| // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) | 
 |  | 
 | /* | 
 |  * BTF-to-C type converter. | 
 |  * | 
 |  * Copyright (c) 2019 Facebook | 
 |  */ | 
 |  | 
 | #include <stdbool.h> | 
 | #include <stddef.h> | 
 | #include <stdlib.h> | 
 | #include <string.h> | 
 | #include <errno.h> | 
 | #include <linux/err.h> | 
 | #include <linux/btf.h> | 
 | #include "btf.h" | 
 | #include "hashmap.h" | 
 | #include "libbpf.h" | 
 | #include "libbpf_internal.h" | 
 |  | 
 | /* make sure libbpf doesn't use kernel-only integer typedefs */ | 
 | #pragma GCC poison u8 u16 u32 u64 s8 s16 s32 s64 | 
 |  | 
 | static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t"; | 
 | static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1; | 
 |  | 
 | static const char *pfx(int lvl) | 
 | { | 
 | 	return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl]; | 
 | } | 
 |  | 
 | enum btf_dump_type_order_state { | 
 | 	NOT_ORDERED, | 
 | 	ORDERING, | 
 | 	ORDERED, | 
 | }; | 
 |  | 
 | enum btf_dump_type_emit_state { | 
 | 	NOT_EMITTED, | 
 | 	EMITTING, | 
 | 	EMITTED, | 
 | }; | 
 |  | 
 | /* per-type auxiliary state */ | 
 | struct btf_dump_type_aux_state { | 
 | 	/* topological sorting state */ | 
 | 	enum btf_dump_type_order_state order_state: 2; | 
 | 	/* emitting state used to determine the need for forward declaration */ | 
 | 	enum btf_dump_type_emit_state emit_state: 2; | 
 | 	/* whether forward declaration was already emitted */ | 
 | 	__u8 fwd_emitted: 1; | 
 | 	/* whether unique non-duplicate name was already assigned */ | 
 | 	__u8 name_resolved: 1; | 
 | 	/* whether type is referenced from any other type */ | 
 | 	__u8 referenced: 1; | 
 | }; | 
 |  | 
 | struct btf_dump { | 
 | 	const struct btf *btf; | 
 | 	const struct btf_ext *btf_ext; | 
 | 	btf_dump_printf_fn_t printf_fn; | 
 | 	struct btf_dump_opts opts; | 
 |  | 
 | 	/* per-type auxiliary state */ | 
 | 	struct btf_dump_type_aux_state *type_states; | 
 | 	/* per-type optional cached unique name, must be freed, if present */ | 
 | 	const char **cached_names; | 
 |  | 
 | 	/* topo-sorted list of dependent type definitions */ | 
 | 	__u32 *emit_queue; | 
 | 	int emit_queue_cap; | 
 | 	int emit_queue_cnt; | 
 |  | 
 | 	/* | 
 | 	 * stack of type declarations (e.g., chain of modifiers, arrays, | 
 | 	 * funcs, etc) | 
 | 	 */ | 
 | 	__u32 *decl_stack; | 
 | 	int decl_stack_cap; | 
 | 	int decl_stack_cnt; | 
 |  | 
 | 	/* maps struct/union/enum name to a number of name occurrences */ | 
 | 	struct hashmap *type_names; | 
 | 	/* | 
 | 	 * maps typedef identifiers and enum value names to a number of such | 
 | 	 * name occurrences | 
 | 	 */ | 
 | 	struct hashmap *ident_names; | 
 | }; | 
 |  | 
 | static size_t str_hash_fn(const void *key, void *ctx) | 
 | { | 
 | 	const char *s = key; | 
 | 	size_t h = 0; | 
 |  | 
 | 	while (*s) { | 
 | 		h = h * 31 + *s; | 
 | 		s++; | 
 | 	} | 
 | 	return h; | 
 | } | 
 |  | 
 | static bool str_equal_fn(const void *a, const void *b, void *ctx) | 
 | { | 
 | 	return strcmp(a, b) == 0; | 
 | } | 
 |  | 
 | static const char *btf_name_of(const struct btf_dump *d, __u32 name_off) | 
 | { | 
 | 	return btf__name_by_offset(d->btf, name_off); | 
 | } | 
 |  | 
 | static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...) | 
 | { | 
 | 	va_list args; | 
 |  | 
 | 	va_start(args, fmt); | 
 | 	d->printf_fn(d->opts.ctx, fmt, args); | 
 | 	va_end(args); | 
 | } | 
 |  | 
 | static int btf_dump_mark_referenced(struct btf_dump *d); | 
 |  | 
 | struct btf_dump *btf_dump__new(const struct btf *btf, | 
 | 			       const struct btf_ext *btf_ext, | 
 | 			       const struct btf_dump_opts *opts, | 
 | 			       btf_dump_printf_fn_t printf_fn) | 
 | { | 
 | 	struct btf_dump *d; | 
 | 	int err; | 
 |  | 
 | 	d = calloc(1, sizeof(struct btf_dump)); | 
 | 	if (!d) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	d->btf = btf; | 
 | 	d->btf_ext = btf_ext; | 
 | 	d->printf_fn = printf_fn; | 
 | 	d->opts.ctx = opts ? opts->ctx : NULL; | 
 |  | 
 | 	d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); | 
 | 	if (IS_ERR(d->type_names)) { | 
 | 		err = PTR_ERR(d->type_names); | 
 | 		d->type_names = NULL; | 
 | 		goto err; | 
 | 	} | 
 | 	d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); | 
 | 	if (IS_ERR(d->ident_names)) { | 
 | 		err = PTR_ERR(d->ident_names); | 
 | 		d->ident_names = NULL; | 
 | 		goto err; | 
 | 	} | 
 | 	d->type_states = calloc(1 + btf__get_nr_types(d->btf), | 
 | 				sizeof(d->type_states[0])); | 
 | 	if (!d->type_states) { | 
 | 		err = -ENOMEM; | 
 | 		goto err; | 
 | 	} | 
 | 	d->cached_names = calloc(1 + btf__get_nr_types(d->btf), | 
 | 				 sizeof(d->cached_names[0])); | 
 | 	if (!d->cached_names) { | 
 | 		err = -ENOMEM; | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	/* VOID is special */ | 
 | 	d->type_states[0].order_state = ORDERED; | 
 | 	d->type_states[0].emit_state = EMITTED; | 
 |  | 
 | 	/* eagerly determine referenced types for anon enums */ | 
 | 	err = btf_dump_mark_referenced(d); | 
 | 	if (err) | 
 | 		goto err; | 
 |  | 
 | 	return d; | 
 | err: | 
 | 	btf_dump__free(d); | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | void btf_dump__free(struct btf_dump *d) | 
 | { | 
 | 	int i, cnt; | 
 |  | 
 | 	if (!d) | 
 | 		return; | 
 |  | 
 | 	free(d->type_states); | 
 | 	if (d->cached_names) { | 
 | 		/* any set cached name is owned by us and should be freed */ | 
 | 		for (i = 0, cnt = btf__get_nr_types(d->btf); i <= cnt; i++) { | 
 | 			if (d->cached_names[i]) | 
 | 				free((void *)d->cached_names[i]); | 
 | 		} | 
 | 	} | 
 | 	free(d->cached_names); | 
 | 	free(d->emit_queue); | 
 | 	free(d->decl_stack); | 
 | 	hashmap__free(d->type_names); | 
 | 	hashmap__free(d->ident_names); | 
 |  | 
 | 	free(d); | 
 | } | 
 |  | 
 | static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr); | 
