blob: 26aa7f32151f19bd163cdf79f4ad44fee78a79d2 [file] [log] [blame]
/* Synopsys DesignWare Core Enterprise Ethernet (XLGMAC) Driver
*
* Copyright (c) 2017 Synopsys, Inc. (www.synopsys.com)
*
* This program is dual-licensed; you may select either version 2 of
* the GNU General Public License ("GPL") or BSD license ("BSD").
*
* This Synopsys DWC XLGMAC software driver and associated documentation
* (hereinafter the "Software") is an unsupported proprietary work of
* Synopsys, Inc. unless otherwise expressly agreed to in writing between
* Synopsys and you. The Software IS NOT an item of Licensed Software or a
* Licensed Product under any End User Software License Agreement or
* Agreement for Licensed Products with Synopsys or any supplement thereto.
* Synopsys is a registered trademark of Synopsys, Inc. Other names included
* in the SOFTWARE may be the trademarks of their respective owners.
*/
#include <linux/netdevice.h>
#include <linux/tcp.h>
#include <linux/interrupt.h>
#include "dwc-xlgmac.h"
#include "dwc-xlgmac-reg.h"
static int xlgmac_one_poll(struct napi_struct *, int);
static int xlgmac_all_poll(struct napi_struct *, int);
static inline unsigned int xlgmac_tx_avail_desc(struct xlgmac_ring *ring)
{
return (ring->dma_desc_count - (ring->cur - ring->dirty));
}
static inline unsigned int xlgmac_rx_dirty_desc(struct xlgmac_ring *ring)
{
return (ring->cur - ring->dirty);
}
static int xlgmac_maybe_stop_tx_queue(
struct xlgmac_channel *channel,
struct xlgmac_ring *ring,
unsigned int count)
{
struct xlgmac_pdata *pdata = channel->pdata;
if (count > xlgmac_tx_avail_desc(ring)) {
netif_info(pdata, drv, pdata->netdev,
"Tx queue stopped, not enough descriptors available\n");
netif_stop_subqueue(pdata->netdev, channel->queue_index);
ring->tx.queue_stopped = 1;
/* If we haven't notified the hardware because of xmit_more
* support, tell it now
*/
if (ring->tx.xmit_more)
pdata->hw_ops.tx_start_xmit(channel, ring);
return NETDEV_TX_BUSY;
}
return 0;
}
static void xlgmac_prep_vlan(struct sk_buff *skb,
struct xlgmac_pkt_info *pkt_info)
{
if (skb_vlan_tag_present(skb))
pkt_info->vlan_ctag = skb_vlan_tag_get(skb);
}
static int xlgmac_prep_tso(struct sk_buff *skb,
struct xlgmac_pkt_info *pkt_info)
{
int ret;
if (!XLGMAC_GET_REG_BITS(pkt_info->attributes,
TX_PACKET_ATTRIBUTES_TSO_ENABLE_POS,
TX_PACKET_ATTRIBUTES_TSO_ENABLE_LEN))
return 0;
ret = skb_cow_head(skb, 0);
if (ret)
return ret;
pkt_info->header_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
pkt_info->tcp_header_len = tcp_hdrlen(skb);
pkt_info->tcp_payload_len = skb->len - pkt_info->header_len;
pkt_info->mss = skb_shinfo(skb)->gso_size;
XLGMAC_PR("header_len=%u\n", pkt_info->header_len);
XLGMAC_PR("tcp_header_len=%u, tcp_payload_len=%u\n",
pkt_info->tcp_header_len, pkt_info->tcp_payload_len);
XLGMAC_PR("mss=%u\n", pkt_info->mss);
/* Update the number of packets that will ultimately be transmitted
* along with the extra bytes for each extra packet
*/
pkt_info->tx_packets = skb_shinfo(skb)->gso_segs;
pkt_info->tx_bytes += (pkt_info->tx_packets - 1) * pkt_info->header_len;
return 0;
}
static int xlgmac_is_tso(struct sk_buff *skb)
{
if (skb->ip_summed != CHECKSUM_PARTIAL)
return 0;
if (!skb_is_gso(skb))
return 0;
return 1;
}
static void xlgmac_prep_tx_pkt(struct xlgmac_pdata *pdata,
struct xlgmac_ring *ring,
struct sk_buff *skb,
struct xlgmac_pkt_info *pkt_info)
{
skb_frag_t *frag;
unsigned int context_desc;
unsigned int len;
unsigned int i;
pkt_info->skb = skb;
context_desc = 0;
pkt_info->desc_count = 0;
pkt_info->tx_packets = 1;
pkt_info->tx_bytes = skb->len;
if (xlgmac_is_tso(skb)) {
/* TSO requires an extra descriptor if mss is different */
if (skb_shinfo(skb)->gso_size != ring->tx.cur_mss) {
context_desc = 1;
pkt_info->desc_count++;
}
/* TSO requires an extra descriptor for TSO header */
