| /* |
| BlueZ - Bluetooth protocol stack for Linux |
| Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. |
| |
| Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License version 2 as |
| published by the Free Software Foundation; |
| |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS |
| OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. |
| IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY |
| CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES |
| WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| |
| ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, |
| COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS |
| SOFTWARE IS DISCLAIMED. |
| */ |
| |
| /* Bluetooth HCI connection handling. */ |
| |
| #include <linux/export.h> |
| #include <linux/debugfs.h> |
| |
| #include <net/bluetooth/bluetooth.h> |
| #include <net/bluetooth/hci_core.h> |
| #include <net/bluetooth/l2cap.h> |
| |
| #include "hci_request.h" |
| #include "smp.h" |
| #include "a2mp.h" |
| |
| struct sco_param { |
| u16 pkt_type; |
| u16 max_latency; |
| u8 retrans_effort; |
| }; |
| |
| static const struct sco_param esco_param_cvsd[] = { |
| { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a, 0x01 }, /* S3 */ |
| { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007, 0x01 }, /* S2 */ |
| { EDR_ESCO_MASK | ESCO_EV3, 0x0007, 0x01 }, /* S1 */ |
| { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0x01 }, /* D1 */ |
| { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0x01 }, /* D0 */ |
| }; |
| |
| static const struct sco_param sco_param_cvsd[] = { |
| { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0xff }, /* D1 */ |
| { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0xff }, /* D0 */ |
| }; |
| |
| static const struct sco_param esco_param_msbc[] = { |
| { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d, 0x02 }, /* T2 */ |
| { EDR_ESCO_MASK | ESCO_EV3, 0x0008, 0x02 }, /* T1 */ |
| }; |
| |
| /* This function requires the caller holds hdev->lock */ |
| static void hci_connect_le_scan_cleanup(struct hci_conn *conn) |
| { |
| struct hci_conn_params *params; |
| struct hci_dev *hdev = conn->hdev; |
| struct smp_irk *irk; |
| bdaddr_t *bdaddr; |
| u8 bdaddr_type; |
| |
| bdaddr = &conn->dst; |
| bdaddr_type = conn->dst_type; |
| |
| /* Check if we need to convert to identity address */ |
| irk = hci_get_irk(hdev, bdaddr, bdaddr_type); |
| if (irk) { |
| bdaddr = &irk->bdaddr; |
| bdaddr_type = irk->addr_type; |
| } |
| |
| params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr, |
| bdaddr_type); |
| if (!params || !params->explicit_connect) |
| return; |
| |
| /* The connection attempt was doing scan for new RPA, and is |
| * in scan phase. If params are not associated with any other |
| * autoconnect action, remove them completely. If they are, just unmark |
| * them as waiting for connection, by clearing explicit_connect field. |
| */ |
| params->explicit_connect = false; |
| |
| list_del_init(¶ms->action); |
| |
| switch (params->auto_connect) { |
| case HCI_AUTO_CONN_EXPLICIT: |
| hci_conn_params_del(hdev, bdaddr, bdaddr_type); |
| /* return instead of break to avoid duplicate scan update */ |
| return; |
| case HCI_AUTO_CONN_DIRECT: |
| case HCI_AUTO_CONN_ALWAYS: |
| list_add(¶ms->action, &hdev->pend_le_conns); |
| break; |
| case HCI_AUTO_CONN_REPORT: |
| list_add(¶ms->action, &hdev->pend_le_reports); |
| break; |
| default: |
| break; |
| } |
| |
| hci_update_passive_scan(hdev); |
| } |
| |
| static void hci_conn_cleanup(struct hci_conn *conn) |
| { |
| struct hci_dev *hdev = conn->hdev; |
| |
| if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags)) |
| hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type); |
| |
| hci_chan_list_flush(conn); |
| |
| hci_conn_hash_del(hdev, conn); |
| |
| if (conn->type == SCO_LINK || conn->type == ESCO_LINK) { |
| switch (conn->setting & SCO_AIRMODE_MASK) { |
| case SCO_AIRMODE_CVSD: |
| case SCO_AIRMODE_TRANSP: |
| if (hdev->notify) |
| hdev->notify(hdev, HCI_NOTIFY_DISABLE_SCO); |
| break; |
| } |
| } else { |
| if (hdev->notify) |
| hdev->notify(hdev, HCI_NOTIFY_CONN_DEL); |
| } |
| |
| hci_conn_del_sysfs(conn); |
| |
| debugfs_remove_recursive(conn->debugfs); |
| |
| hci_dev_put(hdev); |
| |
| hci_conn_put(conn); |
| } |
| |
| static void le_scan_cleanup(struct work_struct *work) |
| { |
| struct hci_conn *conn = container_of(work, struct hci_conn, |
| le_scan_cleanup); |
| struct hci_dev *hdev = conn->hdev; |
| struct hci_conn *c = NULL; |
| |
| BT_DBG("%s hcon %p", hdev->name, conn); |
| |
| hci_dev_lock(hdev); |
| |
| /* Check that the hci_conn is still around */ |
| rcu_read_lock(); |
| list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) { |
| if (c == conn) |
| break; |
| } |
| rcu_read_unlock(); |
| |
| if (c == conn) { |
| hci_connect_le_scan_cleanup(conn); |
| hci_conn_cleanup(conn); |
| } |
| |
| hci_dev_unlock(hdev); |
| hci_dev_put(hdev); |
| hci_conn_put(conn); |
| } |
| |
| static void hci_connect_le_scan_remove(struct hci_conn *conn) |
| { |
| BT_DBG("%s hcon %p", conn->hdev->name, conn); |
| |
| /* We can't call hci_conn_del/hci_conn_cleanup here since that |
| * could deadlock with another hci_conn_del() call that's holding |
| * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work). |
| * Instead, grab temporary extra references to the hci_dev and |
| * hci_conn and perform the necessary cleanup in a separate work |
| * callback. |
| */ |
| |
| hci_dev_hold(conn->hdev); |
| hci_conn_get(conn); |
| |
| /* Even though we hold a reference to the hdev, many other |
| * things might get cleaned up meanwhile, including the hdev's |
| * own workqueue, so we can't use that for scheduling. |
| */ |
| schedule_work(&conn->le_scan_cleanup); |
| } |
| |
| static void hci_acl_create_connection(struct hci_conn *conn) |
| { |
| struct hci_dev *hdev = conn->hdev; |
| struct inquiry_entry *ie; |
| struct hci_cp_create_conn cp; |
| |
| BT_DBG("hcon %p", conn); |
| |
| /* Many controllers disallow HCI Create Connection while it is doing |
| * HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create |
| * Connection. This may cause the MGMT discovering state to become false |
| * without user space's request but it is okay since the MGMT Discovery |