 | static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id); | 
 |  | 
 | /* | 
 |  * Dump BTF type in a compilable C syntax, including all the necessary | 
 |  * dependent types, necessary for compilation. If some of the dependent types | 
 |  * were already emitted as part of previous btf_dump__dump_type() invocation | 
 |  * for another type, they won't be emitted again. This API allows callers to | 
 |  * filter out BTF types according to user-defined criterias and emitted only | 
 |  * minimal subset of types, necessary to compile everything. Full struct/union | 
 |  * definitions will still be emitted, even if the only usage is through | 
 |  * pointer and could be satisfied with just a forward declaration. | 
 |  * | 
 |  * Dumping is done in two high-level passes: | 
 |  *   1. Topologically sort type definitions to satisfy C rules of compilation. | 
 |  *   2. Emit type definitions in C syntax. | 
 |  * | 
 |  * Returns 0 on success; <0, otherwise. | 
 |  */ | 
 | int btf_dump__dump_type(struct btf_dump *d, __u32 id) | 
 | { | 
 | 	int err, i; | 
 |  | 
 | 	if (id > btf__get_nr_types(d->btf)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	d->emit_queue_cnt = 0; | 
 | 	err = btf_dump_order_type(d, id, false); | 
 | 	if (err < 0) | 
 | 		return err; | 
 |  | 
 | 	for (i = 0; i < d->emit_queue_cnt; i++) | 
 | 		btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Mark all types that are referenced from any other type. This is used to | 
 |  * determine top-level anonymous enums that need to be emitted as an | 
 |  * independent type declarations. | 
 |  * Anonymous enums come in two flavors: either embedded in a struct's field | 
 |  * definition, in which case they have to be declared inline as part of field | 
 |  * type declaration; or as a top-level anonymous enum, typically used for | 
 |  * declaring global constants. It's impossible to distinguish between two | 
 |  * without knowning whether given enum type was referenced from other type: | 
 |  * top-level anonymous enum won't be referenced by anything, while embedded | 
 |  * one will. | 
 |  */ | 
 | static int btf_dump_mark_referenced(struct btf_dump *d) | 
 | { | 
 | 	int i, j, n = btf__get_nr_types(d->btf); | 
 | 	const struct btf_type *t; | 
 | 	__u16 vlen; | 
 |  | 
 | 	for (i = 1; i <= n; i++) { | 
 | 		t = btf__type_by_id(d->btf, i); | 
 | 		vlen = btf_vlen(t); | 
 |  | 
 | 		switch (btf_kind(t)) { | 
 | 		case BTF_KIND_INT: | 
 | 		case BTF_KIND_ENUM: | 
 | 		case BTF_KIND_FWD: | 
 | 			break; | 
 |  | 
 | 		case BTF_KIND_VOLATILE: | 
 | 		case BTF_KIND_CONST: | 
 | 		case BTF_KIND_RESTRICT: | 
 | 		case BTF_KIND_PTR: | 
 | 		case BTF_KIND_TYPEDEF: | 
 | 		case BTF_KIND_FUNC: | 
 | 		case BTF_KIND_VAR: | 
 | 			d->type_states[t->type].referenced = 1; | 
 | 			break; | 
 |  | 
 | 		case BTF_KIND_ARRAY: { | 
 | 			const struct btf_array *a = btf_array(t); | 
 |  | 
 | 			d->type_states[a->index_type].referenced = 1; | 
 | 			d->type_states[a->type].referenced = 1; | 
 | 			break; | 
 | 		} | 
 | 		case BTF_KIND_STRUCT: | 
 | 		case BTF_KIND_UNION: { | 
 | 			const struct btf_member *m = btf_members(t); | 
 |  | 
 | 			for (j = 0; j < vlen; j++, m++) | 
 | 				d->type_states[m->type].referenced = 1; | 
 | 			break; | 
 | 		} | 
 | 		case BTF_KIND_FUNC_PROTO: { | 
 | 			const struct btf_param *p = btf_params(t); | 
 |  | 
 | 			for (j = 0; j < vlen; j++, p++) | 
 | 				d->type_states[p->type].referenced = 1; | 
 | 			break; | 
 | 		} | 
 | 		case BTF_KIND_DATASEC: { | 
 | 			const struct btf_var_secinfo *v = btf_var_secinfos(t); | 
 |  | 
 | 			for (j = 0; j < vlen; j++, v++) | 
 | 				d->type_states[v->type].referenced = 1; | 
 | 			break; | 
 | 		} | 
 | 		default: | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id) | 
 | { | 
 | 	__u32 *new_queue; | 
 | 	size_t new_cap; | 
 |  | 
 | 	if (d->emit_queue_cnt >= d->emit_queue_cap) { | 
 | 		new_cap = max(16, d->emit_queue_cap * 3 / 2); | 
 | 		new_queue = realloc(d->emit_queue, | 
 | 				    new_cap * sizeof(new_queue[0])); | 
 | 		if (!new_queue) | 
 | 			return -ENOMEM; | 
 | 		d->emit_queue = new_queue; | 
 | 		d->emit_queue_cap = new_cap; | 
 | 	} | 
 |  | 
 | 	d->emit_queue[d->emit_queue_cnt++] = id; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Determine order of emitting dependent types and specified type to satisfy | 
 |  * C compilation rules.  This is done through topological sorting with an | 
 |  * additional complication which comes from C rules. The main idea for C is | 
 |  * that if some type is "embedded" into a struct/union, it's size needs to be | 
 |  * known at the time of definition of containing type. E.g., for: | 
 |  * | 
 |  *	struct A {}; | 
 |  *	struct B { struct A x; } | 
 |  * | 
 |  * struct A *HAS* to be defined before struct B, because it's "embedded", | 
 |  * i.e., it is part of struct B layout. But in the following case: | 
 |  * | 
 |  *	struct A; | 
 |  *	struct B { struct A *x; } | 
 |  *	struct A {}; | 
 |  * | 
 |  * it's enough to just have a forward declaration of struct A at the time of | 
 |  * struct B definition, as struct B has a pointer to struct A, so the size of | 
 |  * field x is known without knowing struct A size: it's sizeof(void *). | 
 |  * | 
 |  * Unfortunately, there are some trickier cases we need to handle, e.g.: | 
 |  * | 
 |  *	struct A {}; // if this was forward-declaration: compilation error | 
 |  *	struct B { | 
 |  *		struct { // anonymous struct | 
 |  *			struct A y; | 
 |  *		} *x; | 
 |  *	}; | 
 |  * | 
 |  * In this case, struct B's field x is a pointer, so it's size is known | 
 |  * regardless of the size of (anonymous) struct it points to. But because this | 
 |  * struct is anonymous and thus defined inline inside struct B, *and* it | 