pkt_info->desc_count++;
pkt_info->attributes = XLGMAC_SET_REG_BITS(
pkt_info->attributes,
TX_PACKET_ATTRIBUTES_TSO_ENABLE_POS,
TX_PACKET_ATTRIBUTES_TSO_ENABLE_LEN,
1);
pkt_info->attributes = XLGMAC_SET_REG_BITS(
pkt_info->attributes,
TX_PACKET_ATTRIBUTES_CSUM_ENABLE_POS,
TX_PACKET_ATTRIBUTES_CSUM_ENABLE_LEN,
1);
} else if (skb->ip_summed == CHECKSUM_PARTIAL)
pkt_info->attributes = XLGMAC_SET_REG_BITS(
pkt_info->attributes,
TX_PACKET_ATTRIBUTES_CSUM_ENABLE_POS,
TX_PACKET_ATTRIBUTES_CSUM_ENABLE_LEN,
1);
if (skb_vlan_tag_present(skb)) {
/* VLAN requires an extra descriptor if tag is different */
if (skb_vlan_tag_get(skb) != ring->tx.cur_vlan_ctag)
/* We can share with the TSO context descriptor */
if (!context_desc) {
context_desc = 1;
pkt_info->desc_count++;
}
pkt_info->attributes = XLGMAC_SET_REG_BITS(
pkt_info->attributes,
TX_PACKET_ATTRIBUTES_VLAN_CTAG_POS,
TX_PACKET_ATTRIBUTES_VLAN_CTAG_LEN,
1);
}
for (len = skb_headlen(skb); len;) {
pkt_info->desc_count++;
len -= min_t(unsigned int, len, XLGMAC_TX_MAX_BUF_SIZE);
}
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
frag = &skb_shinfo(skb)->frags[i];
for (len = skb_frag_size(frag); len; ) {
pkt_info->desc_count++;
len -= min_t(unsigned int, len, XLGMAC_TX_MAX_BUF_SIZE);
}
}
}
static int xlgmac_calc_rx_buf_size(struct net_device *netdev, unsigned int mtu)
{
unsigned int rx_buf_size;
if (mtu > XLGMAC_JUMBO_PACKET_MTU) {
netdev_alert(netdev, "MTU exceeds maximum supported value\n");
return -EINVAL;
}
rx_buf_size = mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
rx_buf_size = clamp_val(rx_buf_size, XLGMAC_RX_MIN_BUF_SIZE, PAGE_SIZE);
rx_buf_size = (rx_buf_size + XLGMAC_RX_BUF_ALIGN - 1) &
~(XLGMAC_RX_BUF_ALIGN - 1);
return rx_buf_size;
}
static void xlgmac_enable_rx_tx_ints(struct xlgmac_pdata *pdata)
{
struct xlgmac_hw_ops *hw_ops = &pdata->hw_ops;
struct xlgmac_channel *channel;
enum xlgmac_int int_id;
unsigned int i;
channel = pdata->channel_head;
for (i = 0; i < pdata->channel_count; i++, channel++) {
if (channel->tx_ring && channel->rx_ring)
int_id = XLGMAC_INT_DMA_CH_SR_TI_RI;
else if (channel->tx_ring)
int_id = XLGMAC_INT_DMA_CH_SR_TI;
else if (channel->rx_ring)
int_id = XLGMAC_INT_DMA_CH_SR_RI;
else
continue;
hw_ops->enable_int(channel, int_id);
}
}
static void xlgmac_disable_rx_tx_ints(struct xlgmac_pdata *pdata)
{
struct xlgmac_hw_ops *hw_ops = &pdata->hw_ops;
struct xlgmac_channel *channel;
enum xlgmac_int int_id;
unsigned int i;
channel = pdata->channel_head;
for (i = 0; i < pdata->channel_count; i++, channel++) {
if (channel->tx_ring && channel->rx_ring)
int_id = XLGMAC_INT_DMA_CH_SR_TI_RI;
else if (channel->tx_ring)
int_id = XLGMAC_INT_DMA_CH_SR_TI;
else if (channel->rx_ring)
int_id = XLGMAC_INT_DMA_CH_SR_RI;
else
continue;
hw_ops->disable_int(channel, int_id);
}
}
static irqreturn_t xlgmac_isr(int irq, void *data)
{
unsigned int dma_isr, dma_ch_isr, mac_isr;
struct xlgmac_pdata *pdata = data;
struct xlgmac_channel *channel;
struct xlgmac_hw_ops *hw_ops;
unsigned int i, ti, ri;
hw_ops = &pdata->hw_ops;
/* The DMA interrupt status register also reports MAC and MTL
* interrupts. So for polling mode, we just need to check for
* this register to be non-zero
*/
dma_isr = readl(pdata->mac_regs + DMA_ISR);
if (!dma_isr)
return IRQ_HANDLED;
netif_dbg(pdata, intr, pdata->netdev, "DMA_ISR=%#010x\n", dma_isr);
for (i = 0; i < pdata->channel_count; i++) {
if (!(dma_isr & (1 << i)))
continue;
channel = pdata->channel_head + i;
dma_ch_isr = readl(XLGMAC_DMA_REG(channel, DMA_CH_SR));
netif_dbg(pdata, intr, pdata->netdev, "DMA_CH%u_ISR=%#010x\n",
i, dma_ch_isr);
/* The TI or RI interrupt bits may still be set even if using
* per channel DMA interrupts. Check to be sure those are not
* enabled before using the private data napi structure.
