUSING) ||
(adapter->State == SXG_STATE_PAUSED) ||
(adapter->State == SXG_STATE_HALTING));
/*
* We may still have unprocessed events on the queue if
* the card crashed. Don't process them.
*/
if (adapter->Dead) {
return (0);
}
/*
* In theory there should only be a single processor that
* accesses this queue, and only at interrupt-DPC time. So/
* we shouldn't need a lock for any of this.
*/
while (Event->Status & EVENT_STATUS_VALID) {
(*sxg_napi_continue) = 1;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "Event",
Event, Event->Code, Event->Status,
adapter->NextEvent);
switch (Event->Code) {
case EVENT_CODE_BUFFERS:
/* struct sxg_ring_info Head & Tail == unsigned char */
ASSERT(!(Event->CommandIndex & 0xFF00));
sxg_complete_descriptor_blocks(adapter,
Event->CommandIndex);
break;
case EVENT_CODE_SLOWRCV:
(*work_done)++;
--adapter->RcvBuffersOnCard;
if ((skb = sxg_slow_receive(adapter, Event))) {
u32 rx_bytes;
#ifdef LINUX_HANDLES_RCV_INDICATION_LISTS
/* Add it to our indication list */
SXG_ADD_RCV_PACKET(adapter, skb, prev_skb,
IndicationList, num_skbs);
/*
* Linux, we just pass up each skb to the
* protocol above at this point, there is no
* capability of an indication list.
*/
#else
/* CHECK skb_pull(skb, INIC_RCVBUF_HEADSIZE); */
/* (rcvbuf->length & IRHDDR_FLEN_MSK); */
rx_bytes = Event->Length;
adapter->stats.rx_packets++;
adapter->stats.rx_bytes += rx_bytes;
sxg_rcv_checksum(adapter, skb, Event);
skb->dev = adapter->netdev;
netif_receive_skb(skb);
#endif
}
break;
default:
DBG_ERROR("%s: ERROR Invalid EventCode %d\n",
__func__, Event->Code);
/* ASSERT(0); */
}
/*
* See if we need to restock card receive buffers.
* There are two things to note here:
* First - This test is not SMP safe. The
* adapter->BuffersOnCard field is protected via atomic
* interlocked calls, but we do not protect it with respect
* to these tests. The only way to do that is with a lock,
* and I don't want to grab a lock every time we adjust the
* BuffersOnCard count. Instead, we allow the buffer
* replenishment to be off once in a while. The worst that
* can happen is the card is given on more-or-less descriptor
* block than the arbitrary value we've chosen. No big deal
* In short DO NOT ADD A LOCK HERE, OR WHERE RcvBuffersOnCard
* is adjusted.
* Second - We expect this test to rarely
* evaluate to true. We attempt to refill descriptor blocks
* as they are returned to us (sxg_complete_descriptor_blocks)
* so The only time this should evaluate to true is when
* sxg_complete_descriptor_blocks failed to allocate
* receive buffers.
*/
if (adapter->JumboEnabled)
sxg_rcv_data_buffers = SXG_JUMBO_RCV_DATA_BUFFERS;
if (adapter->RcvBuffersOnCard < sxg_rcv_data_buffers) {
sxg_stock_rcv_buffers(adapter);
}
/*
* It's more efficient to just set this to zero.
* But clearing the top bit saves potential debug info...
*/
Event->Status &= ~EVENT_STATUS_VALID;
/* Advance to the next event */
SXG_ADVANCE_INDEX(adapter->NextEvent[RssId], EVENT_RING_SIZE);
Event = &EventRing->Ring[adapter->NextEvent[RssId]];
EventsProcessed++;
if (EventsProcessed == EVENT_RING_BATCH) {
/* Release a batch of events back to the card */
WRITE_REG(adapter->UcodeRegs[RssId].EventRelease,
EVENT_RING_BATCH, FALSE);
EventsProcessed = 0;
/*
* If we've processed our batch limit, break out of the
* loop and return SXG_ISR_EVENT to arrange for us to
* be called again
*/
if (Batches++ == EVENT_BATCH_LIMIT) {
SXG_TRACE(TRACE_SXG, SxgTraceBuffer,
TRACE_NOISY, "EvtLimit", Batches,
adapter->NextEvent, 0, 0);
ReturnStatus = SXG_ISR_EVENT;
break;
}
}
if (*work_done >= budget) {
WRITE_REG(adapter->UcodeRegs[RssId].EventRelease,
EventsProcessed, FALSE);
EventsProcessed = 0;
(*sxg_napi_continue) = 0;
break;
}
}
if (!(Event->Status & EVENT_STATUS_VALID))
(*sxg_napi_continue) = 0;
#ifdef LINUX_HANDLES_RCV_INDICATION_LISTS
/* Indicate any received dumb-nic frames */
SXG_INDICATE_PACKETS(adapter, IndicationList, num_skbs);
#endif
/* Release events back to the card. */
if (EventsProcessed) {
WRITE_REG(adapter->UcodeRegs[RssId].EventRelease,
EventsProcessed, FALSE);
}
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XPrcEvnt",
Batches, EventsProcessed, adapter->NextEvent, num_skbs);
return (ReturnStatus);
}
/*
* sxg_complete_slow_send - Complete slowpath or dumb-nic sends
*
* Arguments -
* adapter - A pointer to our adapter structure
* Return
* None
*/
static void sxg_complete_slow_send(struct adapter_t *adapter)
{
struct sxg_xmt_ring *XmtRing = &adapter->XmtRings[0];
struct sxg_ring_info *XmtRingInfo = &adapter->XmtRingZeroInfo;
u32 *ContextType;
struct sxg_cmd *XmtCmd;
unsigned long flags = 0;
unsigned long sgl_flags = 0;
unsigned int processed_count = 0;
/*
* NOTE - This lock is dropped and regrabbed in this loop.
* This means two different processors can both be running/
* through this loop. Be *very* careful.
*/
spin_lock_irqsave(&adapter->XmtZeroLock, flags);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpSnds",
adapter, XmtRingInfo->Head, XmtRingInfo->Tail, 0);
while ((XmtRingInfo->Tail != *adapter->XmtRingZeroIndex)
&& processed_count++ < SXG_COMPLETE_SLOW_SEND_LIMIT) {
/*
* Locate the current Cmd (ring descriptor entry), and
* associated SGL, and advance the tail
*/
SXG_RETURN_CMD(XmtRing, XmtRingInfo, XmtCmd, ContextType);
ASSERT(ContextType);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpSnd",
XmtRingInfo->Head, XmtRingInfo->Tail, XmtCmd, 0);
/* Clear the SGL field. */
XmtCmd->Sgl = 0;
switch (*ContextType) {
case SXG_SGL_DUMB:
{
struct sk_buff *skb;
struct sxg_scatter_gather *SxgSgl =
(struct sxg_scatter_gather *)ContextType;
dma64_addr_t FirstSgeAddress;
u32 FirstSgeLength;
/* Dumb-nic send. Command context is the dumb-nic SGL */
skb = (struct sk_buff *)ContextType;
skb = SxgSgl->DumbPacket;
FirstSgeAddress = XmtCmd->Buffer.FirstSgeAddress;
FirstSgeLength = XmtCmd->Buffer.FirstSgeLength;
/* Complete the send */
SXG_TRACE(TRACE_SXG, SxgTraceBuffer,
TRACE_IMPORTANT, "DmSndCmp", skb, 0,
0, 0);
ASSERT(adapter->Stats.XmtQLen);
/*
* Now drop the lock and complete the send
* back to Microsoft. We need to drop the lock
* because Microsoft can come back with a
* chimney send, which results in a double trip
* in SxgTcpOuput
*/
spin_unlock_irqrestore(
&adapter->XmtZeroLock, flags);
SxgSgl->DumbPacket = NULL;
SXG_COMPLETE_DUMB_SEND(adapter, skb,
FirstSgeAddress,
FirstSgeLength);
SXG_FREE_SGL_BUFFER(adapter, SxgSgl, NULL);
/* and reacquire.. */
spin_lock_irqsave(&adapter->XmtZeroLock, flags);
}
break;
default:
ASSERT(0);
}
}
spin_unlock_irqrestore(&adapter->XmtZeroLock, flags);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpSnd",
adapter, XmtRingInfo->Head, XmtRingInfo->Tail, 0);
}
/*
* sxg_slow_receive
*
* Arguments -
* adapter - A pointer to our adapter structure
* Event - Receive event
*
* Return - skb
*/
static struct sk_buff *sxg_slow_receive(struct adapter_t *adapter,
struct sxg_event *Event)
{
u32 BufferSize = adapter->ReceiveBufferSize;
struct sxg_rcv_data_buffer_hdr *RcvDataBufferHdr;
struct sk_buff *Packet;
static int read_counter = 0;
RcvDataBufferHdr = (struct sxg_rcv_data_buffer_hdr *) Event->HostHandle;
if(read_counter++ & 0x100)
{
sxg_collect_statistics(adapter);
read_counter = 0;
}
ASSERT(RcvDataBufferHdr);
ASSERT(RcvDataBufferHdr->State == SXG_BUFFER_ONCARD);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "SlowRcv", Event,
RcvDataBufferHdr, RcvDataBufferHdr->State,
/*RcvDataBufferHdr->VirtualAddress*/ 0);
/* Drop rcv frames in non-running state */
switch (adapter->State) {
case SXG_STATE_RUNNING:
break;
case SXG_STATE_PAUSING:
case SXG_STATE_PAUSED:
case SXG_STATE_HALTING:
goto drop;
default:
ASSERT(0);
goto drop;
}
/*
* memcpy(SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr),
* RcvDataBufferHdr->VirtualAddress, Event->Length);
*/
/* Change buffer state to UPSTREAM */
RcvDataBufferHdr->State = SXG_BUFFER_UPSTREAM;
if (Event->Status & EVENT_STATUS_RCVERR) {
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "RcvError",
Event, Event->Status, Event->HostHandle, 0);
sxg_process_rcv_error(adapter, *(u32 *)
SXG_RECEIVE_DATA_LOCATION
(RcvDataBufferHdr));
goto drop;
}
#if XXXTODO /* VLAN stuff */
/* If there's a VLAN tag, extract it and validate it */
if (((struct ether_header *)
(SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr)))->EtherType
== ETHERTYPE_VLAN) {
if (SxgExtractVlanHeader(adapter, RcvDataBufferHdr, Event) !=
STATUS_SUCCESS) {
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY,
"BadVlan", Event,
SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr),
Event->Length, 0);
goto drop;
}
}
#endif
/* Dumb-nic frame. See if it passes our mac filter and update stats */
if (!sxg_mac_filter(adapter,
(struct ether_header *)(SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr)),
Event->Length)) {
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "RcvFiltr",
Event, SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr),
Event->Length, 0);
goto drop;
}
Packet = RcvDataBufferHdr->SxgDumbRcvPacket;
SXG_ADJUST_RCV_PACKET(Packet, RcvDataBufferHdr, Event);
Packet->protocol = eth_type_trans(Packet, adapter->netdev);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "DumbRcv",
RcvDataBufferHdr, Packet, Event->Length, 0);
/* Lastly adjust the receive packet length. */
RcvDataBufferHdr->SxgDumbRcvPacket = NULL;
RcvDataBufferHdr->PhysicalAddress = (dma_addr_t)NULL;
SXG_ALLOCATE_RCV_PACKET(adapter, RcvDataBufferHdr, BufferSize);
if (RcvDataBufferHdr->skb)
{
spin_lock(&adapter->RcvQLock);
SXG_FREE_RCV_DATA_BUFFER(adapter, RcvDataBufferHdr);
// adapter->RcvBuffersOnCard ++;
spin_unlock(&adapter->RcvQLock);
}
return (Packet);
drop:
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DropRcv",
RcvDataBufferHdr, Event->Length, 0, 0);
adapter->stats.rx_dropped++;
// adapter->Stats.RcvDiscards++;
spin_lock(&adapter->RcvQLock);
SXG_FREE_RCV_DATA_BUFFER(adapter, RcvDataBufferHdr);
spin_unlock(&adapter->RcvQLock);
return (NULL);
}
/*
* sxg_process_rcv_error - process receive error and update
* stats
*
* Arguments:
* adapter - Adapter structure
* ErrorStatus - 4-byte receive error status
*
* Return Value : None
*/
static void sxg_process_rcv_error(struct adapter_t *adapter, u32 ErrorStatus)
{
u32 Error;
adapter->stats.rx_errors++;
if (ErrorStatus & SXG_RCV_STATUS_TRANSPORT_ERROR) {
Error = ErrorStatus & SXG_RCV_STATUS_TRANSPORT_MASK;
switch (Error) {
case SXG_RCV_STATUS_TRANSPORT_CSUM:
adapter->Stats.TransportCsum++;
break;
case SXG_RCV_STATUS_TRANSPORT_UFLOW:
adapter->Stats.TransportUflow++;
break;
case SXG_RCV_STATUS_TRANSPORT_HDRLEN:
adapter->Stats.TransportHdrLen++;
break;
}
}
if (ErrorStatus & SXG_RCV_STATUS_NETWORK_ERROR) {
Error = ErrorStatus & SXG_RCV_STATUS_NETWORK_MASK;
switch (Error) {
case SXG_RCV_STATUS_NETWORK_CSUM:
adapter->Stats.NetworkCsum++;
break;
case SXG_RCV_STATUS_NETWORK_UFLOW:
adapter->Stats.NetworkUflow++;
break;
case SXG_RCV_STATUS_NETWORK_HDRLEN:
adapter->Stats.NetworkHdrLen++;
break;
}
}
if (ErrorStatus & SXG_RCV_STATUS_PARITY) {
adapter->Stats.Parity++;
}
if (ErrorStatus & SXG_RCV_STATUS_LINK_ERROR) {
Error = ErrorStatus & SXG_RCV_STATUS_LINK_MASK;
switch (Error) {
case SXG_RCV_STATUS_LINK_PARITY:
adapter->Stats.LinkParity++;
break;
case SXG_RCV_STATUS_LINK_EARLY:
adapter->Stats.LinkEarly++;
break;
case SXG_RCV_STATUS_LINK_BUFOFLOW:
adapter->Stats.LinkBufOflow++;
break;
case SXG_RCV_STATUS_LINK_CODE:
adapter->Stats.LinkCode++;
break;
case SXG_RCV_STATUS_LINK_DRIBBLE:
adapter->Stats.LinkDribble++;
break;
case SXG_RCV_STATUS_LINK_CRC:
adapter->Stats.LinkCrc++;
break;
case SXG_RCV_STATUS_LINK_OFLOW:
adapter->Stats.LinkOflow++;
break;
case SXG_RCV_STATUS_LINK_UFLOW:
adapter->Stats.LinkUflow++;
break;
}
}
}
/*
* sxg_mac_filter
*
* Arguments:
* adapter - Adapter structure
* pether - Ethernet header
* length - Frame length
*
* Return Value : TRUE if the frame is to be allowed
*/
static bool sxg_mac_filter(struct adapter_t *adapter,
struct ether_header *EtherHdr, ushort length)
{
bool EqualAddr;
struct net_device *dev = adapter->netdev;
if (SXG_MULTICAST_PACKET(EtherHdr)) {
if (SXG_BROADCAST_PACKET(EtherHdr)) {
/* broadcast */
if (adapter->MacFilter & MAC_BCAST) {
adapter->Stats.DumbRcvBcastPkts++;
adapter->Stats.DumbRcvBcastBytes += length;
return (TRUE);
}
} else {
/* multicast */
if (adapter->MacFilter & MAC_ALLMCAST) {
adapter->Stats.DumbRcvMcastPkts++;
adapter->Stats.DumbRcvMcastBytes += length;
return (TRUE);
}
if (adapter->MacFilter & MAC_MCAST) {
struct dev_mc_list *mclist = dev->mc_list;
while (mclist) {
ETHER_EQ_ADDR(mclist->da_addr,
EtherHdr->ether_dhost,
EqualAddr);
if (EqualAddr) {
adapter->Stats.