 |  * embeds struct A, compiler requires full definition of struct A to be known | 
 |  * before struct B can be defined. This creates a transitive dependency | 
 |  * between struct A and struct B. If struct A was forward-declared before | 
 |  * struct B definition and fully defined after struct B definition, that would | 
 |  * trigger compilation error. | 
 |  * | 
 |  * All this means that while we are doing topological sorting on BTF type | 
 |  * graph, we need to determine relationships between different types (graph | 
 |  * nodes): | 
 |  *   - weak link (relationship) between X and Y, if Y *CAN* be | 
 |  *   forward-declared at the point of X definition; | 
 |  *   - strong link, if Y *HAS* to be fully-defined before X can be defined. | 
 |  * | 
 |  * The rule is as follows. Given a chain of BTF types from X to Y, if there is | 
 |  * BTF_KIND_PTR type in the chain and at least one non-anonymous type | 
 |  * Z (excluding X, including Y), then link is weak. Otherwise, it's strong. | 
 |  * Weak/strong relationship is determined recursively during DFS traversal and | 
 |  * is returned as a result from btf_dump_order_type(). | 
 |  * | 
 |  * btf_dump_order_type() is trying to avoid unnecessary forward declarations, | 
 |  * but it is not guaranteeing that no extraneous forward declarations will be | 
 |  * emitted. | 
 |  * | 
 |  * To avoid extra work, algorithm marks some of BTF types as ORDERED, when | 
 |  * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT, | 
 |  * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the | 
 |  * entire graph path, so depending where from one came to that BTF type, it | 
 |  * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM, | 
 |  * once they are processed, there is no need to do it again, so they are | 
 |  * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces | 
 |  * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But | 
 |  * in any case, once those are processed, no need to do it again, as the | 
 |  * result won't change. | 
 |  * | 
 |  * Returns: | 
 |  *   - 1, if type is part of strong link (so there is strong topological | 
 |  *   ordering requirements); | 
 |  *   - 0, if type is part of weak link (so can be satisfied through forward | 
 |  *   declaration); | 
 |  *   - <0, on error (e.g., unsatisfiable type loop detected). | 
 |  */ | 
 | static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr) | 
 | { | 
 | 	/* | 
 | 	 * Order state is used to detect strong link cycles, but only for BTF | 
 | 	 * kinds that are or could be an independent definition (i.e., | 
 | 	 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays, | 
 | 	 * func_protos, modifiers are just means to get to these definitions. | 
 | 	 * Int/void don't need definitions, they are assumed to be always | 
 | 	 * properly defined.  We also ignore datasec, var, and funcs for now. | 
 | 	 * So for all non-defining kinds, we never even set ordering state, | 
 | 	 * for defining kinds we set ORDERING and subsequently ORDERED if it | 
 | 	 * forms a strong link. | 
 | 	 */ | 
 | 	struct btf_dump_type_aux_state *tstate = &d->type_states[id]; | 
 | 	const struct btf_type *t; | 
 | 	__u16 vlen; | 
 | 	int err, i; | 
 |  | 
 | 	/* return true, letting typedefs know that it's ok to be emitted */ | 
 | 	if (tstate->order_state == ORDERED) | 
 | 		return 1; | 
 |  | 
 | 	t = btf__type_by_id(d->btf, id); | 
 |  | 
 | 	if (tstate->order_state == ORDERING) { | 
 | 		/* type loop, but resolvable through fwd declaration */ | 
 | 		if (btf_is_composite(t) && through_ptr && t->name_off != 0) | 
 | 			return 0; | 
 | 		pr_warn("unsatisfiable type cycle, id:[%u]\n", id); | 
 | 		return -ELOOP; | 
 | 	} | 
 |  | 
 | 	switch (btf_kind(t)) { | 
 | 	case BTF_KIND_INT: | 
 | 		tstate->order_state = ORDERED; | 
 | 		return 0; | 
 |  | 
 | 	case BTF_KIND_PTR: | 
 | 		err = btf_dump_order_type(d, t->type, true); | 
 | 		tstate->order_state = ORDERED; | 
 | 		return err; | 
 |  | 
 | 	case BTF_KIND_ARRAY: | 
 | 		return btf_dump_order_type(d, btf_array(t)->type, through_ptr); | 
 |  | 
 | 	case BTF_KIND_STRUCT: | 
 | 	case BTF_KIND_UNION: { | 
 | 		const struct btf_member *m = btf_members(t); | 
 | 		/* | 
 | 		 * struct/union is part of strong link, only if it's embedded | 
 | 		 * (so no ptr in a path) or it's anonymous (so has to be | 
 | 		 * defined inline, even if declared through ptr) | 
 | 		 */ | 
 | 		if (through_ptr && t->name_off != 0) | 
 | 			return 0; | 
 |  | 
 | 		tstate->order_state = ORDERING; | 
 |  | 
 | 		vlen = btf_vlen(t); | 
 | 		for (i = 0; i < vlen; i++, m++) { | 
 | 			err = btf_dump_order_type(d, m->type, false); | 
 | 			if (err < 0) | 
 | 				return err; | 
 | 		} | 
 |  | 
 | 		if (t->name_off != 0) { | 
 | 			err = btf_dump_add_emit_queue_id(d, id); | 
 | 			if (err < 0) | 
 | 				return err; | 
 | 		} | 
 |  | 
 | 		tstate->order_state = ORDERED; | 
 | 		return 1; | 
 | 	} | 
 | 	case BTF_KIND_ENUM: | 
 | 	case BTF_KIND_FWD: | 
 | 		/* | 
 | 		 * non-anonymous or non-referenced enums are top-level | 
 | 		 * declarations and should be emitted. Same logic can be | 
 | 		 * applied to FWDs, it won't hurt anyways. | 
 | 		 */ | 
 | 		if (t->name_off != 0 || !tstate->referenced) { | 
 | 			err = btf_dump_add_emit_queue_id(d, id); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} | 
 | 		tstate->order_state = ORDERED; | 
 | 		return 1; | 
 |  | 
 | 	case BTF_KIND_TYPEDEF: { | 
 | 		int is_strong; | 
 |  | 
 | 		is_strong = btf_dump_order_type(d, t->type, through_ptr); | 
 | 		if (is_strong < 0) | 
 | 			return is_strong; | 
 |  | 
 | 		/* typedef is similar to struct/union w.r.t. fwd-decls */ | 
 | 		if (through_ptr && !is_strong) | 
 | 			return 0; | 
 |  | 
 | 		/* typedef is always a named definition */ | 