| * APIs do not promise that discovery should be done forever. Instead, |
| * the user space monitors the status of MGMT discovering and it may |
| * request for discovery again when this flag becomes false. |
| */ |
| if (test_bit(HCI_INQUIRY, &hdev->flags)) { |
| /* Put this connection to "pending" state so that it will be |
| * executed after the inquiry cancel command complete event. |
| */ |
| conn->state = BT_CONNECT2; |
| hci_send_cmd(hdev, HCI_OP_INQUIRY_CANCEL, 0, NULL); |
| return; |
| } |
| |
| conn->state = BT_CONNECT; |
| conn->out = true; |
| conn->role = HCI_ROLE_MASTER; |
| |
| conn->attempt++; |
| |
| conn->link_policy = hdev->link_policy; |
| |
| memset(&cp, 0, sizeof(cp)); |
| bacpy(&cp.bdaddr, &conn->dst); |
| cp.pscan_rep_mode = 0x02; |
| |
| ie = hci_inquiry_cache_lookup(hdev, &conn->dst); |
| if (ie) { |
| if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) { |
| cp.pscan_rep_mode = ie->data.pscan_rep_mode; |
| cp.pscan_mode = ie->data.pscan_mode; |
| cp.clock_offset = ie->data.clock_offset | |
| cpu_to_le16(0x8000); |
| } |
| |
| memcpy(conn->dev_class, ie->data.dev_class, 3); |
| } |
| |
| cp.pkt_type = cpu_to_le16(conn->pkt_type); |
| if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER)) |
| cp.role_switch = 0x01; |
| else |
| cp.role_switch = 0x00; |
| |
| hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp); |
| } |
| |
| int hci_disconnect(struct hci_conn *conn, __u8 reason) |
| { |
| BT_DBG("hcon %p", conn); |
| |
| /* When we are central of an established connection and it enters |
| * the disconnect timeout, then go ahead and try to read the |
| * current clock offset. Processing of the result is done |
| * within the event handling and hci_clock_offset_evt function. |
| */ |
| if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER && |
| (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) { |
| struct hci_dev *hdev = conn->hdev; |
| struct hci_cp_read_clock_offset clkoff_cp; |
| |
| clkoff_cp.handle = cpu_to_le16(conn->handle); |
| hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp), |
| &clkoff_cp); |
| } |
| |
| return hci_abort_conn(conn, reason); |
| } |
| |
| static void hci_add_sco(struct hci_conn *conn, __u16 handle) |
| { |
| struct hci_dev *hdev = conn->hdev; |
| struct hci_cp_add_sco cp; |
| |
| BT_DBG("hcon %p", conn); |
| |
| conn->state = BT_CONNECT; |
| conn->out = true; |
| |
| conn->attempt++; |
| |
| cp.handle = cpu_to_le16(handle); |
| cp.pkt_type = cpu_to_le16(conn->pkt_type); |
| |
| hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp); |
| } |
| |
| static bool find_next_esco_param(struct hci_conn *conn, |
| const struct sco_param *esco_param, int size) |
| { |
| for (; conn->attempt <= size; conn->attempt++) { |
| if (lmp_esco_2m_capable(conn->link) || |
| (esco_param[conn->attempt - 1].pkt_type & ESCO_2EV3)) |
| break; |
| BT_DBG("hcon %p skipped attempt %d, eSCO 2M not supported", |
| conn, conn->attempt); |
| } |
| |
| return conn->attempt <= size; |
| } |
| |
| static bool hci_enhanced_setup_sync_conn(struct hci_conn *conn, __u16 handle) |
| { |
| struct hci_dev *hdev = conn->hdev; |
| struct hci_cp_enhanced_setup_sync_conn cp; |
| const struct sco_param *param; |
| |
| bt_dev_dbg(hdev, "hcon %p", conn); |
| |
| /* for offload use case, codec needs to configured before opening SCO */ |
| if (conn->codec.data_path) |
| hci_req_configure_datapath(hdev, &conn->codec); |
| |
| conn->state = BT_CONNECT; |
| conn->out = true; |
| |
| conn->attempt++; |
| |
| memset(&cp, 0x00, sizeof(cp)); |
| |
| cp.handle = cpu_to_le16(handle); |
| |
| cp.tx_bandwidth = cpu_to_le32(0x00001f40); |
| cp.rx_bandwidth = cpu_to_le32(0x00001f40); |
| |
| switch (conn->codec.id) { |
| case BT_CODEC_MSBC: |
| if (!find_next_esco_param(conn, esco_param_msbc, |
| ARRAY_SIZE(esco_param_msbc))) |
| return false; |
| |
| param = &esco_param_msbc[conn->attempt - 1]; |
| cp.tx_coding_format.id = 0x05; |
| cp.rx_coding_format.id = 0x05; |
| cp.tx_codec_frame_size = __cpu_to_le16(60); |
| cp.rx_codec_frame_size = __cpu_to_le16(60); |
| cp.in_bandwidth = __cpu_to_le32(32000); |
| cp.out_bandwidth = __cpu_to_le32(32000); |
| cp.in_coding_format.id = 0x04; |
| cp.out_coding_format.id = 0x04; |
| cp.in_coded_data_size = __cpu_to_le16(16); |
| cp.out_coded_data_size = __cpu_to_le16(16); |
| cp.in_pcm_data_format = 2; |
| cp.out_pcm_data_format = 2; |
| cp.in_pcm_sample_payload_msb_pos = 0; |
| cp.out_pcm_sample_payload_msb_pos = 0; |
| cp.in_data_path = conn->codec.data_path; |
| cp.out_data_path = conn->codec.data_path; |
| cp.in_transport_unit_size = 1; |
| cp.out_transport_unit_size = 1; |
| break; |
| |
| case BT_CODEC_TRANSPARENT: |
| if (!find_next_esco_param(conn, esco_param_msbc, |
| ARRAY_SIZE(esco_param_msbc))) |
| return false; |
| param = &esco_param_msbc[conn->attempt - 1]; |
| cp.tx_coding_format.id = 0x03; |
| cp.rx_coding_format.id = 0x03; |
| cp.tx_codec_frame_size = __cpu_to_le16(60); |
| cp.rx_codec_frame_size = __cpu_to_le16(60); |
| cp.in_bandwidth = __cpu_to_le32(0x1f40); |
| cp.out_bandwidth = __cpu_to_le32(0x1f40); |
| cp.in_coding_format.id = 0x03; |
| cp.out_coding_format.id = 0x03; |
| cp.in_coded_data_size = __cpu_to_le16(16); |
| cp.out_coded_data_size = __cpu_to_le16(16); |
| cp.in_pcm_data_format = 2; |
| cp.out_pcm_data_format = 2; |
| cp.in_pcm_sample_payload_msb_pos = 0; |
| cp.out_pcm_sample_payload_msb_pos = 0; |
| cp.in_data_path = conn->codec.data_path; |
| cp.out_data_path = conn->codec.data_path; |
| cp.in_transport_unit_size = 1; |
| cp.out_transport_unit_size = 1; |
| break; |
| |
| case BT_CODEC_CVSD: |
| if (lmp_esco_capable(conn->link)) { |
| if (!find_next_esco_param(conn, esco_param_cvsd, |
| ARRAY_SIZE(esco_param_cvsd))) |
| return false; |
| param = &esco_param_cvsd[conn->attempt - 1]; |
| } else { |
| if (conn->attempt > ARRAY_SIZE(sco_param_cvsd)) |
| return false; |
| param = &sco_param_cvsd[conn->attempt - 1]; |
| } |
| cp.tx_coding_format.id = 2; |
| cp.rx_coding_format.id = 2; |
| cp.tx_codec_frame_size = __cpu_to_le16(60); |
| cp.rx_codec_frame_size = __cpu_to_le16(60); |
| cp.in_bandwidth = __cpu_to_le32(16000); |
| cp.out_bandwidth = __cpu_to_le32(16000); |
| cp.in_coding_format.id = 4; |
| cp.out_coding_format.id = 4; |
| cp.in_coded_data_size = __cpu_to_le16(16); |