DumbRcvMcastPkts++;
adapter->Stats.
DumbRcvMcastBytes += length;
return (TRUE);
}
mclist = mclist->next;
}
}
}
} else if (adapter->MacFilter & MAC_DIRECTED) {
/*
* Not broadcast or multicast. Must be directed at us or
* the card is in promiscuous mode. Either way, consider it
* ours if MAC_DIRECTED is set
*/
adapter->Stats.DumbRcvUcastPkts++;
adapter->Stats.DumbRcvUcastBytes += length;
return (TRUE);
}
if (adapter->MacFilter & MAC_PROMISC) {
/* Whatever it is, keep it. */
return (TRUE);
}
return (FALSE);
}
static int sxg_register_interrupt(struct adapter_t *adapter)
{
if (!adapter->intrregistered) {
int retval;
DBG_ERROR
("sxg: %s AllocAdaptRsrcs adapter[%p] dev->irq[%x] %x\n",
__func__, adapter, adapter->netdev->irq, NR_IRQS);
spin_unlock_irqrestore(&sxg_global.driver_lock,
sxg_global.flags);
retval = request_irq(adapter->netdev->irq,
&sxg_isr,
IRQF_SHARED,
adapter->netdev->name, adapter->netdev);
spin_lock_irqsave(&sxg_global.driver_lock, sxg_global.flags);
if (retval) {
DBG_ERROR("sxg: request_irq (%s) FAILED [%x]\n",
adapter->netdev->name, retval);
return (retval);
}
adapter->intrregistered = 1;
adapter->IntRegistered = TRUE;
/* Disable RSS with line-based interrupts */
adapter->RssEnabled = FALSE;
DBG_ERROR("sxg: %s AllocAdaptRsrcs adapter[%p] dev->irq[%x]\n",
__func__, adapter, adapter->netdev->irq);
}
return (STATUS_SUCCESS);
}
static void sxg_deregister_interrupt(struct adapter_t *adapter)
{
DBG_ERROR("sxg: %s ENTER adapter[%p]\n", __func__, adapter);
#if XXXTODO
slic_init_cleanup(adapter);
#endif
memset(&adapter->stats, 0, sizeof(struct net_device_stats));
adapter->error_interrupts = 0;
adapter->rcv_interrupts = 0;
adapter->xmit_interrupts = 0;
adapter->linkevent_interrupts = 0;
adapter->upr_interrupts = 0;
adapter->num_isrs = 0;
adapter->xmit_completes = 0;
adapter->rcv_broadcasts = 0;
adapter->rcv_multicasts = 0;
adapter->rcv_unicasts = 0;
DBG_ERROR("sxg: %s EXIT\n", __func__);
}
/*
* sxg_if_init
*
* Perform initialization of our slic interface.
*
*/
static int sxg_if_init(struct adapter_t *adapter)
{
struct net_device *dev = adapter->netdev;
int status = 0;
DBG_ERROR("sxg: %s (%s) ENTER states[%d:%d] flags[%x]\n",
__func__, adapter->netdev->name,
adapter->state,
adapter->linkstate, dev->flags);
/* adapter should be down at this point */
if (adapter->state != ADAPT_DOWN) {
DBG_ERROR("sxg_if_init adapter->state != ADAPT_DOWN\n");
return (-EIO);
}
ASSERT(adapter->linkstate == LINK_DOWN);
adapter->devflags_prev = dev->flags;
adapter->MacFilter = MAC_DIRECTED;
if (dev->flags) {
DBG_ERROR("sxg: %s (%s) Set MAC options: ", __func__,
adapter->netdev->name);
if (dev->flags & IFF_BROADCAST) {
adapter->MacFilter |= MAC_BCAST;
DBG_ERROR("BCAST ");
}
if (dev->flags & IFF_PROMISC) {
adapter->MacFilter |= MAC_PROMISC;
DBG_ERROR("PROMISC ");
}
if (dev->flags & IFF_ALLMULTI) {
adapter->MacFilter |= MAC_ALLMCAST;
DBG_ERROR("ALL_MCAST ");
}
if (dev->flags & IFF_MULTICAST) {
adapter->MacFilter |= MAC_MCAST;
DBG_ERROR("MCAST ");
}
DBG_ERROR("\n");
}
status = sxg_register_intr(adapter);
if (status != STATUS_SUCCESS) {
DBG_ERROR("sxg_if_init: sxg_register_intr FAILED %x\n",
status);
sxg_deregister_interrupt(adapter);
return (status);
}
adapter->state = ADAPT_UP;
/* clear any pending events, then enable interrupts */
DBG_ERROR("sxg: %s ENABLE interrupts(slic)\n", __func__);
return (STATUS_SUCCESS);
}
void sxg_set_interrupt_aggregation(struct adapter_t *adapter)
{
/*
* Top bit disables aggregation on xmt (SXG_AGG_XMT_DISABLE).
* Make sure Max is less than 0x8000.
*/
adapter->max_aggregation = SXG_MAX_AGG_DEFAULT;
adapter->min_aggregation = SXG_MIN_AGG_DEFAULT;
WRITE_REG(adapter->UcodeRegs[0].Aggregation,
((adapter->max_aggregation << SXG_MAX_AGG_SHIFT) |
adapter->min_aggregation),
TRUE);
}
static int sxg_entry_open(struct net_device *dev)
{
struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
int status;
static int turn;
int sxg_initial_rcv_data_buffers = SXG_INITIAL_RCV_DATA_BUFFERS;
int i;
if (adapter->JumboEnabled == TRUE) {
sxg_initial_rcv_data_buffers =
SXG_INITIAL_JUMBO_RCV_DATA_BUFFERS;
SXG_INITIALIZE_RING(adapter->RcvRingZeroInfo,
SXG_JUMBO_RCV_RING_SIZE);
}
/*
* Allocate receive data buffers. We allocate a block of buffers and
* a corresponding descriptor block at once. See sxghw.h:SXG_RCV_BLOCK
*/
for (i = 0; i < sxg_initial_rcv_data_buffers;
i += SXG_RCV_DESCRIPTORS_PER_BLOCK)
{
status = sxg_allocate_buffer_memory(adapter,
SXG_RCV_BLOCK_SIZE(SXG_RCV_DATA_HDR_SIZE),
SXG_BUFFER_TYPE_RCV);
if (status != STATUS_SUCCESS)
return status;
}
/*
* NBL resource allocation can fail in the 'AllocateComplete' routine,
* which doesn't return status. Make sure we got the number of buffers
* we requested
*/
if (adapter->FreeRcvBufferCount < sxg_initial_rcv_data_buffers) {
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF6",
adapter, adapter->FreeRcvBufferCount, SXG_MAX_ENTRIES,
0);
return (STATUS_RESOURCES);
}
/*
* The microcode expects it to be downloaded on every open.