 | 		err = btf_dump_add_emit_queue_id(d, id); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		d->type_states[id].order_state = ORDERED; | 
 | 		return 1; | 
 | 	} | 
 | 	case BTF_KIND_VOLATILE: | 
 | 	case BTF_KIND_CONST: | 
 | 	case BTF_KIND_RESTRICT: | 
 | 		return btf_dump_order_type(d, t->type, through_ptr); | 
 |  | 
 | 	case BTF_KIND_FUNC_PROTO: { | 
 | 		const struct btf_param *p = btf_params(t); | 
 | 		bool is_strong; | 
 |  | 
 | 		err = btf_dump_order_type(d, t->type, through_ptr); | 
 | 		if (err < 0) | 
 | 			return err; | 
 | 		is_strong = err > 0; | 
 |  | 
 | 		vlen = btf_vlen(t); | 
 | 		for (i = 0; i < vlen; i++, p++) { | 
 | 			err = btf_dump_order_type(d, p->type, through_ptr); | 
 | 			if (err < 0) | 
 | 				return err; | 
 | 			if (err > 0) | 
 | 				is_strong = true; | 
 | 		} | 
 | 		return is_strong; | 
 | 	} | 
 | 	case BTF_KIND_FUNC: | 
 | 	case BTF_KIND_VAR: | 
 | 	case BTF_KIND_DATASEC: | 
 | 		d->type_states[id].order_state = ORDERED; | 
 | 		return 0; | 
 |  | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 | } | 
 |  | 
 | static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, | 
 | 				     const struct btf_type *t); | 
 | static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id, | 
 | 				     const struct btf_type *t, int lvl); | 
 |  | 
 | static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, | 
 | 				   const struct btf_type *t); | 
 | static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, | 
 | 				   const struct btf_type *t, int lvl); | 
 |  | 
 | static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, | 
 | 				  const struct btf_type *t); | 
 |  | 
 | static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, | 
 | 				      const struct btf_type *t, int lvl); | 
 |  | 
 | /* a local view into a shared stack */ | 
 | struct id_stack { | 
 | 	const __u32 *ids; | 
 | 	int cnt; | 
 | }; | 
 |  | 
 | static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, | 
 | 				    const char *fname, int lvl); | 
 | static void btf_dump_emit_type_chain(struct btf_dump *d, | 
 | 				     struct id_stack *decl_stack, | 
 | 				     const char *fname, int lvl); | 
 |  | 
 | static const char *btf_dump_type_name(struct btf_dump *d, __u32 id); | 
 | static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id); | 
 | static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, | 
 | 				 const char *orig_name); | 
 |  | 
 | static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id) | 
 | { | 
 | 	const struct btf_type *t = btf__type_by_id(d->btf, id); | 
 |  | 
 | 	/* __builtin_va_list is a compiler built-in, which causes compilation | 
 | 	 * errors, when compiling w/ different compiler, then used to compile | 
 | 	 * original code (e.g., GCC to compile kernel, Clang to use generated | 
 | 	 * C header from BTF). As it is built-in, it should be already defined | 
 | 	 * properly internally in compiler. | 
 | 	 */ | 
 | 	if (t->name_off == 0) | 
 | 		return false; | 
 | 	return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Emit C-syntax definitions of types from chains of BTF types. | 
 |  * | 
 |  * High-level handling of determining necessary forward declarations are handled | 
 |  * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type | 
 |  * declarations/definitions in C syntax  are handled by a combo of | 
 |  * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to | 
 |  * corresponding btf_dump_emit_*_{def,fwd}() functions. | 
 |  * | 
 |  * We also keep track of "containing struct/union type ID" to determine when | 
 |  * we reference it from inside and thus can avoid emitting unnecessary forward | 
 |  * declaration. | 
 |  * | 
 |  * This algorithm is designed in such a way, that even if some error occurs | 
 |  * (either technical, e.g., out of memory, or logical, i.e., malformed BTF | 
 |  * that doesn't comply to C rules completely), algorithm will try to proceed | 
 |  * and produce as much meaningful output as possible. | 
 |  */ | 
 | static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id) | 
 | { | 
 | 	struct btf_dump_type_aux_state *tstate = &d->type_states[id]; | 
 | 	bool top_level_def = cont_id == 0; | 
 | 	const struct btf_type *t; | 
 | 	__u16 kind; | 
 |  | 
 | 	if (tstate->emit_state == EMITTED) | 
 | 		return; | 
 |  | 
 | 	t = btf__type_by_id(d->btf, id); | 
 | 	kind = btf_kind(t); | 
 |  | 
 | 	if (tstate->emit_state == EMITTING) { | 
 | 		if (tstate->fwd_emitted) | 
 | 			return; | 
 |  | 
 | 		switch (kind) { | 
 | 		case BTF_KIND_STRUCT: | 
 | 		case BTF_KIND_UNION: | 
 | 			/* | 
 | 			 * if we are referencing a struct/union that we are | 
 | 			 * part of - then no need for fwd declaration | 
 | 			 */ | 
 | 			if (id == cont_id) | 
 | 				return; | 
 | 			if (t->name_off == 0) { | 
 | 				pr_warn("anonymous struct/union loop, id:[%u]\n", | 
 | 					id); | 
 | 				return; | 
 | 			} | 
 | 			btf_dump_emit_struct_fwd(d, id, t); | 
 | 			btf_dump_printf(d, ";\n\n"); | 
 | 			tstate->fwd_emitted = 1; | 
 | 			break; | 
 | 		case BTF_KIND_TYPEDEF: | 
 | 			/* | 
 | 			 * for typedef fwd_emitted means typedef definition | 
 | 			 * was emitted, but it can be used only for "weak" | 
 | 			 * references through pointer only, not for embedding | 
 | 			 */ | 
 | 			if (!btf_dump_is_blacklisted(d, id)) { | 
 | 				btf_dump_emit_typedef_def(d, id, t, 0); | 
 | 				btf_dump_printf(d, ";\n\n"); | 
 | 			}; | 
 | 			tstate->fwd_emitted = 1; | 
 | 			break; | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	switch (kind) { | 
 | 	case BTF_KIND_INT: | 
 | 		tstate->emit_state = EMITTED; | 
 | 		break; | 
 | 	case BTF_KIND_ENUM: | 
 | 		if (top_level_def) { | 
 | 			btf_dump_emit_enum_def(d, id, t, 0); | 
 | 			btf_dump_printf(d, ";\n\n"); | 
 | 		} | 
 | 		tstate->emit_state = EMITTED; | 
 | 		break; | 
 | 	case BTF_KIND_PTR: | 
 | 	case BTF_KIND_VOLATILE: | 