| cp.out_coded_data_size = __cpu_to_le16(16); |
| cp.in_pcm_data_format = 2; |
| cp.out_pcm_data_format = 2; |
| cp.in_pcm_sample_payload_msb_pos = 0; |
| cp.out_pcm_sample_payload_msb_pos = 0; |
| cp.in_data_path = conn->codec.data_path; |
| cp.out_data_path = conn->codec.data_path; |
| cp.in_transport_unit_size = 16; |
| cp.out_transport_unit_size = 16; |
| break; |
| default: |
| return false; |
| } |
| |
| cp.retrans_effort = param->retrans_effort; |
| cp.pkt_type = __cpu_to_le16(param->pkt_type); |
| cp.max_latency = __cpu_to_le16(param->max_latency); |
| |
| if (hci_send_cmd(hdev, HCI_OP_ENHANCED_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0) |
| return false; |
| |
| return true; |
| } |
| |
| static bool hci_setup_sync_conn(struct hci_conn *conn, __u16 handle) |
| { |
| struct hci_dev *hdev = conn->hdev; |
| struct hci_cp_setup_sync_conn cp; |
| const struct sco_param *param; |
| |
| bt_dev_dbg(hdev, "hcon %p", conn); |
| |
| conn->state = BT_CONNECT; |
| conn->out = true; |
| |
| conn->attempt++; |
| |
| cp.handle = cpu_to_le16(handle); |
| |
| cp.tx_bandwidth = cpu_to_le32(0x00001f40); |
| cp.rx_bandwidth = cpu_to_le32(0x00001f40); |
| cp.voice_setting = cpu_to_le16(conn->setting); |
| |
| switch (conn->setting & SCO_AIRMODE_MASK) { |
| case SCO_AIRMODE_TRANSP: |
| if (!find_next_esco_param(conn, esco_param_msbc, |
| ARRAY_SIZE(esco_param_msbc))) |
| return false; |
| param = &esco_param_msbc[conn->attempt - 1]; |
| break; |
| case SCO_AIRMODE_CVSD: |
| if (lmp_esco_capable(conn->link)) { |
| if (!find_next_esco_param(conn, esco_param_cvsd, |
| ARRAY_SIZE(esco_param_cvsd))) |
| return false; |
| param = &esco_param_cvsd[conn->attempt - 1]; |
| } else { |
| if (conn->attempt > ARRAY_SIZE(sco_param_cvsd)) |
| return false; |
| param = &sco_param_cvsd[conn->attempt - 1]; |
| } |
| break; |
| default: |
| return false; |
| } |
| |
| cp.retrans_effort = param->retrans_effort; |
| cp.pkt_type = __cpu_to_le16(param->pkt_type); |
| cp.max_latency = __cpu_to_le16(param->max_latency); |
| |
| if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0) |
| return false; |
| |
| return true; |
| } |
| |
| bool hci_setup_sync(struct hci_conn *conn, __u16 handle) |
| { |
| if (enhanced_sco_capable(conn->hdev)) |
| return hci_enhanced_setup_sync_conn(conn, handle); |
| |
| return hci_setup_sync_conn(conn, handle); |
| } |
| |
| u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency, |
| u16 to_multiplier) |
| { |
| struct hci_dev *hdev = conn->hdev; |
| struct hci_conn_params *params; |
| struct hci_cp_le_conn_update cp; |
| |
| hci_dev_lock(hdev); |
| |
| params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); |
| if (params) { |
| params->conn_min_interval = min; |
| params->conn_max_interval = max; |
| params->conn_latency = latency; |
| params->supervision_timeout = to_multiplier; |
| } |
| |
| hci_dev_unlock(hdev); |
| |
| memset(&cp, 0, sizeof(cp)); |
| cp.handle = cpu_to_le16(conn->handle); |
| cp.conn_interval_min = cpu_to_le16(min); |
| cp.conn_interval_max = cpu_to_le16(max); |
| cp.conn_latency = cpu_to_le16(latency); |
| cp.supervision_timeout = cpu_to_le16(to_multiplier); |
| cp.min_ce_len = cpu_to_le16(0x0000); |
| cp.max_ce_len = cpu_to_le16(0x0000); |
| |
| hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp); |
| |
| if (params) |
| return 0x01; |
| |
| return 0x00; |
| } |
| |
| void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, |
| __u8 ltk[16], __u8 key_size) |
| { |
| struct hci_dev *hdev = conn->hdev; |
| struct hci_cp_le_start_enc cp; |
| |
| BT_DBG("hcon %p", conn); |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| cp.handle = cpu_to_le16(conn->handle); |
| cp.rand = rand; |
| cp.ediv = ediv; |
| memcpy(cp.ltk, ltk, key_size); |
| |
| hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp); |
| } |
| |
| /* Device _must_ be locked */ |
| void hci_sco_setup(struct hci_conn *conn, __u8 status) |
| { |
| struct hci_conn *sco = conn->link; |
| |
| if (!sco) |
| return; |
| |
| BT_DBG("hcon %p", conn); |
| |
| if (!status) { |
| if (lmp_esco_capable(conn->hdev)) |
| hci_setup_sync(sco, conn->handle); |
| else |
| hci_add_sco(sco, conn->handle); |
| } else { |
| hci_connect_cfm(sco, status); |
| hci_conn_del(sco); |
| } |
| } |
| |
| static void hci_conn_timeout(struct work_struct *work) |
| { |
| struct hci_conn *conn = container_of(work, struct hci_conn, |
| disc_work.work); |
| int refcnt = atomic_read(&conn->refcnt); |
| |
| BT_DBG("hcon %p state %s", conn, state_to_string(conn->state)); |
| |
| WARN_ON(refcnt < 0); |
| |
| /* FIXME: It was observed that in pairing failed scenario, refcnt |
| * drops below 0. Probably this is because l2cap_conn_del calls |
| * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is |
| * dropped. After that loop hci_chan_del is called which also drops |
| * conn. For now make sure that ACL is alive if refcnt is higher then 0, |
| * otherwise drop it. |
| */ |
| if (refcnt > 0) |
| return; |
| |
| /* LE connections in scanning state need special handling */ |
| if (conn->state == BT_CONNECT && conn->type == LE_LINK && |
| test_bit(HCI_CONN_SCANNING, &conn->flags)) { |
| hci_connect_le_scan_remove(conn); |
| return; |
| } |
| |
| hci_abort_conn(conn, hci_proto_disconn_ind(conn)); |
| } |
| |
| /* Enter sniff mode */ |
| static void hci_conn_idle(struct work_struct *work) |
| { |
| struct hci_conn *conn = container_of(work, struct hci_conn, |
| idle_work.work); |
| struct hci_dev *hdev = conn->hdev; |
| |
| BT_DBG("hcon %p mode %d", conn, conn->mode); |
| |
| if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn)) |
| return; |
| |
| if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF)) |
| return; |
| |
| if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) { |
| struct hci_cp_sniff_subrate cp; |
| cp.handle = cpu_to_le16(conn->handle); |
| cp.max_latency = cpu_to_le16(0); |
| cp.min_remote_timeout = cpu_to_le16(0); |
| cp.min_local_timeout = cpu_to_le16(0); |
| hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp); |
| } |
| |
| if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { |
| struct hci_cp_sniff_mode cp; |
| cp.handle = cpu_to_le16(conn->handle); |
| cp.max_interval = cpu_to_le16(hdev->sniff_max_interval); |
| cp.min_interval = cpu_to_le16(hdev->sniff_min_interval); |