*/
ti = XLGMAC_GET_REG_BITS(dma_ch_isr, DMA_CH_SR_TI_POS,
DMA_CH_SR_TI_LEN);
ri = XLGMAC_GET_REG_BITS(dma_ch_isr, DMA_CH_SR_RI_POS,
DMA_CH_SR_RI_LEN);
if (!pdata->per_channel_irq && (ti || ri)) {
if (napi_schedule_prep(&pdata->napi)) {
/* Disable Tx and Rx interrupts */
xlgmac_disable_rx_tx_ints(pdata);
pdata->stats.napi_poll_isr++;
/* Turn on polling */
__napi_schedule_irqoff(&pdata->napi);
}
}
if (XLGMAC_GET_REG_BITS(dma_ch_isr, DMA_CH_SR_TPS_POS,
DMA_CH_SR_TPS_LEN))
pdata->stats.tx_process_stopped++;
if (XLGMAC_GET_REG_BITS(dma_ch_isr, DMA_CH_SR_RPS_POS,
DMA_CH_SR_RPS_LEN))
pdata->stats.rx_process_stopped++;
if (XLGMAC_GET_REG_BITS(dma_ch_isr, DMA_CH_SR_TBU_POS,
DMA_CH_SR_TBU_LEN))
pdata->stats.tx_buffer_unavailable++;
if (XLGMAC_GET_REG_BITS(dma_ch_isr, DMA_CH_SR_RBU_POS,
DMA_CH_SR_RBU_LEN))
pdata->stats.rx_buffer_unavailable++;
/* Restart the device on a Fatal Bus Error */
if (XLGMAC_GET_REG_BITS(dma_ch_isr, DMA_CH_SR_FBE_POS,
DMA_CH_SR_FBE_LEN)) {
pdata->stats.fatal_bus_error++;
schedule_work(&pdata->restart_work);
}
/* Clear all interrupt signals */
writel(dma_ch_isr, XLGMAC_DMA_REG(channel, DMA_CH_SR));
}
if (XLGMAC_GET_REG_BITS(dma_isr, DMA_ISR_MACIS_POS,
DMA_ISR_MACIS_LEN)) {
mac_isr = readl(pdata->mac_regs + MAC_ISR);
if (XLGMAC_GET_REG_BITS(mac_isr, MAC_ISR_MMCTXIS_POS,
MAC_ISR_MMCTXIS_LEN))
hw_ops->tx_mmc_int(pdata);
if (XLGMAC_GET_REG_BITS(mac_isr, MAC_ISR_MMCRXIS_POS,
MAC_ISR_MMCRXIS_LEN))
hw_ops->rx_mmc_int(pdata);
}
return IRQ_HANDLED;
}
static irqreturn_t xlgmac_dma_isr(int irq, void *data)
{
struct xlgmac_channel *channel = data;
/* Per channel DMA interrupts are enabled, so we use the per
* channel napi structure and not the private data napi structure
*/
if (napi_schedule_prep(&channel->napi)) {
/* Disable Tx and Rx interrupts */
disable_irq_nosync(channel->dma_irq);
/* Turn on polling */
__napi_schedule_irqoff(&channel->napi);
}
return IRQ_HANDLED;
}
static void xlgmac_tx_timer(struct timer_list *t)
{
struct xlgmac_channel *channel = from_timer(channel, t, tx_timer);
struct xlgmac_pdata *pdata = channel->pdata;
struct napi_struct *napi;
napi = (pdata->per_channel_irq) ? &channel->napi : &pdata->napi;
if (napi_schedule_prep(napi)) {
/* Disable Tx and Rx interrupts */
if (pdata->per_channel_irq)
disable_irq_nosync(channel->dma_irq);
else
xlgmac_disable_rx_tx_ints(pdata);
pdata->stats.napi_poll_txtimer++;
/* Turn on polling */
__napi_schedule(napi);
}
channel->tx_timer_active = 0;
}
static void xlgmac_init_timers(struct xlgmac_pdata *pdata)
{
struct xlgmac_channel *channel;
unsigned int i;
channel = pdata->channel_head;
for (i = 0; i < pdata->channel_count; i++, channel++) {
if (!channel->tx_ring)
break;
timer_setup(&channel->tx_timer, xlgmac_tx_timer, 0);
}
}
static void xlgmac_stop_timers(struct xlgmac_pdata *pdata)
{
struct xlgmac_channel *channel;
unsigned int i;
channel = pdata->channel_head;
for (i = 0; i < pdata->channel_count; i++, channel++) {
if (!channel->tx_ring)
break;
del_timer_sync(&channel->tx_timer);
}
}
static void xlgmac_napi_enable(struct xlgmac_pdata *pdata, unsigned int add)
{
struct xlgmac_channel *channel;
unsigned int i;
if (pdata->per_channel_irq) {
channel = pdata->channel_head;
for (i = 0; i < pdata->channel_count; i++, channel++) {
if (add)
netif_napi_add(pdata->netdev, &channel->napi,
xlgmac_one_poll,
NAPI_POLL_WEIGHT);
napi_enable(&channel->napi);
}
} else {
if (add)
netif_napi_add(pdata->netdev, &pdata->napi,
xlgmac_all_poll, NAPI_POLL_WEIGHT);
napi_enable(&pdata->napi);
}
}
static void xlgmac_napi_disable(struct xlgmac_pdata *pdata, unsigned int del)
{
struct xlgmac_channel *channel;
unsigned int i;
if (pdata->per_channel_irq) {
channel = pdata->channel_head;
for (i = 0; i < pdata->channel_count; i++, channel++) {
napi_disable(&channel->napi);
if (del)
netif_napi_del(&channel->napi);
}
} else {
napi_disable(&pdata->napi);
if (del)
netif_napi_del(&pdata->napi);
}
}
static int xlgmac_request_irqs(struct xlgmac_pdata *pdata)
{
struct net_device *netdev = pdata->netdev;
struct xlgmac_channel *channel;
unsigned int i;
int ret;
ret = devm_request_irq(pdata->dev, pdata->dev_irq, xlgmac_isr,
IRQF_SHARED, netdev->name, pdata);
if (ret) {
netdev_alert(netdev, "error requesting irq %d\n",