 | 	case BTF_KIND_CONST: | 
 | 	case BTF_KIND_RESTRICT: | 
 | 		btf_dump_emit_type(d, t->type, cont_id); | 
 | 		break; | 
 | 	case BTF_KIND_ARRAY: | 
 | 		btf_dump_emit_type(d, btf_array(t)->type, cont_id); | 
 | 		break; | 
 | 	case BTF_KIND_FWD: | 
 | 		btf_dump_emit_fwd_def(d, id, t); | 
 | 		btf_dump_printf(d, ";\n\n"); | 
 | 		tstate->emit_state = EMITTED; | 
 | 		break; | 
 | 	case BTF_KIND_TYPEDEF: | 
 | 		tstate->emit_state = EMITTING; | 
 | 		btf_dump_emit_type(d, t->type, id); | 
 | 		/* | 
 | 		 * typedef can server as both definition and forward | 
 | 		 * declaration; at this stage someone depends on | 
 | 		 * typedef as a forward declaration (refers to it | 
 | 		 * through pointer), so unless we already did it, | 
 | 		 * emit typedef as a forward declaration | 
 | 		 */ | 
 | 		if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) { | 
 | 			btf_dump_emit_typedef_def(d, id, t, 0); | 
 | 			btf_dump_printf(d, ";\n\n"); | 
 | 		} | 
 | 		tstate->emit_state = EMITTED; | 
 | 		break; | 
 | 	case BTF_KIND_STRUCT: | 
 | 	case BTF_KIND_UNION: | 
 | 		tstate->emit_state = EMITTING; | 
 | 		/* if it's a top-level struct/union definition or struct/union | 
 | 		 * is anonymous, then in C we'll be emitting all fields and | 
 | 		 * their types (as opposed to just `struct X`), so we need to | 
 | 		 * make sure that all types, referenced from struct/union | 
 | 		 * members have necessary forward-declarations, where | 
 | 		 * applicable | 
 | 		 */ | 
 | 		if (top_level_def || t->name_off == 0) { | 
 | 			const struct btf_member *m = btf_members(t); | 
 | 			__u16 vlen = btf_vlen(t); | 
 | 			int i, new_cont_id; | 
 |  | 
 | 			new_cont_id = t->name_off == 0 ? cont_id : id; | 
 | 			for (i = 0; i < vlen; i++, m++) | 
 | 				btf_dump_emit_type(d, m->type, new_cont_id); | 
 | 		} else if (!tstate->fwd_emitted && id != cont_id) { | 
 | 			btf_dump_emit_struct_fwd(d, id, t); | 
 | 			btf_dump_printf(d, ";\n\n"); | 
 | 			tstate->fwd_emitted = 1; | 
 | 		} | 
 |  | 
 | 		if (top_level_def) { | 
 | 			btf_dump_emit_struct_def(d, id, t, 0); | 
 | 			btf_dump_printf(d, ";\n\n"); | 
 | 			tstate->emit_state = EMITTED; | 
 | 		} else { | 
 | 			tstate->emit_state = NOT_EMITTED; | 
 | 		} | 
 | 		break; | 
 | 	case BTF_KIND_FUNC_PROTO: { | 
 | 		const struct btf_param *p = btf_params(t); | 
 | 		__u16 vlen = btf_vlen(t); | 
 | 		int i; | 
 |  | 
 | 		btf_dump_emit_type(d, t->type, cont_id); | 
 | 		for (i = 0; i < vlen; i++, p++) | 
 | 			btf_dump_emit_type(d, p->type, cont_id); | 
 |  | 
 | 		break; | 
 | 	} | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static bool btf_is_struct_packed(const struct btf *btf, __u32 id, | 
 | 				 const struct btf_type *t) | 
 | { | 
 | 	const struct btf_member *m; | 
 | 	int align, i, bit_sz; | 
 | 	__u16 vlen; | 
 |  | 
 | 	align = btf__align_of(btf, id); | 
 | 	/* size of a non-packed struct has to be a multiple of its alignment*/ | 
 | 	if (align && t->size % align) | 
 | 		return true; | 
 |  | 
 | 	m = btf_members(t); | 
 | 	vlen = btf_vlen(t); | 
 | 	/* all non-bitfield fields have to be naturally aligned */ | 
 | 	for (i = 0; i < vlen; i++, m++) { | 
 | 		align = btf__align_of(btf, m->type); | 
 | 		bit_sz = btf_member_bitfield_size(t, i); | 
 | 		if (align && bit_sz == 0 && m->offset % (8 * align) != 0) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * if original struct was marked as packed, but its layout is | 
 | 	 * naturally aligned, we'll detect that it's not packed | 
 | 	 */ | 
 | 	return false; | 
 | } | 
 |  | 
 | static int chip_away_bits(int total, int at_most) | 
 | { | 
 | 	return total % at_most ? : at_most; | 
 | } | 
 |  | 
 | static void btf_dump_emit_bit_padding(const struct btf_dump *d, | 
 | 				      int cur_off, int m_off, int m_bit_sz, | 
 | 				      int align, int lvl) | 
 | { | 
 | 	int off_diff = m_off - cur_off; | 
 | 	int ptr_bits = sizeof(void *) * 8; | 
 |  | 
 | 	if (off_diff <= 0) | 
 | 		/* no gap */ | 
 | 		return; | 
 | 	if (m_bit_sz == 0 && off_diff < align * 8) | 
 | 		/* natural padding will take care of a gap */ | 
 | 		return; | 
 |  | 
 | 	while (off_diff > 0) { | 
 | 		const char *pad_type; | 
 | 		int pad_bits; | 
 |  | 
 | 		if (ptr_bits > 32 && off_diff > 32) { | 
 | 			pad_type = "long"; | 
 | 			pad_bits = chip_away_bits(off_diff, ptr_bits); | 
 | 		} else if (off_diff > 16) { | 
 | 			pad_type = "int"; | 
 | 			pad_bits = chip_away_bits(off_diff, 32); | 
 | 		} else if (off_diff > 8) { | 
 | 			pad_type = "short"; | 
 | 			pad_bits = chip_away_bits(off_diff, 16); | 
 | 		} else { | 
 | 			pad_type = "char"; | 
 | 			pad_bits = chip_away_bits(off_diff, 8); | 
 | 		} | 
 | 		btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits); | 
 | 		off_diff -= pad_bits; | 
 | 	} | 
 | } | 
 |  | 
 | static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, | 
 | 				     const struct btf_type *t) | 
 | { | 
 | 	btf_dump_printf(d, "%s %s", | 
 | 			btf_is_struct(t) ? "struct" : "union", | 
 | 			btf_dump_type_name(d, id)); | 
 | } | 
 |  | 
 | static void btf_dump_emit_struct_def(struct btf_dump *d, | 
 | 				     __u32 id, | 
 | 				     const struct btf_type *t, | 
 | 				     int lvl) | 
 | { | 
 | 	const struct btf_member *m = btf_members(t); | 
 | 	bool is_struct = btf_is_struct(t); | 
 | 	int align, i, packed, off = 0; | 
 | 	__u16 vlen = btf_vlen(t); | 
 |  | 
 | 	packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0; | 
 |  | 
 | 	btf_dump_printf(d, "%s%s%s {", | 
 | 			is_struct ? "struct" : "union", | 
 | 			t->name_off ? " " : "", | 
 | 			btf_dump_type_name(d, id)); | 
 |  | 
 | 	for (i = 0; i < vlen; i++, m++) { | 
 | 		const char *fname; | 
 | 		int m_off, m_sz; | 
 |  | 
 | 		fname = btf_name_of(d, m->name_off); | 
 | 		m_sz = btf_member_bitfield_size(t, i); | 
