| /* |
| * This file is part of the Chelsio FCoE driver for Linux. |
| * |
| * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/compiler.h> |
| #include <linux/slab.h> |
| #include <asm/page.h> |
| #include <linux/cache.h> |
| |
| #include "t4_values.h" |
| #include "csio_hw.h" |
| #include "csio_wr.h" |
| #include "csio_mb.h" |
| #include "csio_defs.h" |
| |
| int csio_intr_coalesce_cnt; /* value:SGE_INGRESS_RX_THRESHOLD[0] */ |
| static int csio_sge_thresh_reg; /* SGE_INGRESS_RX_THRESHOLD[0] */ |
| |
| int csio_intr_coalesce_time = 10; /* value:SGE_TIMER_VALUE_1 */ |
| static int csio_sge_timer_reg = 1; |
| |
| #define CSIO_SET_FLBUF_SIZE(_hw, _reg, _val) \ |
| csio_wr_reg32((_hw), (_val), SGE_FL_BUFFER_SIZE##_reg##_A) |
| |
| static void |
| csio_get_flbuf_size(struct csio_hw *hw, struct csio_sge *sge, uint32_t reg) |
| { |
| sge->sge_fl_buf_size[reg] = csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE0_A + |
| reg * sizeof(uint32_t)); |
| } |
| |
| /* Free list buffer size */ |
| static inline uint32_t |
| csio_wr_fl_bufsz(struct csio_sge *sge, struct csio_dma_buf *buf) |
| { |
| return sge->sge_fl_buf_size[buf->paddr & 0xF]; |
| } |
| |
| /* Size of the egress queue status page */ |
| static inline uint32_t |
| csio_wr_qstat_pgsz(struct csio_hw *hw) |
| { |
| return (hw->wrm.sge.sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64; |
| } |
| |
| /* Ring freelist doorbell */ |
| static inline void |
| csio_wr_ring_fldb(struct csio_hw *hw, struct csio_q *flq) |
| { |
| /* |
| * Ring the doorbell only when we have atleast CSIO_QCREDIT_SZ |
| * number of bytes in the freelist queue. This translates to atleast |
| * 8 freelist buffer pointers (since each pointer is 8 bytes). |
| */ |
| if (flq->inc_idx >= 8) { |
| csio_wr_reg32(hw, DBPRIO_F | QID_V(flq->un.fl.flid) | |
| PIDX_T5_V(flq->inc_idx / 8) | DBTYPE_F, |
| MYPF_REG(SGE_PF_KDOORBELL_A)); |
| flq->inc_idx &= 7; |
| } |
| } |
| |
| /* Write a 0 cidx increment value to enable SGE interrupts for this queue */ |
| static void |
| csio_wr_sge_intr_enable(struct csio_hw *hw, uint16_t iqid) |
| { |
| csio_wr_reg32(hw, CIDXINC_V(0) | |
| INGRESSQID_V(iqid) | |
| TIMERREG_V(X_TIMERREG_RESTART_COUNTER), |
| MYPF_REG(SGE_PF_GTS_A)); |
| } |
| |
| /* |
| * csio_wr_fill_fl - Populate the FL buffers of a FL queue. |
| * @hw: HW module. |
| * @flq: Freelist queue. |
| * |
| * Fill up freelist buffer entries with buffers of size specified |
| * in the size register. |
| * |
| */ |
| static int |
| csio_wr_fill_fl(struct csio_hw *hw, struct csio_q *flq) |
| { |
| struct csio_wrm *wrm = csio_hw_to_wrm(hw); |
| struct csio_sge *sge = &wrm->sge; |
| __be64 *d = (__be64 *)(flq->vstart); |
| struct csio_dma_buf *buf = &flq->un.fl.bufs[0]; |
| uint64_t paddr; |
| int sreg = flq->un.fl.sreg; |
| int n = flq->credits; |
| |
| while (n--) { |
| buf->len = sge->sge_fl_buf_size[sreg]; |
| buf->vaddr = dma_alloc_coherent(&hw->pdev->dev, buf->len, |
| &buf->paddr, GFP_KERNEL); |
| if (!buf->vaddr) { |
| csio_err(hw, "Could only fill %d buffers!\n", n + 1); |
| return -ENOMEM; |
| } |
| |
| paddr = buf->paddr | (sreg & 0xF); |
| |
| *d++ = cpu_to_be64(paddr); |
| buf++; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * csio_wr_update_fl - |
| * @hw: HW module. |
| * @flq: Freelist queue. |
| * |
| * |
| */ |
| static inline void |
| csio_wr_update_fl(struct csio_hw *hw, struct csio_q *flq, uint16_t n) |
| { |
| |
| flq->inc_idx += n; |
| flq->pidx += n; |
| if (unlikely(flq->pidx >= flq->credits)) |
| flq->pidx -= (uint16_t)flq->credits; |
| |
| CSIO_INC_STATS(flq, n_flq_refill); |
| } |
| |
| /* |
| * csio_wr_alloc_q - Allocate a WR queue and initialize it. |
| * @hw: HW module |
| * @qsize: Size of the queue in bytes |
| * @wrsize: Since of WR in this queue, if fixed. |
| * @type: Type of queue (Ingress/Egress/Freelist) |
| * @owner: Module that owns this queue. |
| * @nflb: Number of freelist buffers for FL. |
| * @sreg: What is the FL buffer size register? |
| * @iq_int_handler: Ingress queue handler in INTx mode. |
| * |
| * This function allocates and sets up a queue for the caller |
| * of size qsize, aligned at the required boundary. This is subject to |
| * be free entries being available in the queue array. If one is found, |
| * it is initialized with the allocated queue, marked as being used (owner), |
| * and a handle returned to the caller in form of the queue's index |
| * into the q_arr array. |
| * If user has indicated a freelist (by specifying nflb > 0), create |
| * another queue (with its own index into q_arr) for the freelist. Allocate |
