blob: 9393e10671c2481e7c77f37774ce5fe278231ade [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Crypto acceleration support for Rockchip RK3288
*
* Copyright (c) 2015, Fuzhou Rockchip Electronics Co., Ltd
*
* Author: Zain Wang <zain.wang@rock-chips.com>
*
* Some ideas are from marvell-cesa.c and s5p-sss.c driver.
*/
#include <crypto/engine.h>
#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include "rk3288_crypto.h"
#define RK_CRYPTO_DEC BIT(0)
static int rk_cipher_need_fallback(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
struct rk_crypto_tmp *algt = container_of(alg, struct rk_crypto_tmp, alg.skcipher.base);
struct scatterlist *sgs, *sgd;
unsigned int stodo, dtodo, len;
unsigned int bs = crypto_skcipher_blocksize(tfm);
if (!req->cryptlen)
return true;
len = req->cryptlen;
sgs = req->src;
sgd = req->dst;
while (sgs && sgd) {
if (!IS_ALIGNED(sgs->offset, sizeof(u32))) {
algt->stat_fb_align++;
return true;
}
if (!IS_ALIGNED(sgd->offset, sizeof(u32))) {
algt->stat_fb_align++;
return true;
}
stodo = min(len, sgs->length);
if (stodo % bs) {
algt->stat_fb_len++;
return true;
}
dtodo = min(len, sgd->length);
if (dtodo % bs) {
algt->stat_fb_len++;
return true;
}
if (stodo != dtodo) {
algt->stat_fb_sgdiff++;
return true;
}
len -= stodo;
sgs = sg_next(sgs);
sgd = sg_next(sgd);
}
return false;
}
static int rk_cipher_fallback(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct rk_cipher_ctx *op = crypto_skcipher_ctx(tfm);
struct rk_cipher_rctx *rctx = skcipher_request_ctx(areq);
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
struct rk_crypto_tmp *algt = container_of(alg, struct rk_crypto_tmp, alg.skcipher.base);
int err;
algt->stat_fb++;
skcipher_request_set_tfm(&rctx->fallback_req, op->fallback_tfm);
skcipher_request_set_callback(&rctx->fallback_req, areq->base.flags,
areq->base.complete, areq->base.data);
skcipher_request_set_crypt(&rctx->fallback_req, areq->src, areq->dst,
areq->cryptlen, areq->iv);
if (rctx->mode & RK_CRYPTO_DEC)
err = crypto_skcipher_decrypt(&rctx->fallback_req);
else
err = crypto_skcipher_encrypt(&rctx->fallback_req);
return err;
}
static int rk_cipher_handle_req(struct skcipher_request *req)
{
struct rk_cipher_rctx *rctx = skcipher_request_ctx(req);
struct rk_crypto_info *rkc;
struct crypto_engine *engine;
if (rk_cipher_need_fallback(req))
return rk_cipher_fallback(req);
rkc = get_rk_crypto();
engine = rkc->engine;
rctx->dev = rkc;
return crypto_transfer_skcipher_request_to_engine(engine, req);
}
static int rk_aes_setkey(struct crypto_skcipher *cipher,
const u8 *key, unsigned int keylen)
{
struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
struct rk_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
keylen != AES_KEYSIZE_256)
return -EINVAL;
ctx->keylen = keylen;
memcpy(ctx->key, key, keylen);
return crypto_skcipher_setkey(ctx->fallback_tfm, key, keylen);
}
static int rk_des_setkey(struct crypto_skcipher *cipher,
const u8 *key, unsigned int keylen)
{
struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(cipher);
int err;
err = verify_skcipher_des_key(cipher, key);
if (err)
return err;
ctx->keylen = keylen;