 | 		m_off = btf_member_bit_offset(t, i); | 
 | 		align = packed ? 1 : btf__align_of(d->btf, m->type); | 
 |  | 
 | 		btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1); | 
 | 		btf_dump_printf(d, "\n%s", pfx(lvl + 1)); | 
 | 		btf_dump_emit_type_decl(d, m->type, fname, lvl + 1); | 
 |  | 
 | 		if (m_sz) { | 
 | 			btf_dump_printf(d, ": %d", m_sz); | 
 | 			off = m_off + m_sz; | 
 | 		} else { | 
 | 			m_sz = max(0, btf__resolve_size(d->btf, m->type)); | 
 | 			off = m_off + m_sz * 8; | 
 | 		} | 
 | 		btf_dump_printf(d, ";"); | 
 | 	} | 
 |  | 
 | 	/* pad at the end, if necessary */ | 
 | 	if (is_struct) { | 
 | 		align = packed ? 1 : btf__align_of(d->btf, id); | 
 | 		btf_dump_emit_bit_padding(d, off, t->size * 8, 0, align, | 
 | 					  lvl + 1); | 
 | 	} | 
 |  | 
 | 	if (vlen) | 
 | 		btf_dump_printf(d, "\n"); | 
 | 	btf_dump_printf(d, "%s}", pfx(lvl)); | 
 | 	if (packed) | 
 | 		btf_dump_printf(d, " __attribute__((packed))"); | 
 | } | 
 |  | 
 | static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, | 
 | 				   const struct btf_type *t) | 
 | { | 
 | 	btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id)); | 
 | } | 
 |  | 
 | static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, | 
 | 				   const struct btf_type *t, | 
 | 				   int lvl) | 
 | { | 
 | 	const struct btf_enum *v = btf_enum(t); | 
 | 	__u16 vlen = btf_vlen(t); | 
 | 	const char *name; | 
 | 	size_t dup_cnt; | 
 | 	int i; | 
 |  | 
 | 	btf_dump_printf(d, "enum%s%s", | 
 | 			t->name_off ? " " : "", | 
 | 			btf_dump_type_name(d, id)); | 
 |  | 
 | 	if (vlen) { | 
 | 		btf_dump_printf(d, " {"); | 
 | 		for (i = 0; i < vlen; i++, v++) { | 
 | 			name = btf_name_of(d, v->name_off); | 
 | 			/* enumerators share namespace with typedef idents */ | 
 | 			dup_cnt = btf_dump_name_dups(d, d->ident_names, name); | 
 | 			if (dup_cnt > 1) { | 
 | 				btf_dump_printf(d, "\n%s%s___%zu = %u,", | 
 | 						pfx(lvl + 1), name, dup_cnt, | 
 | 						(__u32)v->val); | 
 | 			} else { | 
 | 				btf_dump_printf(d, "\n%s%s = %u,", | 
 | 						pfx(lvl + 1), name, | 
 | 						(__u32)v->val); | 
 | 			} | 
 | 		} | 
 | 		btf_dump_printf(d, "\n%s}", pfx(lvl)); | 
 | 	} | 
 | } | 
 |  | 
 | static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, | 
 | 				  const struct btf_type *t) | 
 | { | 
 | 	const char *name = btf_dump_type_name(d, id); | 
 |  | 
 | 	if (btf_kflag(t)) | 
 | 		btf_dump_printf(d, "union %s", name); | 
 | 	else | 
 | 		btf_dump_printf(d, "struct %s", name); | 
 | } | 
 |  | 
 | static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, | 
 | 				     const struct btf_type *t, int lvl) | 
 | { | 
 | 	const char *name = btf_dump_ident_name(d, id); | 
 |  | 
 | 	/* | 
 | 	 * Old GCC versions are emitting invalid typedef for __gnuc_va_list | 
 | 	 * pointing to VOID. This generates warnings from btf_dump() and | 
 | 	 * results in uncompilable header file, so we are fixing it up here | 
 | 	 * with valid typedef into __builtin_va_list. | 
 | 	 */ | 
 | 	if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) { | 
 | 		btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	btf_dump_printf(d, "typedef "); | 
 | 	btf_dump_emit_type_decl(d, t->type, name, lvl); | 
 | } | 
 |  | 
 | static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id) | 
 | { | 
 | 	__u32 *new_stack; | 
 | 	size_t new_cap; | 
 |  | 
 | 	if (d->decl_stack_cnt >= d->decl_stack_cap) { | 
 | 		new_cap = max(16, d->decl_stack_cap * 3 / 2); | 
 | 		new_stack = realloc(d->decl_stack, | 
 | 				    new_cap * sizeof(new_stack[0])); | 
 | 		if (!new_stack) | 
 | 			return -ENOMEM; | 
 | 		d->decl_stack = new_stack; | 
 | 		d->decl_stack_cap = new_cap; | 
 | 	} | 
 |  | 
 | 	d->decl_stack[d->decl_stack_cnt++] = id; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Emit type declaration (e.g., field type declaration in a struct or argument | 
 |  * declaration in function prototype) in correct C syntax. | 
 |  * | 
 |  * For most types it's trivial, but there are few quirky type declaration | 
 |  * cases worth mentioning: | 
 |  *   - function prototypes (especially nesting of function prototypes); | 
 |  *   - arrays; | 
 |  *   - const/volatile/restrict for pointers vs other types. | 
 |  * | 
 |  * For a good discussion of *PARSING* C syntax (as a human), see | 
 |  * Peter van der Linden's "Expert C Programming: Deep C Secrets", | 
 |  * Ch.3 "Unscrambling Declarations in C". | 
 |  * | 
 |  * It won't help with BTF to C conversion much, though, as it's an opposite | 
 |  * problem. So we came up with this algorithm in reverse to van der Linden's | 
 |  * parsing algorithm. It goes from structured BTF representation of type | 
 |  * declaration to a valid compilable C syntax. | 
 |  * | 
 |  * For instance, consider this C typedef: | 
 |  *	typedef const int * const * arr[10] arr_t; | 
 |  * It will be represented in BTF with this chain of BTF types: | 
 |  *	[typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int] | 
 |  * | 
 |  * Notice how [const] modifier always goes before type it modifies in BTF type | 
 |  * graph, but in C syntax, const/volatile/restrict modifiers are written to | 
 |  * the right of pointers, but to the left of other types. There are also other | 
 |  * quirks, like function pointers, arrays of them, functions returning other | 
 |  * functions, etc. | 
 |  * | 
 |  * We handle that by pushing all the types to a stack, until we hit "terminal" | 
 |  * type (int/enum/struct/union/fwd). Then depending on the kind of a type on | 
 |  * top of a stack, modifiers are handled differently. Array/function pointers | 
 |  * have also wildly different syntax and how nesting of them are done. See | 
 |  * code for authoritative definition. | 
 |  * | 
 |  * To avoid allocating new stack for each independent chain of BTF types, we | 