pdata->dev_irq);
return ret;
}
if (!pdata->per_channel_irq)
return 0;
channel = pdata->channel_head;
for (i = 0; i < pdata->channel_count; i++, channel++) {
snprintf(channel->dma_irq_name,
sizeof(channel->dma_irq_name) - 1,
"%s-TxRx-%u", netdev_name(netdev),
channel->queue_index);
ret = devm_request_irq(pdata->dev, channel->dma_irq,
xlgmac_dma_isr, 0,
channel->dma_irq_name, channel);
if (ret) {
netdev_alert(netdev, "error requesting irq %d\n",
channel->dma_irq);
goto err_irq;
}
}
return 0;
err_irq:
/* Using an unsigned int, 'i' will go to UINT_MAX and exit */
for (i--, channel--; i < pdata->channel_count; i--, channel--)
devm_free_irq(pdata->dev, channel->dma_irq, channel);
devm_free_irq(pdata->dev, pdata->dev_irq, pdata);
return ret;
}
static void xlgmac_free_irqs(struct xlgmac_pdata *pdata)
{
struct xlgmac_channel *channel;
unsigned int i;
devm_free_irq(pdata->dev, pdata->dev_irq, pdata);
if (!pdata->per_channel_irq)
return;
channel = pdata->channel_head;
for (i = 0; i < pdata->channel_count; i++, channel++)
devm_free_irq(pdata->dev, channel->dma_irq, channel);
}
static void xlgmac_free_tx_data(struct xlgmac_pdata *pdata)
{
struct xlgmac_desc_ops *desc_ops = &pdata->desc_ops;
struct xlgmac_desc_data *desc_data;
struct xlgmac_channel *channel;
struct xlgmac_ring *ring;
unsigned int i, j;
channel = pdata->channel_head;
for (i = 0; i < pdata->channel_count; i++, channel++) {
ring = channel->tx_ring;
if (!ring)
break;
for (j = 0; j < ring->dma_desc_count; j++) {
desc_data = XLGMAC_GET_DESC_DATA(ring, j);
desc_ops->unmap_desc_data(pdata, desc_data);
}
}
}
static void xlgmac_free_rx_data(struct xlgmac_pdata *pdata)
{
struct xlgmac_desc_ops *desc_ops = &pdata->desc_ops;
struct xlgmac_desc_data *desc_data;
struct xlgmac_channel *channel;
struct xlgmac_ring *ring;
unsigned int i, j;
channel = pdata->channel_head;
for (i = 0; i < pdata->channel_count; i++, channel++) {
ring = channel->rx_ring;
if (!ring)
break;
for (j = 0; j < ring->dma_desc_count; j++) {
desc_data = XLGMAC_GET_DESC_DATA(ring, j);
desc_ops->unmap_desc_data(pdata, desc_data);
}
}
}
static int xlgmac_start(struct xlgmac_pdata *pdata)
{
struct xlgmac_hw_ops *hw_ops = &pdata->hw_ops;
struct net_device *netdev = pdata->netdev;
int ret;
hw_ops->init(pdata);
xlgmac_napi_enable(pdata, 1);
ret = xlgmac_request_irqs(pdata);
if (ret)
goto err_napi;
hw_ops->enable_tx(pdata);
hw_ops->enable_rx(pdata);
netif_tx_start_all_queues(netdev);
return 0;
err_napi:
xlgmac_napi_disable(pdata, 1);
hw_ops->exit(pdata);
return ret;
}
static void xlgmac_stop(struct xlgmac_pdata *pdata)
{
struct xlgmac_hw_ops *hw_ops = &pdata->hw_ops;
struct net_device *netdev = pdata->netdev;
struct xlgmac_channel *channel;
struct netdev_queue *txq;
unsigned int i;
netif_tx_stop_all_queues(netdev);
xlgmac_stop_timers(pdata);
hw_ops->disable_tx(pdata);
hw_ops->disable_rx(pdata);
xlgmac_free_irqs(pdata);
xlgmac_napi_disable(pdata, 1);
hw_ops->exit(pdata);
channel = pdata->channel_head;
for (i = 0; i < pdata->channel_count; i++, channel++) {
if (!channel->tx_ring)
continue;
txq = netdev_get_tx_queue(netdev, channel->queue_index);
netdev_tx_reset_queue(txq);
}
}
static void xlgmac_restart_dev(struct xlgmac_pdata *pdata)
{
/* If not running, "restart" will happen on open */
if (!netif_running(pdata->netdev))
return;
xlgmac_stop(pdata);
xlgmac_free_tx_data(pdata);
xlgmac_free_rx_data(pdata);
xlgmac_start(pdata);
}
static void xlgmac_restart(struct work_struct *work)
{
struct xlgmac_pdata *pdata = container_of(work,
struct xlgmac_pdata,
restart_work);
rtnl_lock();
xlgmac_restart_dev(pdata);
rtnl_unlock();
}
static int xlgmac_open(struct net_device *netdev)
{
struct xlgmac_pdata *pdata = netdev_priv(netdev);
struct xlgmac_desc_ops *desc_ops;
int ret;
desc_ops = &pdata->desc_ops;
/* TODO: Initialize the phy */
/* Calculate the Rx buffer size before allocating rings */
ret = xlgmac_calc_rx_buf_size(netdev, netdev->mtu);
if (ret < 0)
return ret;
pdata->rx_buf_size = ret;
/* Allocate the channels and rings */
ret = desc_ops->alloc_channles_and_rings(pdata);
if (ret)
return ret;
INIT_WORK(&pdata->restart_work, xlgmac_restart);
xlgmac_init_timers(pdata);
ret = xlgmac_start(pdata);
if (ret)
