|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2016-2017 Micron Technology, Inc. | 
|  | * | 
|  | * Authors: | 
|  | *	Peter Pan <peterpandong@micron.com> | 
|  | *	Boris Brezillon <boris.brezillon@bootlin.com> | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt)	"spi-nand: " fmt | 
|  |  | 
|  | #include <linux/device.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/mtd/spinand.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/spi/spi.h> | 
|  | #include <linux/spi/spi-mem.h> | 
|  |  | 
|  | static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val) | 
|  | { | 
|  | struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg, | 
|  | spinand->scratchbuf); | 
|  | int ret; | 
|  |  | 
|  | ret = spi_mem_exec_op(spinand->spimem, &op); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | *val = *spinand->scratchbuf; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val) | 
|  | { | 
|  | struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg, | 
|  | spinand->scratchbuf); | 
|  |  | 
|  | *spinand->scratchbuf = val; | 
|  | return spi_mem_exec_op(spinand->spimem, &op); | 
|  | } | 
|  |  | 
|  | static int spinand_read_status(struct spinand_device *spinand, u8 *status) | 
|  | { | 
|  | return spinand_read_reg_op(spinand, REG_STATUS, status); | 
|  | } | 
|  |  | 
|  | static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg) | 
|  | { | 
|  | struct nand_device *nand = spinand_to_nand(spinand); | 
|  |  | 
|  | if (WARN_ON(spinand->cur_target < 0 || | 
|  | spinand->cur_target >= nand->memorg.ntargets)) | 
|  | return -EINVAL; | 
|  |  | 
|  | *cfg = spinand->cfg_cache[spinand->cur_target]; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg) | 
|  | { | 
|  | struct nand_device *nand = spinand_to_nand(spinand); | 
|  | int ret; | 
|  |  | 
|  | if (WARN_ON(spinand->cur_target < 0 || | 
|  | spinand->cur_target >= nand->memorg.ntargets)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (spinand->cfg_cache[spinand->cur_target] == cfg) | 
|  | return 0; | 
|  |  | 
|  | ret = spinand_write_reg_op(spinand, REG_CFG, cfg); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | spinand->cfg_cache[spinand->cur_target] = cfg; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spinand_upd_cfg() - Update the configuration register | 
|  | * @spinand: the spinand device | 
|  | * @mask: the mask encoding the bits to update in the config reg | 
|  | * @val: the new value to apply | 
|  | * | 
|  | * Update the configuration register. | 
|  | * | 
|  | * Return: 0 on success, a negative error code otherwise. | 
|  | */ | 
|  | int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val) | 
|  | { | 
|  | int ret; | 
|  | u8 cfg; | 
|  |  | 
|  | ret = spinand_get_cfg(spinand, &cfg); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | cfg &= ~mask; | 
|  | cfg |= val; | 
|  |  | 
|  | return spinand_set_cfg(spinand, cfg); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spinand_select_target() - Select a specific NAND target/die | 
|  | * @spinand: the spinand device | 
|  | * @target: the target/die to select | 
|  | * | 
|  | * Select a new target/die. If chip only has one die, this function is a NOOP. | 
|  | * | 
|  | * Return: 0 on success, a negative error code otherwise. | 
|  | */ | 
|  | int spinand_select_target(struct spinand_device *spinand, unsigned int target) | 
|  | { | 
|  | struct nand_device *nand = spinand_to_nand(spinand); | 
|  | int ret; | 
|  |  | 
|  | if (WARN_ON(target >= nand->memorg.ntargets)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (spinand->cur_target == target) | 
|  | return 0; | 
|  |  | 
|  | if (nand->memorg.ntargets == 1) { | 
|  | spinand->cur_target = target; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = spinand->select_target(spinand, target); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | spinand->cur_target = target; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int spinand_init_cfg_cache(struct spinand_device *spinand) | 
|  | { | 
|  | struct nand_device *nand = spinand_to_nand(spinand); | 
|  | struct device *dev = &spinand->spimem->spi->dev; | 
|  | unsigned int target; | 
|  | int ret; | 
|  |  | 
|  | spinand->cfg_cache = devm_kcalloc(dev, | 
|  | nand->memorg.ntargets, | 
|  | sizeof(*spinand->cfg_cache), | 
|  | GFP_KERNEL); | 