 |  * share one bigger stack, with each chain working only on its own local view | 
 |  * of a stack frame. Some care is required to "pop" stack frames after | 
 |  * processing type declaration chain. | 
 |  */ | 
 | int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id, | 
 | 			     const struct btf_dump_emit_type_decl_opts *opts) | 
 | { | 
 | 	const char *fname; | 
 | 	int lvl; | 
 |  | 
 | 	if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	fname = OPTS_GET(opts, field_name, ""); | 
 | 	lvl = OPTS_GET(opts, indent_level, 0); | 
 | 	btf_dump_emit_type_decl(d, id, fname, lvl); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, | 
 | 				    const char *fname, int lvl) | 
 | { | 
 | 	struct id_stack decl_stack; | 
 | 	const struct btf_type *t; | 
 | 	int err, stack_start; | 
 |  | 
 | 	stack_start = d->decl_stack_cnt; | 
 | 	for (;;) { | 
 | 		err = btf_dump_push_decl_stack_id(d, id); | 
 | 		if (err < 0) { | 
 | 			/* | 
 | 			 * if we don't have enough memory for entire type decl | 
 | 			 * chain, restore stack, emit warning, and try to | 
 | 			 * proceed nevertheless | 
 | 			 */ | 
 | 			pr_warn("not enough memory for decl stack:%d", err); | 
 | 			d->decl_stack_cnt = stack_start; | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* VOID */ | 
 | 		if (id == 0) | 
 | 			break; | 
 |  | 
 | 		t = btf__type_by_id(d->btf, id); | 
 | 		switch (btf_kind(t)) { | 
 | 		case BTF_KIND_PTR: | 
 | 		case BTF_KIND_VOLATILE: | 
 | 		case BTF_KIND_CONST: | 
 | 		case BTF_KIND_RESTRICT: | 
 | 		case BTF_KIND_FUNC_PROTO: | 
 | 			id = t->type; | 
 | 			break; | 
 | 		case BTF_KIND_ARRAY: | 
 | 			id = btf_array(t)->type; | 
 | 			break; | 
 | 		case BTF_KIND_INT: | 
 | 		case BTF_KIND_ENUM: | 
 | 		case BTF_KIND_FWD: | 
 | 		case BTF_KIND_STRUCT: | 
 | 		case BTF_KIND_UNION: | 
 | 		case BTF_KIND_TYPEDEF: | 
 | 			goto done; | 
 | 		default: | 
 | 			pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", | 
 | 				btf_kind(t), id); | 
 | 			goto done; | 
 | 		} | 
 | 	} | 
 | done: | 
 | 	/* | 
 | 	 * We might be inside a chain of declarations (e.g., array of function | 
 | 	 * pointers returning anonymous (so inlined) structs, having another | 
 | 	 * array field). Each of those needs its own "stack frame" to handle | 
 | 	 * emitting of declarations. Those stack frames are non-overlapping | 
 | 	 * portions of shared btf_dump->decl_stack. To make it a bit nicer to | 
 | 	 * handle this set of nested stacks, we create a view corresponding to | 
 | 	 * our own "stack frame" and work with it as an independent stack. | 
 | 	 * We'll need to clean up after emit_type_chain() returns, though. | 
 | 	 */ | 
 | 	decl_stack.ids = d->decl_stack + stack_start; | 
 | 	decl_stack.cnt = d->decl_stack_cnt - stack_start; | 
 | 	btf_dump_emit_type_chain(d, &decl_stack, fname, lvl); | 
 | 	/* | 
 | 	 * emit_type_chain() guarantees that it will pop its entire decl_stack | 
 | 	 * frame before returning. But it works with a read-only view into | 
 | 	 * decl_stack, so it doesn't actually pop anything from the | 
 | 	 * perspective of shared btf_dump->decl_stack, per se. We need to | 
 | 	 * reset decl_stack state to how it was before us to avoid it growing | 
 | 	 * all the time. | 
 | 	 */ | 
 | 	d->decl_stack_cnt = stack_start; | 
 | } | 
 |  | 
 | static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack) | 
 | { | 
 | 	const struct btf_type *t; | 
 | 	__u32 id; | 
 |  | 
 | 	while (decl_stack->cnt) { | 
 | 		id = decl_stack->ids[decl_stack->cnt - 1]; | 
 | 		t = btf__type_by_id(d->btf, id); | 
 |  | 
 | 		switch (btf_kind(t)) { | 
 | 		case BTF_KIND_VOLATILE: | 
 | 			btf_dump_printf(d, "volatile "); | 
 | 			break; | 
 | 		case BTF_KIND_CONST: | 
 | 			btf_dump_printf(d, "const "); | 
 | 			break; | 
 | 		case BTF_KIND_RESTRICT: | 
 | 			btf_dump_printf(d, "restrict "); | 
 | 			break; | 
 | 		default: | 
 | 			return; | 
 | 		} | 
 | 		decl_stack->cnt--; | 
 | 	} | 
 | } | 
 |  | 
 | static void btf_dump_emit_name(const struct btf_dump *d, | 
 | 			       const char *name, bool last_was_ptr) | 
 | { | 
 | 	bool separate = name[0] && !last_was_ptr; | 
 |  | 
 | 	btf_dump_printf(d, "%s%s", separate ? " " : "", name); | 
 | } | 
 |  | 
 | static void btf_dump_emit_type_chain(struct btf_dump *d, | 
 | 				     struct id_stack *decls, | 
 | 				     const char *fname, int lvl) | 
 | { | 
 | 	/* | 
 | 	 * last_was_ptr is used to determine if we need to separate pointer | 
 | 	 * asterisk (*) from previous part of type signature with space, so | 
 | 	 * that we get `int ***`, instead of `int * * *`. We default to true | 
 | 	 * for cases where we have single pointer in a chain. E.g., in ptr -> | 
 | 	 * func_proto case. func_proto will start a new emit_type_chain call | 
 | 	 * with just ptr, which should be emitted as (*) or (*<fname>), so we | 
 | 	 * don't want to prepend space for that last pointer. | 
 | 	 */ | 
 | 	bool last_was_ptr = true; | 
 | 	const struct btf_type *t; | 
 | 	const char *name; | 
 | 	__u16 kind; | 
 | 	__u32 id; | 
 |  | 
 | 	while (decls->cnt) { | 
 | 		id = decls->ids[--decls->cnt]; | 
 | 		if (id == 0) { | 
 | 			/* VOID is a special snowflake */ | 
 | 			btf_dump_emit_mods(d, decls); | 
 | 			btf_dump_printf(d, "void"); | 
 | 			last_was_ptr = false; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		t = btf__type_by_id(d->btf, id); | 
 | 		kind = btf_kind(t); | 
 |  | 
 | 		switch (kind) { | 
 | 		case BTF_KIND_INT: | 
 | 			btf_dump_emit_mods(d, decls); | 
 | 			name = btf_name_of(d, t->name_off); | 
 | 			btf_dump_printf(d, "%s", name); | 
 | 			break; | 
 | 		case BTF_KIND_STRUCT: | 
 | 		case BTF_KIND_UNION: | 
 | 			btf_dump_emit_mods(d, decls); | 
 | 			/* inline anonymous struct/union */ | 
 | 			if (t->name_off == 0) | 
 | 				btf_dump_emit_struct_def(d, id, t, lvl); | 