goto err_channels_and_rings;
return 0;
err_channels_and_rings:
desc_ops->free_channels_and_rings(pdata);
return ret;
}
static int xlgmac_close(struct net_device *netdev)
{
struct xlgmac_pdata *pdata = netdev_priv(netdev);
struct xlgmac_desc_ops *desc_ops;
desc_ops = &pdata->desc_ops;
/* Stop the device */
xlgmac_stop(pdata);
/* Free the channels and rings */
desc_ops->free_channels_and_rings(pdata);
return 0;
}
static void xlgmac_tx_timeout(struct net_device *netdev, unsigned int txqueue)
{
struct xlgmac_pdata *pdata = netdev_priv(netdev);
netdev_warn(netdev, "tx timeout, device restarting\n");
schedule_work(&pdata->restart_work);
}
static netdev_tx_t xlgmac_xmit(struct sk_buff *skb, struct net_device *netdev)
{
struct xlgmac_pdata *pdata = netdev_priv(netdev);
struct xlgmac_pkt_info *tx_pkt_info;
struct xlgmac_desc_ops *desc_ops;
struct xlgmac_channel *channel;
struct xlgmac_hw_ops *hw_ops;
struct netdev_queue *txq;
struct xlgmac_ring *ring;
int ret;
desc_ops = &pdata->desc_ops;
hw_ops = &pdata->hw_ops;
XLGMAC_PR("skb->len = %d\n", skb->len);
channel = pdata->channel_head + skb->queue_mapping;
txq = netdev_get_tx_queue(netdev, channel->queue_index);
ring = channel->tx_ring;
tx_pkt_info = &ring->pkt_info;
if (skb->len == 0) {
netif_err(pdata, tx_err, netdev,
"empty skb received from stack\n");
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
/* Prepare preliminary packet info for TX */
memset(tx_pkt_info, 0, sizeof(*tx_pkt_info));
xlgmac_prep_tx_pkt(pdata, ring, skb, tx_pkt_info);
/* Check that there are enough descriptors available */
ret = xlgmac_maybe_stop_tx_queue(channel, ring,
tx_pkt_info->desc_count);
if (ret)
return ret;
ret = xlgmac_prep_tso(skb, tx_pkt_info);
if (ret) {
netif_err(pdata, tx_err, netdev,
"error processing TSO packet\n");
dev_kfree_skb_any(skb);
return ret;
}
xlgmac_prep_vlan(skb, tx_pkt_info);
if (!desc_ops->map_tx_skb(channel, skb)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
/* Report on the actual number of bytes (to be) sent */
netdev_tx_sent_queue(txq, tx_pkt_info->tx_bytes);
/* Configure required descriptor fields for transmission */
hw_ops->dev_xmit(channel);
if (netif_msg_pktdata(pdata))
xlgmac_print_pkt(netdev, skb, true);
/* Stop the queue in advance if there may not be enough descriptors */
xlgmac_maybe_stop_tx_queue(channel, ring, XLGMAC_TX_MAX_DESC_NR);
return NETDEV_TX_OK;
}
static void xlgmac_get_stats64(struct net_device *netdev,
struct rtnl_link_stats64 *s)
{
struct xlgmac_pdata *pdata = netdev_priv(netdev);
struct xlgmac_stats *pstats = &pdata->stats;
pdata->hw_ops.read_mmc_stats(pdata);
s->rx_packets = pstats->rxframecount_gb;
s->rx_bytes = pstats->rxoctetcount_gb;
s->rx_errors = pstats->rxframecount_gb -
pstats->rxbroadcastframes_g -
pstats->rxmulticastframes_g -
pstats->rxunicastframes_g;
s->multicast = pstats->rxmulticastframes_g;
s->rx_length_errors = pstats->rxlengtherror;
s->rx_crc_errors = pstats->rxcrcerror;
s->rx_fifo_errors = pstats->rxfifooverflow;
s->tx_packets = pstats->txframecount_gb;
s->tx_bytes = pstats->txoctetcount_gb;
s->tx_errors = pstats->txframecount_gb - pstats->txframecount_g;
s->tx_dropped = netdev->stats.tx_dropped;
}
static int xlgmac_set_mac_address(struct net_device *netdev, void *addr)
{
struct xlgmac_pdata *pdata = netdev_priv(netdev);
struct xlgmac_hw_ops *hw_ops = &pdata->hw_ops;
struct sockaddr *saddr = addr;
if (!is_valid_ether_addr(saddr->sa_data))
return -EADDRNOTAVAIL;
memcpy(netdev->dev_addr, saddr->sa_data, netdev->addr_len);
hw_ops->set_mac_address(pdata, netdev->dev_addr);
return 0;
}
static int xlgmac_ioctl(struct net_device *netdev,
struct ifreq *ifreq, int cmd)
{
if (!netif_running(netdev))
return -ENODEV;
return 0;
}
static int xlgmac_change_mtu(struct net_device *netdev, int mtu)
{
struct xlgmac_pdata *pdata = netdev_priv(netdev);
int ret;
ret = xlgmac_calc_rx_buf_size(netdev, mtu);
if (ret < 0)
return ret;
pdata->rx_buf_size = ret;
netdev->mtu = mtu;
xlgmac_restart_dev(pdata);
return 0;
}
static int xlgmac_vlan_rx_add_vid(struct net_device *netdev,
__be16 proto,
u16 vid)
{
struct xlgmac_pdata *pdata = netdev_priv(netdev);
struct xlgmac_hw_ops *hw_ops = &pdata->hw_ops;
set_bit(vid, pdata->active_vlans);