|  | if (!spinand->cfg_cache) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (target = 0; target < nand->memorg.ntargets; target++) { | 
|  | ret = spinand_select_target(spinand, target); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * We use spinand_read_reg_op() instead of spinand_get_cfg() | 
|  | * here to bypass the config cache. | 
|  | */ | 
|  | ret = spinand_read_reg_op(spinand, REG_CFG, | 
|  | &spinand->cfg_cache[target]); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int spinand_init_quad_enable(struct spinand_device *spinand) | 
|  | { | 
|  | bool enable = false; | 
|  |  | 
|  | if (!(spinand->flags & SPINAND_HAS_QE_BIT)) | 
|  | return 0; | 
|  |  | 
|  | if (spinand->op_templates.read_cache->data.buswidth == 4 || | 
|  | spinand->op_templates.write_cache->data.buswidth == 4 || | 
|  | spinand->op_templates.update_cache->data.buswidth == 4) | 
|  | enable = true; | 
|  |  | 
|  | return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE, | 
|  | enable ? CFG_QUAD_ENABLE : 0); | 
|  | } | 
|  |  | 
|  | static int spinand_ecc_enable(struct spinand_device *spinand, | 
|  | bool enable) | 
|  | { | 
|  | return spinand_upd_cfg(spinand, CFG_ECC_ENABLE, | 
|  | enable ? CFG_ECC_ENABLE : 0); | 
|  | } | 
|  |  | 
|  | static int spinand_write_enable_op(struct spinand_device *spinand) | 
|  | { | 
|  | struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true); | 
|  |  | 
|  | return spi_mem_exec_op(spinand->spimem, &op); | 
|  | } | 
|  |  | 
|  | static int spinand_load_page_op(struct spinand_device *spinand, | 
|  | const struct nand_page_io_req *req) | 
|  | { | 
|  | struct nand_device *nand = spinand_to_nand(spinand); | 
|  | unsigned int row = nanddev_pos_to_row(nand, &req->pos); | 
|  | struct spi_mem_op op = SPINAND_PAGE_READ_OP(row); | 
|  |  | 
|  | return spi_mem_exec_op(spinand->spimem, &op); | 
|  | } | 
|  |  | 
|  | static int spinand_read_from_cache_op(struct spinand_device *spinand, | 
|  | const struct nand_page_io_req *req) | 
|  | { | 
|  | struct nand_device *nand = spinand_to_nand(spinand); | 
|  | struct mtd_info *mtd = nanddev_to_mtd(nand); | 
|  | struct spi_mem_dirmap_desc *rdesc; | 
|  | unsigned int nbytes = 0; | 
|  | void *buf = NULL; | 
|  | u16 column = 0; | 
|  | ssize_t ret; | 
|  |  | 
|  | if (req->datalen) { | 
|  | buf = spinand->databuf; | 
|  | nbytes = nanddev_page_size(nand); | 
|  | column = 0; | 
|  | } | 
|  |  | 
|  | if (req->ooblen) { | 
|  | nbytes += nanddev_per_page_oobsize(nand); | 
|  | if (!buf) { | 
|  | buf = spinand->oobbuf; | 
|  | column = nanddev_page_size(nand); | 
|  | } | 
|  | } | 
|  |  | 
|  | rdesc = spinand->dirmaps[req->pos.plane].rdesc; | 
|  |  | 
|  | while (nbytes) { | 
|  | ret = spi_mem_dirmap_read(rdesc, column, nbytes, buf); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (!ret || ret > nbytes) | 
|  | return -EIO; | 
|  |  | 
|  | nbytes -= ret; | 
|  | column += ret; | 
|  | buf += ret; | 
|  | } | 
|  |  | 
|  | if (req->datalen) | 
|  | memcpy(req->databuf.in, spinand->databuf + req->dataoffs, | 
|  | req->datalen); | 
|  |  | 
|  | if (req->ooblen) { | 
|  | if (req->mode == MTD_OPS_AUTO_OOB) | 
|  | mtd_ooblayout_get_databytes(mtd, req->oobbuf.in, | 
|  | spinand->oobbuf, | 
|  | req->ooboffs, | 
|  | req->ooblen); | 
|  | else | 
|  | memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs, | 
|  | req->ooblen); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int spinand_write_to_cache_op(struct spinand_device *spinand, | 
|  | const struct nand_page_io_req *req) | 
|  | { | 
|  | struct nand_device *nand = spinand_to_nand(spinand); | 
|  | struct mtd_info *mtd = nanddev_to_mtd(nand); | 
|  | struct spi_mem_dirmap_desc *wdesc; | 
|  | unsigned int nbytes, column = 0; | 
|  | void *buf = spinand->databuf; | 
|  | ssize_t ret; | 
|  |  | 
|  | /* | 
|  | * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset | 
|  | * the cache content to 0xFF (depends on vendor implementation), so we | 
|  | * must fill the page cache entirely even if we only want to program | 
|  | * the data portion of the page, otherwise we might corrupt the BBM or | 
|  | * user data previously programmed in OOB area. | 
|  | */ | 
|  | nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand); | 
|  | memset(spinand->databuf, 0xff, nbytes); | 
|  |  | 