 | 			else | 
 | 				btf_dump_emit_struct_fwd(d, id, t); | 
 | 			break; | 
 | 		case BTF_KIND_ENUM: | 
 | 			btf_dump_emit_mods(d, decls); | 
 | 			/* inline anonymous enum */ | 
 | 			if (t->name_off == 0) | 
 | 				btf_dump_emit_enum_def(d, id, t, lvl); | 
 | 			else | 
 | 				btf_dump_emit_enum_fwd(d, id, t); | 
 | 			break; | 
 | 		case BTF_KIND_FWD: | 
 | 			btf_dump_emit_mods(d, decls); | 
 | 			btf_dump_emit_fwd_def(d, id, t); | 
 | 			break; | 
 | 		case BTF_KIND_TYPEDEF: | 
 | 			btf_dump_emit_mods(d, decls); | 
 | 			btf_dump_printf(d, "%s", btf_dump_ident_name(d, id)); | 
 | 			break; | 
 | 		case BTF_KIND_PTR: | 
 | 			btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *"); | 
 | 			break; | 
 | 		case BTF_KIND_VOLATILE: | 
 | 			btf_dump_printf(d, " volatile"); | 
 | 			break; | 
 | 		case BTF_KIND_CONST: | 
 | 			btf_dump_printf(d, " const"); | 
 | 			break; | 
 | 		case BTF_KIND_RESTRICT: | 
 | 			btf_dump_printf(d, " restrict"); | 
 | 			break; | 
 | 		case BTF_KIND_ARRAY: { | 
 | 			const struct btf_array *a = btf_array(t); | 
 | 			const struct btf_type *next_t; | 
 | 			__u32 next_id; | 
 | 			bool multidim; | 
 | 			/* | 
 | 			 * GCC has a bug | 
 | 			 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354) | 
 | 			 * which causes it to emit extra const/volatile | 
 | 			 * modifiers for an array, if array's element type has | 
 | 			 * const/volatile modifiers. Clang doesn't do that. | 
 | 			 * In general, it doesn't seem very meaningful to have | 
 | 			 * a const/volatile modifier for array, so we are | 
 | 			 * going to silently skip them here. | 
 | 			 */ | 
 | 			while (decls->cnt) { | 
 | 				next_id = decls->ids[decls->cnt - 1]; | 
 | 				next_t = btf__type_by_id(d->btf, next_id); | 
 | 				if (btf_is_mod(next_t)) | 
 | 					decls->cnt--; | 
 | 				else | 
 | 					break; | 
 | 			} | 
 |  | 
 | 			if (decls->cnt == 0) { | 
 | 				btf_dump_emit_name(d, fname, last_was_ptr); | 
 | 				btf_dump_printf(d, "[%u]", a->nelems); | 
 | 				return; | 
 | 			} | 
 |  | 
 | 			next_id = decls->ids[decls->cnt - 1]; | 
 | 			next_t = btf__type_by_id(d->btf, next_id); | 
 | 			multidim = btf_is_array(next_t); | 
 | 			/* we need space if we have named non-pointer */ | 
 | 			if (fname[0] && !last_was_ptr) | 
 | 				btf_dump_printf(d, " "); | 
 | 			/* no parentheses for multi-dimensional array */ | 
 | 			if (!multidim) | 
 | 				btf_dump_printf(d, "("); | 
 | 			btf_dump_emit_type_chain(d, decls, fname, lvl); | 
 | 			if (!multidim) | 
 | 				btf_dump_printf(d, ")"); | 
 | 			btf_dump_printf(d, "[%u]", a->nelems); | 
 | 			return; | 
 | 		} | 
 | 		case BTF_KIND_FUNC_PROTO: { | 
 | 			const struct btf_param *p = btf_params(t); | 
 | 			__u16 vlen = btf_vlen(t); | 
 | 			int i; | 
 |  | 
 | 			btf_dump_emit_mods(d, decls); | 
 | 			if (decls->cnt) { | 
 | 				btf_dump_printf(d, " ("); | 
 | 				btf_dump_emit_type_chain(d, decls, fname, lvl); | 
 | 				btf_dump_printf(d, ")"); | 
 | 			} else { | 
 | 				btf_dump_emit_name(d, fname, last_was_ptr); | 
 | 			} | 
 | 			btf_dump_printf(d, "("); | 
 | 			/* | 
 | 			 * Clang for BPF target generates func_proto with no | 
 | 			 * args as a func_proto with a single void arg (e.g., | 
 | 			 * `int (*f)(void)` vs just `int (*f)()`). We are | 
 | 			 * going to pretend there are no args for such case. | 
 | 			 */ | 
 | 			if (vlen == 1 && p->type == 0) { | 
 | 				btf_dump_printf(d, ")"); | 
 | 				return; | 
 | 			} | 
 |  | 
 | 			for (i = 0; i < vlen; i++, p++) { | 
 | 				if (i > 0) | 
 | 					btf_dump_printf(d, ", "); | 
 |  | 
 | 				/* last arg of type void is vararg */ | 
 | 				if (i == vlen - 1 && p->type == 0) { | 
 | 					btf_dump_printf(d, "..."); | 
 | 					break; | 
 | 				} | 
 |  | 
 | 				name = btf_name_of(d, p->name_off); | 
 | 				btf_dump_emit_type_decl(d, p->type, name, lvl); | 
 | 			} | 
 |  | 
 | 			btf_dump_printf(d, ")"); | 
 | 			return; | 
 | 		} | 
 | 		default: | 
 | 			pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", | 
 | 				kind, id); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		last_was_ptr = kind == BTF_KIND_PTR; | 
 | 	} | 
 |  | 
 | 	btf_dump_emit_name(d, fname, last_was_ptr); | 
 | } | 
 |  | 
 | /* return number of duplicates (occurrences) of a given name */ | 
 | static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, | 
 | 				 const char *orig_name) | 
 | { | 
 | 	size_t dup_cnt = 0; | 
 |  | 
 | 	hashmap__find(name_map, orig_name, (void **)&dup_cnt); | 
 | 	dup_cnt++; | 
 | 	hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL); | 
 |  | 
 | 	return dup_cnt; | 
 | } | 
 |  | 
 | static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id, | 
 | 					 struct hashmap *name_map) | 
 | { | 
 | 	struct btf_dump_type_aux_state *s = &d->type_states[id]; | 
 | 	const struct btf_type *t = btf__type_by_id(d->btf, id); | 
 | 	const char *orig_name = btf_name_of(d, t->name_off); | 
 | 	const char **cached_name = &d->cached_names[id]; | 
 | 	size_t dup_cnt; | 
 |  | 
 | 	if (t->name_off == 0) | 
 | 		return ""; | 
 |  | 
 | 	if (s->name_resolved) | 
 | 		return *cached_name ? *cached_name : orig_name; | 
 |  | 
 | 	dup_cnt = btf_dump_name_dups(d, name_map, orig_name); | 
 | 	if (dup_cnt > 1) { | 
 | 		const size_t max_len = 256; | 
 | 		char new_name[max_len]; | 
 |  | 
 | 		snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt); | 
 | 		*cached_name = strdup(new_name); | 
 | 	} | 
 |  | 
 | 	s->name_resolved = 1; | 
 | 	return *cached_name ? *cached_name : orig_name; | 
 | } | 
 |  | 
 | static const char *btf_dump_type_name(struct btf_dump *d, __u32 id) | 
 | { | 
 | 	return btf_dump_resolve_name(d, id, d->type_names); | 
 | } | 
 |  | 
 | static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id) | 
 | { | 
 | 	return btf_dump_resolve_name(d, id, d->ident_names); | 
 | } |