| * memory for DMA buffer metadata (vaddr, len etc). Save off the freelist |
| * idx in the ingress queue's flq.idx. This is how a Freelist is associated |
| * with its owning ingress queue. |
| */ |
| int |
| csio_wr_alloc_q(struct csio_hw *hw, uint32_t qsize, uint32_t wrsize, |
| uint16_t type, void *owner, uint32_t nflb, int sreg, |
| iq_handler_t iq_intx_handler) |
| { |
| struct csio_wrm *wrm = csio_hw_to_wrm(hw); |
| struct csio_q *q, *flq; |
| int free_idx = wrm->free_qidx; |
| int ret_idx = free_idx; |
| uint32_t qsz; |
| int flq_idx; |
| |
| if (free_idx >= wrm->num_q) { |
| csio_err(hw, "No more free queues.\n"); |
| return -1; |
| } |
| |
| switch (type) { |
| case CSIO_EGRESS: |
| qsz = ALIGN(qsize, CSIO_QCREDIT_SZ) + csio_wr_qstat_pgsz(hw); |
| break; |
| case CSIO_INGRESS: |
| switch (wrsize) { |
| case 16: |
| case 32: |
| case 64: |
| case 128: |
| break; |
| default: |
| csio_err(hw, "Invalid Ingress queue WR size:%d\n", |
| wrsize); |
| return -1; |
| } |
| |
| /* |
| * Number of elements must be a multiple of 16 |
| * So this includes status page size |
| */ |
| qsz = ALIGN(qsize/wrsize, 16) * wrsize; |
| |
| break; |
| case CSIO_FREELIST: |
| qsz = ALIGN(qsize/wrsize, 8) * wrsize + csio_wr_qstat_pgsz(hw); |
| break; |
| default: |
| csio_err(hw, "Invalid queue type: 0x%x\n", type); |
| return -1; |
| } |
| |
| q = wrm->q_arr[free_idx]; |
| |
| q->vstart = dma_alloc_coherent(&hw->pdev->dev, qsz, &q->pstart, |
| GFP_KERNEL); |
| if (!q->vstart) { |
| csio_err(hw, |
| "Failed to allocate DMA memory for " |
| "queue at id: %d size: %d\n", free_idx, qsize); |
| return -1; |
| } |
| |
| q->type = type; |
| q->owner = owner; |
| q->pidx = q->cidx = q->inc_idx = 0; |
| q->size = qsz; |
| q->wr_sz = wrsize; /* If using fixed size WRs */ |
| |
| wrm->free_qidx++; |
| |
| if (type == CSIO_INGRESS) { |
| /* Since queue area is set to zero */ |
| q->un.iq.genbit = 1; |
| |
| /* |
| * Ingress queue status page size is always the size of |
| * the ingress queue entry. |
| */ |
| q->credits = (qsz - q->wr_sz) / q->wr_sz; |
| q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz |
| - q->wr_sz); |
| |
| /* Allocate memory for FL if requested */ |
| if (nflb > 0) { |
| flq_idx = csio_wr_alloc_q(hw, nflb * sizeof(__be64), |
| sizeof(__be64), CSIO_FREELIST, |
| owner, 0, sreg, NULL); |
| if (flq_idx == -1) { |
| csio_err(hw, |
| "Failed to allocate FL queue" |
| " for IQ idx:%d\n", free_idx); |
| return -1; |
| } |
| |
| /* Associate the new FL with the Ingress quue */ |
| q->un.iq.flq_idx = flq_idx; |
| |
| flq = wrm->q_arr[q->un.iq.flq_idx]; |
| flq->un.fl.bufs = kcalloc(flq->credits, |
| sizeof(struct csio_dma_buf), |
| GFP_KERNEL); |
| if (!flq->un.fl.bufs) { |
| csio_err(hw, |
| "Failed to allocate FL queue bufs" |
| " for IQ idx:%d\n", free_idx); |
| return -1; |
| } |
| |
| flq->un.fl.packen = 0; |
| flq->un.fl.offset = 0; |
| flq->un.fl.sreg = sreg; |
| |
| /* Fill up the free list buffers */ |
| if (csio_wr_fill_fl(hw, flq)) |
| return -1; |
| |
| /* |
| * Make sure in a FLQ, atleast 1 credit (8 FL buffers) |
| * remains unpopulated,otherwise HW thinks |
| * FLQ is empty. |
| */ |
| flq->pidx = flq->inc_idx = flq->credits - 8; |
| } else { |
| q->un.iq.flq_idx = -1; |
| } |
| |
| /* Associate the IQ INTx handler. */ |
| q->un.iq.iq_intx_handler = iq_intx_handler; |
| |
| csio_q_iqid(hw, ret_idx) = CSIO_MAX_QID; |
| |
| } else if (type == CSIO_EGRESS) { |
| q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / CSIO_QCREDIT_SZ; |
| q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz |
| - csio_wr_qstat_pgsz(hw)); |
| csio_q_eqid(hw, ret_idx) = CSIO_MAX_QID; |
| } else { /* Freelist */ |
| q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / sizeof(__be64); |
| q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz |
| - csio_wr_qstat_pgsz(hw)); |
| csio_q_flid(hw, ret_idx) = CSIO_MAX_QID; |
| } |
| |
| return ret_idx; |
| } |
| |
| /* |
| * csio_wr_iq_create_rsp - Response handler for IQ creation. |
| * @hw: The HW module. |
| * @mbp: Mailbox. |
| * @iq_idx: Ingress queue that got created. |
| * |
| * Handle FW_IQ_CMD mailbox completion. Save off the assigned IQ/FL ids. |
| */ |
| static int |
| csio_wr_iq_create_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx) |
| { |
| struct csio_iq_params iqp; |
| enum fw_retval retval; |
| uint32_t iq_id; |
| int flq_idx; |
| |
| memset(&iqp, 0, sizeof(struct csio_iq_params)); |
| |
| csio_mb_iq_alloc_write_rsp(hw, mbp, &retval, &iqp); |
| |
| if (retval != FW_SUCCESS) { |
| csio_err(hw, "IQ cmd returned 0x%x!\n", retval); |
| mempool_free(mbp, hw->mb_mempool); |
