| /* SPDX-License-Identifier: GPL-2.0 */ |
| /* |
| * Copyright (C) 1994 Linus Torvalds |
| * |
| * Pentium III FXSR, SSE support |
| * General FPU state handling cleanups |
| * Gareth Hughes <gareth@valinux.com>, May 2000 |
| * x86-64 work by Andi Kleen 2002 |
| */ |
| |
| #ifndef _ASM_X86_FPU_API_H |
| #define _ASM_X86_FPU_API_H |
| #include <linux/bottom_half.h> |
| |
| #include <asm/fpu/types.h> |
| |
| /* |
| * Use kernel_fpu_begin/end() if you intend to use FPU in kernel context. It |
| * disables preemption so be careful if you intend to use it for long periods |
| * of time. |
| * If you intend to use the FPU in irq/softirq you need to check first with |
| * irq_fpu_usable() if it is possible. |
| */ |
| |
| /* Kernel FPU states to initialize in kernel_fpu_begin_mask() */ |
| #define KFPU_387 _BITUL(0) /* 387 state will be initialized */ |
| #define KFPU_MXCSR _BITUL(1) /* MXCSR will be initialized */ |
| |
| extern void kernel_fpu_begin_mask(unsigned int kfpu_mask); |
| extern void kernel_fpu_end(void); |
| extern bool irq_fpu_usable(void); |
| extern void fpregs_mark_activate(void); |
| |
| /* Code that is unaware of kernel_fpu_begin_mask() can use this */ |
| static inline void kernel_fpu_begin(void) |
| { |
| #ifdef CONFIG_X86_64 |
| /* |
| * Any 64-bit code that uses 387 instructions must explicitly request |
| * KFPU_387. |
| */ |
| kernel_fpu_begin_mask(KFPU_MXCSR); |
| #else |
| /* |
| * 32-bit kernel code may use 387 operations as well as SSE2, etc, |
| * as long as it checks that the CPU has the required capability. |
| */ |
| kernel_fpu_begin_mask(KFPU_387 | KFPU_MXCSR); |
| #endif |
| } |
| |
| /* |
| * Use fpregs_lock() while editing CPU's FPU registers or fpu->fpstate. |
| * A context switch will (and softirq might) save CPU's FPU registers to |
| * fpu->fpstate.regs and set TIF_NEED_FPU_LOAD leaving CPU's FPU registers in |
| * a random state. |
| * |
| * local_bh_disable() protects against both preemption and soft interrupts |
| * on !RT kernels. |
| * |
| * On RT kernels local_bh_disable() is not sufficient because it only |
| * serializes soft interrupt related sections via a local lock, but stays |
| * preemptible. Disabling preemption is the right choice here as bottom |
| * half processing is always in thread context on RT kernels so it |
| * implicitly prevents bottom half processing as well. |
| * |
| * Disabling preemption also serializes against kernel_fpu_begin(). |
| */ |
| static inline void fpregs_lock(void) |
| { |
| if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
| local_bh_disable(); |
| else |
| preempt_disable(); |
| } |
| |
| static inline void fpregs_unlock(void) |
| { |
| if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
| local_bh_enable(); |
| else |
| preempt_enable(); |
| } |
| |
| #ifdef CONFIG_X86_DEBUG_FPU |
| extern void fpregs_assert_state_consistent(void); |
| #else |
| static inline void fpregs_assert_state_consistent(void) { } |
| #endif |
| |
| /* |
| * Load the task FPU state before returning to userspace. |
| */ |
| extern void switch_fpu_return(void); |
| |
| /* |
| * Query the presence of one or more xfeatures. Works on any legacy CPU as well. |
| * |
| * If 'feature_name' is set then put a human-readable description of |
| * the feature there as well - this can be used to print error (or success) |
| * messages. |
| */ |
| extern int cpu_has_xfeatures(u64 xfeatures_mask, const char **feature_name); |
| |
| /* Trap handling */ |
| extern int fpu__exception_code(struct fpu *fpu, int trap_nr); |
| extern void fpu_sync_fpstate(struct fpu *fpu); |
| extern void fpu_reset_from_exception_fixup(void); |
| |
| /* Boot, hotplug and resume */ |
| extern void fpu__init_cpu(void); |
| extern void fpu__init_system(struct cpuinfo_x86 *c); |
| extern void fpu__init_check_bugs(void); |
| extern void fpu__resume_cpu(void); |
| |
| #ifdef CONFIG_MATH_EMULATION |
| extern void fpstate_init_soft(struct swregs_state *soft); |
| #else |
| static inline void fpstate_init_soft(struct swregs_state *soft) {} |
| #endif |
| |
| /* State tracking */ |
| DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); |
| |
| /* Process cleanup */ |
| #ifdef CONFIG_X86_64 |
| extern void fpstate_free(struct fpu *fpu); |
| #else |
| static inline void fpstate_free(struct fpu *fpu) { } |
| #endif |
| |
| /* fpstate-related functions which are exported to KVM */ |
| extern void fpstate_clear_xstate_component(struct fpstate *fps, unsigned int xfeature); |
| |
| extern u64 xstate_get_guest_group_perm(void); |
| |
| /* KVM specific functions */ |
| extern bool fpu_alloc_guest_fpstate(struct fpu_guest *gfpu); |
| extern void fpu_free_guest_fpstate(struct fpu_guest *gfpu); |
| extern int fpu_swap_kvm_fpstate(struct fpu_guest *gfpu, bool enter_guest); |
| extern int fpu_enable_guest_xfd_features(struct fpu_guest *guest_fpu, u64 xfeatures); |
| |
| #ifdef CONFIG_X86_64 |
| extern void fpu_update_guest_xfd(struct fpu_guest *guest_fpu, u64 xfd); |
| extern void fpu_sync_guest_vmexit_xfd_state(void); |
| #else |
| static inline void fpu_update_guest_xfd(struct fpu_guest *guest_fpu, u64 xfd) { } |
| static inline void fpu_sync_guest_vmexit_xfd_state(void) { } |
| #endif |
| |
| extern void fpu_copy_guest_fpstate_to_uabi(struct fpu_guest *gfpu, void *buf, unsigned int size, u32 pkru); |
| extern int fpu_copy_uabi_to_guest_fpstate(struct fpu_guest *gfpu, const void *buf, u64 xcr0, u32 *vpkru); |
| |
| static inline void fpstate_set_confidential(struct fpu_guest *gfpu) |
| { |
| gfpu->fpstate->is_confidential = true; |
| } |
| |
| static inline bool fpstate_is_confidential(struct fpu_guest *gfpu) |
| { |
| return gfpu->fpstate->is_confidential; |
| } |
| |
| /* prctl */ |
| extern long fpu_xstate_prctl(int option, unsigned long arg2); |
| |
| extern void fpu_idle_fpregs(void); |
| |
| #endif /* _ASM_X86_FPU_API_H */ |