*/
DBG_ERROR("sxg: %s ENTER sxg_download_microcode\n", __func__);
if (sxg_download_microcode(adapter, SXG_UCODE_SYSTEM)) {
DBG_ERROR("sxg: %s ENTER sxg_adapter_set_hwaddr\n",
__func__);
sxg_read_config(adapter);
} else {
adapter->state = ADAPT_FAIL;
adapter->linkstate = LINK_DOWN;
DBG_ERROR("sxg_download_microcode FAILED status[%x]\n",
status);
}
msleep(5);
if (turn) {
sxg_second_open(adapter->netdev);
return STATUS_SUCCESS;
}
turn++;
ASSERT(adapter);
DBG_ERROR("sxg: %s adapter->activated[%d]\n", __func__,
adapter->activated);
DBG_ERROR
("sxg: %s (%s): [jiffies[%lx] cpu %d] dev[%p] adapt[%p] port[%d]\n",
__func__, adapter->netdev->name, jiffies, smp_processor_id(),
adapter->netdev, adapter, adapter->port);
netif_stop_queue(adapter->netdev);
spin_lock_irqsave(&sxg_global.driver_lock, sxg_global.flags);
if (!adapter->activated) {
sxg_global.num_sxg_ports_active++;
adapter->activated = 1;
}
/* Initialize the adapter */
DBG_ERROR("sxg: %s ENTER sxg_initialize_adapter\n", __func__);
status = sxg_initialize_adapter(adapter);
DBG_ERROR("sxg: %s EXIT sxg_initialize_adapter status[%x]\n",
__func__, status);
if (status == STATUS_SUCCESS) {
DBG_ERROR("sxg: %s ENTER sxg_if_init\n", __func__);
status = sxg_if_init(adapter);
DBG_ERROR("sxg: %s EXIT sxg_if_init status[%x]\n", __func__,
status);
}
if (status != STATUS_SUCCESS) {
if (adapter->activated) {
sxg_global.num_sxg_ports_active--;
adapter->activated = 0;
}
spin_unlock_irqrestore(&sxg_global.driver_lock,
sxg_global.flags);
return (status);
}
DBG_ERROR("sxg: %s ENABLE ALL INTERRUPTS\n", __func__);
sxg_set_interrupt_aggregation(adapter);
napi_enable(&adapter->napi);
/* Enable interrupts */
SXG_ENABLE_ALL_INTERRUPTS(adapter);
DBG_ERROR("sxg: %s EXIT\n", __func__);
spin_unlock_irqrestore(&sxg_global.driver_lock, sxg_global.flags);
mod_timer(&adapter->watchdog_timer, jiffies);
return STATUS_SUCCESS;
}
int sxg_second_open(struct net_device * dev)
{
struct adapter_t *adapter = (struct adapter_t*) netdev_priv(dev);
int status = 0;
spin_lock_irqsave(&sxg_global.driver_lock, sxg_global.flags);
netif_start_queue(adapter->netdev);
adapter->state = ADAPT_UP;
adapter->linkstate = LINK_UP;
status = sxg_initialize_adapter(adapter);
sxg_set_interrupt_aggregation(adapter);
napi_enable(&adapter->napi);
/* Re-enable interrupts */
SXG_ENABLE_ALL_INTERRUPTS(adapter);
sxg_register_intr(adapter);
spin_unlock_irqrestore(&sxg_global.driver_lock, sxg_global.flags);
mod_timer(&adapter->watchdog_timer, jiffies);
return (STATUS_SUCCESS);
}
static void __devexit sxg_entry_remove(struct pci_dev *pcidev)
{
u32 mmio_start = 0;
u32 mmio_len = 0;
struct net_device *dev = pci_get_drvdata(pcidev);
struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
flush_scheduled_work();
/* Deallocate Resources */
unregister_netdev(dev);
sxg_reset_interrupt_capability(adapter);
sxg_free_resources(adapter);
ASSERT(adapter);
mmio_start = pci_resource_start(pcidev, 0);
mmio_len = pci_resource_len(pcidev, 0);
DBG_ERROR("sxg: %s rel_region(0) start[%x] len[%x]\n", __func__,
mmio_start, mmio_len);
release_mem_region(mmio_start, mmio_len);
mmio_start = pci_resource_start(pcidev, 2);
mmio_len = pci_resource_len(pcidev, 2);
DBG_ERROR("sxg: %s rel_region(2) start[%x] len[%x]\n", __func__,
mmio_start, mmio_len);
release_mem_region(mmio_start, mmio_len);
pci_disable_device(pcidev);
DBG_ERROR("sxg: %s deallocate device\n", __func__);
kfree(dev);
DBG_ERROR("sxg: %s EXIT\n", __func__);
}
static int sxg_entry_halt(struct net_device *dev)
{
struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
struct sxg_hw_regs *HwRegs = adapter->HwRegs;
int i;
u32 RssIds, IsrCount;
unsigned long flags;
RssIds = SXG_RSS_CPU_COUNT(adapter);
IsrCount = adapter->msi_enabled ? RssIds : 1;
/* Disable interrupts */
spin_lock_irqsave(&sxg_global.driver_lock, sxg_global.flags);
SXG_DISABLE_ALL_INTERRUPTS(adapter);
adapter->state = ADAPT_DOWN;
adapter->linkstate = LINK_DOWN;
spin_unlock_irqrestore(&sxg_global.driver_lock, sxg_global.flags);
sxg_deregister_interrupt(adapter);
WRITE_REG(HwRegs->Reset, 0xDEAD, FLUSH);
mdelay(5000);
del_timer_sync(&adapter->watchdog_timer);
netif_stop_queue(dev);
netif_carrier_off(dev);
napi_disable(&adapter->napi);
WRITE_REG(adapter->UcodeRegs[0].RcvCmd, 0, true);
adapter->devflags_prev = 0;
DBG_ERROR("sxg: %s (%s) set adapter[%p] state to ADAPT_DOWN(%d)\n",
__func__, dev->name, adapter, adapter->state);
spin_lock(&adapter->RcvQLock);
/* Free all the blocks and the buffers, moved from remove() routine */
if (!(IsListEmpty(&adapter->AllRcvBlocks))) {
sxg_free_rcvblocks(adapter);
}
InitializeListHead(&adapter->FreeRcvBuffers);
InitializeListHead(&adapter->FreeRcvBlocks);
InitializeListHead(&adapter->AllRcvBlocks);
InitializeListHead(&adapter->FreeSglBuffers);
InitializeListHead(&adapter->AllSglBuffers);
adapter->FreeRcvBufferCount = 0;
adapter->FreeRcvBlockCount = 0;
adapter->AllRcvBlockCount = 0;
adapter->RcvBuffersOnCard = 0;
adapter->PendingRcvCount = 0;
memset(adapter->RcvRings, 0, sizeof(struct sxg_rcv_ring) * 1);
memset(adapter->EventRings, 0, sizeof(struct sxg_event_ring) * RssIds);
memset(adapter->Isr, 0, sizeof(u32) * IsrCount);
for (i = 0; i < SXG_MAX_RING_SIZE; i++)
adapter->RcvRingZeroInfo.Context[i] = NULL;
SXG_INITIALIZE_RING(adapter->RcvRingZeroInfo, SXG_RCV_RING_SIZE);
SXG_INITIALIZE_RING(adapter->XmtRingZeroInfo, SXG_XMT_RING_SIZE);
spin_unlock(&adapter->RcvQLock);
spin_lock_irqsave(&adapter->XmtZeroLock, flags);
adapter->AllSglBufferCount = 0;
adapter->FreeSglBufferCount = 0;
adapter->PendingXmtCount = 0;
memset(adapter->XmtRings, 0, sizeof(struct sxg_xmt_ring) * 1);
memset(adapter->XmtRingZeroIndex, 0, sizeof(u32));
spin_unlock_irqrestore(&adapter->XmtZeroLock, flags);
for (i = 0; i < SXG_MAX_RSS; i++) {
adapter->NextEvent[i] = 0;
}
atomic_set(&adapter->pending_allocations, 0);
adapter->intrregistered = 0;
sxg_remove_isr(adapter);
DBG_ERROR("sxg: %s (%s) EXIT\n", __func__, dev->name);
return (STATUS_SUCCESS);
}
static int sxg_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
ASSERT(rq);
/* DBG_ERROR("sxg: %s cmd[%x] rq[%p] dev[%p]\n", __func__, cmd, rq, dev);*/
switch (cmd) {
case SIOCSLICSETINTAGG:
{
/* struct adapter_t *adapter = (struct adapter_t *)
* netdev_priv(dev);
*/
u32 data[7];
u32 intagg;
if (copy_from_user(data, rq->ifr_data, 28)) {
DBG_ERROR("copy_from_user FAILED getting \
initial params\n");
return -EFAULT;
}
intagg = data[0];
printk(KERN_EMERG
"%s: set interrupt aggregation to %d\n",
__func__, intagg);
return 0;
}
default:
/* DBG_ERROR("sxg: %s UNSUPPORTED[%x]\n", __func__, cmd); */
return -EOPNOTSUPP;
}
return 0;
}
#define NORMAL_ETHFRAME 0
/*
* sxg_send_packets - Send a skb packet
*
* Arguments:
* skb - The packet to send
* dev - Our linux net device that refs our adapter
*
* Return:
* 0 regardless of outcome XXXTODO refer to e1000 driver
*/
static int sxg_send_packets(struct sk_buff *skb, struct net_device *dev)
{
struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
u32 status = STATUS_SUCCESS;
/*
* DBG_ERROR("sxg: %s ENTER sxg_send_packets skb[%p]\n", __func__,
* skb);
*/
/* Check the adapter state */
switch (adapter->State) {
case SXG_STATE_INITIALIZING:
case SXG_STATE_HALTED:
case SXG_STATE_SHUTDOWN:
ASSERT(0); /* unexpected */
/* fall through */
case SXG_STATE_RESETTING:
case SXG_STATE_SLEEP:
case SXG_STATE_BOOTDIAG:
case SXG_STATE_DIAG:
case SXG_STATE_HALTING:
status = STATUS_FAILURE;
break;
case SXG_STATE_RUNNING:
if (adapter->LinkState != SXG_LINK_UP) {
status = STATUS_FAILURE;
}
break;
default:
ASSERT(0);
status = STATUS_FAILURE;
}
if (status != STATUS_SUCCESS) {
goto xmit_fail;
}
/* send a packet */
status = sxg_transmit_packet(adapter, skb);
if (status == STATUS_SUCCESS) {
goto xmit_done;
}
xmit_fail:
/* reject & complete all the packets if they cant be sent */
if (status != STATUS_SUCCESS) {
#if XXXTODO
/* sxg_send_packets_fail(adapter, skb, status); */
#else
SXG_DROP_DUMB_SEND(adapter, skb);
adapter->stats.tx_dropped++;
return NETDEV_TX_BUSY;
#endif
}
DBG_ERROR("sxg: %s EXIT sxg_send_packets status[%x]\n", __func__,
status);
xmit_done:
return NETDEV_TX_OK;
}
/*
* sxg_transmit_packet
*
* This function transmits a single packet.
*
* Arguments -
* adapter - Pointer to our adapter structure
* skb - The packet to be sent
*
* Return - STATUS of send
*/
static int sxg_transmit_packet(struct adapter_t *adapter, struct sk_buff *skb)
{
struct sxg_x64_sgl *pSgl;
struct sxg_scatter_gather *SxgSgl;
unsigned long sgl_flags;
/* void *SglBuffer; */
/* u32 SglBufferLength; */
/*
* The vast majority of work is done in the shared
* sxg_dumb_sgl routine.
*/
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DumbSend",
adapter, skb, 0, 0);
/* Allocate a SGL buffer */
SXG_GET_SGL_BUFFER(adapter, SxgSgl, 0);
if (!SxgSgl) {
adapter->Stats.NoSglBuf++;
adapter->stats.tx_errors++;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "SndPktF1",
adapter, skb, 0, 0);
return (STATUS_RESOURCES);
}
ASSERT(SxgSgl->adapter == adapter);
/*SglBuffer = SXG_SGL_BUFFER(SxgSgl);
SglBufferLength = SXG_SGL_BUF_SIZE; */
SxgSgl->VlanTag.VlanTci = 0;
SxgSgl->VlanTag.VlanTpid = 0;
SxgSgl->Type = SXG_SGL_DUMB;
SxgSgl->DumbPacket = skb;
pSgl = NULL;
/* Call the common sxg_dumb_sgl routine to complete the send. */
return (sxg_dumb_sgl(pSgl, SxgSgl));
}
/*
* sxg_dumb_sgl
*
* Arguments:
* pSgl -
* SxgSgl - struct sxg_scatter_gather
*
* Return Value:
* Status of send operation.
*/
static int sxg_dumb_sgl(struct sxg_x64_sgl *pSgl,
struct sxg_scatter_gather *SxgSgl)
{
struct adapter_t *adapter = SxgSgl->adapter;
struct sk_buff *skb = SxgSgl->DumbPacket;
/* For now, all dumb-nic sends go on RSS queue zero */
struct sxg_xmt_ring *XmtRing = &adapter->XmtRings[0];
struct sxg_ring_info *XmtRingInfo = &adapter->XmtRingZeroInfo;
struct sxg_cmd *XmtCmd = NULL;
/* u32 Index = 0; */
u32 DataLength = skb->len;
/* unsigned int BufLen; */
/* u32 SglOffset; */
u64 phys_addr;
unsigned long flags;
unsigned long queue_id=0;
int offload_cksum = 0;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DumbSgl",
pSgl, SxgSgl, 0, 0);
/* Set aside a pointer to the sgl */
SxgSgl->pSgl = pSgl;
/* Sanity check that our SGL format is as we expect. */
ASSERT(sizeof(struct sxg_x64_sge) == sizeof(struct sxg_x64_sge));
/* Shouldn't be a vlan tag on this frame */
ASSERT(SxgSgl->VlanTag.VlanTci == 0);
ASSERT(SxgSgl->VlanTag.VlanTpid == 0);
/*
* From here below we work with the SGL placed in our
* buffer.
*/
SxgSgl->Sgl.NumberOfElements = 1;
/*
* Set ucode Queue ID based on bottom bits of destination TCP port.
* This Queue ID splits slowpath/dumb-nic packet processing across
* multiple threads on the card to improve performance. It is split
* using the TCP port to avoid out-of-order packets that can result
* from multithreaded processing. We use the destination port because
* we expect to be run on a server, so in nearly all cases the local
* port is likely to be constant (well-known server port) and the
* remote port is likely to be random. The exception to this is iSCSI,
* in which case we use the sport instead. Note
* that original attempt at XOR'ing source and dest port resulted in
* poor balance on NTTTCP/iometer applications since they tend to
* line up (even-even, odd-odd..).
*/
if (skb->protocol == htons(ETH_P_IP)) {
struct iphdr *ip;
ip = ip_hdr(skb);
if (ip->protocol == IPPROTO_TCP)
offload_cksum = 1;
if (!offload_cksum || !tcp_hdr(skb))
queue_id = 0;
else if (offload_cksum && (DataLength >= sizeof(
struct tcphdr))){
queue_id = ((ntohs(tcp_hdr(skb)->dest) == ISCSI_PORT) ?
(ntohs (tcp_hdr(skb)->source) &
SXG_LARGE_SEND_QUEUE_MASK):
(ntohs(tcp_hdr(skb)->dest) &
SXG_LARGE_SEND_QUEUE_MASK));
}
} else if (skb->protocol == htons(ETH_P_IPV6)) {
if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
offload_cksum = 1;
if (!offload_cksum || !tcp_hdr(skb))
queue_id = 0;
else if (offload_cksum && (DataLength>=sizeof(struct tcphdr))){
queue_id = ((ntohs(tcp_hdr(skb)->dest) == ISCSI_PORT) ?
(ntohs (tcp_hdr(skb)->source) &
SXG_LARGE_SEND_QUEUE_MASK):
(ntohs(tcp_hdr(skb)->dest) &
SXG_LARGE_SEND_QUEUE_MASK));
}
}
/* Grab the spinlock and acquire a command */
spin_lock_irqsave(&adapter->XmtZeroLock, flags);
SXG_GET_CMD(XmtRing, XmtRingInfo, XmtCmd, SxgSgl);
if (XmtCmd == NULL) {
/*
* Call sxg_complete_slow_send to see if we can
* free up any XmtRingZero entries and then try again
*/
spin_unlock_irqrestore(&adapter->XmtZeroLock, flags);
sxg_complete_slow_send(adapter);
spin_lock_irqsave(&adapter->XmtZeroLock, flags);
SXG_GET_CMD(XmtRing, XmtRingInfo, XmtCmd, SxgSgl);
if (XmtCmd == NULL) {
adapter->Stats.XmtZeroFull++;
goto abortcmd;
}
}
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DumbCmd",
XmtCmd, XmtRingInfo->Head, XmtRingInfo->Tail, 0);
memset(XmtCmd, '\0', sizeof(*XmtCmd));
XmtCmd->SgEntries = 1;
XmtCmd->Flags = 0;
if (skb->ip_summed == CHECKSUM_PARTIAL) {
/*
* We need to set the Checkum in IP header to 0. This is
* required by hardware.