hw_ops->update_vlan_hash_table(pdata);
return 0;
}
static int xlgmac_vlan_rx_kill_vid(struct net_device *netdev,
__be16 proto,
u16 vid)
{
struct xlgmac_pdata *pdata = netdev_priv(netdev);
struct xlgmac_hw_ops *hw_ops = &pdata->hw_ops;
clear_bit(vid, pdata->active_vlans);
hw_ops->update_vlan_hash_table(pdata);
return 0;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void xlgmac_poll_controller(struct net_device *netdev)
{
struct xlgmac_pdata *pdata = netdev_priv(netdev);
struct xlgmac_channel *channel;
unsigned int i;
if (pdata->per_channel_irq) {
channel = pdata->channel_head;
for (i = 0; i < pdata->channel_count; i++, channel++)
xlgmac_dma_isr(channel->dma_irq, channel);
} else {
disable_irq(pdata->dev_irq);
xlgmac_isr(pdata->dev_irq, pdata);
enable_irq(pdata->dev_irq);
}
}
#endif /* CONFIG_NET_POLL_CONTROLLER */
static int xlgmac_set_features(struct net_device *netdev,
netdev_features_t features)
{
netdev_features_t rxhash, rxcsum, rxvlan, rxvlan_filter;
struct xlgmac_pdata *pdata = netdev_priv(netdev);
struct xlgmac_hw_ops *hw_ops = &pdata->hw_ops;
int ret = 0;
rxhash = pdata->netdev_features & NETIF_F_RXHASH;
rxcsum = pdata->netdev_features & NETIF_F_RXCSUM;
rxvlan = pdata->netdev_features & NETIF_F_HW_VLAN_CTAG_RX;
rxvlan_filter = pdata->netdev_features & NETIF_F_HW_VLAN_CTAG_FILTER;
if ((features & NETIF_F_RXHASH) && !rxhash)
ret = hw_ops->enable_rss(pdata);
else if (!(features & NETIF_F_RXHASH) && rxhash)
ret = hw_ops->disable_rss(pdata);
if (ret)
return ret;
if ((features & NETIF_F_RXCSUM) && !rxcsum)
hw_ops->enable_rx_csum(pdata);
else if (!(features & NETIF_F_RXCSUM) && rxcsum)
hw_ops->disable_rx_csum(pdata);
if ((features & NETIF_F_HW_VLAN_CTAG_RX) && !rxvlan)
hw_ops->enable_rx_vlan_stripping(pdata);
else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && rxvlan)
hw_ops->disable_rx_vlan_stripping(pdata);
if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && !rxvlan_filter)
hw_ops->enable_rx_vlan_filtering(pdata);
else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && rxvlan_filter)
hw_ops->disable_rx_vlan_filtering(pdata);
pdata->netdev_features = features;
return 0;
}
static void xlgmac_set_rx_mode(struct net_device *netdev)
{
struct xlgmac_pdata *pdata = netdev_priv(netdev);
struct xlgmac_hw_ops *hw_ops = &pdata->hw_ops;
hw_ops->config_rx_mode(pdata);
}
static const struct net_device_ops xlgmac_netdev_ops = {
.ndo_open = xlgmac_open,
.ndo_stop = xlgmac_close,
.ndo_start_xmit = xlgmac_xmit,
.ndo_tx_timeout = xlgmac_tx_timeout,
.ndo_get_stats64 = xlgmac_get_stats64,
.ndo_change_mtu = xlgmac_change_mtu,
.ndo_set_mac_address = xlgmac_set_mac_address,
.ndo_validate_addr = eth_validate_addr,
.ndo_do_ioctl = xlgmac_ioctl,
.ndo_vlan_rx_add_vid = xlgmac_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = xlgmac_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = xlgmac_poll_controller,
#endif
.ndo_set_features = xlgmac_set_features,
.ndo_set_rx_mode = xlgmac_set_rx_mode,
};
const struct net_device_ops *xlgmac_get_netdev_ops(void)
{
return &xlgmac_netdev_ops;
}
static void xlgmac_rx_refresh(struct xlgmac_channel *channel)
{
struct xlgmac_pdata *pdata = channel->pdata;
struct xlgmac_ring *ring = channel->rx_ring;
struct xlgmac_desc_data *desc_data;
struct xlgmac_desc_ops *desc_ops;
struct xlgmac_hw_ops *hw_ops;
desc_ops = &pdata->desc_ops;
hw_ops = &pdata->hw_ops;
while (ring->dirty != ring->cur) {
desc_data = XLGMAC_GET_DESC_DATA(ring, ring->dirty);
/* Reset desc_data values */
desc_ops->unmap_desc_data(pdata, desc_data);
if (desc_ops->map_rx_buffer(pdata, ring, desc_data))
break;
hw_ops->rx_desc_reset(pdata, desc_data, ring->dirty);
ring->dirty++;
}
/* Make sure everything is written before the register write */
wmb();
/* Update the Rx Tail Pointer Register with address of
* the last cleaned entry
*/
desc_data = XLGMAC_GET_DESC_DATA(ring, ring->dirty - 1);
writel(lower_32_bits(desc_data->dma_desc_addr),
XLGMAC_DMA_REG(channel, DMA_CH_RDTR_LO));
}
static struct sk_buff *xlgmac_create_skb(struct xlgmac_pdata *pdata,
struct napi_struct *napi,
struct xlgmac_desc_data *desc_data,
unsigned int len)
{
unsigned int copy_len;
struct sk_buff *skb;
u8 *packet;
skb = napi_alloc_skb(napi, desc_data->rx.hdr.dma_len);