|  | if (req->datalen) | 
|  | memcpy(spinand->databuf + req->dataoffs, req->databuf.out, | 
|  | req->datalen); | 
|  |  | 
|  | if (req->ooblen) { | 
|  | if (req->mode == MTD_OPS_AUTO_OOB) | 
|  | mtd_ooblayout_set_databytes(mtd, req->oobbuf.out, | 
|  | spinand->oobbuf, | 
|  | req->ooboffs, | 
|  | req->ooblen); | 
|  | else | 
|  | memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out, | 
|  | req->ooblen); | 
|  | } | 
|  |  | 
|  | wdesc = spinand->dirmaps[req->pos.plane].wdesc; | 
|  |  | 
|  | while (nbytes) { | 
|  | ret = spi_mem_dirmap_write(wdesc, column, nbytes, buf); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (!ret || ret > nbytes) | 
|  | return -EIO; | 
|  |  | 
|  | nbytes -= ret; | 
|  | column += ret; | 
|  | buf += ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int spinand_program_op(struct spinand_device *spinand, | 
|  | const struct nand_page_io_req *req) | 
|  | { | 
|  | struct nand_device *nand = spinand_to_nand(spinand); | 
|  | unsigned int row = nanddev_pos_to_row(nand, &req->pos); | 
|  | struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row); | 
|  |  | 
|  | return spi_mem_exec_op(spinand->spimem, &op); | 
|  | } | 
|  |  | 
|  | static int spinand_erase_op(struct spinand_device *spinand, | 
|  | const struct nand_pos *pos) | 
|  | { | 
|  | struct nand_device *nand = spinand_to_nand(spinand); | 
|  | unsigned int row = nanddev_pos_to_row(nand, pos); | 
|  | struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row); | 
|  |  | 
|  | return spi_mem_exec_op(spinand->spimem, &op); | 
|  | } | 
|  |  | 
|  | static int spinand_wait(struct spinand_device *spinand, u8 *s) | 
|  | { | 
|  | unsigned long timeo =  jiffies + msecs_to_jiffies(400); | 
|  | u8 status; | 
|  | int ret; | 
|  |  | 
|  | do { | 
|  | ret = spinand_read_status(spinand, &status); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (!(status & STATUS_BUSY)) | 
|  | goto out; | 
|  | } while (time_before(jiffies, timeo)); | 
|  |  | 
|  | /* | 
|  | * Extra read, just in case the STATUS_READY bit has changed | 
|  | * since our last check | 
|  | */ | 
|  | ret = spinand_read_status(spinand, &status); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | out: | 
|  | if (s) | 
|  | *s = status; | 
|  |  | 
|  | return status & STATUS_BUSY ? -ETIMEDOUT : 0; | 
|  | } | 
|  |  | 
|  | static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr, | 
|  | u8 ndummy, u8 *buf) | 
|  | { | 
|  | struct spi_mem_op op = SPINAND_READID_OP( | 
|  | naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN); | 
|  | int ret; | 
|  |  | 
|  | ret = spi_mem_exec_op(spinand->spimem, &op); | 
|  | if (!ret) | 
|  | memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int spinand_reset_op(struct spinand_device *spinand) | 
|  | { | 
|  | struct spi_mem_op op = SPINAND_RESET_OP; | 
|  | int ret; | 
|  |  | 
|  | ret = spi_mem_exec_op(spinand->spimem, &op); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return spinand_wait(spinand, NULL); | 
|  | } | 
|  |  | 
|  | static int spinand_lock_block(struct spinand_device *spinand, u8 lock) | 
|  | { | 
|  | return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock); | 
|  | } | 
|  |  | 
|  | static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status) | 
|  | { | 
|  | struct nand_device *nand = spinand_to_nand(spinand); | 
|  |  | 
|  | if (spinand->eccinfo.get_status) | 
|  | return spinand->eccinfo.get_status(spinand, status); | 
|  |  | 
|  | switch (status & STATUS_ECC_MASK) { | 
|  | case STATUS_ECC_NO_BITFLIPS: | 
|  | return 0; | 
|  |  | 
|  | case STATUS_ECC_HAS_BITFLIPS: | 
|  | /* | 
|  | * We have no way to know exactly how many bitflips have been | 
|  | * fixed, so let's return the maximum possible value so that | 
|  | * wear-leveling layers move the data immediately. | 
|  | */ | 
|  | return nand->eccreq.strength; | 
|  |  | 
|  | case STATUS_ECC_UNCOR_ERROR: | 
|  | return -EBADMSG; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int spinand_read_page(struct spinand_device *spinand, | 
|  | const struct nand_page_io_req *req, | 
|  | bool ecc_enabled) | 
|  | { | 
|  | u8 status; | 
|  | int ret; | 
|  |  | 