| cp.attempt = cpu_to_le16(4); |
| cp.timeout = cpu_to_le16(1); |
| hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp); |
| } |
| } |
| |
| static void hci_conn_auto_accept(struct work_struct *work) |
| { |
| struct hci_conn *conn = container_of(work, struct hci_conn, |
| auto_accept_work.work); |
| |
| hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst), |
| &conn->dst); |
| } |
| |
| static void le_disable_advertising(struct hci_dev *hdev) |
| { |
| if (ext_adv_capable(hdev)) { |
| struct hci_cp_le_set_ext_adv_enable cp; |
| |
| cp.enable = 0x00; |
| cp.num_of_sets = 0x00; |
| |
| hci_send_cmd(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp), |
| &cp); |
| } else { |
| u8 enable = 0x00; |
| hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), |
| &enable); |
| } |
| } |
| |
| static void le_conn_timeout(struct work_struct *work) |
| { |
| struct hci_conn *conn = container_of(work, struct hci_conn, |
| le_conn_timeout.work); |
| struct hci_dev *hdev = conn->hdev; |
| |
| BT_DBG(""); |
| |
| /* We could end up here due to having done directed advertising, |
| * so clean up the state if necessary. This should however only |
| * happen with broken hardware or if low duty cycle was used |
| * (which doesn't have a timeout of its own). |
| */ |
| if (conn->role == HCI_ROLE_SLAVE) { |
| /* Disable LE Advertising */ |
| le_disable_advertising(hdev); |
| hci_le_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT); |
| return; |
| } |
| |
| hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM); |
| } |
| |
| struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, |
| u8 role) |
| { |
| struct hci_conn *conn; |
| |
| BT_DBG("%s dst %pMR", hdev->name, dst); |
| |
| conn = kzalloc(sizeof(*conn), GFP_KERNEL); |
| if (!conn) |
| return NULL; |
| |
| bacpy(&conn->dst, dst); |
| bacpy(&conn->src, &hdev->bdaddr); |
| conn->handle = HCI_CONN_HANDLE_UNSET; |
| conn->hdev = hdev; |
| conn->type = type; |
| conn->role = role; |
| conn->mode = HCI_CM_ACTIVE; |
| conn->state = BT_OPEN; |
| conn->auth_type = HCI_AT_GENERAL_BONDING; |
| conn->io_capability = hdev->io_capability; |
| conn->remote_auth = 0xff; |
| conn->key_type = 0xff; |
| conn->rssi = HCI_RSSI_INVALID; |
| conn->tx_power = HCI_TX_POWER_INVALID; |
| conn->max_tx_power = HCI_TX_POWER_INVALID; |
| |
| set_bit(HCI_CONN_POWER_SAVE, &conn->flags); |
| conn->disc_timeout = HCI_DISCONN_TIMEOUT; |
| |
| /* Set Default Authenticated payload timeout to 30s */ |
| conn->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT; |
| |
| if (conn->role == HCI_ROLE_MASTER) |
| conn->out = true; |
| |
| switch (type) { |
| case ACL_LINK: |
| conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK; |
| break; |
| case LE_LINK: |
| /* conn->src should reflect the local identity address */ |
| hci_copy_identity_address(hdev, &conn->src, &conn->src_type); |
| break; |
| case SCO_LINK: |
| if (lmp_esco_capable(hdev)) |
| conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) | |
| (hdev->esco_type & EDR_ESCO_MASK); |
| else |
| conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK; |
| break; |
| case ESCO_LINK: |
| conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK; |
| break; |
| } |
| |
| skb_queue_head_init(&conn->data_q); |
| |
| INIT_LIST_HEAD(&conn->chan_list); |
| |
| INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout); |
| INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept); |
| INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle); |
| INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout); |
| INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup); |
| |
| atomic_set(&conn->refcnt, 0); |
| |
| hci_dev_hold(hdev); |
| |
| hci_conn_hash_add(hdev, conn); |
| |
| /* The SCO and eSCO connections will only be notified when their |
| * setup has been completed. This is different to ACL links which |
| * can be notified right away. |
| */ |
| if (conn->type != SCO_LINK && conn->type != ESCO_LINK) { |
| if (hdev->notify) |
| hdev->notify(hdev, HCI_NOTIFY_CONN_ADD); |
| } |
| |
| hci_conn_init_sysfs(conn); |
| |
| return conn; |
| } |
| |
| int hci_conn_del(struct hci_conn *conn) |
| { |
| struct hci_dev *hdev = conn->hdev; |
| |
| BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle); |
| |
| cancel_delayed_work_sync(&conn->disc_work); |
| cancel_delayed_work_sync(&conn->auto_accept_work); |
| cancel_delayed_work_sync(&conn->idle_work); |
| |
| if (conn->type == ACL_LINK) { |
| struct hci_conn *sco = conn->link; |
| if (sco) |
| sco->link = NULL; |
| |
| /* Unacked frames */ |
| hdev->acl_cnt += conn->sent; |
| } else if (conn->type == LE_LINK) { |
| cancel_delayed_work(&conn->le_conn_timeout); |
| |
| if (hdev->le_pkts) |
| hdev->le_cnt += conn->sent; |
| else |
| hdev->acl_cnt += conn->sent; |
| } else { |
| struct hci_conn *acl = conn->link; |
| if (acl) { |
| acl->link = NULL; |
| hci_conn_drop(acl); |
| } |
| } |
| |
| if (conn->amp_mgr) |
| amp_mgr_put(conn->amp_mgr); |
| |
| skb_queue_purge(&conn->data_q); |
| |
| /* Remove the connection from the list and cleanup its remaining |
| * state. This is a separate function since for some cases like |
| * BT_CONNECT_SCAN we *only* want the cleanup part without the |
| * rest of hci_conn_del. |
| */ |
| hci_conn_cleanup(conn); |
| |
| return 0; |
| } |
| |
| struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type) |
| { |
| int use_src = bacmp(src, BDADDR_ANY); |
| struct hci_dev *hdev = NULL, *d; |
| |
| BT_DBG("%pMR -> %pMR", src, dst); |
| |
| read_lock(&hci_dev_list_lock); |
| |
| list_for_each_entry(d, &hci_dev_list, list) { |
| if (!test_bit(HCI_UP, &d->flags) || |
| hci_dev_test_flag(d, HCI_USER_CHANNEL) || |
| d->dev_type != HCI_PRIMARY) |
| continue; |
| |
| /* Simple routing: |
| * No source address - find interface with bdaddr != dst |
| * Source address - find interface with bdaddr == src |
| */ |
| |
| if (use_src) { |
| bdaddr_t id_addr; |
| u8 id_addr_type; |
| |
| if (src_type == BDADDR_BREDR) { |
| if (!lmp_bredr_capable(d)) |
| continue; |
| bacpy(&id_addr, &d->bdaddr); |
| id_addr_type = BDADDR_BREDR; |
| } else { |
| if (!lmp_le_capable(d)) |
| continue; |
| |
| hci_copy_identity_address(d, &id_addr, |
| &id_addr_type); |
| |
| /* Convert from HCI to three-value type */ |