*/
if (offload_cksum) {
ip_hdr(skb)->check = 0x0;
XmtCmd->CsumFlags.Flags |= SXG_SLOWCMD_CSUM_IP;
XmtCmd->CsumFlags.Flags |= SXG_SLOWCMD_CSUM_TCP;
/*
* Dont know if length will require a change in
* case of VLAN
*/
XmtCmd->CsumFlags.MacLen = ETH_HLEN;
XmtCmd->CsumFlags.IpHl = skb_network_header_len(skb) >>
SXG_NW_HDR_LEN_SHIFT;
} else {
if (skb_checksum_help(skb)){
printk(KERN_EMERG "Dropped UDP packet for"
" incorrect checksum calculation\n");
if (XmtCmd)
SXG_ABORT_CMD(XmtRingInfo);
spin_unlock_irqrestore(&adapter->XmtZeroLock,
flags);
return STATUS_SUCCESS;
}
}
}
/*
* Fill in the command
* Copy out the first SGE to the command and adjust for offset
*/
phys_addr = pci_map_single(adapter->pcidev, skb->data, skb->len,
PCI_DMA_TODEVICE);
/*
* SAHARA SGL WORKAROUND
* See if the SGL straddles a 64k boundary. If so, skip to
* the start of the next 64k boundary and continue
*/
if ((adapter->asictype == SAHARA_REV_A) &&
(SXG_INVALID_SGL(phys_addr,skb->data_len)))
{
spin_unlock_irqrestore(&adapter->XmtZeroLock, flags);
if (XmtCmd)
SXG_ABORT_CMD(XmtRingInfo);
/* Silently drop this packet */
printk(KERN_EMERG"Dropped a packet for 64k boundary problem\n");
return STATUS_SUCCESS;
}
XmtCmd->Buffer.FirstSgeAddress = phys_addr;
XmtCmd->Buffer.FirstSgeLength = DataLength;
XmtCmd->Buffer.SgeOffset = 0;
XmtCmd->Buffer.TotalLength = DataLength;
/*
* Advance transmit cmd descripter by 1.
* NOTE - See comments in SxgTcpOutput where we write
* to the XmtCmd register regarding CPU ID values and/or
* multiple commands.
* Top 16 bits specify queue_id. See comments about queue_id above
*/
/* Four queues at the moment */
ASSERT((queue_id & ~SXG_LARGE_SEND_QUEUE_MASK) == 0);
WRITE_REG(adapter->UcodeRegs[0].XmtCmd, ((queue_id << 16) | 1), TRUE);
adapter->Stats.XmtQLen++; /* Stats within lock */
/* Update stats */
adapter->stats.tx_packets++;
adapter->stats.tx_bytes += DataLength;
#if XXXTODO /* Stats stuff */
if (SXG_MULTICAST_PACKET(EtherHdr)) {
if (SXG_BROADCAST_PACKET(EtherHdr)) {
adapter->Stats.DumbXmtBcastPkts++;
adapter->Stats.DumbXmtBcastBytes += DataLength;
} else {
adapter->Stats.DumbXmtMcastPkts++;
adapter->Stats.DumbXmtMcastBytes += DataLength;
}
} else {
adapter->Stats.DumbXmtUcastPkts++;
adapter->Stats.DumbXmtUcastBytes += DataLength;
}
#endif
spin_unlock_irqrestore(&adapter->XmtZeroLock, flags);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XDumSgl2",
XmtCmd, pSgl, SxgSgl, 0);
return STATUS_SUCCESS;
abortcmd:
/*
* NOTE - Only jump to this label AFTER grabbing the
* XmtZeroLock, and DO NOT DROP IT between the
* command allocation and the following abort.
*/
if (XmtCmd) {
SXG_ABORT_CMD(XmtRingInfo);
}
spin_unlock_irqrestore(&adapter->XmtZeroLock, flags);
/*
* failsgl:
* Jump to this label if failure occurs before the
* XmtZeroLock is grabbed
*/
adapter->stats.tx_errors++;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "DumSGFal",
pSgl, SxgSgl, XmtRingInfo->Head, XmtRingInfo->Tail);
/* SxgSgl->DumbPacket is the skb */
// SXG_COMPLETE_DUMB_SEND(adapter, SxgSgl->DumbPacket);
return STATUS_FAILURE;
}
/*
* Link management functions
*
* sxg_initialize_link - Initialize the link stuff
*
* Arguments -
* adapter - A pointer to our adapter structure
*
* Return
* status
*/
static int sxg_initialize_link(struct adapter_t *adapter)
{
struct sxg_hw_regs *HwRegs = adapter->HwRegs;
u32 Value;
u32 ConfigData;
u32 MaxFrame;
u32 AxgMacReg1;
int status;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "InitLink",
adapter, 0, 0, 0);
/* Reset PHY and XGXS module */
WRITE_REG(HwRegs->LinkStatus, LS_SERDES_POWER_DOWN, TRUE);
/* Reset transmit configuration register */
WRITE_REG(HwRegs->XmtConfig, XMT_CONFIG_RESET, TRUE);
/* Reset receive configuration register */
WRITE_REG(HwRegs->RcvConfig, RCV_CONFIG_RESET, TRUE);
/* Reset all MAC modules */
WRITE_REG(HwRegs->MacConfig0, AXGMAC_CFG0_SUB_RESET, TRUE);
/*
* Link address 0
* XXXTODO - This assumes the MAC address (0a:0b:0c:0d:0e:0f)
* is stored with the first nibble (0a) in the byte 0
* of the Mac address. Possibly reverse?
*/
Value = *(u32 *) adapter->macaddr;
WRITE_REG(HwRegs->LinkAddress0Low, Value, TRUE);
/* also write the MAC address to the MAC. Endian is reversed. */
WRITE_REG(HwRegs->MacAddressLow, ntohl(Value), TRUE);
Value = (*(u16 *) & adapter->macaddr[4] & 0x0000FFFF);
WRITE_REG(HwRegs->LinkAddress0High, Value | LINK_ADDRESS_ENABLE, TRUE);
/* endian swap for the MAC (put high bytes in bits [31:16], swapped) */
Value = ntohl(Value);
WRITE_REG(HwRegs->MacAddressHigh, Value, TRUE);
/* Link address 1 */
WRITE_REG(HwRegs->LinkAddress1Low, 0, TRUE);
WRITE_REG(HwRegs->LinkAddress1High, 0, TRUE);
/* Link address 2 */
WRITE_REG(HwRegs->LinkAddress2Low, 0, TRUE);
WRITE_REG(HwRegs->LinkAddress2High, 0, TRUE);
/* Link address 3 */
WRITE_REG(HwRegs->LinkAddress3Low, 0, TRUE);
WRITE_REG(HwRegs->LinkAddress3High, 0, TRUE);
/* Enable MAC modules */
WRITE_REG(HwRegs->MacConfig0, 0, TRUE);
/* Configure MAC */
AxgMacReg1 = ( /* Enable XMT */
AXGMAC_CFG1_XMT_EN |
/* Enable receive */
AXGMAC_CFG1_RCV_EN |
/* short frame detection */
AXGMAC_CFG1_SHORT_ASSERT |
/* Verify frame length */
AXGMAC_CFG1_CHECK_LEN |
/* Generate FCS */
AXGMAC_CFG1_GEN_FCS |
/* Pad frames to 64 bytes */
AXGMAC_CFG1_PAD_64);
if (adapter->XmtFcEnabled) {
AxgMacReg1 |= AXGMAC_CFG1_XMT_PAUSE; /* Allow sending of pause */
}
if (adapter->RcvFcEnabled) {
AxgMacReg1 |= AXGMAC_CFG1_RCV_PAUSE; /* Enable detection of pause */
}
WRITE_REG(HwRegs->MacConfig1, AxgMacReg1, TRUE);
/* Set AXGMAC max frame length if jumbo. Not needed for standard MTU */
if (adapter->JumboEnabled) {
WRITE_REG(HwRegs->MacMaxFrameLen, AXGMAC_MAXFRAME_JUMBO, TRUE);
}
/*
* AMIIM Configuration Register -
* The value placed in the AXGMAC_AMIIM_CFG_HALF_CLOCK portion
* (bottom bits) of this register is used to determine the MDC frequency
* as specified in the A-XGMAC Design Document. This value must not be
* zero. The following value (62 or 0x3E) is based on our MAC transmit
* clock frequency (MTCLK) of 312.5 MHz. Given a maximum MDIO clock
* frequency of 2.5 MHz (see the PHY spec), we get:
* 312.5/(2*(X+1)) < 2.5 ==> X = 62.
* This value happens to be the default value for this register, so we
* really don't have to do this.
*/
if (adapter->asictype == SAHARA_REV_B) {
WRITE_REG(HwRegs->MacAmiimConfig, 0x0000001F, TRUE);
} else {
WRITE_REG(HwRegs->MacAmiimConfig, 0x0000003E, TRUE);
}
/* Power up and enable PHY and XAUI/XGXS/Serdes logic */
WRITE_REG(HwRegs->LinkStatus,
(LS_PHY_CLR_RESET |
LS_XGXS_ENABLE |
LS_XGXS_CTL |
LS_PHY_CLK_EN |
LS_ATTN_ALARM),
TRUE);
DBG_ERROR("After Power Up and enable PHY in sxg_initialize_link\n");
/*
* Per information given by Aeluros, wait 100 ms after removing reset.
* It's not enough to wait for the self-clearing reset bit in reg 0 to
* clear.
*/
mdelay(100);
/* Verify the PHY has come up by checking that the Reset bit has
* cleared.
*/
status = sxg_read_mdio_reg(adapter,
MIIM_DEV_PHY_PMA, /* PHY PMA/PMD module */
PHY_PMA_CONTROL1, /* PMA/PMD control register */
&Value);
DBG_ERROR("After sxg_read_mdio_reg Value[%x] fail=%x\n", Value,
(Value & PMA_CONTROL1_RESET));
if (status != STATUS_SUCCESS)
return (STATUS_FAILURE);
if (Value & PMA_CONTROL1_RESET) /* reset complete if bit is 0 */
return (STATUS_FAILURE);
/* The SERDES should be initialized by now - confirm */
READ_REG(HwRegs->LinkStatus, Value);
if (Value & LS_SERDES_DOWN) /* verify SERDES is initialized */
return (STATUS_FAILURE);
/* The XAUI link should also be up - confirm */
if (!(Value & LS_XAUI_LINK_UP)) /* verify XAUI link is up */
return (STATUS_FAILURE);
/* Initialize the PHY */
status = sxg_phy_init(adapter);
if (status != STATUS_SUCCESS)
return (STATUS_FAILURE);
/* Enable the Link Alarm */
/* MIIM_DEV_PHY_PMA - PHY PMA/PMD module
* LASI_CONTROL - LASI control register
* LASI_CTL_LS_ALARM_ENABLE - enable link alarm bit
*/
status = sxg_write_mdio_reg(adapter, MIIM_DEV_PHY_PMA,
LASI_CONTROL,
LASI_CTL_LS_ALARM_ENABLE);
if (status != STATUS_SUCCESS)
return (STATUS_FAILURE);
/* XXXTODO - temporary - verify bit is set */
/* MIIM_DEV_PHY_PMA - PHY PMA/PMD module
* LASI_CONTROL - LASI control register
*/
status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA,
LASI_CONTROL,
&Value);
if (status != STATUS_SUCCESS)
return (STATUS_FAILURE);
if (!(Value & LASI_CTL_LS_ALARM_ENABLE)) {
DBG_ERROR("Error! LASI Control Alarm Enable bit not set!\n");
}
/* Enable receive */
MaxFrame = adapter->JumboEnabled ? JUMBOMAXFRAME : ETHERMAXFRAME;
ConfigData = (RCV_CONFIG_ENABLE |
RCV_CONFIG_ENPARSE |
RCV_CONFIG_RCVBAD |
RCV_CONFIG_RCVPAUSE |
RCV_CONFIG_TZIPV6 |
RCV_CONFIG_TZIPV4 |
RCV_CONFIG_HASH_16 |
RCV_CONFIG_SOCKET | RCV_CONFIG_BUFSIZE(MaxFrame));
if (adapter->asictype == SAHARA_REV_B) {
ConfigData |= (RCV_CONFIG_HIPRICTL |
RCV_CONFIG_NEWSTATUSFMT);
}
WRITE_REG(HwRegs->RcvConfig, ConfigData, TRUE);
WRITE_REG(HwRegs->XmtConfig, XMT_CONFIG_ENABLE, TRUE);
/* Mark the link as down. We'll get a link event when it comes up. */
sxg_link_state(adapter, SXG_LINK_DOWN);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XInitLnk",
adapter, 0, 0, 0);
return (STATUS_SUCCESS);
}
/*
* sxg_phy_init - Initialize the PHY
*
* Arguments -
* adapter - A pointer to our adapter structure
*
* Return
* status
*/
static int sxg_phy_init(struct adapter_t *adapter)
{
u32 Value;
struct phy_ucode *p;
int status;
DBG_ERROR("ENTER %s\n", __func__);
/* MIIM_DEV_PHY_PMA - PHY PMA/PMD module
* 0xC205 - PHY ID register (?)