| return -EINVAL; |
| } |
| |
| csio_q_iqid(hw, iq_idx) = iqp.iqid; |
| csio_q_physiqid(hw, iq_idx) = iqp.physiqid; |
| csio_q_pidx(hw, iq_idx) = csio_q_cidx(hw, iq_idx) = 0; |
| csio_q_inc_idx(hw, iq_idx) = 0; |
| |
| /* Actual iq-id. */ |
| iq_id = iqp.iqid - hw->wrm.fw_iq_start; |
| |
| /* Set the iq-id to iq map table. */ |
| if (iq_id >= CSIO_MAX_IQ) { |
| csio_err(hw, |
| "Exceeding MAX_IQ(%d) supported!" |
| " iqid:%d rel_iqid:%d FW iq_start:%d\n", |
| CSIO_MAX_IQ, iq_id, iqp.iqid, hw->wrm.fw_iq_start); |
| mempool_free(mbp, hw->mb_mempool); |
| return -EINVAL; |
| } |
| csio_q_set_intr_map(hw, iq_idx, iq_id); |
| |
| /* |
| * During FW_IQ_CMD, FW sets interrupt_sent bit to 1 in the SGE |
| * ingress context of this queue. This will block interrupts to |
| * this queue until the next GTS write. Therefore, we do a |
| * 0-cidx increment GTS write for this queue just to clear the |
| * interrupt_sent bit. This will re-enable interrupts to this |
| * queue. |
| */ |
| csio_wr_sge_intr_enable(hw, iqp.physiqid); |
| |
| flq_idx = csio_q_iq_flq_idx(hw, iq_idx); |
| if (flq_idx != -1) { |
| struct csio_q *flq = hw->wrm.q_arr[flq_idx]; |
| |
| csio_q_flid(hw, flq_idx) = iqp.fl0id; |
| csio_q_cidx(hw, flq_idx) = 0; |
| csio_q_pidx(hw, flq_idx) = csio_q_credits(hw, flq_idx) - 8; |
| csio_q_inc_idx(hw, flq_idx) = csio_q_credits(hw, flq_idx) - 8; |
| |
| /* Now update SGE about the buffers allocated during init */ |
| csio_wr_ring_fldb(hw, flq); |
| } |
| |
| mempool_free(mbp, hw->mb_mempool); |
| |
| return 0; |
| } |
| |
| /* |
| * csio_wr_iq_create - Configure an Ingress queue with FW. |
| * @hw: The HW module. |
| * @priv: Private data object. |
| * @iq_idx: Ingress queue index in the WR module. |
| * @vec: MSIX vector. |
| * @portid: PCIE Channel to be associated with this queue. |
| * @async: Is this a FW asynchronous message handling queue? |
| * @cbfn: Completion callback. |
| * |
| * This API configures an ingress queue with FW by issuing a FW_IQ_CMD mailbox |
| * with alloc/write bits set. |
| */ |
| int |
| csio_wr_iq_create(struct csio_hw *hw, void *priv, int iq_idx, |
| uint32_t vec, uint8_t portid, bool async, |
| void (*cbfn) (struct csio_hw *, struct csio_mb *)) |
| { |
| struct csio_mb *mbp; |
| struct csio_iq_params iqp; |
| int flq_idx; |
| |
| memset(&iqp, 0, sizeof(struct csio_iq_params)); |
| csio_q_portid(hw, iq_idx) = portid; |
| |
| mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); |
| if (!mbp) { |
| csio_err(hw, "IQ command out of memory!\n"); |
| return -ENOMEM; |
| } |
| |
| switch (hw->intr_mode) { |
| case CSIO_IM_INTX: |
| case CSIO_IM_MSI: |
| /* For interrupt forwarding queue only */ |
| if (hw->intr_iq_idx == iq_idx) |
| iqp.iqandst = X_INTERRUPTDESTINATION_PCIE; |
| else |
| iqp.iqandst = X_INTERRUPTDESTINATION_IQ; |
| iqp.iqandstindex = |
| csio_q_physiqid(hw, hw->intr_iq_idx); |
| break; |
| case CSIO_IM_MSIX: |
| iqp.iqandst = X_INTERRUPTDESTINATION_PCIE; |
| iqp.iqandstindex = (uint16_t)vec; |
| break; |
| case CSIO_IM_NONE: |
| mempool_free(mbp, hw->mb_mempool); |
| return -EINVAL; |
| } |
| |
| /* Pass in the ingress queue cmd parameters */ |
| iqp.pfn = hw->pfn; |
| iqp.vfn = 0; |
| iqp.iq_start = 1; |
| iqp.viid = 0; |
| iqp.type = FW_IQ_TYPE_FL_INT_CAP; |
| iqp.iqasynch = async; |
| if (csio_intr_coalesce_cnt) |
| iqp.iqanus = X_UPDATESCHEDULING_COUNTER_OPTTIMER; |
| else |
| iqp.iqanus = X_UPDATESCHEDULING_TIMER; |
| iqp.iqanud = X_UPDATEDELIVERY_INTERRUPT; |
| iqp.iqpciech = portid; |
| iqp.iqintcntthresh = (uint8_t)csio_sge_thresh_reg; |
| |
| switch (csio_q_wr_sz(hw, iq_idx)) { |
| case 16: |
| iqp.iqesize = 0; break; |
| case 32: |
| iqp.iqesize = 1; break; |
| case 64: |
| iqp.iqesize = 2; break; |
| case 128: |
| iqp.iqesize = 3; break; |
| } |
| |
| iqp.iqsize = csio_q_size(hw, iq_idx) / |
| csio_q_wr_sz(hw, iq_idx); |
| iqp.iqaddr = csio_q_pstart(hw, iq_idx); |
| |
| flq_idx = csio_q_iq_flq_idx(hw, iq_idx); |
| if (flq_idx != -1) { |
| enum chip_type chip = CHELSIO_CHIP_VERSION(hw->chip_id); |
| struct csio_q *flq = hw->wrm.q_arr[flq_idx]; |
| |
| iqp.fl0paden = 1; |
| iqp.fl0packen = flq->un.fl.packen ? 1 : 0; |
| iqp.fl0fbmin = X_FETCHBURSTMIN_64B; |
| iqp.fl0fbmax = ((chip == CHELSIO_T5) ? |
| X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B); |
| iqp.fl0size = csio_q_size(hw, flq_idx) / CSIO_QCREDIT_SZ; |
| iqp.fl0addr = csio_q_pstart(hw, flq_idx); |
| } |
| |
| csio_mb_iq_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn); |
| |
| if (csio_mb_issue(hw, mbp)) { |
| csio_err(hw, "Issue of IQ cmd failed!\n"); |
| mempool_free(mbp, hw->mb_mempool); |