|  | ret = spinand_load_page_op(spinand, req); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = spinand_wait(spinand, &status); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | ret = spinand_read_from_cache_op(spinand, req); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (!ecc_enabled) | 
|  | return 0; | 
|  |  | 
|  | return spinand_check_ecc_status(spinand, status); | 
|  | } | 
|  |  | 
|  | static int spinand_write_page(struct spinand_device *spinand, | 
|  | const struct nand_page_io_req *req) | 
|  | { | 
|  | u8 status; | 
|  | int ret; | 
|  |  | 
|  | ret = spinand_write_enable_op(spinand); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = spinand_write_to_cache_op(spinand, req); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = spinand_program_op(spinand, req); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = spinand_wait(spinand, &status); | 
|  | if (!ret && (status & STATUS_PROG_FAILED)) | 
|  | ret = -EIO; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int spinand_mtd_read(struct mtd_info *mtd, loff_t from, | 
|  | struct mtd_oob_ops *ops) | 
|  | { | 
|  | struct spinand_device *spinand = mtd_to_spinand(mtd); | 
|  | struct nand_device *nand = mtd_to_nanddev(mtd); | 
|  | unsigned int max_bitflips = 0; | 
|  | struct nand_io_iter iter; | 
|  | bool enable_ecc = false; | 
|  | bool ecc_failed = false; | 
|  | int ret = 0; | 
|  |  | 
|  | if (ops->mode != MTD_OPS_RAW && spinand->eccinfo.ooblayout) | 
|  | enable_ecc = true; | 
|  |  | 
|  | mutex_lock(&spinand->lock); | 
|  |  | 
|  | nanddev_io_for_each_page(nand, from, ops, &iter) { | 
|  | ret = spinand_select_target(spinand, iter.req.pos.target); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | ret = spinand_ecc_enable(spinand, enable_ecc); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | ret = spinand_read_page(spinand, &iter.req, enable_ecc); | 
|  | if (ret < 0 && ret != -EBADMSG) | 
|  | break; | 
|  |  | 
|  | if (ret == -EBADMSG) { | 
|  | ecc_failed = true; | 
|  | mtd->ecc_stats.failed++; | 
|  | } else { | 
|  | mtd->ecc_stats.corrected += ret; | 
|  | max_bitflips = max_t(unsigned int, max_bitflips, ret); | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  | ops->retlen += iter.req.datalen; | 
|  | ops->oobretlen += iter.req.ooblen; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&spinand->lock); | 
|  |  | 
|  | if (ecc_failed && !ret) | 
|  | ret = -EBADMSG; | 
|  |  | 
|  | return ret ? ret : max_bitflips; | 
|  | } | 
|  |  | 
|  | static int spinand_mtd_write(struct mtd_info *mtd, loff_t to, | 
|  | struct mtd_oob_ops *ops) | 
|  | { | 
|  | struct spinand_device *spinand = mtd_to_spinand(mtd); | 
|  | struct nand_device *nand = mtd_to_nanddev(mtd); | 
|  | struct nand_io_iter iter; | 
|  | bool enable_ecc = false; | 
|  | int ret = 0; | 
|  |  | 
|  | if (ops->mode != MTD_OPS_RAW && mtd->ooblayout) | 
|  | enable_ecc = true; | 
|  |  | 
|  | mutex_lock(&spinand->lock); | 
|  |  | 
|  | nanddev_io_for_each_page(nand, to, ops, &iter) { | 
|  | ret = spinand_select_target(spinand, iter.req.pos.target); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | ret = spinand_ecc_enable(spinand, enable_ecc); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | ret = spinand_write_page(spinand, &iter.req); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | ops->retlen += iter.req.datalen; | 
|  | ops->oobretlen += iter.req.ooblen; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&spinand->lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos) | 
|  | { | 
|  | struct spinand_device *spinand = nand_to_spinand(nand); | 
|  | u8 marker[2] = { }; | 
|  | struct nand_page_io_req req = { | 
|  | .pos = *pos, | 
|  | .ooblen = sizeof(marker), | 
|  | .ooboffs = 0, | 
|  | .oobbuf.in = marker, | 
|  | .mode = MTD_OPS_RAW, | 
|  | }; | 
|  |  | 
|  | spinand_select_target(spinand, pos->target); | 
|  | spinand_read_page(spinand, &req, false); | 
|  | if (marker[0] != 0xff || marker[1] != 0xff) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs) | 
|  | { | 
|  | struct nand_device *nand = mtd_to_nanddev(mtd); | 
|  | struct spinand_device *spinand = nand_to_spinand(nand); | 
|  | struct nand_pos pos; | 
|  | int ret; | 
|  |  | 
|  | nanddev_offs_to_pos(nand, offs, &pos); | 
|  | mutex_lock(&spinand->lock); | 
|  | ret = nanddev_isbad(nand, &pos); | 
|  | mutex_unlock(&spinand->lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos) | 
|  | { | 