memcpy(ctx->key, key, keylen);
return crypto_skcipher_setkey(ctx->fallback_tfm, key, keylen);
}
static int rk_tdes_setkey(struct crypto_skcipher *cipher,
const u8 *key, unsigned int keylen)
{
struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(cipher);
int err;
err = verify_skcipher_des3_key(cipher, key);
if (err)
return err;
ctx->keylen = keylen;
memcpy(ctx->key, key, keylen);
return crypto_skcipher_setkey(ctx->fallback_tfm, key, keylen);
}
static int rk_aes_ecb_encrypt(struct skcipher_request *req)
{
struct rk_cipher_rctx *rctx = skcipher_request_ctx(req);
rctx->mode = RK_CRYPTO_AES_ECB_MODE;
return rk_cipher_handle_req(req);
}
static int rk_aes_ecb_decrypt(struct skcipher_request *req)
{
struct rk_cipher_rctx *rctx = skcipher_request_ctx(req);
rctx->mode = RK_CRYPTO_AES_ECB_MODE | RK_CRYPTO_DEC;
return rk_cipher_handle_req(req);
}
static int rk_aes_cbc_encrypt(struct skcipher_request *req)
{
struct rk_cipher_rctx *rctx = skcipher_request_ctx(req);
rctx->mode = RK_CRYPTO_AES_CBC_MODE;
return rk_cipher_handle_req(req);
}
static int rk_aes_cbc_decrypt(struct skcipher_request *req)
{
struct rk_cipher_rctx *rctx = skcipher_request_ctx(req);
rctx->mode = RK_CRYPTO_AES_CBC_MODE | RK_CRYPTO_DEC;
return rk_cipher_handle_req(req);
}
static int rk_des_ecb_encrypt(struct skcipher_request *req)
{
struct rk_cipher_rctx *rctx = skcipher_request_ctx(req);
rctx->mode = 0;
return rk_cipher_handle_req(req);
}
static int rk_des_ecb_decrypt(struct skcipher_request *req)
{
struct rk_cipher_rctx *rctx = skcipher_request_ctx(req);
rctx->mode = RK_CRYPTO_DEC;
return rk_cipher_handle_req(req);
}
static int rk_des_cbc_encrypt(struct skcipher_request *req)
{
struct rk_cipher_rctx *rctx = skcipher_request_ctx(req);
rctx->mode = RK_CRYPTO_TDES_CHAINMODE_CBC;
return rk_cipher_handle_req(req);
}
static int rk_des_cbc_decrypt(struct skcipher_request *req)
{
struct rk_cipher_rctx *rctx = skcipher_request_ctx(req);
rctx->mode = RK_CRYPTO_TDES_CHAINMODE_CBC | RK_CRYPTO_DEC;
return rk_cipher_handle_req(req);
}
static int rk_des3_ede_ecb_encrypt(struct skcipher_request *req)
{
struct rk_cipher_rctx *rctx = skcipher_request_ctx(req);
rctx->mode = RK_CRYPTO_TDES_SELECT;
return rk_cipher_handle_req(req);
}
static int rk_des3_ede_ecb_decrypt(struct skcipher_request *req)
{
struct rk_cipher_rctx *rctx = skcipher_request_ctx(req);
rctx->mode = RK_CRYPTO_TDES_SELECT | RK_CRYPTO_DEC;
return rk_cipher_handle_req(req);
}
static int rk_des3_ede_cbc_encrypt(struct skcipher_request *req)
{
struct rk_cipher_rctx *rctx = skcipher_request_ctx(req);
rctx->mode = RK_CRYPTO_TDES_SELECT | RK_CRYPTO_TDES_CHAINMODE_CBC;
return rk_cipher_handle_req(req);
}
static int rk_des3_ede_cbc_decrypt(struct skcipher_request *req)
{
struct rk_cipher_rctx *rctx = skcipher_request_ctx(req);
rctx->mode = RK_CRYPTO_TDES_SELECT | RK_CRYPTO_TDES_CHAINMODE_CBC |
RK_CRYPTO_DEC;
return rk_cipher_handle_req(req);
}
static void rk_cipher_hw_init(struct rk_crypto_info *dev, struct skcipher_request *req)
{
struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req);
struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
struct rk_cipher_rctx *rctx = skcipher_request_ctx(req);
struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(cipher);
u32 block, conf_reg = 0;
block = crypto_tfm_alg_blocksize(tfm);
if (block == DES_BLOCK_SIZE) {
rctx->mode |= RK_CRYPTO_TDES_FIFO_MODE |
RK_CRYPTO_TDES_BYTESWAP_KEY |
RK_CRYPTO_TDES_BYTESWAP_IV;
CRYPTO_WRITE(dev, RK_CRYPTO_TDES_CTRL, rctx->mode);
memcpy_toio(dev->reg + RK_CRYPTO_TDES_KEY1_0, ctx->key, ctx->keylen);
conf_reg = RK_CRYPTO_DESSEL;
} else {
rctx->mode |= RK_CRYPTO_AES_FIFO_MODE |
RK_CRYPTO_AES_KEY_CHANGE |
RK_CRYPTO_AES_BYTESWAP_KEY |
RK_CRYPTO_AES_BYTESWAP_IV;
if (ctx->keylen == AES_KEYSIZE_192)
rctx->mode |= RK_CRYPTO_AES_192BIT_key;
else if (ctx->keylen == AES_KEYSIZE_256)
rctx->mode |= RK_CRYPTO_AES_256BIT_key;
CRYPTO_WRITE(dev, RK_CRYPTO_AES_CTRL, rctx->mode);
memcpy_toio(dev->reg + RK_CRYPTO_AES_KEY_0, ctx->key, ctx->keylen);
}
conf_reg |= RK_CRYPTO_BYTESWAP_BTFIFO |
RK_CRYPTO_BYTESWAP_BRFIFO;
CRYPTO_WRITE(dev, RK_CRYPTO_CONF, conf_reg);
CRYPTO_WRITE(dev, RK_CRYPTO_INTENA,
RK_CRYPTO_BCDMA_ERR_ENA | RK_CRYPTO_BCDMA_DONE_ENA);
}
static void crypto_dma_start(struct rk_crypto_info *dev,
struct scatterlist *sgs,
struct scatterlist *sgd, unsigned int todo)
{
CRYPTO_WRITE(dev, RK_CRYPTO_BRDMAS, sg_dma_address(sgs));
CRYPTO_WRITE(dev, RK_CRYPTO_BRDMAL, todo);
CRYPTO_WRITE(dev, RK_CRYPTO_BTDMAS, sg_dma_address(sgd));
CRYPTO_WRITE(dev, RK_CRYPTO_CTRL, RK_CRYPTO_BLOCK_START |
_SBF(RK_CRYPTO_BLOCK_START, 16));
}
static int rk_cipher_run(struct crypto_engine *engine, void *async_req)
{
struct skcipher_request *areq = container_of(async_req, struct skcipher_request, base);
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct rk_cipher_rctx *rctx = skcipher_request_ctx(areq);
struct scatterlist *sgs, *sgd;
int err = 0;
int ivsize = crypto_skcipher_ivsize(tfm);
int offset;
u8 iv[AES_BLOCK_SIZE];
u8 biv[AES_BLOCK_SIZE];
u8 *ivtouse = areq->iv;
unsigned int len = areq->cryptlen;
unsigned int todo;
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
struct rk_crypto_tmp *algt = container_of(alg, struct rk_crypto_tmp, alg.skcipher.base);
struct rk_crypto_info *rkc = rctx->dev;
err = pm_runtime_resume_and_get(rkc->dev);
if (err)
return err;
algt->stat_req++;
rkc->nreq++;
ivsize = crypto_skcipher_ivsize(tfm);
if (areq->iv && crypto_skcipher_ivsize(tfm) > 0) {
if (rctx->mode & RK_CRYPTO_DEC) {
offset = areq->cryptlen - ivsize;
scatterwalk_map_and_copy(rctx->backup_iv, areq->src,
offset, ivsize, 0);
}
}
sgs = areq->src;
sgd = areq->dst;
while (sgs && sgd && len) {
if (!sgs->length) {
sgs = sg_next(sgs);
sgd = sg_next(sgd);
continue;
}
if (rctx->mode & RK_CRYPTO_DEC) {
/* we backup last block of source to be used as IV at next step */
offset = sgs->length - ivsize;
scatterwalk_map_and_copy(biv, sgs, offset, ivsize, 0);
}
if (sgs == sgd) {
err = dma_map_sg(rkc->dev, sgs, 1, DMA_BIDIRECTIONAL);
if (err <= 0) {
err = -EINVAL;
goto theend_iv;
}
} else {
err = dma_map_sg(rkc->dev, sgs, 1, DMA_TO_DEVICE);
if (err <= 0) {
err = -EINVAL;
goto theend_iv;
}
err = dma_map_sg(rkc->dev, sgd, 1, DMA_FROM_DEVICE);
if (err <= 0) {
err = -EINVAL;
goto theend_sgs;
}
}
err = 0;
rk_cipher_hw_init(rkc, areq);