* &Value - XXXTODO - add def
*/
status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA,
0xC205,
&Value);
if (status != STATUS_SUCCESS)
return (STATUS_FAILURE);
if (Value == 0x0012) {
/* 0x0012 == AEL2005C PHY(?) - XXXTODO - add def */
DBG_ERROR("AEL2005C PHY detected. Downloading PHY \
microcode.\n");
/* Initialize AEL2005C PHY and download PHY microcode */
for (p = PhyUcode; p->Addr != 0xFFFF; p++) {
if (p->Addr == 0) {
/* if address == 0, data == sleep time in ms */
mdelay(p->Data);
} else {
/* write the given data to the specified address */
status = sxg_write_mdio_reg(adapter,
MIIM_DEV_PHY_PMA,
/* PHY address */
p->Addr,
/* PHY data */
p->Data);
if (status != STATUS_SUCCESS)
return (STATUS_FAILURE);
}
}
}
DBG_ERROR("EXIT %s\n", __func__);
return (STATUS_SUCCESS);
}
/*
* sxg_link_event - Process a link event notification from the card
*
* Arguments -
* adapter - A pointer to our adapter structure
*
* Return
* None
*/
static void sxg_link_event(struct adapter_t *adapter)
{
struct sxg_hw_regs *HwRegs = adapter->HwRegs;
struct net_device *netdev = adapter->netdev;
enum SXG_LINK_STATE LinkState;
int status;
u32 Value;
if (adapter->state == ADAPT_DOWN)
return;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "LinkEvnt",
adapter, 0, 0, 0);
DBG_ERROR("ENTER %s\n", __func__);
/* Check the Link Status register. We should have a Link Alarm. */
READ_REG(HwRegs->LinkStatus, Value);
if (Value & LS_LINK_ALARM) {
/*
* We got a Link Status alarm. First, pause to let the
* link state settle (it can bounce a number of times)
*/
mdelay(10);
/* Now clear the alarm by reading the LASI status register. */
/* MIIM_DEV_PHY_PMA - PHY PMA/PMD module */
status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA,
/* LASI status register */
LASI_STATUS,
&Value);
if (status != STATUS_SUCCESS) {
DBG_ERROR("Error reading LASI Status MDIO register!\n");
sxg_link_state(adapter, SXG_LINK_DOWN);
/* ASSERT(0); */
}
/*
* We used to assert that the LASI_LS_ALARM bit was set, as
* it should be. But there appears to be cases during
* initialization (when the PHY is reset and re-initialized)
* when we get a link alarm, but the status bit is 0 when we
* read it. Rather than trying to assure this never happens
* (and nver being certain), just ignore it.
* ASSERT(Value & LASI_STATUS_LS_ALARM);
*/
/* Now get and set the link state */
LinkState = sxg_get_link_state(adapter);
sxg_link_state(adapter, LinkState);
DBG_ERROR("SXG: Link Alarm occurred. Link is %s\n",
((LinkState == SXG_LINK_UP) ? "UP" : "DOWN"));
if (LinkState == SXG_LINK_UP) {
netif_carrier_on(netdev);
netif_tx_start_all_queues(netdev);
} else {
netif_tx_stop_all_queues(netdev);
netif_carrier_off(netdev);
}
} else {
/*
* XXXTODO - Assuming Link Attention is only being generated
* for the Link Alarm pin (and not for a XAUI Link Status change)
* , then it's impossible to get here. Yet we've gotten here
* twice (under extreme conditions - bouncing the link up and
* down many times a second). Needs further investigation.
*/
DBG_ERROR("SXG: sxg_link_event: Can't get here!\n");
DBG_ERROR("SXG: Link Status == 0x%08X.\n", Value);
/* ASSERT(0); */
}
DBG_ERROR("EXIT %s\n", __func__);
}
/*
* sxg_get_link_state - Determine if the link is up or down
*
* Arguments -
* adapter - A pointer to our adapter structure
*
* Return
* Link State
*/
static enum SXG_LINK_STATE sxg_get_link_state(struct adapter_t *adapter)
{
int status;
u32 Value;
DBG_ERROR("ENTER %s\n", __func__);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "GetLink",
adapter, 0, 0, 0);
/*
* Per the Xenpak spec (and the IEEE 10Gb spec?), the link is up if
* the following 3 bits (from 3 different MDIO registers) are all true.
*/
/* MIIM_DEV_PHY_PMA - PHY PMA/PMD module */
status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA,
/* PMA/PMD Receive Signal Detect register */
PHY_PMA_RCV_DET,
&Value);
if (status != STATUS_SUCCESS)
goto bad;
/* If PMA/PMD receive signal detect is 0, then the link is down */
if (!(Value & PMA_RCV_DETECT))
return (SXG_LINK_DOWN);
/* MIIM_DEV_PHY_PCS - PHY PCS module */
status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PCS,
/* PCS 10GBASE-R Status 1 register */
PHY_PCS_10G_STATUS1,
&Value);
if (status != STATUS_SUCCESS)
goto bad;
/* If PCS is not locked to receive blocks, then the link is down */
if (!(Value & PCS_10B_BLOCK_LOCK))
return (SXG_LINK_DOWN);
status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_XS,/* PHY XS module */
/* XS Lane Status register */
PHY_XS_LANE_STATUS,
&Value);
if (status != STATUS_SUCCESS)
goto bad;
/* If XS transmit lanes are not aligned, then the link is down */
if (!(Value & XS_LANE_ALIGN))
return (SXG_LINK_DOWN);
/* All 3 bits are true, so the link is up */
DBG_ERROR("EXIT %s\n", __func__);
return (SXG_LINK_UP);
bad:
/* An error occurred reading an MDIO register. This shouldn't happen. */
DBG_ERROR("Error reading an MDIO register!\n");
ASSERT(0);
return (SXG_LINK_DOWN);
}
static void sxg_indicate_link_state(struct adapter_t *adapter,
enum SXG_LINK_STATE LinkState)
{
if (adapter->LinkState == SXG_LINK_UP) {
DBG_ERROR("%s: LINK now UP, call netif_start_queue\n",
__func__);
netif_start_queue(adapter->netdev);
} else {
DBG_ERROR("%s: LINK now DOWN, call netif_stop_queue\n",
__func__);
netif_stop_queue(adapter->netdev);
}
}
/*
* sxg_change_mtu - Change the Maximum Transfer Unit
* * @returns 0 on success, negative on failure
*/
int sxg_change_mtu (struct net_device *netdev, int new_mtu)
{
struct adapter_t *adapter = (struct adapter_t *) netdev_priv(netdev);
if (!((new_mtu == SXG_DEFAULT_MTU) || (new_mtu == SXG_JUMBO_MTU)))
return -EINVAL;
if(new_mtu == netdev->mtu)
return 0;
netdev->mtu = new_mtu;
if (new_mtu == SXG_JUMBO_MTU) {
adapter->JumboEnabled = TRUE;
adapter->FrameSize = JUMBOMAXFRAME;
adapter->ReceiveBufferSize = SXG_RCV_JUMBO_BUFFER_SIZE;
} else {
adapter->JumboEnabled = FALSE;
adapter->FrameSize = ETHERMAXFRAME;
adapter->ReceiveBufferSize = SXG_RCV_DATA_BUFFER_SIZE;
}
sxg_entry_halt(netdev);
sxg_entry_open(netdev);
return 0;
}
/*
* sxg_link_state - Set the link state and if necessary, indicate.
* This routine the central point of processing for all link state changes.
* Nothing else in the driver should alter the link state or perform
* link state indications
*
* Arguments -
* adapter - A pointer to our adapter structure
* LinkState - The link state
*
* Return
* None
*/
static void sxg_link_state(struct adapter_t *adapter,
enum SXG_LINK_STATE LinkState)
{
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "LnkINDCT",
adapter, LinkState, adapter->LinkState, adapter->State);
DBG_ERROR("ENTER %s\n", __func__);
/*
* Hold the adapter lock during this routine. Maybe move
* the lock to the caller.
*/
/* IMP TODO : Check if we can survive without taking this lock */
// spin_lock(&adapter->AdapterLock);
if (LinkState == adapter->LinkState) {
/* Nothing changed.. */
// spin_unlock(&adapter->AdapterLock);
DBG_ERROR("EXIT #0 %s. Link status = %d\n",
__func__, LinkState);
return;
}
/* Save the adapter state */
adapter->LinkState = LinkState;
/* Drop the lock and indicate link state */
// spin_unlock(&adapter->AdapterLock);
DBG_ERROR("EXIT #1 %s\n", __func__);
sxg_indicate_link_state(adapter, LinkState);
}
/*
* sxg_write_mdio_reg - Write to a register on the MDIO bus
*
* Arguments -
* adapter - A pointer to our adapter structure
* DevAddr - MDIO device number being addressed
* RegAddr - register address for the specified MDIO device
* Value - value to write to the MDIO register
*
* Return
* status
*/
static int sxg_write_mdio_reg(struct adapter_t *adapter,
u32 DevAddr, u32 RegAddr, u32 Value)
{
struct sxg_hw_regs *HwRegs = adapter->HwRegs;
/* Address operation (written to MIIM field reg) */
u32 AddrOp;
/* Write operation (written to MIIM field reg) */
u32 WriteOp;
u32 Cmd;/* Command (written to MIIM command reg) */
u32 ValueRead;
u32 Timeout;
/* DBG_ERROR("ENTER %s\n", __func__); */
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "WrtMDIO",
adapter, 0, 0, 0);
/* Ensure values don't exceed field width */
DevAddr &= 0x001F; /* 5-bit field */
RegAddr &= 0xFFFF; /* 16-bit field */
Value &= 0xFFFF; /* 16-bit field */
/* Set MIIM field register bits for an MIIM address operation */
AddrOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
(DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
(MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
(MIIM_OP_ADDR << AXGMAC_AMIIM_FIELD_OP_SHIFT) | RegAddr;
/* Set MIIM field register bits for an MIIM write operation */
WriteOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
(DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
(MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
(MIIM_OP_WRITE << AXGMAC_AMIIM_FIELD_OP_SHIFT) | Value;
/* Set MIIM command register bits to execute an MIIM command */
Cmd = AXGMAC_AMIIM_CMD_START | AXGMAC_AMIIM_CMD_10G_OPERATION;
/* Reset the command register command bit (in case it's not 0) */
WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
/* MIIM write to set the address of the specified MDIO register */
WRITE_REG(HwRegs->MacAmiimField, AddrOp, TRUE);
/* Write to MIIM Command Register to execute to address operation */
WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
/* Poll AMIIM Indicator register to wait for completion */
Timeout = SXG_LINK_TIMEOUT;
do {
udelay(100); /* Timeout in 100us units */
READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
if (--Timeout == 0) {
return (STATUS_FAILURE);
}
} while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
/* Reset the command register command bit */
WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
/* MIIM write to set up an MDIO write operation */
WRITE_REG(HwRegs->MacAmiimField, WriteOp, TRUE);
/* Write to MIIM Command Register to execute the write operation */
WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
/* Poll AMIIM Indicator register to wait for completion */
Timeout = SXG_LINK_TIMEOUT;
do {
udelay(100); /* Timeout in 100us units */
READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
if (--Timeout == 0) {
return (STATUS_FAILURE);
}
} while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
/* DBG_ERROR("EXIT %s\n", __func__); */
return (STATUS_SUCCESS);
}
/*
* sxg_read_mdio_reg - Read a register on the MDIO bus
*
* Arguments -
* adapter - A pointer to our adapter structure
* DevAddr - MDIO device number being addressed
* RegAddr - register address for the specified MDIO device
* pValue - pointer to where to put data read from the MDIO register
*
* Return
* status
*/
static int sxg_read_mdio_reg(struct adapter_t *adapter,
u32 DevAddr, u32 RegAddr, u32 *pValue)
{
struct sxg_hw_regs *HwRegs = adapter->HwRegs;
u32 AddrOp; /* Address operation (written to MIIM field reg) */
u32 ReadOp; /* Read operation (written to MIIM field reg) */
u32 Cmd; /* Command (written to MIIM command reg) */
u32 ValueRead;
u32 Timeout;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "WrtMDIO",
adapter, 0, 0, 0);
DBG_ERROR("ENTER %s\n", __func__);
/* Ensure values don't exceed field width */
DevAddr &= 0x001F; /* 5-bit field */
RegAddr &= 0xFFFF; /* 16-bit field */
/* Set MIIM field register bits for an MIIM address operation */
AddrOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
(DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
(MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
(MIIM_OP_ADDR << AXGMAC_AMIIM_FIELD_OP_SHIFT) | RegAddr;
/* Set MIIM field register bits for an MIIM read operation */
ReadOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
(DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
(MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
(MIIM_OP_READ << AXGMAC_AMIIM_FIELD_OP_SHIFT);
/* Set MIIM command register bits to execute an MIIM command */
Cmd = AXGMAC_AMIIM_CMD_START | AXGMAC_AMIIM_CMD_10G_OPERATION;
/* Reset the command register command bit (in case it's not 0) */
WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
/* MIIM write to set the address of the specified MDIO register */
WRITE_REG(HwRegs->MacAmiimField, AddrOp, TRUE);
/* Write to MIIM Command Register to execute to address operation */
WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
/* Poll AMIIM Indicator register to wait for completion */
Timeout = SXG_LINK_TIMEOUT;
do {
udelay(100); /* Timeout in 100us units */
READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
if (--Timeout == 0) {
DBG_ERROR("EXIT %s with STATUS_FAILURE 1\n", __func__);
return (STATUS_FAILURE);
}
} while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
/* Reset the command register command bit */
WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
/* MIIM write to set up an MDIO register read operation */
WRITE_REG(HwRegs->MacAmiimField, ReadOp, TRUE);
/* Write to MIIM Command Register to execute the read operation */
WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
/* Poll AMIIM Indicator register to wait for completion */
Timeout = SXG_LINK_TIMEOUT;
do {
udelay(100); /* Timeout in 100us units */
READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
if (--Timeout == 0) {
DBG_ERROR("EXIT %s with STATUS_FAILURE 2\n", __func__);
return (STATUS_FAILURE);
}
} while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
/* Read the MDIO register data back from the field register */
READ_REG(HwRegs->MacAmiimField, *pValue);
*pValue &= 0xFFFF; /* data is in the lower 16 bits */
DBG_ERROR("EXIT %s\n", __func__);
return (STATUS_SUCCESS);
}
/*
* Functions to obtain the CRC corresponding to the destination mac address.