|  | struct spinand_device *spinand = nand_to_spinand(nand); | 
|  | u8 marker[2] = { }; | 
|  | struct nand_page_io_req req = { | 
|  | .pos = *pos, | 
|  | .ooboffs = 0, | 
|  | .ooblen = sizeof(marker), | 
|  | .oobbuf.out = marker, | 
|  | .mode = MTD_OPS_RAW, | 
|  | }; | 
|  | int ret; | 
|  |  | 
|  | ret = spinand_select_target(spinand, pos->target); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = spinand_write_enable_op(spinand); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return spinand_write_page(spinand, &req); | 
|  | } | 
|  |  | 
|  | static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs) | 
|  | { | 
|  | struct nand_device *nand = mtd_to_nanddev(mtd); | 
|  | struct spinand_device *spinand = nand_to_spinand(nand); | 
|  | struct nand_pos pos; | 
|  | int ret; | 
|  |  | 
|  | nanddev_offs_to_pos(nand, offs, &pos); | 
|  | mutex_lock(&spinand->lock); | 
|  | ret = nanddev_markbad(nand, &pos); | 
|  | mutex_unlock(&spinand->lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos) | 
|  | { | 
|  | struct spinand_device *spinand = nand_to_spinand(nand); | 
|  | u8 status; | 
|  | int ret; | 
|  |  | 
|  | ret = spinand_select_target(spinand, pos->target); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = spinand_write_enable_op(spinand); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = spinand_erase_op(spinand, pos); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = spinand_wait(spinand, &status); | 
|  | if (!ret && (status & STATUS_ERASE_FAILED)) | 
|  | ret = -EIO; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int spinand_mtd_erase(struct mtd_info *mtd, | 
|  | struct erase_info *einfo) | 
|  | { | 
|  | struct spinand_device *spinand = mtd_to_spinand(mtd); | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&spinand->lock); | 
|  | ret = nanddev_mtd_erase(mtd, einfo); | 
|  | mutex_unlock(&spinand->lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs) | 
|  | { | 
|  | struct spinand_device *spinand = mtd_to_spinand(mtd); | 
|  | struct nand_device *nand = mtd_to_nanddev(mtd); | 
|  | struct nand_pos pos; | 
|  | int ret; | 
|  |  | 
|  | nanddev_offs_to_pos(nand, offs, &pos); | 
|  | mutex_lock(&spinand->lock); | 
|  | ret = nanddev_isreserved(nand, &pos); | 
|  | mutex_unlock(&spinand->lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int spinand_create_dirmap(struct spinand_device *spinand, | 
|  | unsigned int plane) | 
|  | { | 
|  | struct nand_device *nand = spinand_to_nand(spinand); | 
|  | struct spi_mem_dirmap_info info = { | 
|  | .length = nanddev_page_size(nand) + | 
|  | nanddev_per_page_oobsize(nand), | 
|  | }; | 
|  | struct spi_mem_dirmap_desc *desc; | 
|  |  | 
|  | /* The plane number is passed in MSB just above the column address */ | 
|  | info.offset = plane << fls(nand->memorg.pagesize); | 
|  |  | 
|  | info.op_tmpl = *spinand->op_templates.update_cache; | 
|  | desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev, | 
|  | spinand->spimem, &info); | 
|  | if (IS_ERR(desc)) | 
|  | return PTR_ERR(desc); | 
|  |  | 
|  | spinand->dirmaps[plane].wdesc = desc; | 
|  |  | 
|  | info.op_tmpl = *spinand->op_templates.read_cache; | 
|  | desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev, | 
|  | spinand->spimem, &info); | 
|  | if (IS_ERR(desc)) | 
|  | return PTR_ERR(desc); | 
|  |  | 
|  | spinand->dirmaps[plane].rdesc = desc; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int spinand_create_dirmaps(struct spinand_device *spinand) | 
|  | { | 
|  | struct nand_device *nand = spinand_to_nand(spinand); | 
|  | int i, ret; | 
|  |  | 
|  | spinand->dirmaps = devm_kzalloc(&spinand->spimem->spi->dev, | 
|  | sizeof(*spinand->dirmaps) * | 
|  | nand->memorg.planes_per_lun, | 
|  | GFP_KERNEL); | 
|  | if (!spinand->dirmaps) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0; i < nand->memorg.planes_per_lun; i++) { | 
|  | ret = spinand_create_dirmap(spinand, i); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct nand_ops spinand_ops = { | 
|  | .erase = spinand_erase, | 
|  | .markbad = spinand_markbad, | 
|  | .isbad = spinand_isbad, | 
|  | }; | 
|  |  | 
|  | static const struct spinand_manufacturer *spinand_manufacturers[] = { | 
|  | &gigadevice_spinand_manufacturer, | 
|  | ¯onix_spinand_manufacturer, | 
|  | µn_spinand_manufacturer, | 
|  | ¶gon_spinand_manufacturer, | 