if (!skb)
return NULL;
/* Start with the header buffer which may contain just the header
* or the header plus data
*/
dma_sync_single_range_for_cpu(pdata->dev, desc_data->rx.hdr.dma_base,
desc_data->rx.hdr.dma_off,
desc_data->rx.hdr.dma_len,
DMA_FROM_DEVICE);
packet = page_address(desc_data->rx.hdr.pa.pages) +
desc_data->rx.hdr.pa.pages_offset;
copy_len = (desc_data->rx.hdr_len) ? desc_data->rx.hdr_len : len;
copy_len = min(desc_data->rx.hdr.dma_len, copy_len);
skb_copy_to_linear_data(skb, packet, copy_len);
skb_put(skb, copy_len);
len -= copy_len;
if (len) {
/* Add the remaining data as a frag */
dma_sync_single_range_for_cpu(pdata->dev,
desc_data->rx.buf.dma_base,
desc_data->rx.buf.dma_off,
desc_data->rx.buf.dma_len,
DMA_FROM_DEVICE);
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
desc_data->rx.buf.pa.pages,
desc_data->rx.buf.pa.pages_offset,
len, desc_data->rx.buf.dma_len);
desc_data->rx.buf.pa.pages = NULL;
}
return skb;
}
static int xlgmac_tx_poll(struct xlgmac_channel *channel)
{
struct xlgmac_pdata *pdata = channel->pdata;
struct xlgmac_ring *ring = channel->tx_ring;
struct net_device *netdev = pdata->netdev;
unsigned int tx_packets = 0, tx_bytes = 0;
struct xlgmac_desc_data *desc_data;
struct xlgmac_dma_desc *dma_desc;
struct xlgmac_desc_ops *desc_ops;
struct xlgmac_hw_ops *hw_ops;
struct netdev_queue *txq;
int processed = 0;
unsigned int cur;
desc_ops = &pdata->desc_ops;
hw_ops = &pdata->hw_ops;
/* Nothing to do if there isn't a Tx ring for this channel */
if (!ring)
return 0;
cur = ring->cur;
/* Be sure we get ring->cur before accessing descriptor data */
smp_rmb();
txq = netdev_get_tx_queue(netdev, channel->queue_index);
while ((processed < XLGMAC_TX_DESC_MAX_PROC) &&
(ring->dirty != cur)) {
desc_data = XLGMAC_GET_DESC_DATA(ring, ring->dirty);
dma_desc = desc_data->dma_desc;
if (!hw_ops->tx_complete(dma_desc))
break;
/* Make sure descriptor fields are read after reading
* the OWN bit
*/
dma_rmb();
if (netif_msg_tx_done(pdata))
xlgmac_dump_tx_desc(pdata, ring, ring->dirty, 1, 0);
if (hw_ops->is_last_desc(dma_desc)) {
tx_packets += desc_data->tx.packets;
tx_bytes += desc_data->tx.bytes;
}
/* Free the SKB and reset the descriptor for re-use */
desc_ops->unmap_desc_data(pdata, desc_data);
hw_ops->tx_desc_reset(desc_data);
processed++;
ring->dirty++;
}
if (!processed)
return 0;
netdev_tx_completed_queue(txq, tx_packets, tx_bytes);
if ((ring->tx.queue_stopped == 1) &&
(xlgmac_tx_avail_desc(ring) > XLGMAC_TX_DESC_MIN_FREE)) {
ring->tx.queue_stopped = 0;
netif_tx_wake_queue(txq);
}
XLGMAC_PR("processed=%d\n", processed);
return processed;
}
static int xlgmac_rx_poll(struct xlgmac_channel *channel, int budget)
{
struct xlgmac_pdata *pdata = channel->pdata;
struct xlgmac_ring *ring = channel->rx_ring;
struct net_device *netdev = pdata->netdev;
unsigned int len, dma_desc_len, max_len;
unsigned int context_next, context;
struct xlgmac_desc_data *desc_data;
struct xlgmac_pkt_info *pkt_info;
unsigned int incomplete, error;
struct xlgmac_hw_ops *hw_ops;
unsigned int received = 0;
struct napi_struct *napi;
struct sk_buff *skb;
int packet_count = 0;
hw_ops = &pdata->hw_ops;
/* Nothing to do if there isn't a Rx ring for this channel */
if (!ring)
return 0;
incomplete = 0;
context_next = 0;
napi = (pdata->per_channel_irq) ? &channel->napi : &pdata->napi;
desc_data = XLGMAC_GET_DESC_DATA(ring, ring->cur);
pkt_info = &ring->pkt_info;
while (packet_count < budget) {
/* First time in loop see if we need to restore state */
if (!received && desc_data->state_saved) {
skb = desc_data->state.skb;
error = desc_data->state.error;
len = desc_data->state.len;
} else {
memset(pkt_info, 0, sizeof(*pkt_info));
skb = NULL;
error = 0;
len = 0;
}
read_again:
desc_data = XLGMAC_GET_DESC_DATA(ring, ring->cur);
if (xlgmac_rx_dirty_desc(ring) > XLGMAC_RX_DESC_MAX_DIRTY)
xlgmac_rx_refresh(channel);
if (hw_ops->dev_read(channel))
break;
received++;
ring->cur++;
incomplete = XLGMAC_GET_REG_BITS(
pkt_info->attributes,
RX_PACKET_ATTRIBUTES_INCOMPLETE_POS,
RX_PACKET_ATTRIBUTES_INCOMPLETE_LEN);
context_next = XLGMAC_GET_REG_BITS(
pkt_info->attributes,
RX_PACKET_ATTRIBUTES_CONTEXT_NEXT_POS,
RX_PACKET_ATTRIBUTES_CONTEXT_NEXT_LEN);