* This is a standard ethernet CRC in that it is a 32-bit, reflected CRC using
* the polynomial:
* x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 + x^8 + x^7 + x^5
* + x^4 + x^2 + x^1.
*
* After the CRC for the 6 bytes is generated (but before the value is
* complemented), we must then transpose the value and return bits 30-23.
*/
static u32 sxg_crc_table[256];/* Table of CRC's for all possible byte values */
static u32 sxg_crc_init; /* Is table initialized */
/* Contruct the CRC32 table */
static void sxg_mcast_init_crc32(void)
{
u32 c; /* CRC shit reg */
u32 e = 0; /* Poly X-or pattern */
int i; /* counter */
int k; /* byte being shifted into crc */
static int p[] = { 0, 1, 2, 4, 5, 7, 8, 10, 11, 12, 16, 22, 23, 26 };
for (i = 0; i < sizeof(p) / sizeof(int); i++) {
e |= 1L << (31 - p[i]);
}
for (i = 1; i < 256; i++) {
c = i;
for (k = 8; k; k--) {
c = c & 1 ? (c >> 1) ^ e : c >> 1;
}
sxg_crc_table[i] = c;
}
}
/*
* Return the MAC hast as described above.
*/
static unsigned char sxg_mcast_get_mac_hash(char *macaddr)
{
u32 crc;
char *p;
int i;
unsigned char machash = 0;
if (!sxg_crc_init) {
sxg_mcast_init_crc32();
sxg_crc_init = 1;
}
crc = 0xFFFFFFFF; /* Preload shift register, per crc-32 spec */
for (i = 0, p = macaddr; i < 6; ++p, ++i) {
crc = (crc >> 8) ^ sxg_crc_table[(crc ^ *p) & 0xFF];
}
/* Return bits 1-8, transposed */
for (i = 1; i < 9; i++) {
machash |= (((crc >> i) & 1) << (8 - i));
}
return (machash);
}
static void sxg_mcast_set_mask(struct adapter_t *adapter)
{
struct sxg_ucode_regs *sxg_regs = adapter->UcodeRegs;
DBG_ERROR("%s ENTER (%s) MacFilter[%x] mask[%llx]\n", __func__,
adapter->netdev->name, (unsigned int)adapter->MacFilter,
adapter->MulticastMask);
if (adapter->MacFilter & (MAC_ALLMCAST | MAC_PROMISC)) {
/*
* Turn on all multicast addresses. We have to do this for
* promiscuous mode as well as ALLMCAST mode. It saves the
* Microcode from having keep state about the MAC configuration
*/
/* DBG_ERROR("sxg: %s MacFilter = MAC_ALLMCAST | MAC_PROMISC\n \
* SLUT MODE!!!\n",__func__);
*/
WRITE_REG(sxg_regs->McastLow, 0xFFFFFFFF, FLUSH);
WRITE_REG(sxg_regs->McastHigh, 0xFFFFFFFF, FLUSH);
/* DBG_ERROR("%s (%s) WRITE to slic_regs slic_mcastlow&high \
* 0xFFFFFFFF\n",__func__, adapter->netdev->name);
*/
} else {
/*
* Commit our multicast mast to the SLIC by writing to the
* multicast address mask registers
*/
DBG_ERROR("%s (%s) WRITE mcastlow[%lx] mcasthigh[%lx]\n",
__func__, adapter->netdev->name,
((ulong) (adapter->MulticastMask & 0xFFFFFFFF)),
((ulong)
((adapter->MulticastMask >> 32) & 0xFFFFFFFF)));
WRITE_REG(sxg_regs->McastLow,
(u32) (adapter->MulticastMask & 0xFFFFFFFF), FLUSH);
WRITE_REG(sxg_regs->McastHigh,
(u32) ((adapter->
MulticastMask >> 32) & 0xFFFFFFFF), FLUSH);
}
}
static void sxg_mcast_set_bit(struct adapter_t *adapter, char *address)
{
unsigned char crcpoly;
/* Get the CRC polynomial for the mac address */
crcpoly = sxg_mcast_get_mac_hash(address);
/*
* We only have space on the SLIC for 64 entries. Lop
* off the top two bits. (2^6 = 64)
*/
crcpoly &= 0x3F;
/* OR in the new bit into our 64 bit mask. */
adapter->MulticastMask |= (u64) 1 << crcpoly;
}
/*
* Function takes MAC addresses from dev_mc_list and generates the Mask
*/
static void sxg_set_mcast_addr(struct adapter_t *adapter)
{
struct dev_mc_list *mclist;
struct net_device *dev = adapter->netdev;
int i;
if (adapter->MacFilter & (MAC_ALLMCAST | MAC_MCAST)) {
for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
i++, mclist = mclist->next) {
sxg_mcast_set_bit(adapter,mclist->da_addr);
}
}
sxg_mcast_set_mask(adapter);
}
static void sxg_mcast_set_list(struct net_device *dev)
{
struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
ASSERT(adapter);
if (dev->flags & IFF_PROMISC)
adapter->MacFilter |= MAC_PROMISC;
if (dev->flags & IFF_MULTICAST)
adapter->MacFilter |= MAC_MCAST;
if (dev->flags & IFF_ALLMULTI)
adapter->MacFilter |= MAC_ALLMCAST;
//XXX handle other flags as well
sxg_set_mcast_addr(adapter);
}
void sxg_free_sgl_buffers(struct adapter_t *adapter)
{
struct list_entry *ple;
struct sxg_scatter_gather *Sgl;
while(!(IsListEmpty(&adapter->AllSglBuffers))) {
ple = RemoveHeadList(&adapter->AllSglBuffers);
Sgl = container_of(ple, struct sxg_scatter_gather, AllList);
kfree(Sgl);
adapter->AllSglBufferCount--;
}
}
void sxg_free_rcvblocks(struct adapter_t *adapter)
{
u32 i;
void *temp_RcvBlock;
struct list_entry *ple;
struct sxg_rcv_block_hdr *RcvBlockHdr;
struct sxg_rcv_data_buffer_hdr *RcvDataBufferHdr;
ASSERT((adapter->state == SXG_STATE_INITIALIZING) ||
(adapter->state == SXG_STATE_HALTING));
while(!(IsListEmpty(&adapter->AllRcvBlocks))) {
ple = RemoveHeadList(&adapter->AllRcvBlocks);
RcvBlockHdr = container_of(ple, struct sxg_rcv_block_hdr, AllList);
if(RcvBlockHdr->VirtualAddress) {
temp_RcvBlock = RcvBlockHdr->VirtualAddress;
for(i=0; i< SXG_RCV_DESCRIPTORS_PER_BLOCK;
i++, temp_RcvBlock += SXG_RCV_DATA_HDR_SIZE) {
RcvDataBufferHdr =
(struct sxg_rcv_data_buffer_hdr *)temp_RcvBlock;
SXG_FREE_RCV_PACKET(RcvDataBufferHdr);
}
}
pci_free_consistent(adapter->pcidev,
SXG_RCV_BLOCK_SIZE(SXG_RCV_DATA_HDR_SIZE),
RcvBlockHdr->VirtualAddress,
RcvBlockHdr->PhysicalAddress);
adapter->AllRcvBlockCount--;
}
ASSERT(adapter->AllRcvBlockCount == 0);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XFrRBlk",
adapter, 0, 0, 0);
}
void sxg_free_mcast_addrs(struct adapter_t *adapter)
{
struct sxg_multicast_address *address;
while(adapter->MulticastAddrs) {
address = adapter->MulticastAddrs;
adapter->MulticastAddrs = address->Next;
kfree(address);
}
adapter->MulticastMask= 0;
}
void sxg_unmap_resources(struct adapter_t *adapter)
{
if(adapter->HwRegs) {
iounmap((void *)adapter->HwRegs);
}
if(adapter->UcodeRegs) {
iounmap((void *)adapter->UcodeRegs);
}
ASSERT(adapter->AllRcvBlockCount == 0);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XFrRBlk",
adapter, 0, 0, 0);
}
/*
* sxg_free_resources - Free everything allocated in SxgAllocateResources
*
* Arguments -
* adapter - A pointer to our adapter structure
*
* Return
* none
*/
void sxg_free_resources(struct adapter_t *adapter)
{
u32 RssIds, IsrCount;
RssIds = SXG_RSS_CPU_COUNT(adapter);
IsrCount = adapter->msi_enabled ? RssIds : 1;
if (adapter->BasicAllocations == FALSE) {
/*
* No allocations have been made, including spinlocks,
* or listhead initializations. Return.
*/
return;
}
if (!(IsListEmpty(&adapter->AllRcvBlocks))) {
sxg_free_rcvblocks(adapter);
}
if (!(IsListEmpty(&adapter->AllSglBuffers))) {
sxg_free_sgl_buffers(adapter);
}
if (adapter->XmtRingZeroIndex) {
pci_free_consistent(adapter->pcidev,
sizeof(u32),
adapter->XmtRingZeroIndex,
adapter->PXmtRingZeroIndex);
}
if (adapter->Isr) {
pci_free_consistent(adapter->pcidev,
sizeof(u32) * IsrCount,
adapter->Isr, adapter->PIsr);
}
if (adapter->EventRings) {
pci_free_consistent(adapter->pcidev,
sizeof(struct sxg_event_ring) * RssIds,
adapter->EventRings, adapter->PEventRings);
}
if (adapter->RcvRings) {
pci_free_consistent(adapter->pcidev,
sizeof(struct sxg_rcv_ring) * 1,
adapter->RcvRings,
adapter->PRcvRings);
adapter->RcvRings = NULL;
}
if(adapter->XmtRings) {
pci_free_consistent(adapter->pcidev,
sizeof(struct sxg_xmt_ring) * 1,
adapter->XmtRings,
adapter->PXmtRings);
adapter->XmtRings = NULL;
}
if (adapter->ucode_stats) {
pci_unmap_single(adapter->pcidev,
sizeof(struct sxg_ucode_stats),
adapter->pucode_stats, PCI_DMA_FROMDEVICE);
adapter->ucode_stats = NULL;
}
/* Unmap register spaces */
sxg_unmap_resources(adapter);
sxg_free_mcast_addrs(adapter);
adapter->BasicAllocations = FALSE;
}
/*
* sxg_allocate_complete -
*
* This routine is called when a memory allocation has completed.
*
* Arguments -
* struct adapter_t * - Our adapter structure
* VirtualAddress - Memory virtual address
* PhysicalAddress - Memory physical address
* Length - Length of memory allocated (or 0)
* Context - The type of buffer allocated
*
* Return
* None.