| return -EINVAL; |
| } |
| |
| if (cbfn != NULL) |
| return 0; |
| |
| return csio_wr_iq_create_rsp(hw, mbp, iq_idx); |
| } |
| |
| /* |
| * csio_wr_eq_create_rsp - Response handler for EQ creation. |
| * @hw: The HW module. |
| * @mbp: Mailbox. |
| * @eq_idx: Egress queue that got created. |
| * |
| * Handle FW_EQ_OFLD_CMD mailbox completion. Save off the assigned EQ ids. |
| */ |
| static int |
| csio_wr_eq_cfg_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx) |
| { |
| struct csio_eq_params eqp; |
| enum fw_retval retval; |
| |
| memset(&eqp, 0, sizeof(struct csio_eq_params)); |
| |
| csio_mb_eq_ofld_alloc_write_rsp(hw, mbp, &retval, &eqp); |
| |
| if (retval != FW_SUCCESS) { |
| csio_err(hw, "EQ OFLD cmd returned 0x%x!\n", retval); |
| mempool_free(mbp, hw->mb_mempool); |
| return -EINVAL; |
| } |
| |
| csio_q_eqid(hw, eq_idx) = (uint16_t)eqp.eqid; |
| csio_q_physeqid(hw, eq_idx) = (uint16_t)eqp.physeqid; |
| csio_q_pidx(hw, eq_idx) = csio_q_cidx(hw, eq_idx) = 0; |
| csio_q_inc_idx(hw, eq_idx) = 0; |
| |
| mempool_free(mbp, hw->mb_mempool); |
| |
| return 0; |
| } |
| |
| /* |
| * csio_wr_eq_create - Configure an Egress queue with FW. |
| * @hw: HW module. |
| * @priv: Private data. |
| * @eq_idx: Egress queue index in the WR module. |
| * @iq_idx: Associated ingress queue index. |
| * @cbfn: Completion callback. |
| * |
| * This API configures a offload egress queue with FW by issuing a |
| * FW_EQ_OFLD_CMD (with alloc + write ) mailbox. |
| */ |
| int |
| csio_wr_eq_create(struct csio_hw *hw, void *priv, int eq_idx, |
| int iq_idx, uint8_t portid, |
| void (*cbfn) (struct csio_hw *, struct csio_mb *)) |
| { |
| struct csio_mb *mbp; |
| struct csio_eq_params eqp; |
| |
| memset(&eqp, 0, sizeof(struct csio_eq_params)); |
| |
| mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); |
| if (!mbp) { |
| csio_err(hw, "EQ command out of memory!\n"); |
| return -ENOMEM; |
| } |
| |
| eqp.pfn = hw->pfn; |
| eqp.vfn = 0; |
| eqp.eqstart = 1; |
| eqp.hostfcmode = X_HOSTFCMODE_STATUS_PAGE; |
| eqp.iqid = csio_q_iqid(hw, iq_idx); |
| eqp.fbmin = X_FETCHBURSTMIN_64B; |
| eqp.fbmax = X_FETCHBURSTMAX_512B; |
| eqp.cidxfthresh = 0; |
| eqp.pciechn = portid; |
| eqp.eqsize = csio_q_size(hw, eq_idx) / CSIO_QCREDIT_SZ; |
| eqp.eqaddr = csio_q_pstart(hw, eq_idx); |
| |
| csio_mb_eq_ofld_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, |
| &eqp, cbfn); |
| |
| if (csio_mb_issue(hw, mbp)) { |
| csio_err(hw, "Issue of EQ OFLD cmd failed!\n"); |
| mempool_free(mbp, hw->mb_mempool); |
| return -EINVAL; |
| } |
| |
| if (cbfn != NULL) |
| return 0; |
| |
| return csio_wr_eq_cfg_rsp(hw, mbp, eq_idx); |
| } |
| |
| /* |
| * csio_wr_iq_destroy_rsp - Response handler for IQ removal. |
| * @hw: The HW module. |
| * @mbp: Mailbox. |
| * @iq_idx: Ingress queue that was freed. |
| * |
| * Handle FW_IQ_CMD (free) mailbox completion. |
| */ |
| static int |
| csio_wr_iq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx) |
| { |
| enum fw_retval retval = csio_mb_fw_retval(mbp); |
| int rv = 0; |
| |
| if (retval != FW_SUCCESS) |
| rv = -EINVAL; |
| |
| mempool_free(mbp, hw->mb_mempool); |
| |
| return rv; |
| } |
| |
| /* |
| * csio_wr_iq_destroy - Free an ingress queue. |
| * @hw: The HW module. |
| * @priv: Private data object. |
| * @iq_idx: Ingress queue index to destroy |
| * @cbfn: Completion callback. |
| * |
| * This API frees an ingress queue by issuing the FW_IQ_CMD |
| * with the free bit set. |
| */ |
| static int |
| csio_wr_iq_destroy(struct csio_hw *hw, void *priv, int iq_idx, |
| void (*cbfn)(struct csio_hw *, struct csio_mb *)) |
| { |
| int rv = 0; |
| struct csio_mb *mbp; |
| struct csio_iq_params iqp; |
| int flq_idx; |
| |
| memset(&iqp, 0, sizeof(struct csio_iq_params)); |
| |
| mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); |
| if (!mbp) |
| return -ENOMEM; |
| |
| iqp.pfn = hw->pfn; |
| iqp.vfn = 0; |
| iqp.iqid = csio_q_iqid(hw, iq_idx); |
| iqp.type = FW_IQ_TYPE_FL_INT_CAP; |
| |
| flq_idx = csio_q_iq_flq_idx(hw, iq_idx); |
| if (flq_idx != -1) |
| iqp.fl0id = csio_q_flid(hw, flq_idx); |
| else |
| iqp.fl0id = 0xFFFF; |
| |
| iqp.fl1id = 0xFFFF; |
| |
| csio_mb_iq_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn); |
| |
| rv = csio_mb_issue(hw, mbp); |
| if (rv != 0) { |
| mempool_free(mbp, hw->mb_mempool); |
| return rv; |
| } |
| |
| if (cbfn != NULL) |
| return 0; |
| |
| return csio_wr_iq_destroy_rsp(hw, mbp, iq_idx); |
| } |
| |
| /* |
| * csio_wr_eq_destroy_rsp - Response handler for OFLD EQ creation. |
| * @hw: The HW module. |
| * @mbp: Mailbox. |
| * @eq_idx: Egress queue that was freed. |