context = XLGMAC_GET_REG_BITS(
pkt_info->attributes,
RX_PACKET_ATTRIBUTES_CONTEXT_POS,
RX_PACKET_ATTRIBUTES_CONTEXT_LEN);
/* Earlier error, just drain the remaining data */
if ((incomplete || context_next) && error)
goto read_again;
if (error || pkt_info->errors) {
if (pkt_info->errors)
netif_err(pdata, rx_err, netdev,
"error in received packet\n");
dev_kfree_skb(skb);
goto next_packet;
}
if (!context) {
/* Length is cumulative, get this descriptor's length */
dma_desc_len = desc_data->rx.len - len;
len += dma_desc_len;
if (dma_desc_len && !skb) {
skb = xlgmac_create_skb(pdata, napi, desc_data,
dma_desc_len);
if (!skb)
error = 1;
} else if (dma_desc_len) {
dma_sync_single_range_for_cpu(
pdata->dev,
desc_data->rx.buf.dma_base,
desc_data->rx.buf.dma_off,
desc_data->rx.buf.dma_len,
DMA_FROM_DEVICE);
skb_add_rx_frag(
skb, skb_shinfo(skb)->nr_frags,
desc_data->rx.buf.pa.pages,
desc_data->rx.buf.pa.pages_offset,
dma_desc_len,
desc_data->rx.buf.dma_len);
desc_data->rx.buf.pa.pages = NULL;
}
}
if (incomplete || context_next)
goto read_again;
if (!skb)
goto next_packet;
/* Be sure we don't exceed the configured MTU */
max_len = netdev->mtu + ETH_HLEN;
if (!(netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
(skb->protocol == htons(ETH_P_8021Q)))
max_len += VLAN_HLEN;
if (skb->len > max_len) {
netif_err(pdata, rx_err, netdev,
"packet length exceeds configured MTU\n");
dev_kfree_skb(skb);
goto next_packet;
}
if (netif_msg_pktdata(pdata))
xlgmac_print_pkt(netdev, skb, false);
skb_checksum_none_assert(skb);
if (XLGMAC_GET_REG_BITS(pkt_info->attributes,
RX_PACKET_ATTRIBUTES_CSUM_DONE_POS,
RX_PACKET_ATTRIBUTES_CSUM_DONE_LEN))
skb->ip_summed = CHECKSUM_UNNECESSARY;
if (XLGMAC_GET_REG_BITS(pkt_info->attributes,
RX_PACKET_ATTRIBUTES_VLAN_CTAG_POS,
RX_PACKET_ATTRIBUTES_VLAN_CTAG_LEN)) {
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
pkt_info->vlan_ctag);
pdata->stats.rx_vlan_packets++;
}
if (XLGMAC_GET_REG_BITS(pkt_info->attributes,
RX_PACKET_ATTRIBUTES_RSS_HASH_POS,
RX_PACKET_ATTRIBUTES_RSS_HASH_LEN))
skb_set_hash(skb, pkt_info->rss_hash,
pkt_info->rss_hash_type);
skb->dev = netdev;
skb->protocol = eth_type_trans(skb, netdev);
skb_record_rx_queue(skb, channel->queue_index);
napi_gro_receive(napi, skb);
next_packet:
packet_count++;
}
/* Check if we need to save state before leaving */
if (received && (incomplete || context_next)) {
desc_data = XLGMAC_GET_DESC_DATA(ring, ring->cur);
desc_data->state_saved = 1;
desc_data->state.skb = skb;
desc_data->state.len = len;
desc_data->state.error = error;
}
XLGMAC_PR("packet_count = %d\n", packet_count);
return packet_count;
}
static int xlgmac_one_poll(struct napi_struct *napi, int budget)
{
struct xlgmac_channel *channel = container_of(napi,
struct xlgmac_channel,
napi);
int processed = 0;
XLGMAC_PR("budget=%d\n", budget);
/* Cleanup Tx ring first */
xlgmac_tx_poll(channel);
/* Process Rx ring next */
processed = xlgmac_rx_poll(channel, budget);
/* If we processed everything, we are done */
if (processed < budget) {
/* Turn off polling */
napi_complete_done(napi, processed);
/* Enable Tx and Rx interrupts */
enable_irq(channel->dma_irq);
}
XLGMAC_PR("received = %d\n", processed);
return processed;
}
static int xlgmac_all_poll(struct napi_struct *napi, int budget)
{
struct xlgmac_pdata *pdata = container_of(napi,
struct xlgmac_pdata,
napi);
struct xlgmac_channel *channel;
int processed, last_processed;
int ring_budget;
unsigned int i;
XLGMAC_PR("budget=%d\n", budget);
processed = 0;
ring_budget = budget / pdata->rx_ring_count;
do {
last_processed = processed;
channel = pdata->channel_head;
for (i = 0; i < pdata->channel_count; i++, channel++) {
/* Cleanup Tx ring first */
xlgmac_tx_poll(channel);
/* Process Rx ring next */
if (ring_budget > (budget - processed))
ring_budget = budget - processed;
processed += xlgmac_rx_poll(channel, ring_budget);
}
} while ((processed < budget) && (processed != last_processed));
/* If we processed everything, we are done */
if (processed < budget) {
/* Turn off polling */
napi_complete_done(napi, processed);
/* Enable Tx and Rx interrupts */
xlgmac_enable_rx_tx_ints(pdata);
}
XLGMAC_PR("received = %d\n", processed);
return processed;
}