if (ivsize) {
if (ivsize == DES_BLOCK_SIZE)
memcpy_toio(rkc->reg + RK_CRYPTO_TDES_IV_0, ivtouse, ivsize);
else
memcpy_toio(rkc->reg + RK_CRYPTO_AES_IV_0, ivtouse, ivsize);
}
reinit_completion(&rkc->complete);
rkc->status = 0;
todo = min(sg_dma_len(sgs), len);
len -= todo;
crypto_dma_start(rkc, sgs, sgd, todo / 4);
wait_for_completion_interruptible_timeout(&rkc->complete,
msecs_to_jiffies(2000));
if (!rkc->status) {
dev_err(rkc->dev, "DMA timeout\n");
err = -EFAULT;
goto theend;
}
if (sgs == sgd) {
dma_unmap_sg(rkc->dev, sgs, 1, DMA_BIDIRECTIONAL);
} else {
dma_unmap_sg(rkc->dev, sgs, 1, DMA_TO_DEVICE);
dma_unmap_sg(rkc->dev, sgd, 1, DMA_FROM_DEVICE);
}
if (rctx->mode & RK_CRYPTO_DEC) {
memcpy(iv, biv, ivsize);
ivtouse = iv;
} else {
offset = sgd->length - ivsize;
scatterwalk_map_and_copy(iv, sgd, offset, ivsize, 0);
ivtouse = iv;
}
sgs = sg_next(sgs);
sgd = sg_next(sgd);
}
if (areq->iv && ivsize > 0) {
offset = areq->cryptlen - ivsize;
if (rctx->mode & RK_CRYPTO_DEC) {
memcpy(areq->iv, rctx->backup_iv, ivsize);
memzero_explicit(rctx->backup_iv, ivsize);
} else {
scatterwalk_map_and_copy(areq->iv, areq->dst, offset,
ivsize, 0);
}
}
theend:
pm_runtime_put_autosuspend(rkc->dev);
local_bh_disable();
crypto_finalize_skcipher_request(engine, areq, err);
local_bh_enable();
return 0;
theend_sgs:
if (sgs == sgd) {
dma_unmap_sg(rkc->dev, sgs, 1, DMA_BIDIRECTIONAL);
} else {
dma_unmap_sg(rkc->dev, sgs, 1, DMA_TO_DEVICE);
dma_unmap_sg(rkc->dev, sgd, 1, DMA_FROM_DEVICE);
}
theend_iv:
return err;
}
static int rk_cipher_tfm_init(struct crypto_skcipher *tfm)
{
struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(tfm);
const char *name = crypto_tfm_alg_name(&tfm->base);
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
struct rk_crypto_tmp *algt = container_of(alg, struct rk_crypto_tmp, alg.skcipher.base);
ctx->fallback_tfm = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ctx->fallback_tfm)) {
dev_err(algt->dev->dev, "ERROR: Cannot allocate fallback for %s %ld\n",
name, PTR_ERR(ctx->fallback_tfm));
return PTR_ERR(ctx->fallback_tfm);
}
crypto_skcipher_set_reqsize(tfm, sizeof(struct rk_cipher_rctx) +
crypto_skcipher_reqsize(ctx->fallback_tfm));
return 0;
}
static void rk_cipher_tfm_exit(struct crypto_skcipher *tfm)
{
struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(tfm);
memzero_explicit(ctx->key, ctx->keylen);
crypto_free_skcipher(ctx->fallback_tfm);
}
struct rk_crypto_tmp rk_ecb_aes_alg = {
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.alg.skcipher.base = {
.base.cra_name = "ecb(aes)",
.base.cra_driver_name = "ecb-aes-rk",
.base.cra_priority = 300,
.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct rk_cipher_ctx),
.base.cra_alignmask = 0x0f,
.base.cra_module = THIS_MODULE,
.init = rk_cipher_tfm_init,
.exit = rk_cipher_tfm_exit,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = rk_aes_setkey,
.encrypt = rk_aes_ecb_encrypt,
.decrypt = rk_aes_ecb_decrypt,
},
.alg.skcipher.op = {
.do_one_request = rk_cipher_run,
},
};
struct rk_crypto_tmp rk_cbc_aes_alg = {
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.alg.skcipher.base = {
.base.cra_name = "cbc(aes)",