| * |
| * Handle FW_OFLD_EQ_CMD (free) mailbox completion. |
| */ |
| static int |
| csio_wr_eq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx) |
| { |
| enum fw_retval retval = csio_mb_fw_retval(mbp); |
| int rv = 0; |
| |
| if (retval != FW_SUCCESS) |
| rv = -EINVAL; |
| |
| mempool_free(mbp, hw->mb_mempool); |
| |
| return rv; |
| } |
| |
| /* |
| * csio_wr_eq_destroy - Free an Egress queue. |
| * @hw: The HW module. |
| * @priv: Private data object. |
| * @eq_idx: Egress queue index to destroy |
| * @cbfn: Completion callback. |
| * |
| * This API frees an Egress queue by issuing the FW_EQ_OFLD_CMD |
| * with the free bit set. |
| */ |
| static int |
| csio_wr_eq_destroy(struct csio_hw *hw, void *priv, int eq_idx, |
| void (*cbfn) (struct csio_hw *, struct csio_mb *)) |
| { |
| int rv = 0; |
| struct csio_mb *mbp; |
| struct csio_eq_params eqp; |
| |
| memset(&eqp, 0, sizeof(struct csio_eq_params)); |
| |
| mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); |
| if (!mbp) |
| return -ENOMEM; |
| |
| eqp.pfn = hw->pfn; |
| eqp.vfn = 0; |
| eqp.eqid = csio_q_eqid(hw, eq_idx); |
| |
| csio_mb_eq_ofld_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &eqp, cbfn); |
| |
| rv = csio_mb_issue(hw, mbp); |
| if (rv != 0) { |
| mempool_free(mbp, hw->mb_mempool); |
| return rv; |
| } |
| |
| if (cbfn != NULL) |
| return 0; |
| |
| return csio_wr_eq_destroy_rsp(hw, mbp, eq_idx); |
| } |
| |
| /* |
| * csio_wr_cleanup_eq_stpg - Cleanup Egress queue status page |
| * @hw: HW module |
| * @qidx: Egress queue index |
| * |
| * Cleanup the Egress queue status page. |
| */ |
| static void |
| csio_wr_cleanup_eq_stpg(struct csio_hw *hw, int qidx) |
| { |
| struct csio_q *q = csio_hw_to_wrm(hw)->q_arr[qidx]; |
| struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap; |
| |
| memset(stp, 0, sizeof(*stp)); |
| } |
| |
| /* |
| * csio_wr_cleanup_iq_ftr - Cleanup Footer entries in IQ |
| * @hw: HW module |
| * @qidx: Ingress queue index |
| * |
| * Cleanup the footer entries in the given ingress queue, |
| * set to 1 the internal copy of genbit. |
| */ |
| static void |
| csio_wr_cleanup_iq_ftr(struct csio_hw *hw, int qidx) |
| { |
| struct csio_wrm *wrm = csio_hw_to_wrm(hw); |
| struct csio_q *q = wrm->q_arr[qidx]; |
| void *wr; |
| struct csio_iqwr_footer *ftr; |
| uint32_t i = 0; |
| |
| /* set to 1 since we are just about zero out genbit */ |
| q->un.iq.genbit = 1; |
| |
| for (i = 0; i < q->credits; i++) { |
| /* Get the WR */ |
| wr = (void *)((uintptr_t)q->vstart + |
| (i * q->wr_sz)); |
| /* Get the footer */ |
| ftr = (struct csio_iqwr_footer *)((uintptr_t)wr + |
| (q->wr_sz - sizeof(*ftr))); |
| /* Zero out footer */ |
| memset(ftr, 0, sizeof(*ftr)); |
| } |
| } |
| |
| int |
| csio_wr_destroy_queues(struct csio_hw *hw, bool cmd) |
| { |
| int i, flq_idx; |
| struct csio_q *q; |
| struct csio_wrm *wrm = csio_hw_to_wrm(hw); |
| int rv; |
| |
| for (i = 0; i < wrm->free_qidx; i++) { |
| q = wrm->q_arr[i]; |
| |
| switch (q->type) { |
| case CSIO_EGRESS: |
| if (csio_q_eqid(hw, i) != CSIO_MAX_QID) { |
| csio_wr_cleanup_eq_stpg(hw, i); |
| if (!cmd) { |
| csio_q_eqid(hw, i) = CSIO_MAX_QID; |
| continue; |
| } |
| |
| rv = csio_wr_eq_destroy(hw, NULL, i, NULL); |
| if ((rv == -EBUSY) || (rv == -ETIMEDOUT)) |
| cmd = false; |
| |
| csio_q_eqid(hw, i) = CSIO_MAX_QID; |
| } |
| fallthrough; |
| case CSIO_INGRESS: |
| if (csio_q_iqid(hw, i) != CSIO_MAX_QID) { |
| csio_wr_cleanup_iq_ftr(hw, i); |
| if (!cmd) { |
| csio_q_iqid(hw, i) = CSIO_MAX_QID; |
| flq_idx = csio_q_iq_flq_idx(hw, i); |
| if (flq_idx != -1) |
| csio_q_flid(hw, flq_idx) = |
| CSIO_MAX_QID; |
| continue; |
| } |
| |
| rv = csio_wr_iq_destroy(hw, NULL, i, NULL); |
| if ((rv == -EBUSY) || (rv == -ETIMEDOUT)) |
| cmd = false; |
| |
| csio_q_iqid(hw, i) = CSIO_MAX_QID; |
| flq_idx = csio_q_iq_flq_idx(hw, i); |
| if (flq_idx != -1) |
| csio_q_flid(hw, flq_idx) = CSIO_MAX_QID; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| hw->flags &= ~CSIO_HWF_Q_FW_ALLOCED; |
| |
| return 0; |
| } |
| |
| /* |
| * csio_wr_get - Get requested size of WR entry/entries from queue. |
| * @hw: HW module. |
| * @qidx: Index of queue. |
| * @size: Cumulative size of Work request(s). |
| * @wrp: Work request pair. |
| * |
| * If requested credits are available, return the start address of the |
| * work request in the work request pair. Set pidx accordingly and |
| * return. |
| * |
| * NOTE about WR pair: |
| * ================== |
| * A WR can start towards the end of a queue, and then continue at the |
| * beginning, since the queue is considered to be circular. This will |