| if (id_addr_type == ADDR_LE_DEV_PUBLIC) |
| id_addr_type = BDADDR_LE_PUBLIC; |
| else |
| id_addr_type = BDADDR_LE_RANDOM; |
| } |
| |
| if (!bacmp(&id_addr, src) && id_addr_type == src_type) { |
| hdev = d; break; |
| } |
| } else { |
| if (bacmp(&d->bdaddr, dst)) { |
| hdev = d; break; |
| } |
| } |
| } |
| |
| if (hdev) |
| hdev = hci_dev_hold(hdev); |
| |
| read_unlock(&hci_dev_list_lock); |
| return hdev; |
| } |
| EXPORT_SYMBOL(hci_get_route); |
| |
| /* This function requires the caller holds hdev->lock */ |
| void hci_le_conn_failed(struct hci_conn *conn, u8 status) |
| { |
| struct hci_dev *hdev = conn->hdev; |
| struct hci_conn_params *params; |
| |
| params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst, |
| conn->dst_type); |
| if (params && params->conn) { |
| hci_conn_drop(params->conn); |
| hci_conn_put(params->conn); |
| params->conn = NULL; |
| } |
| |
| conn->state = BT_CLOSED; |
| |
| /* If the status indicates successful cancellation of |
| * the attempt (i.e. Unknown Connection Id) there's no point of |
| * notifying failure since we'll go back to keep trying to |
| * connect. The only exception is explicit connect requests |
| * where a timeout + cancel does indicate an actual failure. |
| */ |
| if (status != HCI_ERROR_UNKNOWN_CONN_ID || |
| (params && params->explicit_connect)) |
| mgmt_connect_failed(hdev, &conn->dst, conn->type, |
| conn->dst_type, status); |
| |
| hci_connect_cfm(conn, status); |
| |
| hci_conn_del(conn); |
| |
| /* Since we may have temporarily stopped the background scanning in |
| * favor of connection establishment, we should restart it. |
| */ |
| hci_update_passive_scan(hdev); |
| |
| /* Enable advertising in case this was a failed connection |
| * attempt as a peripheral. |
| */ |
| hci_enable_advertising(hdev); |
| } |
| |
| static void create_le_conn_complete(struct hci_dev *hdev, void *data, int err) |
| { |
| struct hci_conn *conn = data; |
| |
| hci_dev_lock(hdev); |
| |
| if (!err) { |
| hci_connect_le_scan_cleanup(conn); |
| goto done; |
| } |
| |
| bt_dev_err(hdev, "request failed to create LE connection: err %d", err); |
| |
| if (!conn) |
| goto done; |
| |
| hci_le_conn_failed(conn, err); |
| |
| done: |
| hci_dev_unlock(hdev); |
| } |
| |
| static int hci_connect_le_sync(struct hci_dev *hdev, void *data) |
| { |
| struct hci_conn *conn = data; |
| |
| bt_dev_dbg(hdev, "conn %p", conn); |
| |
| return hci_le_create_conn_sync(hdev, conn); |
| } |
| |
| struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, |
| u8 dst_type, bool dst_resolved, u8 sec_level, |
| u16 conn_timeout, u8 role) |
| { |
| struct hci_conn *conn; |
| struct smp_irk *irk; |
| int err; |
| |
| /* Let's make sure that le is enabled.*/ |
| if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { |
| if (lmp_le_capable(hdev)) |
| return ERR_PTR(-ECONNREFUSED); |
| |
| return ERR_PTR(-EOPNOTSUPP); |
| } |
| |
| /* Since the controller supports only one LE connection attempt at a |
| * time, we return -EBUSY if there is any connection attempt running. |
| */ |
| if (hci_lookup_le_connect(hdev)) |
| return ERR_PTR(-EBUSY); |
| |
| /* If there's already a connection object but it's not in |
| * scanning state it means it must already be established, in |
| * which case we can't do anything else except report a failure |
| * to connect. |
| */ |
| conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); |
| if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) { |
| return ERR_PTR(-EBUSY); |
| } |
| |
| /* Check if the destination address has been resolved by the controller |
| * since if it did then the identity address shall be used. |
| */ |
| if (!dst_resolved) { |
| /* When given an identity address with existing identity |
| * resolving key, the connection needs to be established |
| * to a resolvable random address. |
| * |
| * Storing the resolvable random address is required here |
| * to handle connection failures. The address will later |
| * be resolved back into the original identity address |
| * from the connect request. |
| */ |
| irk = hci_find_irk_by_addr(hdev, dst, dst_type); |
| if (irk && bacmp(&irk->rpa, BDADDR_ANY)) { |
| dst = &irk->rpa; |
| dst_type = ADDR_LE_DEV_RANDOM; |
| } |
| } |
| |
| if (conn) { |
| bacpy(&conn->dst, dst); |
| } else { |
| conn = hci_conn_add(hdev, LE_LINK, dst, role); |
| if (!conn) |
| return ERR_PTR(-ENOMEM); |
| hci_conn_hold(conn); |
| conn->pending_sec_level = sec_level; |
| } |
| |
| conn->dst_type = dst_type; |
| conn->sec_level = BT_SECURITY_LOW; |
| conn->conn_timeout = conn_timeout; |
| |
| conn->state = BT_CONNECT; |
| clear_bit(HCI_CONN_SCANNING, &conn->flags); |
| |
| err = hci_cmd_sync_queue(hdev, hci_connect_le_sync, conn, |
| create_le_conn_complete); |
| if (err) { |
| hci_conn_del(conn); |
| return ERR_PTR(err); |
| } |
| |
| return conn; |
| } |
| |
| static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type) |
| { |
| struct hci_conn *conn; |
| |
| conn = hci_conn_hash_lookup_le(hdev, addr, type); |
| if (!conn) |
| return false; |
| |
| if (conn->state != BT_CONNECTED) |
| return false; |
| |
| return true; |
| } |
| |
| /* This function requires the caller holds hdev->lock */ |
| static int hci_explicit_conn_params_set(struct hci_dev *hdev, |
| bdaddr_t *addr, u8 addr_type) |
| { |
| struct hci_conn_params *params; |
| |
| if (is_connected(hdev, addr, addr_type)) |
| return -EISCONN; |
| |
| params = hci_conn_params_lookup(hdev, addr, addr_type); |
| if (!params) { |
| params = hci_conn_params_add(hdev, addr, addr_type); |
| if (!params) |
| return -ENOMEM; |
| |
| /* If we created new params, mark them to be deleted in |
| * hci_connect_le_scan_cleanup. It's different case than |
| * existing disabled params, those will stay after cleanup. |
| */ |
| params->auto_connect = HCI_AUTO_CONN_EXPLICIT; |
| } |
| |
| /* We're trying to connect, so make sure params are at pend_le_conns */ |
| if (params->auto_connect == HCI_AUTO_CONN_DISABLED || |
| params->auto_connect == HCI_AUTO_CONN_REPORT || |
| params->auto_connect == HCI_AUTO_CONN_EXPLICIT) { |
| list_del_init(¶ms->action); |
| list_add(¶ms->action, &hdev->pend_le_conns); |
| } |
| |
| params->explicit_connect = true; |
| |
| BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type, |