*/
static int sxg_allocate_complete(struct adapter_t *adapter,
void *VirtualAddress,
dma_addr_t PhysicalAddress,
u32 Length, enum sxg_buffer_type Context)
{
int status = 0;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AllocCmp",
adapter, VirtualAddress, Length, Context);
ASSERT(atomic_read(&adapter->pending_allocations));
atomic_dec(&adapter->pending_allocations);
switch (Context) {
case SXG_BUFFER_TYPE_RCV:
status = sxg_allocate_rcvblock_complete(adapter,
VirtualAddress,
PhysicalAddress, Length);
break;
case SXG_BUFFER_TYPE_SGL:
sxg_allocate_sgl_buffer_complete(adapter, (struct sxg_scatter_gather *)
VirtualAddress,
PhysicalAddress, Length);
break;
}
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlocCmp",
adapter, VirtualAddress, Length, Context);
return status;
}
/*
* sxg_allocate_buffer_memory - Shared memory allocation routine used for
* synchronous and asynchronous buffer allocations
*
* Arguments -
* adapter - A pointer to our adapter structure
* Size - block size to allocate
* BufferType - Type of buffer to allocate
*
* Return
* int
*/
static int sxg_allocate_buffer_memory(struct adapter_t *adapter,
u32 Size, enum sxg_buffer_type BufferType)
{
int status;
void *Buffer;
dma_addr_t pBuffer;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AllocMem",
adapter, Size, BufferType, 0);
/*
* Grab the adapter lock and check the state. If we're in anything other
* than INITIALIZING or RUNNING state, fail. This is to prevent
* allocations in an improper driver state
*/
atomic_inc(&adapter->pending_allocations);
if(BufferType != SXG_BUFFER_TYPE_SGL)
Buffer = pci_alloc_consistent(adapter->pcidev, Size, &pBuffer);
else {
Buffer = kzalloc(Size, GFP_ATOMIC);
pBuffer = (dma_addr_t)NULL;
}
if (Buffer == NULL) {
/*
* Decrement the AllocationsPending count while holding
* the lock. Pause processing relies on this
*/
atomic_dec(&adapter->pending_allocations);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AlcMemF1",
adapter, Size, BufferType, 0);
return (STATUS_RESOURCES);
}
status = sxg_allocate_complete(adapter, Buffer, pBuffer, Size, BufferType);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlocMem",
adapter, Size, BufferType, status);
return status;
}
/*
* sxg_allocate_rcvblock_complete - Complete a receive descriptor
* block allocation
*
* Arguments -
* adapter - A pointer to our adapter structure
* RcvBlock - receive block virtual address
* PhysicalAddress - Physical address
* Length - Memory length
*
* Return
*/
static int sxg_allocate_rcvblock_complete(struct adapter_t *adapter,
void *RcvBlock,
dma_addr_t PhysicalAddress,
u32 Length)
{
u32 i;
u32 BufferSize = adapter->ReceiveBufferSize;
u64 Paddr;
void *temp_RcvBlock;
struct sxg_rcv_block_hdr *RcvBlockHdr;
struct sxg_rcv_data_buffer_hdr *RcvDataBufferHdr;
struct sxg_rcv_descriptor_block *RcvDescriptorBlock;
struct sxg_rcv_descriptor_block_hdr *RcvDescriptorBlockHdr;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AlRcvBlk",
adapter, RcvBlock, Length, 0);
if (RcvBlock == NULL) {
goto fail;
}
memset(RcvBlock, 0, Length);
ASSERT((BufferSize == SXG_RCV_DATA_BUFFER_SIZE) ||
(BufferSize == SXG_RCV_JUMBO_BUFFER_SIZE));
ASSERT(Length == SXG_RCV_BLOCK_SIZE(SXG_RCV_DATA_HDR_SIZE));
/*
* First, initialize the contained pool of receive data buffers.
* This initialization requires NBL/NB/MDL allocations, if any of them
* fail, free the block and return without queueing the shared memory
*/
//RcvDataBuffer = RcvBlock;
temp_RcvBlock = RcvBlock;
for (i = 0; i < SXG_RCV_DESCRIPTORS_PER_BLOCK;
i++, temp_RcvBlock += SXG_RCV_DATA_HDR_SIZE) {
RcvDataBufferHdr = (struct sxg_rcv_data_buffer_hdr *)
temp_RcvBlock;
/* For FREE macro assertion */
RcvDataBufferHdr->State = SXG_BUFFER_UPSTREAM;
SXG_ALLOCATE_RCV_PACKET(adapter, RcvDataBufferHdr, BufferSize);
if (RcvDataBufferHdr->SxgDumbRcvPacket == NULL)
goto fail;
}
/*
* Place this entire block of memory on the AllRcvBlocks queue so it
* can be free later
*/
RcvBlockHdr = (struct sxg_rcv_block_hdr *) ((unsigned char *)RcvBlock +
SXG_RCV_BLOCK_HDR_OFFSET(SXG_RCV_DATA_HDR_SIZE));
RcvBlockHdr->VirtualAddress = RcvBlock;
RcvBlockHdr->PhysicalAddress = PhysicalAddress;
spin_lock(&adapter->RcvQLock);
adapter->AllRcvBlockCount++;
InsertTailList(&adapter->AllRcvBlocks, &RcvBlockHdr->AllList);
spin_unlock(&adapter->RcvQLock);
/* Now free the contained receive data buffers that we
* initialized above */
temp_RcvBlock = RcvBlock;
for (i = 0, Paddr = PhysicalAddress;
i < SXG_RCV_DESCRIPTORS_PER_BLOCK;
i++, Paddr += SXG_RCV_DATA_HDR_SIZE,
temp_RcvBlock += SXG_RCV_DATA_HDR_SIZE) {
RcvDataBufferHdr =
(struct sxg_rcv_data_buffer_hdr *)temp_RcvBlock;
spin_lock(&adapter->RcvQLock);
SXG_FREE_RCV_DATA_BUFFER(adapter, RcvDataBufferHdr);
spin_unlock(&adapter->RcvQLock);
}
/* Locate the descriptor block and put it on a separate free queue */
RcvDescriptorBlock =
(struct sxg_rcv_descriptor_block *) ((unsigned char *)RcvBlock +
SXG_RCV_DESCRIPTOR_BLOCK_OFFSET
(SXG_RCV_DATA_HDR_SIZE));
RcvDescriptorBlockHdr =
(struct sxg_rcv_descriptor_block_hdr *) ((unsigned char *)RcvBlock +
SXG_RCV_DESCRIPTOR_BLOCK_HDR_OFFSET
(SXG_RCV_DATA_HDR_SIZE));
RcvDescriptorBlockHdr->VirtualAddress = RcvDescriptorBlock;
RcvDescriptorBlockHdr->PhysicalAddress = Paddr;
spin_lock(&adapter->RcvQLock);
SXG_FREE_RCV_DESCRIPTOR_BLOCK(adapter, RcvDescriptorBlockHdr);
spin_unlock(&adapter->RcvQLock);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlRBlk",
adapter, RcvBlock, Length, 0);
return STATUS_SUCCESS;
fail:
/* Free any allocated resources */
if (RcvBlock) {
temp_RcvBlock = RcvBlock;
for (i = 0; i < SXG_RCV_DESCRIPTORS_PER_BLOCK;
i++, temp_RcvBlock += SXG_RCV_DATA_HDR_SIZE) {
RcvDataBufferHdr =
(struct sxg_rcv_data_buffer_hdr *)temp_RcvBlock;
SXG_FREE_RCV_PACKET(RcvDataBufferHdr);
}
pci_free_consistent(adapter->pcidev,
Length, RcvBlock, PhysicalAddress);
}
DBG_ERROR("%s: OUT OF RESOURCES\n", __func__);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "RcvAFail",
adapter, adapter->FreeRcvBufferCount,
adapter->FreeRcvBlockCount, adapter->AllRcvBlockCount);
adapter->Stats.NoMem++;
/* As allocation failed, free all previously allocated blocks..*/
//sxg_free_rcvblocks(adapter);
return STATUS_RESOURCES;
}
/*
* sxg_allocate_sgl_buffer_complete - Complete a SGL buffer allocation
*
* Arguments -
* adapter - A pointer to our adapter structure
* SxgSgl - struct sxg_scatter_gather buffer
* PhysicalAddress - Physical address
* Length - Memory length
*
* Return
*/
static void sxg_allocate_sgl_buffer_complete(struct adapter_t *adapter,
struct sxg_scatter_gather *SxgSgl,
dma_addr_t PhysicalAddress,
u32 Length)
{
unsigned long sgl_flags;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AlSglCmp",
adapter, SxgSgl, Length, 0);
spin_lock_irqsave(&adapter->SglQLock, sgl_flags);
adapter->AllSglBufferCount++;
/* PhysicalAddress; */
SxgSgl->PhysicalAddress = PhysicalAddress;
/* Initialize backpointer once */
SxgSgl->adapter = adapter;
InsertTailList(&adapter->AllSglBuffers, &SxgSgl->AllList);
spin_unlock_irqrestore(&adapter->SglQLock, sgl_flags);
SxgSgl->State = SXG_BUFFER_BUSY;
SXG_FREE_SGL_BUFFER(adapter, SxgSgl, NULL);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlSgl",
adapter, SxgSgl, Length, 0);
}
static int sxg_adapter_set_hwaddr(struct adapter_t *adapter)
{
/*
* DBG_ERROR ("%s ENTER card->config_set[%x] port[%d] physport[%d] \
* funct#[%d]\n", __func__, card->config_set,
* adapter->port, adapter->physport, adapter->functionnumber);
*
* sxg_dbg_macaddrs(adapter);
*/
/* DBG_ERROR ("%s AFTER copying from config.macinfo into currmacaddr\n",
* __func__);
*/
/* sxg_dbg_macaddrs(adapter); */
struct net_device * dev = adapter->netdev;
if(!dev)
{
printk("sxg: Dev is Null\n");
}
DBG_ERROR("%s ENTER (%s)\n", __func__, adapter->netdev->name);
if (netif_running(dev)) {
return -EBUSY;
}
if (!adapter) {
return -EBUSY;
}
if (!(adapter->currmacaddr[0] ||
adapter->currmacaddr[1] ||
adapter->currmacaddr[2] ||
adapter->currmacaddr[3] ||
adapter->currmacaddr[4] || adapter->currmacaddr[5])) {
memcpy(adapter->currmacaddr, adapter->macaddr, 6);
}
if (adapter->netdev) {
memcpy(adapter->netdev->dev_addr, adapter->currmacaddr, 6);
memcpy(adapter->netdev->perm_addr, adapter->currmacaddr, 6);
}
/* DBG_ERROR ("%s EXIT port %d\n", __func__, adapter->port); */
sxg_dbg_macaddrs(adapter);
return 0;
}
#if XXXTODO
static int sxg_mac_set_address(struct net_device *dev, void *ptr)
{
struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
struct sockaddr *addr = ptr;
DBG_ERROR("%s ENTER (%s)\n", __func__, adapter->netdev->name);
if (netif_running(dev)) {
return -EBUSY;
}
if (!adapter) {
return -EBUSY;
}
DBG_ERROR("sxg: %s (%s) curr %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
__func__, adapter->netdev->name, adapter->currmacaddr[0],
adapter->currmacaddr[1], adapter->currmacaddr[2],
adapter->currmacaddr[3], adapter->currmacaddr[4],
adapter->currmacaddr[5]);
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
memcpy(adapter->currmacaddr, addr->sa_data, dev->addr_len);
DBG_ERROR("sxg: %s (%s) new %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
__func__, adapter->netdev->name, adapter->currmacaddr[0],
adapter->currmacaddr[1], adapter->currmacaddr[2],
adapter->currmacaddr[3], adapter->currmacaddr[4],
adapter->currmacaddr[5]);
sxg_config_set(adapter, TRUE);
return 0;
}
#endif
/*
* SXG DRIVER FUNCTIONS (below)
*
* sxg_initialize_adapter - Initialize adapter
*
* Arguments -
* adapter - A pointer to our adapter structure
*
* Return - int
*/
static int sxg_initialize_adapter(struct adapter_t *adapter)
{
u32 RssIds, IsrCount;
u32 i;
int status;
int sxg_rcv_ring_size = SXG_RCV_RING_SIZE;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "InitAdpt",
adapter, 0, 0, 0);
RssIds = 1; /* XXXTODO SXG_RSS_CPU_COUNT(adapter); */
IsrCount = adapter->msi_enabled ? RssIds : 1;
/*
* Sanity check SXG_UCODE_REGS structure definition to
* make sure the length is correct
*/
ASSERT(sizeof(struct sxg_ucode_regs) == SXG_REGISTER_SIZE_PER_CPU);
/* Disable interrupts */
SXG_DISABLE_ALL_INTERRUPTS(adapter);
/* Set MTU */
ASSERT((adapter->FrameSize == ETHERMAXFRAME) ||
(adapter->FrameSize == JUMBOMAXFRAME));
WRITE_REG(adapter->UcodeRegs[0].LinkMtu, adapter->FrameSize, TRUE);
/* Set event ring base address and size */
WRITE_REG64(adapter,
adapter->UcodeRegs[0].EventBase, adapter->PEventRings, 0);
WRITE_REG(adapter->UcodeRegs[0].EventSize, EVENT_RING_SIZE, TRUE);
/* Per-ISR initialization */
for (i = 0; i < IsrCount; i++) {
u64 Addr;
/* Set interrupt status pointer */
Addr = adapter->PIsr + (i * sizeof(u32));
WRITE_REG64(adapter, adapter->UcodeRegs[i].Isp, Addr, i);
}
/* XMT ring zero index */
WRITE_REG64(adapter,
adapter->UcodeRegs[0].SPSendIndex,
adapter->PXmtRingZeroIndex, 0);
/* Per-RSS initialization */
for (i = 0; i < RssIds; i++) {
/* Release all event ring entries to the Microcode */
WRITE_REG(adapter->UcodeRegs[i].EventRelease, EVENT_RING_SIZE,
TRUE);
}
/* Transmit ring base and size */
WRITE_REG64(adapter,
adapter->UcodeRegs[0].XmtBase, adapter->PXmtRings, 0);
WRITE_REG(adapter->UcodeRegs[0].XmtSize, SXG_XMT_RING_SIZE, TRUE);
/* Receive ring base and size */
WRITE_REG64(adapter,
adapter->UcodeRegs[0].RcvBase, adapter->PRcvRings, 0);
if (adapter->JumboEnabled == TRUE)
sxg_rcv_ring_size = SXG_JUMBO_RCV_RING_SIZE;
WRITE_REG(adapter->UcodeRegs[0].RcvSize, sxg_rcv_ring_size, TRUE);
/* Populate the card with receive buffers */
sxg_stock_rcv_buffers(adapter);
/*
* Initialize checksum offload capabilities. At the moment we always
* enable IP and TCP receive checksums on the card. Depending on the
* checksum configuration specified by the user, we can choose to
* report or ignore the checksum information provided by the card.