| * require a pair of address/size to be passed back to the caller - |
| * hence Work request pair format. |
| */ |
| int |
| csio_wr_get(struct csio_hw *hw, int qidx, uint32_t size, |
| struct csio_wr_pair *wrp) |
| { |
| struct csio_wrm *wrm = csio_hw_to_wrm(hw); |
| struct csio_q *q = wrm->q_arr[qidx]; |
| void *cwr = (void *)((uintptr_t)(q->vstart) + |
| (q->pidx * CSIO_QCREDIT_SZ)); |
| struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap; |
| uint16_t cidx = q->cidx = ntohs(stp->cidx); |
| uint16_t pidx = q->pidx; |
| uint32_t req_sz = ALIGN(size, CSIO_QCREDIT_SZ); |
| int req_credits = req_sz / CSIO_QCREDIT_SZ; |
| int credits; |
| |
| CSIO_DB_ASSERT(q->owner != NULL); |
| CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx)); |
| CSIO_DB_ASSERT(cidx <= q->credits); |
| |
| /* Calculate credits */ |
| if (pidx > cidx) { |
| credits = q->credits - (pidx - cidx) - 1; |
| } else if (cidx > pidx) { |
| credits = cidx - pidx - 1; |
| } else { |
| /* cidx == pidx, empty queue */ |
| credits = q->credits; |
| CSIO_INC_STATS(q, n_qempty); |
| } |
| |
| /* |
| * Check if we have enough credits. |
| * credits = 1 implies queue is full. |
| */ |
| if (!credits || (req_credits > credits)) { |
| CSIO_INC_STATS(q, n_qfull); |
| return -EBUSY; |
| } |
| |
| /* |
| * If we are here, we have enough credits to satisfy the |
| * request. Check if we are near the end of q, and if WR spills over. |
| * If it does, use the first addr/size to cover the queue until |
| * the end. Fit the remainder portion of the request at the top |
| * of queue and return it in the second addr/len. Set pidx |
| * accordingly. |
| */ |
| if (unlikely(((uintptr_t)cwr + req_sz) > (uintptr_t)(q->vwrap))) { |
| wrp->addr1 = cwr; |
| wrp->size1 = (uint32_t)((uintptr_t)q->vwrap - (uintptr_t)cwr); |
| wrp->addr2 = q->vstart; |
| wrp->size2 = req_sz - wrp->size1; |
| q->pidx = (uint16_t)(ALIGN(wrp->size2, CSIO_QCREDIT_SZ) / |
| CSIO_QCREDIT_SZ); |
| CSIO_INC_STATS(q, n_qwrap); |
| CSIO_INC_STATS(q, n_eq_wr_split); |
| } else { |
| wrp->addr1 = cwr; |
| wrp->size1 = req_sz; |
| wrp->addr2 = NULL; |
| wrp->size2 = 0; |
| q->pidx += (uint16_t)req_credits; |
| |
| /* We are the end of queue, roll back pidx to top of queue */ |
| if (unlikely(q->pidx == q->credits)) { |
| q->pidx = 0; |
| CSIO_INC_STATS(q, n_qwrap); |
| } |
| } |
| |
| q->inc_idx = (uint16_t)req_credits; |
| |
| CSIO_INC_STATS(q, n_tot_reqs); |
| |
| return 0; |
| } |
| |
| /* |
| * csio_wr_copy_to_wrp - Copies given data into WR. |
| * @data_buf - Data buffer |
| * @wrp - Work request pair. |
| * @wr_off - Work request offset. |
| * @data_len - Data length. |
| * |
| * Copies the given data in Work Request. Work request pair(wrp) specifies |
| * address information of Work request. |
| * Returns: none |
| */ |
| void |
| csio_wr_copy_to_wrp(void *data_buf, struct csio_wr_pair *wrp, |
| uint32_t wr_off, uint32_t data_len) |
| { |
| uint32_t nbytes; |
| |
| /* Number of space available in buffer addr1 of WRP */ |
| nbytes = ((wrp->size1 - wr_off) >= data_len) ? |
| data_len : (wrp->size1 - wr_off); |
| |
| memcpy((uint8_t *) wrp->addr1 + wr_off, data_buf, nbytes); |
| data_len -= nbytes; |
| |
| /* Write the remaining data from the begining of circular buffer */ |
| if (data_len) { |
| CSIO_DB_ASSERT(data_len <= wrp->size2); |
| CSIO_DB_ASSERT(wrp->addr2 != NULL); |
| memcpy(wrp->addr2, (uint8_t *) data_buf + nbytes, data_len); |
| } |
| } |
| |
| /* |
| * csio_wr_issue - Notify chip of Work request. |
| * @hw: HW module. |
| * @qidx: Index of queue. |
| * @prio: 0: Low priority, 1: High priority |
| * |
| * Rings the SGE Doorbell by writing the current producer index of the passed |
| * in queue into the register. |
| * |
| */ |
| int |
| csio_wr_issue(struct csio_hw *hw, int qidx, bool prio) |
| { |
| struct csio_wrm *wrm = csio_hw_to_wrm(hw); |
| struct csio_q *q = wrm->q_arr[qidx]; |
| |
| CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx)); |
| |
| wmb(); |
| /* Ring SGE Doorbell writing q->pidx into it */ |
| csio_wr_reg32(hw, DBPRIO_V(prio) | QID_V(q->un.eq.physeqid) | |
| PIDX_T5_V(q->inc_idx) | DBTYPE_F, |
| MYPF_REG(SGE_PF_KDOORBELL_A)); |
| q->inc_idx = 0; |
| |
| return 0; |
| } |
| |
| static inline uint32_t |
| csio_wr_avail_qcredits(struct csio_q *q) |
| { |
| if (q->pidx > q->cidx) |
| return q->pidx - q->cidx; |
| else if (q->cidx > q->pidx) |
| return q->credits - (q->cidx - q->pidx); |
| else |
| return 0; /* cidx == pidx, empty queue */ |
| } |
| |
| /* |
| * csio_wr_inval_flq_buf - Invalidate a free list buffer entry. |
| * @hw: HW module. |