| params->auto_connect); |
| |
| return 0; |
| } |
| |
| /* This function requires the caller holds hdev->lock */ |
| struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst, |
| u8 dst_type, u8 sec_level, |
| u16 conn_timeout, |
| enum conn_reasons conn_reason) |
| { |
| struct hci_conn *conn; |
| |
| /* Let's make sure that le is enabled.*/ |
| if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { |
| if (lmp_le_capable(hdev)) |
| return ERR_PTR(-ECONNREFUSED); |
| |
| return ERR_PTR(-EOPNOTSUPP); |
| } |
| |
| /* Some devices send ATT messages as soon as the physical link is |
| * established. To be able to handle these ATT messages, the user- |
| * space first establishes the connection and then starts the pairing |
| * process. |
| * |
| * So if a hci_conn object already exists for the following connection |
| * attempt, we simply update pending_sec_level and auth_type fields |
| * and return the object found. |
| */ |
| conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); |
| if (conn) { |
| if (conn->pending_sec_level < sec_level) |
| conn->pending_sec_level = sec_level; |
| goto done; |
| } |
| |
| BT_DBG("requesting refresh of dst_addr"); |
| |
| conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER); |
| if (!conn) |
| return ERR_PTR(-ENOMEM); |
| |
| if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) { |
| hci_conn_del(conn); |
| return ERR_PTR(-EBUSY); |
| } |
| |
| conn->state = BT_CONNECT; |
| set_bit(HCI_CONN_SCANNING, &conn->flags); |
| conn->dst_type = dst_type; |
| conn->sec_level = BT_SECURITY_LOW; |
| conn->pending_sec_level = sec_level; |
| conn->conn_timeout = conn_timeout; |
| conn->conn_reason = conn_reason; |
| |
| hci_update_passive_scan(hdev); |
| |
| done: |
| hci_conn_hold(conn); |
| return conn; |
| } |
| |
| struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, |
| u8 sec_level, u8 auth_type, |
| enum conn_reasons conn_reason) |
| { |
| struct hci_conn *acl; |
| |
| if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { |
| if (lmp_bredr_capable(hdev)) |
| return ERR_PTR(-ECONNREFUSED); |
| |
| return ERR_PTR(-EOPNOTSUPP); |
| } |
| |
| acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst); |
| if (!acl) { |
| acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER); |
| if (!acl) |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| hci_conn_hold(acl); |
| |
| acl->conn_reason = conn_reason; |
| if (acl->state == BT_OPEN || acl->state == BT_CLOSED) { |
| acl->sec_level = BT_SECURITY_LOW; |
| acl->pending_sec_level = sec_level; |
| acl->auth_type = auth_type; |
| hci_acl_create_connection(acl); |
| } |
| |
| return acl; |
| } |
| |
| struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, |
| __u16 setting, struct bt_codec *codec) |
| { |
| struct hci_conn *acl; |
| struct hci_conn *sco; |
| |
| acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING, |
| CONN_REASON_SCO_CONNECT); |
| if (IS_ERR(acl)) |
| return acl; |
| |
| sco = hci_conn_hash_lookup_ba(hdev, type, dst); |
| if (!sco) { |
| sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER); |
| if (!sco) { |
| hci_conn_drop(acl); |
| return ERR_PTR(-ENOMEM); |
| } |
| } |
| |
| acl->link = sco; |
| sco->link = acl; |
| |
| hci_conn_hold(sco); |
| |
| sco->setting = setting; |
| sco->codec = *codec; |
| |
| if (acl->state == BT_CONNECTED && |
| (sco->state == BT_OPEN || sco->state == BT_CLOSED)) { |
| set_bit(HCI_CONN_POWER_SAVE, &acl->flags); |
| hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON); |
| |
| if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) { |
| /* defer SCO setup until mode change completed */ |
| set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags); |
| return sco; |
| } |
| |
| hci_sco_setup(acl, 0x00); |
| } |
| |
| return sco; |
| } |
| |
| /* Check link security requirement */ |
| int hci_conn_check_link_mode(struct hci_conn *conn) |
| { |
| BT_DBG("hcon %p", conn); |
| |
| /* In Secure Connections Only mode, it is required that Secure |
| * Connections is used and the link is encrypted with AES-CCM |
| * using a P-256 authenticated combination key. |
| */ |
| if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) { |
| if (!hci_conn_sc_enabled(conn) || |
| !test_bit(HCI_CONN_AES_CCM, &conn->flags) || |
| conn->key_type != HCI_LK_AUTH_COMBINATION_P256) |
| return 0; |
| } |
| |
| /* AES encryption is required for Level 4: |
| * |
| * BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 3, Part C |
| * page 1319: |
| * |
| * 128-bit equivalent strength for link and encryption keys |
| * required using FIPS approved algorithms (E0 not allowed, |
| * SAFER+ not allowed, and P-192 not allowed; encryption key |
| * not shortened) |
| */ |
| if (conn->sec_level == BT_SECURITY_FIPS && |
| !test_bit(HCI_CONN_AES_CCM, &conn->flags)) { |
| bt_dev_err(conn->hdev, |
| "Invalid security: Missing AES-CCM usage"); |
| return 0; |
| } |
| |
| if (hci_conn_ssp_enabled(conn) && |
| !test_bit(HCI_CONN_ENCRYPT, &conn->flags)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* Authenticate remote device */ |
| static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type) |
| { |
| BT_DBG("hcon %p", conn); |
| |
| if (conn->pending_sec_level > sec_level) |
| sec_level = conn->pending_sec_level; |
| |
| if (sec_level > conn->sec_level) |
| conn->pending_sec_level = sec_level; |
| else if (test_bit(HCI_CONN_AUTH, &conn->flags)) |
| return 1; |
| |
| /* Make sure we preserve an existing MITM requirement*/ |
| auth_type |= (conn->auth_type & 0x01); |
| |
| conn->auth_type = auth_type; |
| |
| if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { |
| struct hci_cp_auth_requested cp; |
| |
| cp.handle = cpu_to_le16(conn->handle); |
| hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED, |
| sizeof(cp), &cp); |
| |
| /* If we're already encrypted set the REAUTH_PEND flag, |
| * otherwise set the ENCRYPT_PEND. |
| */ |
| if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) |
| set_bit(HCI_CONN_REAUTH_PEND, &conn->flags); |
| else |
| set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); |
| } |
| |
| return 0; |
| } |
| |
| /* Encrypt the link */ |
| static void hci_conn_encrypt(struct hci_conn *conn) |
| { |
| BT_DBG("hcon %p", conn); |
| |
| if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) { |