|  | &toshiba_spinand_manufacturer, | 
|  | &winbond_spinand_manufacturer, | 
|  | }; | 
|  |  | 
|  | static int spinand_manufacturer_match(struct spinand_device *spinand, | 
|  | enum spinand_readid_method rdid_method) | 
|  | { | 
|  | u8 *id = spinand->id.data; | 
|  | unsigned int i; | 
|  | int ret; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) { | 
|  | const struct spinand_manufacturer *manufacturer = | 
|  | spinand_manufacturers[i]; | 
|  |  | 
|  | if (id[0] != manufacturer->id) | 
|  | continue; | 
|  |  | 
|  | ret = spinand_match_and_init(spinand, | 
|  | manufacturer->chips, | 
|  | manufacturer->nchips, | 
|  | rdid_method); | 
|  | if (ret < 0) | 
|  | continue; | 
|  |  | 
|  | spinand->manufacturer = manufacturer; | 
|  | return 0; | 
|  | } | 
|  | return -ENOTSUPP; | 
|  | } | 
|  |  | 
|  | static int spinand_id_detect(struct spinand_device *spinand) | 
|  | { | 
|  | u8 *id = spinand->id.data; | 
|  | int ret; | 
|  |  | 
|  | ret = spinand_read_id_op(spinand, 0, 0, id); | 
|  | if (ret) | 
|  | return ret; | 
|  | ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE); | 
|  | if (!ret) | 
|  | return 0; | 
|  |  | 
|  | ret = spinand_read_id_op(spinand, 1, 0, id); | 
|  | if (ret) | 
|  | return ret; | 
|  | ret = spinand_manufacturer_match(spinand, | 
|  | SPINAND_READID_METHOD_OPCODE_ADDR); | 
|  | if (!ret) | 
|  | return 0; | 
|  |  | 
|  | ret = spinand_read_id_op(spinand, 0, 1, id); | 
|  | if (ret) | 
|  | return ret; | 
|  | ret = spinand_manufacturer_match(spinand, | 
|  | SPINAND_READID_METHOD_OPCODE_DUMMY); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int spinand_manufacturer_init(struct spinand_device *spinand) | 
|  | { | 
|  | if (spinand->manufacturer->ops->init) | 
|  | return spinand->manufacturer->ops->init(spinand); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void spinand_manufacturer_cleanup(struct spinand_device *spinand) | 
|  | { | 
|  | /* Release manufacturer private data */ | 
|  | if (spinand->manufacturer->ops->cleanup) | 
|  | return spinand->manufacturer->ops->cleanup(spinand); | 
|  | } | 
|  |  | 
|  | static const struct spi_mem_op * | 
|  | spinand_select_op_variant(struct spinand_device *spinand, | 
|  | const struct spinand_op_variants *variants) | 
|  | { | 
|  | struct nand_device *nand = spinand_to_nand(spinand); | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < variants->nops; i++) { | 
|  | struct spi_mem_op op = variants->ops[i]; | 
|  | unsigned int nbytes; | 
|  | int ret; | 
|  |  | 
|  | nbytes = nanddev_per_page_oobsize(nand) + | 
|  | nanddev_page_size(nand); | 
|  |  | 
|  | while (nbytes) { | 
|  | op.data.nbytes = nbytes; | 
|  | ret = spi_mem_adjust_op_size(spinand->spimem, &op); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | if (!spi_mem_supports_op(spinand->spimem, &op)) | 
|  | break; | 
|  |  | 
|  | nbytes -= op.data.nbytes; | 
|  | } | 
|  |  | 
|  | if (!nbytes) | 
|  | return &variants->ops[i]; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spinand_match_and_init() - Try to find a match between a device ID and an | 
|  | *			      entry in a spinand_info table | 
|  | * @spinand: SPI NAND object | 
|  | * @table: SPI NAND device description table | 
|  | * @table_size: size of the device description table | 
|  | * @rdid_method: read id method to match | 
|  | * | 
|  | * Match between a device ID retrieved through the READ_ID command and an | 
|  | * entry in the SPI NAND description table. If a match is found, the spinand | 
|  | * object will be initialized with information provided by the matching | 
|  | * spinand_info entry. | 
|  | * | 
|  | * Return: 0 on success, a negative error code otherwise. | 
|  | */ | 
|  | int spinand_match_and_init(struct spinand_device *spinand, | 
|  | const struct spinand_info *table, | 
|  | unsigned int table_size, | 
|  | enum spinand_readid_method rdid_method) | 
|  | { | 
|  | u8 *id = spinand->id.data; | 
|  | struct nand_device *nand = spinand_to_nand(spinand); | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < table_size; i++) { | 
|  | const struct spinand_info *info = &table[i]; | 
|  | const struct spi_mem_op *op; | 
|  |  | 
|  | if (rdid_method != info->devid.method) | 
|  | continue; | 
|  |  | 
|  | if (memcmp(id + 1, info->devid.id, info->devid.len)) | 