| * @flq: The freelist queue. |
| * |
| * Invalidate the driver's version of a freelist buffer entry, |
| * without freeing the associated the DMA memory. The entry |
| * to be invalidated is picked up from the current Free list |
| * queue cidx. |
| * |
| */ |
| static inline void |
| csio_wr_inval_flq_buf(struct csio_hw *hw, struct csio_q *flq) |
| { |
| flq->cidx++; |
| if (flq->cidx == flq->credits) { |
| flq->cidx = 0; |
| CSIO_INC_STATS(flq, n_qwrap); |
| } |
| } |
| |
| /* |
| * csio_wr_process_fl - Process a freelist completion. |
| * @hw: HW module. |
| * @q: The ingress queue attached to the Freelist. |
| * @wr: The freelist completion WR in the ingress queue. |
| * @len_to_qid: The lower 32-bits of the first flit of the RSP footer |
| * @iq_handler: Caller's handler for this completion. |
| * @priv: Private pointer of caller |
| * |
| */ |
| static inline void |
| csio_wr_process_fl(struct csio_hw *hw, struct csio_q *q, |
| void *wr, uint32_t len_to_qid, |
| void (*iq_handler)(struct csio_hw *, void *, |
| uint32_t, struct csio_fl_dma_buf *, |
| void *), |
| void *priv) |
| { |
| struct csio_wrm *wrm = csio_hw_to_wrm(hw); |
| struct csio_sge *sge = &wrm->sge; |
| struct csio_fl_dma_buf flb; |
| struct csio_dma_buf *buf, *fbuf; |
| uint32_t bufsz, len, lastlen = 0; |
| struct csio_q *flq = hw->wrm.q_arr[q->un.iq.flq_idx]; |
| |
| CSIO_DB_ASSERT(flq != NULL); |
| |
| len = len_to_qid; |
| |
| if (len & IQWRF_NEWBUF) { |
| if (flq->un.fl.offset > 0) { |
| csio_wr_inval_flq_buf(hw, flq); |
| flq->un.fl.offset = 0; |
| } |
| len = IQWRF_LEN_GET(len); |
| } |
| |
| CSIO_DB_ASSERT(len != 0); |
| |
| flb.totlen = len; |
| |
| /* Consume all freelist buffers used for len bytes */ |
| for (fbuf = flb.flbufs; ; fbuf++) { |
| buf = &flq->un.fl.bufs[flq->cidx]; |
| bufsz = csio_wr_fl_bufsz(sge, buf); |
| |
| fbuf->paddr = buf->paddr; |
| fbuf->vaddr = buf->vaddr; |
| |
| flb.offset = flq->un.fl.offset; |
| lastlen = min(bufsz, len); |
| fbuf->len = lastlen; |
| |
| len -= lastlen; |
| if (!len) |
| break; |
| csio_wr_inval_flq_buf(hw, flq); |
| } |
| |
| flb.defer_free = flq->un.fl.packen ? 0 : 1; |
| |
| iq_handler(hw, wr, q->wr_sz - sizeof(struct csio_iqwr_footer), |
| &flb, priv); |
| |
| if (flq->un.fl.packen) |
| flq->un.fl.offset += ALIGN(lastlen, sge->csio_fl_align); |
| else |
| csio_wr_inval_flq_buf(hw, flq); |
| |
| } |
| |
| /* |
| * csio_is_new_iqwr - Is this a new Ingress queue entry ? |
| * @q: Ingress quueue. |
| * @ftr: Ingress queue WR SGE footer. |
| * |
| * The entry is new if our generation bit matches the corresponding |
| * bit in the footer of the current WR. |
| */ |
| static inline bool |
| csio_is_new_iqwr(struct csio_q *q, struct csio_iqwr_footer *ftr) |
| { |
| return (q->un.iq.genbit == (ftr->u.type_gen >> IQWRF_GEN_SHIFT)); |
| } |
| |
| /* |
| * csio_wr_process_iq - Process elements in Ingress queue. |
| * @hw: HW pointer |
| * @qidx: Index of queue |
| * @iq_handler: Handler for this queue |
| * @priv: Caller's private pointer |
| * |
| * This routine walks through every entry of the ingress queue, calling |
| * the provided iq_handler with the entry, until the generation bit |
| * flips. |
| */ |
| int |
| csio_wr_process_iq(struct csio_hw *hw, struct csio_q *q, |
| void (*iq_handler)(struct csio_hw *, void *, |
| uint32_t, struct csio_fl_dma_buf *, |
| void *), |
| void *priv) |
| { |
| struct csio_wrm *wrm = csio_hw_to_wrm(hw); |
| void *wr = (void *)((uintptr_t)q->vstart + (q->cidx * q->wr_sz)); |
| struct csio_iqwr_footer *ftr; |
| uint32_t wr_type, fw_qid, qid; |
| struct csio_q *q_completed; |
| struct csio_q *flq = csio_iq_has_fl(q) ? |
| wrm->q_arr[q->un.iq.flq_idx] : NULL; |
| int rv = 0; |
| |
| /* Get the footer */ |
| ftr = (struct csio_iqwr_footer *)((uintptr_t)wr + |
| (q->wr_sz - sizeof(*ftr))); |
| |
| /* |
| * When q wrapped around last time, driver should have inverted |
| * ic.genbit as well. |
| */ |
| while (csio_is_new_iqwr(q, ftr)) { |
| |
| CSIO_DB_ASSERT(((uintptr_t)wr + q->wr_sz) <= |
| (uintptr_t)q->vwrap); |
| rmb(); |
| wr_type = IQWRF_TYPE_GET(ftr->u.type_gen); |
| |
| switch (wr_type) { |
| case X_RSPD_TYPE_CPL: |
| /* Subtract footer from WR len */ |
| iq_handler(hw, wr, q->wr_sz - sizeof(*ftr), NULL, priv); |
| break; |
| case X_RSPD_TYPE_FLBUF: |
| csio_wr_process_fl(hw, q, wr, |
| ntohl(ftr->pldbuflen_qid), |
| iq_handler, priv); |
| break; |
| case X_RSPD_TYPE_INTR: |
| fw_qid = ntohl(ftr->pldbuflen_qid); |
| qid = fw_qid - wrm->fw_iq_start; |
| q_completed = hw->wrm.intr_map[qid]; |
| |
| if (unlikely(qid == |
| csio_q_physiqid(hw, hw->intr_iq_idx))) { |