| struct hci_cp_set_conn_encrypt cp; |
| cp.handle = cpu_to_le16(conn->handle); |
| cp.encrypt = 0x01; |
| hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp), |
| &cp); |
| } |
| } |
| |
| /* Enable security */ |
| int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type, |
| bool initiator) |
| { |
| BT_DBG("hcon %p", conn); |
| |
| if (conn->type == LE_LINK) |
| return smp_conn_security(conn, sec_level); |
| |
| /* For sdp we don't need the link key. */ |
| if (sec_level == BT_SECURITY_SDP) |
| return 1; |
| |
| /* For non 2.1 devices and low security level we don't need the link |
| key. */ |
| if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn)) |
| return 1; |
| |
| /* For other security levels we need the link key. */ |
| if (!test_bit(HCI_CONN_AUTH, &conn->flags)) |
| goto auth; |
| |
| /* An authenticated FIPS approved combination key has sufficient |
| * security for security level 4. */ |
| if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 && |
| sec_level == BT_SECURITY_FIPS) |
| goto encrypt; |
| |
| /* An authenticated combination key has sufficient security for |
| security level 3. */ |
| if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 || |
| conn->key_type == HCI_LK_AUTH_COMBINATION_P256) && |
| sec_level == BT_SECURITY_HIGH) |
| goto encrypt; |
| |
| /* An unauthenticated combination key has sufficient security for |
| security level 1 and 2. */ |
| if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 || |
| conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) && |
| (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW)) |
| goto encrypt; |
| |
| /* A combination key has always sufficient security for the security |
| levels 1 or 2. High security level requires the combination key |
| is generated using maximum PIN code length (16). |
| For pre 2.1 units. */ |
| if (conn->key_type == HCI_LK_COMBINATION && |
| (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW || |
| conn->pin_length == 16)) |
| goto encrypt; |
| |
| auth: |
| if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) |
| return 0; |
| |
| if (initiator) |
| set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags); |
| |
| if (!hci_conn_auth(conn, sec_level, auth_type)) |
| return 0; |
| |
| encrypt: |
| if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) { |
| /* Ensure that the encryption key size has been read, |
| * otherwise stall the upper layer responses. |
| */ |
| if (!conn->enc_key_size) |
| return 0; |
| |
| /* Nothing else needed, all requirements are met */ |
| return 1; |
| } |
| |
| hci_conn_encrypt(conn); |
| return 0; |
| } |
| EXPORT_SYMBOL(hci_conn_security); |
| |
| /* Check secure link requirement */ |
| int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level) |
| { |
| BT_DBG("hcon %p", conn); |
| |
| /* Accept if non-secure or higher security level is required */ |
| if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS) |
| return 1; |
| |
| /* Accept if secure or higher security level is already present */ |
| if (conn->sec_level == BT_SECURITY_HIGH || |
| conn->sec_level == BT_SECURITY_FIPS) |
| return 1; |
| |
| /* Reject not secure link */ |
| return 0; |
| } |
| EXPORT_SYMBOL(hci_conn_check_secure); |
| |
| /* Switch role */ |
| int hci_conn_switch_role(struct hci_conn *conn, __u8 role) |
| { |
| BT_DBG("hcon %p", conn); |
| |
| if (role == conn->role) |
| return 1; |
| |
| if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) { |
| struct hci_cp_switch_role cp; |
| bacpy(&cp.bdaddr, &conn->dst); |
| cp.role = role; |
| hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(hci_conn_switch_role); |
| |
| /* Enter active mode */ |
| void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active) |
| { |
| struct hci_dev *hdev = conn->hdev; |
| |
| BT_DBG("hcon %p mode %d", conn, conn->mode); |
| |
| if (conn->mode != HCI_CM_SNIFF) |
| goto timer; |
| |
| if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active) |
| goto timer; |
| |
| if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { |
| struct hci_cp_exit_sniff_mode cp; |
| cp.handle = cpu_to_le16(conn->handle); |
| hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp); |
| } |
| |
| timer: |
| if (hdev->idle_timeout > 0) |
| queue_delayed_work(hdev->workqueue, &conn->idle_work, |
| msecs_to_jiffies(hdev->idle_timeout)); |
| } |
| |
| /* Drop all connection on the device */ |
| void hci_conn_hash_flush(struct hci_dev *hdev) |
| { |
| struct hci_conn_hash *h = &hdev->conn_hash; |
| struct hci_conn *c, *n; |
| |
| BT_DBG("hdev %s", hdev->name); |
| |
| list_for_each_entry_safe(c, n, &h->list, list) { |
| c->state = BT_CLOSED; |
| |
| hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM); |
| hci_conn_del(c); |
| } |
| } |
| |
| /* Check pending connect attempts */ |
| void hci_conn_check_pending(struct hci_dev *hdev) |
| { |
| struct hci_conn *conn; |
| |
| BT_DBG("hdev %s", hdev->name); |
| |
| hci_dev_lock(hdev); |
| |
| conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2); |
| if (conn) |
| hci_acl_create_connection(conn); |
| |
| hci_dev_unlock(hdev); |
| } |
| |
| static u32 get_link_mode(struct hci_conn *conn) |
| { |
| u32 link_mode = 0; |
| |
| if (conn->role == HCI_ROLE_MASTER) |
| link_mode |= HCI_LM_MASTER; |
| |
| if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) |
| link_mode |= HCI_LM_ENCRYPT; |
| |
| if (test_bit(HCI_CONN_AUTH, &conn->flags)) |
| link_mode |= HCI_LM_AUTH; |
| |
| if (test_bit(HCI_CONN_SECURE, &conn->flags)) |
| link_mode |= HCI_LM_SECURE; |
| |
| if (test_bit(HCI_CONN_FIPS, &conn->flags)) |
| link_mode |= HCI_LM_FIPS; |
| |
| return link_mode; |
| } |
| |
| int hci_get_conn_list(void __user *arg) |
| { |
| struct hci_conn *c; |
| struct hci_conn_list_req req, *cl; |
| struct hci_conn_info *ci; |
| struct hci_dev *hdev; |
| int n = 0, size, err; |
| |
| if (copy_from_user(&req, arg, sizeof(req))) |
| return -EFAULT; |
| |
| if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci)) |
| return -EINVAL; |
| |
| size = sizeof(req) + req.conn_num * sizeof(*ci); |
| |
| cl = kmalloc(size, GFP_KERNEL); |
| if (!cl) |
| return -ENOMEM; |
| |
| hdev = hci_dev_get(req.dev_id); |
| if (!hdev) { |
| kfree(cl); |
| return -ENODEV; |
| } |
| |
| ci = cl->conn_info; |
| |