|  | continue; | 
|  |  | 
|  | nand->memorg = table[i].memorg; | 
|  | nand->eccreq = table[i].eccreq; | 
|  | spinand->eccinfo = table[i].eccinfo; | 
|  | spinand->flags = table[i].flags; | 
|  | spinand->id.len = 1 + table[i].devid.len; | 
|  | spinand->select_target = table[i].select_target; | 
|  |  | 
|  | op = spinand_select_op_variant(spinand, | 
|  | info->op_variants.read_cache); | 
|  | if (!op) | 
|  | return -ENOTSUPP; | 
|  |  | 
|  | spinand->op_templates.read_cache = op; | 
|  |  | 
|  | op = spinand_select_op_variant(spinand, | 
|  | info->op_variants.write_cache); | 
|  | if (!op) | 
|  | return -ENOTSUPP; | 
|  |  | 
|  | spinand->op_templates.write_cache = op; | 
|  |  | 
|  | op = spinand_select_op_variant(spinand, | 
|  | info->op_variants.update_cache); | 
|  | spinand->op_templates.update_cache = op; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -ENOTSUPP; | 
|  | } | 
|  |  | 
|  | static int spinand_detect(struct spinand_device *spinand) | 
|  | { | 
|  | struct device *dev = &spinand->spimem->spi->dev; | 
|  | struct nand_device *nand = spinand_to_nand(spinand); | 
|  | int ret; | 
|  |  | 
|  | ret = spinand_reset_op(spinand); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = spinand_id_detect(spinand); | 
|  | if (ret) { | 
|  | dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN, | 
|  | spinand->id.data); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (nand->memorg.ntargets > 1 && !spinand->select_target) { | 
|  | dev_err(dev, | 
|  | "SPI NANDs with more than one die must implement ->select_target()\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | dev_info(&spinand->spimem->spi->dev, | 
|  | "%s SPI NAND was found.\n", spinand->manufacturer->name); | 
|  | dev_info(&spinand->spimem->spi->dev, | 
|  | "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n", | 
|  | nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10, | 
|  | nanddev_page_size(nand), nanddev_per_page_oobsize(nand)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section, | 
|  | struct mtd_oob_region *region) | 
|  | { | 
|  | return -ERANGE; | 
|  | } | 
|  |  | 
|  | static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section, | 
|  | struct mtd_oob_region *region) | 
|  | { | 
|  | if (section) | 
|  | return -ERANGE; | 
|  |  | 
|  | /* Reserve 2 bytes for the BBM. */ | 
|  | region->offset = 2; | 
|  | region->length = 62; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = { | 
|  | .ecc = spinand_noecc_ooblayout_ecc, | 
|  | .free = spinand_noecc_ooblayout_free, | 
|  | }; | 
|  |  | 
|  | static int spinand_init(struct spinand_device *spinand) | 
|  | { | 
|  | struct device *dev = &spinand->spimem->spi->dev; | 
|  | struct mtd_info *mtd = spinand_to_mtd(spinand); | 
|  | struct nand_device *nand = mtd_to_nanddev(mtd); | 
|  | int ret, i; | 
|  |  | 
|  | /* | 
|  | * We need a scratch buffer because the spi_mem interface requires that | 
|  | * buf passed in spi_mem_op->data.buf be DMA-able. | 
|  | */ | 
|  | spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL); | 
|  | if (!spinand->scratchbuf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = spinand_detect(spinand); | 
|  | if (ret) | 
|  | goto err_free_bufs; | 
|  |  | 
|  | /* | 
|  | * Use kzalloc() instead of devm_kzalloc() here, because some drivers | 
|  | * may use this buffer for DMA access. | 
|  | * Memory allocated by devm_ does not guarantee DMA-safe alignment. | 
|  | */ | 
|  | spinand->databuf = kzalloc(nanddev_page_size(nand) + | 
|  | nanddev_per_page_oobsize(nand), | 
|  | GFP_KERNEL); | 
|  | if (!spinand->databuf) { | 
|  | ret = -ENOMEM; | 
|  | goto err_free_bufs; | 
|  | } | 
|  |  | 
|  | spinand->oobbuf = spinand->databuf + nanddev_page_size(nand); | 
|  |  | 
|  | ret = spinand_init_cfg_cache(spinand); | 
|  | if (ret) | 
|  | goto err_free_bufs; | 
|  |  | 
|  | ret = spinand_init_quad_enable(spinand); | 
|  | if (ret) | 
|  | goto err_free_bufs; | 
|  |  | 
|  | ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0); | 
|  | if (ret) | 
|  | goto err_free_bufs; | 
|  |  | 
|  | ret = spinand_manufacturer_init(spinand); | 
|  | if (ret) { | 
|  | dev_err(dev, | 
|  | "Failed to initialize the SPI NAND chip (err = %d)\n", | 
|  | ret); | 
|  | goto err_free_bufs; | 
|  | } | 
|  |  | 
|  | ret = spinand_create_dirmaps(spinand); | 