*/
WRITE_REG(adapter->UcodeRegs[0].ReceiveChecksum,
SXG_RCV_TCP_CSUM_ENABLED | SXG_RCV_IP_CSUM_ENABLED, TRUE);
adapter->flags |= (SXG_RCV_TCP_CSUM_ENABLED | SXG_RCV_IP_CSUM_ENABLED );
/* Initialize the MAC, XAUI */
DBG_ERROR("sxg: %s ENTER sxg_initialize_link\n", __func__);
status = sxg_initialize_link(adapter);
DBG_ERROR("sxg: %s EXIT sxg_initialize_link status[%x]\n", __func__,
status);
if (status != STATUS_SUCCESS) {
return (status);
}
/*
* Initialize Dead to FALSE.
* SlicCheckForHang or SlicDumpThread will take it from here.
*/
adapter->Dead = FALSE;
adapter->PingOutstanding = FALSE;
adapter->XmtFcEnabled = TRUE;
adapter->RcvFcEnabled = TRUE;
adapter->State = SXG_STATE_RUNNING;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XInit",
adapter, 0, 0, 0);
return (STATUS_SUCCESS);
}
/*
* sxg_fill_descriptor_block - Populate a descriptor block and give it to
* the card. The caller should hold the RcvQLock
*
* Arguments -
* adapter - A pointer to our adapter structure
* RcvDescriptorBlockHdr - Descriptor block to fill
*
* Return
* status
*/
static int sxg_fill_descriptor_block(struct adapter_t *adapter,
struct sxg_rcv_descriptor_block_hdr *RcvDescriptorBlockHdr)
{
u32 i;
struct sxg_ring_info *RcvRingInfo = &adapter->RcvRingZeroInfo;
struct sxg_rcv_data_buffer_hdr *RcvDataBufferHdr;
struct sxg_rcv_descriptor_block *RcvDescriptorBlock;
struct sxg_cmd *RingDescriptorCmd;
struct sxg_rcv_ring *RingZero = &adapter->RcvRings[0];
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "FilBlk",
adapter, adapter->RcvBuffersOnCard,
adapter->FreeRcvBufferCount, adapter->AllRcvBlockCount);
ASSERT(RcvDescriptorBlockHdr);
/*
* If we don't have the resources to fill the descriptor block,
* return failure
*/
if ((adapter->FreeRcvBufferCount < SXG_RCV_DESCRIPTORS_PER_BLOCK) ||
SXG_RING_FULL(RcvRingInfo)) {
adapter->Stats.NoMem++;
return (STATUS_FAILURE);
}
/* Get a ring descriptor command */
SXG_GET_CMD(RingZero,
RcvRingInfo, RingDescriptorCmd, RcvDescriptorBlockHdr);
ASSERT(RingDescriptorCmd);
RcvDescriptorBlockHdr->State = SXG_BUFFER_ONCARD;
RcvDescriptorBlock = (struct sxg_rcv_descriptor_block *)
RcvDescriptorBlockHdr->VirtualAddress;
/* Fill in the descriptor block */
for (i = 0; i < SXG_RCV_DESCRIPTORS_PER_BLOCK; i++) {
SXG_GET_RCV_DATA_BUFFER(adapter, RcvDataBufferHdr);
ASSERT(RcvDataBufferHdr);
// ASSERT(RcvDataBufferHdr->SxgDumbRcvPacket);
if (!RcvDataBufferHdr->SxgDumbRcvPacket) {
SXG_ALLOCATE_RCV_PACKET(adapter, RcvDataBufferHdr,
adapter->ReceiveBufferSize);
if(RcvDataBufferHdr->skb)
RcvDataBufferHdr->SxgDumbRcvPacket =
RcvDataBufferHdr->skb;
else
goto no_memory;
}
SXG_REINIATIALIZE_PACKET(RcvDataBufferHdr->SxgDumbRcvPacket);
RcvDataBufferHdr->State = SXG_BUFFER_ONCARD;
RcvDescriptorBlock->Descriptors[i].VirtualAddress =
(void *)RcvDataBufferHdr;
RcvDescriptorBlock->Descriptors[i].PhysicalAddress =
RcvDataBufferHdr->PhysicalAddress;
}
/* Add the descriptor block to receive descriptor ring 0 */
RingDescriptorCmd->Sgl = RcvDescriptorBlockHdr->PhysicalAddress;
/*
* RcvBuffersOnCard is not protected via the receive lock (see
* sxg_process_event_queue) We don't want to grap a lock every time a
* buffer is returned to us, so we use atomic interlocked functions
* instead.
*/
adapter->RcvBuffersOnCard += SXG_RCV_DESCRIPTORS_PER_BLOCK;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DscBlk",
RcvDescriptorBlockHdr,
RingDescriptorCmd, RcvRingInfo->Head, RcvRingInfo->Tail);
WRITE_REG(adapter->UcodeRegs[0].RcvCmd, 1, true);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XFilBlk",
adapter, adapter->RcvBuffersOnCard,
adapter->FreeRcvBufferCount, adapter->AllRcvBlockCount);
return (STATUS_SUCCESS);
no_memory:
for (; i >= 0 ; i--) {
if (RcvDescriptorBlock->Descriptors[i].VirtualAddress) {
RcvDataBufferHdr = (struct sxg_rcv_data_buffer_hdr *)
RcvDescriptorBlock->Descriptors[i].
VirtualAddress;
RcvDescriptorBlock->Descriptors[i].PhysicalAddress =
(dma_addr_t)NULL;
RcvDescriptorBlock->Descriptors[i].VirtualAddress=NULL;
}
SXG_FREE_RCV_DATA_BUFFER(adapter, RcvDataBufferHdr);
}
RcvDescriptorBlockHdr->State = SXG_BUFFER_FREE;
SXG_RETURN_CMD(RingZero, RcvRingInfo, RingDescriptorCmd,
RcvDescriptorBlockHdr);
return (-ENOMEM);
}
/*
* sxg_stock_rcv_buffers - Stock the card with receive buffers
*
* Arguments -
* adapter - A pointer to our adapter structure
*
* Return
* None
*/
static void sxg_stock_rcv_buffers(struct adapter_t *adapter)
{
struct sxg_rcv_descriptor_block_hdr *RcvDescriptorBlockHdr;
int sxg_rcv_data_buffers = SXG_RCV_DATA_BUFFERS;
int sxg_min_rcv_data_buffers = SXG_MIN_RCV_DATA_BUFFERS;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "StockBuf",
adapter, adapter->RcvBuffersOnCard,
adapter->FreeRcvBufferCount, adapter->AllRcvBlockCount);
/*
* First, see if we've got less than our minimum threshold of
* receive buffers, there isn't an allocation in progress, and
* we haven't exceeded our maximum.. get another block of buffers
* None of this needs to be SMP safe. It's round numbers.
*/
if (adapter->JumboEnabled == TRUE)
sxg_min_rcv_data_buffers = SXG_MIN_JUMBO_RCV_DATA_BUFFERS;
if ((adapter->FreeRcvBufferCount < sxg_min_rcv_data_buffers) &&
(adapter->AllRcvBlockCount < SXG_MAX_RCV_BLOCKS) &&
(atomic_read(&adapter->pending_allocations) == 0)) {
sxg_allocate_buffer_memory(adapter,
SXG_RCV_BLOCK_SIZE
(SXG_RCV_DATA_HDR_SIZE),
SXG_BUFFER_TYPE_RCV);
}
/* Now grab the RcvQLock lock and proceed */
spin_lock(&adapter->RcvQLock);
if (adapter->JumboEnabled)
sxg_rcv_data_buffers = SXG_JUMBO_RCV_DATA_BUFFERS;
while (adapter->RcvBuffersOnCard < sxg_rcv_data_buffers) {
struct list_entry *_ple;
/* Get a descriptor block */
RcvDescriptorBlockHdr = NULL;
if (adapter->FreeRcvBlockCount) {
_ple = RemoveHeadList(&adapter->FreeRcvBlocks);
RcvDescriptorBlockHdr =
container_of(_ple, struct sxg_rcv_descriptor_block_hdr,
FreeList);
adapter->FreeRcvBlockCount--;
RcvDescriptorBlockHdr->State = SXG_BUFFER_BUSY;
}
if (RcvDescriptorBlockHdr == NULL) {
/* Bail out.. */
adapter->Stats.NoMem++;
break;
}
/* Fill in the descriptor block and give it to the card */
if (sxg_fill_descriptor_block(adapter, RcvDescriptorBlockHdr) ==
STATUS_FAILURE) {
/* Free the descriptor block */
SXG_FREE_RCV_DESCRIPTOR_BLOCK(adapter,
RcvDescriptorBlockHdr);
break;
}
}
spin_unlock(&adapter->RcvQLock);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XFilBlks",
adapter, adapter->RcvBuffersOnCard,
adapter->FreeRcvBufferCount, adapter->AllRcvBlockCount);
}
/*
* sxg_complete_descriptor_blocks - Return descriptor blocks that have been
* completed by the microcode
*
* Arguments -
* adapter - A pointer to our adapter structure
* Index - Where the microcode is up to
*
* Return
* None
*/
static void sxg_complete_descriptor_blocks(struct adapter_t *adapter,
unsigned char Index)
{
struct sxg_rcv_ring *RingZero = &adapter->RcvRings[0];
struct sxg_ring_info *RcvRingInfo = &adapter->RcvRingZeroInfo;
struct sxg_rcv_descriptor_block_hdr *RcvDescriptorBlockHdr;
struct sxg_cmd *RingDescriptorCmd;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpRBlks",
adapter, Index, RcvRingInfo->Head, RcvRingInfo->Tail);
/* Now grab the RcvQLock lock and proceed */
spin_lock(&adapter->RcvQLock);
ASSERT(Index != RcvRingInfo->Tail);
while (sxg_ring_get_forward_diff(RcvRingInfo, Index,
RcvRingInfo->Tail) > 3) {
/*
* Locate the current Cmd (ring descriptor entry), and
* associated receive descriptor block, and advance
* the tail
*/
SXG_RETURN_CMD(RingZero,
RcvRingInfo,
RingDescriptorCmd, RcvDescriptorBlockHdr);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpRBlk",
RcvRingInfo->Head, RcvRingInfo->Tail,
RingDescriptorCmd, RcvDescriptorBlockHdr);
/* Clear the SGL field */
RingDescriptorCmd->Sgl = 0;
/*
* Attempt to refill it and hand it right back to the
* card. If we fail to refill it, free the descriptor block
* header. The card will be restocked later via the
* RcvBuffersOnCard test
*/
if (sxg_fill_descriptor_block(adapter,
RcvDescriptorBlockHdr) == STATUS_FAILURE)
SXG_FREE_RCV_DESCRIPTOR_BLOCK(adapter,
RcvDescriptorBlockHdr);
}
spin_unlock(&adapter->RcvQLock);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XCRBlks",
adapter, Index, RcvRingInfo->Head, RcvRingInfo->Tail);
}
/*
* Read the statistics which the card has been maintaining.
*/
void sxg_collect_statistics(struct adapter_t *adapter)
{
if(adapter->ucode_stats)
WRITE_REG64(adapter, adapter->UcodeRegs[0].GetUcodeStats,
adapter->pucode_stats, 0);
adapter->stats.rx_fifo_errors = adapter->ucode_stats->ERDrops;
adapter->stats.rx_over_errors = adapter->ucode_stats->NBDrops;
adapter->stats.tx_fifo_errors = adapter->ucode_stats->XDrops;
}
static struct net_device_stats *sxg_get_stats(struct net_device * dev)
{
struct adapter_t *adapter = netdev_priv(dev);
sxg_collect_statistics(adapter);
return (&adapter->stats);
}
static void sxg_watchdog(unsigned long data)
{
struct adapter_t *adapter = (struct adapter_t *) data;
if (adapter->state != ADAPT_DOWN) {
sxg_link_event(adapter);
/* Reset the timer */
mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
}
}
static void sxg_update_link_status (struct work_struct *work)
{
struct adapter_t *adapter = (struct adapter_t *)container_of
(work, struct adapter_t, update_link_status);
if (likely(adapter->link_status_changed)) {
sxg_link_event(adapter);
adapter->link_status_changed = 0;
}
}
static struct pci_driver sxg_driver = {
.name = sxg_driver_name,
.id_table = sxg_pci_tbl,
.probe = sxg_entry_probe,
.remove = __devexit_p(sxg_entry_remove),
#if SXG_POWER_MANAGEMENT_ENABLED
.suspend = sxgpm_suspend,
.resume = sxgpm_resume,
#endif
/* .shutdown = slic_shutdown, MOOK_INVESTIGATE */
};
static int __init sxg_module_init(void)
{
sxg_init_driver();
if (debug >= 0)
sxg_debug = debug;
return pci_register_driver(&sxg_driver);
}
static void __exit sxg_module_cleanup(void)
{
pci_unregister_driver(&sxg_driver);
}
module_init(sxg_module_init);
module_exit(sxg_module_cleanup);