.base.cra_driver_name = "cbc-aes-rk",
.base.cra_priority = 300,
.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct rk_cipher_ctx),
.base.cra_alignmask = 0x0f,
.base.cra_module = THIS_MODULE,
.init = rk_cipher_tfm_init,
.exit = rk_cipher_tfm_exit,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = rk_aes_setkey,
.encrypt = rk_aes_cbc_encrypt,
.decrypt = rk_aes_cbc_decrypt,
},
.alg.skcipher.op = {
.do_one_request = rk_cipher_run,
},
};
struct rk_crypto_tmp rk_ecb_des_alg = {
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.alg.skcipher.base = {
.base.cra_name = "ecb(des)",
.base.cra_driver_name = "ecb-des-rk",
.base.cra_priority = 300,
.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = DES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct rk_cipher_ctx),
.base.cra_alignmask = 0x07,
.base.cra_module = THIS_MODULE,
.init = rk_cipher_tfm_init,
.exit = rk_cipher_tfm_exit,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.setkey = rk_des_setkey,
.encrypt = rk_des_ecb_encrypt,
.decrypt = rk_des_ecb_decrypt,
},
.alg.skcipher.op = {
.do_one_request = rk_cipher_run,
},
};
struct rk_crypto_tmp rk_cbc_des_alg = {
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.alg.skcipher.base = {
.base.cra_name = "cbc(des)",
.base.cra_driver_name = "cbc-des-rk",
.base.cra_priority = 300,
.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = DES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct rk_cipher_ctx),
.base.cra_alignmask = 0x07,
.base.cra_module = THIS_MODULE,
.init = rk_cipher_tfm_init,
.exit = rk_cipher_tfm_exit,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
.setkey = rk_des_setkey,
.encrypt = rk_des_cbc_encrypt,
.decrypt = rk_des_cbc_decrypt,
},
.alg.skcipher.op = {
.do_one_request = rk_cipher_run,
},
};
struct rk_crypto_tmp rk_ecb_des3_ede_alg = {
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.alg.skcipher.base = {
.base.cra_name = "ecb(des3_ede)",
.base.cra_driver_name = "ecb-des3-ede-rk",
.base.cra_priority = 300,
.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = DES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct rk_cipher_ctx),
.base.cra_alignmask = 0x07,
.base.cra_module = THIS_MODULE,
.init = rk_cipher_tfm_init,
.exit = rk_cipher_tfm_exit,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.setkey = rk_tdes_setkey,
.encrypt = rk_des3_ede_ecb_encrypt,
.decrypt = rk_des3_ede_ecb_decrypt,
},
.alg.skcipher.op = {
.do_one_request = rk_cipher_run,
},
};
struct rk_crypto_tmp rk_cbc_des3_ede_alg = {
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.alg.skcipher.base = {
.base.cra_name = "cbc(des3_ede)",
.base.cra_driver_name = "cbc-des3-ede-rk",
.base.cra_priority = 300,
.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = DES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct rk_cipher_ctx),
.base.cra_alignmask = 0x07,
.base.cra_module = THIS_MODULE,
.init = rk_cipher_tfm_init,
.exit = rk_cipher_tfm_exit,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
.setkey = rk_tdes_setkey,
.encrypt = rk_des3_ede_cbc_encrypt,
.decrypt = rk_des3_ede_cbc_decrypt,
},
.alg.skcipher.op = {
.do_one_request = rk_cipher_run,
},
};