|  | if (ret) { | 
|  | dev_err(dev, | 
|  | "Failed to create direct mappings for read/write operations (err = %d)\n", | 
|  | ret); | 
|  | goto err_manuf_cleanup; | 
|  | } | 
|  |  | 
|  | /* After power up, all blocks are locked, so unlock them here. */ | 
|  | for (i = 0; i < nand->memorg.ntargets; i++) { | 
|  | ret = spinand_select_target(spinand, i); | 
|  | if (ret) | 
|  | goto err_manuf_cleanup; | 
|  |  | 
|  | ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED); | 
|  | if (ret) | 
|  | goto err_manuf_cleanup; | 
|  | } | 
|  |  | 
|  | ret = nanddev_init(nand, &spinand_ops, THIS_MODULE); | 
|  | if (ret) | 
|  | goto err_manuf_cleanup; | 
|  |  | 
|  | /* | 
|  | * Right now, we don't support ECC, so let the whole oob | 
|  | * area is available for user. | 
|  | */ | 
|  | mtd->_read_oob = spinand_mtd_read; | 
|  | mtd->_write_oob = spinand_mtd_write; | 
|  | mtd->_block_isbad = spinand_mtd_block_isbad; | 
|  | mtd->_block_markbad = spinand_mtd_block_markbad; | 
|  | mtd->_block_isreserved = spinand_mtd_block_isreserved; | 
|  | mtd->_erase = spinand_mtd_erase; | 
|  | mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks; | 
|  |  | 
|  | if (spinand->eccinfo.ooblayout) | 
|  | mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout); | 
|  | else | 
|  | mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout); | 
|  |  | 
|  | ret = mtd_ooblayout_count_freebytes(mtd); | 
|  | if (ret < 0) | 
|  | goto err_cleanup_nanddev; | 
|  |  | 
|  | mtd->oobavail = ret; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_cleanup_nanddev: | 
|  | nanddev_cleanup(nand); | 
|  |  | 
|  | err_manuf_cleanup: | 
|  | spinand_manufacturer_cleanup(spinand); | 
|  |  | 
|  | err_free_bufs: | 
|  | kfree(spinand->databuf); | 
|  | kfree(spinand->scratchbuf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void spinand_cleanup(struct spinand_device *spinand) | 
|  | { | 
|  | struct nand_device *nand = spinand_to_nand(spinand); | 
|  |  | 
|  | nanddev_cleanup(nand); | 
|  | spinand_manufacturer_cleanup(spinand); | 
|  | kfree(spinand->databuf); | 
|  | kfree(spinand->scratchbuf); | 
|  | } | 
|  |  | 
|  | static int spinand_probe(struct spi_mem *mem) | 
|  | { | 
|  | struct spinand_device *spinand; | 
|  | struct mtd_info *mtd; | 
|  | int ret; | 
|  |  | 
|  | spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand), | 
|  | GFP_KERNEL); | 
|  | if (!spinand) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spinand->spimem = mem; | 
|  | spi_mem_set_drvdata(mem, spinand); | 
|  | spinand_set_of_node(spinand, mem->spi->dev.of_node); | 
|  | mutex_init(&spinand->lock); | 
|  | mtd = spinand_to_mtd(spinand); | 
|  | mtd->dev.parent = &mem->spi->dev; | 
|  |  | 
|  | ret = spinand_init(spinand); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = mtd_device_register(mtd, NULL, 0); | 
|  | if (ret) | 
|  | goto err_spinand_cleanup; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_spinand_cleanup: | 
|  | spinand_cleanup(spinand); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int spinand_remove(struct spi_mem *mem) | 
|  | { | 
|  | struct spinand_device *spinand; | 
|  | struct mtd_info *mtd; | 
|  | int ret; | 
|  |  | 
|  | spinand = spi_mem_get_drvdata(mem); | 
|  | mtd = spinand_to_mtd(spinand); | 
|  |  | 
|  | ret = mtd_device_unregister(mtd); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | spinand_cleanup(spinand); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct spi_device_id spinand_ids[] = { | 
|  | { .name = "spi-nand" }, | 
|  | { /* sentinel */ }, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_OF | 
|  | static const struct of_device_id spinand_of_ids[] = { | 
|  | { .compatible = "spi-nand" }, | 
|  | { /* sentinel */ }, | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | static struct spi_mem_driver spinand_drv = { | 
|  | .spidrv = { | 
|  | .id_table = spinand_ids, | 
|  | .driver = { | 
|  | .name = "spi-nand", | 
|  | .of_match_table = of_match_ptr(spinand_of_ids), | 
|  | }, | 
|  | }, | 
|  | .probe = spinand_probe, | 
|  | .remove = spinand_remove, | 
|  | }; | 
|  | module_spi_mem_driver(spinand_drv); | 
|  |  | 
|  | MODULE_DESCRIPTION("SPI NAND framework"); | 
|  | MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>"); | 
|  | MODULE_LICENSE("GPL v2"); |