| hci_dev_lock(hdev); |
| list_for_each_entry(c, &hdev->conn_hash.list, list) { |
| bacpy(&(ci + n)->bdaddr, &c->dst); |
| (ci + n)->handle = c->handle; |
| (ci + n)->type = c->type; |
| (ci + n)->out = c->out; |
| (ci + n)->state = c->state; |
| (ci + n)->link_mode = get_link_mode(c); |
| if (++n >= req.conn_num) |
| break; |
| } |
| hci_dev_unlock(hdev); |
| |
| cl->dev_id = hdev->id; |
| cl->conn_num = n; |
| size = sizeof(req) + n * sizeof(*ci); |
| |
| hci_dev_put(hdev); |
| |
| err = copy_to_user(arg, cl, size); |
| kfree(cl); |
| |
| return err ? -EFAULT : 0; |
| } |
| |
| int hci_get_conn_info(struct hci_dev *hdev, void __user *arg) |
| { |
| struct hci_conn_info_req req; |
| struct hci_conn_info ci; |
| struct hci_conn *conn; |
| char __user *ptr = arg + sizeof(req); |
| |
| if (copy_from_user(&req, arg, sizeof(req))) |
| return -EFAULT; |
| |
| hci_dev_lock(hdev); |
| conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr); |
| if (conn) { |
| bacpy(&ci.bdaddr, &conn->dst); |
| ci.handle = conn->handle; |
| ci.type = conn->type; |
| ci.out = conn->out; |
| ci.state = conn->state; |
| ci.link_mode = get_link_mode(conn); |
| } |
| hci_dev_unlock(hdev); |
| |
| if (!conn) |
| return -ENOENT; |
| |
| return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0; |
| } |
| |
| int hci_get_auth_info(struct hci_dev *hdev, void __user *arg) |
| { |
| struct hci_auth_info_req req; |
| struct hci_conn *conn; |
| |
| if (copy_from_user(&req, arg, sizeof(req))) |
| return -EFAULT; |
| |
| hci_dev_lock(hdev); |
| conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr); |
| if (conn) |
| req.type = conn->auth_type; |
| hci_dev_unlock(hdev); |
| |
| if (!conn) |
| return -ENOENT; |
| |
| return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0; |
| } |
| |
| struct hci_chan *hci_chan_create(struct hci_conn *conn) |
| { |
| struct hci_dev *hdev = conn->hdev; |
| struct hci_chan *chan; |
| |
| BT_DBG("%s hcon %p", hdev->name, conn); |
| |
| if (test_bit(HCI_CONN_DROP, &conn->flags)) { |
| BT_DBG("Refusing to create new hci_chan"); |
| return NULL; |
| } |
| |
| chan = kzalloc(sizeof(*chan), GFP_KERNEL); |
| if (!chan) |
| return NULL; |
| |
| chan->conn = hci_conn_get(conn); |
| skb_queue_head_init(&chan->data_q); |
| chan->state = BT_CONNECTED; |
| |
| list_add_rcu(&chan->list, &conn->chan_list); |
| |
| return chan; |
| } |
| |
| void hci_chan_del(struct hci_chan *chan) |
| { |
| struct hci_conn *conn = chan->conn; |
| struct hci_dev *hdev = conn->hdev; |
| |
| BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan); |
| |
| list_del_rcu(&chan->list); |
| |
| synchronize_rcu(); |
| |
| /* Prevent new hci_chan's to be created for this hci_conn */ |
| set_bit(HCI_CONN_DROP, &conn->flags); |
| |
| hci_conn_put(conn); |
| |
| skb_queue_purge(&chan->data_q); |
| kfree(chan); |
| } |
| |
| void hci_chan_list_flush(struct hci_conn *conn) |
| { |
| struct hci_chan *chan, *n; |
| |
| BT_DBG("hcon %p", conn); |
| |
| list_for_each_entry_safe(chan, n, &conn->chan_list, list) |
| hci_chan_del(chan); |
| } |
| |
| static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon, |
| __u16 handle) |
| { |
| struct hci_chan *hchan; |
| |
| list_for_each_entry(hchan, &hcon->chan_list, list) { |
| if (hchan->handle == handle) |
| return hchan; |
| } |
| |
| return NULL; |
| } |
| |
| struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle) |
| { |
| struct hci_conn_hash *h = &hdev->conn_hash; |
| struct hci_conn *hcon; |
| struct hci_chan *hchan = NULL; |
| |
| rcu_read_lock(); |
| |
| list_for_each_entry_rcu(hcon, &h->list, list) { |
| hchan = __hci_chan_lookup_handle(hcon, handle); |
| if (hchan) |
| break; |
| } |
| |
| rcu_read_unlock(); |
| |
| return hchan; |
| } |
| |
| u32 hci_conn_get_phy(struct hci_conn *conn) |
| { |
| u32 phys = 0; |
| |
| /* BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 2, Part B page 471: |
| * Table 6.2: Packets defined for synchronous, asynchronous, and |
| * CPB logical transport types. |
| */ |
| switch (conn->type) { |
| case SCO_LINK: |
| /* SCO logical transport (1 Mb/s): |
| * HV1, HV2, HV3 and DV. |
| */ |
| phys |= BT_PHY_BR_1M_1SLOT; |
| |
| break; |
| |
| case ACL_LINK: |
| /* ACL logical transport (1 Mb/s) ptt=0: |
| * DH1, DM3, DH3, DM5 and DH5. |
| */ |
| phys |= BT_PHY_BR_1M_1SLOT; |
| |
| if (conn->pkt_type & (HCI_DM3 | HCI_DH3)) |
| phys |= BT_PHY_BR_1M_3SLOT; |
| |
| if (conn->pkt_type & (HCI_DM5 | HCI_DH5)) |
| phys |= BT_PHY_BR_1M_5SLOT; |
| |
| /* ACL logical transport (2 Mb/s) ptt=1: |
| * 2-DH1, 2-DH3 and 2-DH5. |
| */ |
| if (!(conn->pkt_type & HCI_2DH1)) |
| phys |= BT_PHY_EDR_2M_1SLOT; |
| |
| if (!(conn->pkt_type & HCI_2DH3)) |
| phys |= BT_PHY_EDR_2M_3SLOT; |
| |
| if (!(conn->pkt_type & HCI_2DH5)) |
| phys |= BT_PHY_EDR_2M_5SLOT; |
| |
| /* ACL logical transport (3 Mb/s) ptt=1: |
| * 3-DH1, 3-DH3 and 3-DH5. |
| */ |
| if (!(conn->pkt_type & HCI_3DH1)) |
| phys |= BT_PHY_EDR_3M_1SLOT; |
| |
| if (!(conn->pkt_type & HCI_3DH3)) |
| phys |= BT_PHY_EDR_3M_3SLOT; |
| |
| if (!(conn->pkt_type & HCI_3DH5)) |
| phys |= BT_PHY_EDR_3M_5SLOT; |
| |
| break; |
| |
| case ESCO_LINK: |
| /* eSCO logical transport (1 Mb/s): EV3, EV4 and EV5 */ |
| phys |= BT_PHY_BR_1M_1SLOT; |
| |
| if (!(conn->pkt_type & (ESCO_EV4 | ESCO_EV5))) |
| phys |= BT_PHY_BR_1M_3SLOT; |
| |
| /* eSCO logical transport (2 Mb/s): 2-EV3, 2-EV5 */ |
| if (!(conn->pkt_type & ESCO_2EV3)) |
| phys |= BT_PHY_EDR_2M_1SLOT; |
| |
| if (!(conn->pkt_type & ESCO_2EV5)) |
| phys |= BT_PHY_EDR_2M_3SLOT; |
| |
| /* eSCO logical transport (3 Mb/s): 3-EV3, 3-EV5 */ |
| if (!(conn->pkt_type & ESCO_3EV3)) |
| phys |= BT_PHY_EDR_3M_1SLOT; |
| |
| if (!(conn->pkt_type & ESCO_3EV5)) |
| phys |= BT_PHY_EDR_3M_3SLOT; |
| |
| break; |
| |
| case LE_LINK: |
| if (conn->le_tx_phy & HCI_LE_SET_PHY_1M) |
| phys |= BT_PHY_LE_1M_TX; |
| |
| if (conn->le_rx_phy & HCI_LE_SET_PHY_1M) |
| phys |= BT_PHY_LE_1M_RX; |
| |
| if (conn->le_tx_phy & HCI_LE_SET_PHY_2M) |
| phys |= BT_PHY_LE_2M_TX; |
| |
| if (conn->le_rx_phy & HCI_LE_SET_PHY_2M) |
| phys |= BT_PHY_LE_2M_RX; |
| |
| if (conn->le_tx_phy & HCI_LE_SET_PHY_CODED) |
| phys |= BT_PHY_LE_CODED_TX; |
| |
| if (conn->le_rx_phy & HCI_LE_SET_PHY_CODED) |
| phys |= BT_PHY_LE_CODED_RX; |
| |
| break; |
| } |
| |
| return phys; |
| } |