| /* |
| * We are already in the Forward Interrupt |
| * Interrupt Queue Service! Do-not service |
| * again! |
| * |
| */ |
| } else { |
| CSIO_DB_ASSERT(q_completed); |
| CSIO_DB_ASSERT( |
| q_completed->un.iq.iq_intx_handler); |
| |
| /* Call the queue handler. */ |
| q_completed->un.iq.iq_intx_handler(hw, NULL, |
| 0, NULL, (void *)q_completed); |
| } |
| break; |
| default: |
| csio_warn(hw, "Unknown resp type 0x%x received\n", |
| wr_type); |
| CSIO_INC_STATS(q, n_rsp_unknown); |
| break; |
| } |
| |
| /* |
| * Ingress *always* has fixed size WR entries. Therefore, |
| * there should always be complete WRs towards the end of |
| * queue. |
| */ |
| if (((uintptr_t)wr + q->wr_sz) == (uintptr_t)q->vwrap) { |
| |
| /* Roll over to start of queue */ |
| q->cidx = 0; |
| wr = q->vstart; |
| |
| /* Toggle genbit */ |
| q->un.iq.genbit ^= 0x1; |
| |
| CSIO_INC_STATS(q, n_qwrap); |
| } else { |
| q->cidx++; |
| wr = (void *)((uintptr_t)(q->vstart) + |
| (q->cidx * q->wr_sz)); |
| } |
| |
| ftr = (struct csio_iqwr_footer *)((uintptr_t)wr + |
| (q->wr_sz - sizeof(*ftr))); |
| q->inc_idx++; |
| |
| } /* while (q->un.iq.genbit == hdr->genbit) */ |
| |
| /* |
| * We need to re-arm SGE interrupts in case we got a stray interrupt, |
| * especially in msix mode. With INTx, this may be a common occurence. |
| */ |
| if (unlikely(!q->inc_idx)) { |
| CSIO_INC_STATS(q, n_stray_comp); |
| rv = -EINVAL; |
| goto restart; |
| } |
| |
| /* Replenish free list buffers if pending falls below low water mark */ |
| if (flq) { |
| uint32_t avail = csio_wr_avail_qcredits(flq); |
| if (avail <= 16) { |
| /* Make sure in FLQ, atleast 1 credit (8 FL buffers) |
| * remains unpopulated otherwise HW thinks |
| * FLQ is empty. |
| */ |
| csio_wr_update_fl(hw, flq, (flq->credits - 8) - avail); |
| csio_wr_ring_fldb(hw, flq); |
| } |
| } |
| |
| restart: |
| /* Now inform SGE about our incremental index value */ |
| csio_wr_reg32(hw, CIDXINC_V(q->inc_idx) | |
| INGRESSQID_V(q->un.iq.physiqid) | |
| TIMERREG_V(csio_sge_timer_reg), |
| MYPF_REG(SGE_PF_GTS_A)); |
| q->stats.n_tot_rsps += q->inc_idx; |
| |
| q->inc_idx = 0; |
| |
| return rv; |
| } |
| |
| int |
| csio_wr_process_iq_idx(struct csio_hw *hw, int qidx, |
| void (*iq_handler)(struct csio_hw *, void *, |
| uint32_t, struct csio_fl_dma_buf *, |
| void *), |
| void *priv) |
| { |
| struct csio_wrm *wrm = csio_hw_to_wrm(hw); |
| struct csio_q *iq = wrm->q_arr[qidx]; |
| |
| return csio_wr_process_iq(hw, iq, iq_handler, priv); |
| } |
| |
| static int |
| csio_closest_timer(struct csio_sge *s, int time) |
| { |
| int i, delta, match = 0, min_delta = INT_MAX; |
| |
| for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { |
| delta = time - s->timer_val[i]; |
| if (delta < 0) |
| delta = -delta; |
| if (delta < min_delta) { |
| min_delta = delta; |
| match = i; |
| } |
| } |
| return match; |
| } |
| |
| static int |
| csio_closest_thresh(struct csio_sge *s, int cnt) |
| { |
| int i, delta, match = 0, min_delta = INT_MAX; |
| |
| for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { |
| delta = cnt - s->counter_val[i]; |
| if (delta < 0) |
| delta = -delta; |
| if (delta < min_delta) { |
| min_delta = delta; |
| match = i; |
| } |
| } |
| return match; |
| } |
| |
| static void |
| csio_wr_fixup_host_params(struct csio_hw *hw) |
| { |
| struct csio_wrm *wrm = csio_hw_to_wrm(hw); |
| struct csio_sge *sge = &wrm->sge; |
| uint32_t clsz = L1_CACHE_BYTES; |
| uint32_t s_hps = PAGE_SHIFT - 10; |
| uint32_t stat_len = clsz > 64 ? 128 : 64; |
| u32 fl_align = clsz < 32 ? 32 : clsz; |
| u32 pack_align; |
| u32 ingpad, ingpack; |
| |
| csio_wr_reg32(hw, HOSTPAGESIZEPF0_V(s_hps) | HOSTPAGESIZEPF1_V(s_hps) | |
| HOSTPAGESIZEPF2_V(s_hps) | HOSTPAGESIZEPF3_V(s_hps) | |
| HOSTPAGESIZEPF4_V(s_hps) | HOSTPAGESIZEPF5_V(s_hps) | |
| HOSTPAGESIZEPF6_V(s_hps) | HOSTPAGESIZEPF7_V(s_hps), |
| SGE_HOST_PAGE_SIZE_A); |
| |
| /* T5 introduced the separation of the Free List Padding and |
| * Packing Boundaries. Thus, we can select a smaller Padding |
| * Boundary to avoid uselessly chewing up PCIe Link and Memory |
| * Bandwidth, and use a Packing Boundary which is large enough |
| * to avoid false sharing between CPUs, etc. |
| * |
| * For the PCI Link, the smaller the Padding Boundary the |
| * better. For the Memory Controller, a smaller Padding |
| * Boundary is better until we cross under the Memory Line |
| * Size (the minimum unit of transfer to/from Memory). If we |
| * have a Padding Boundary which is smaller than the Memory |
| * Line Size, that'll involve a Read-Modify-Write cycle on the |
| * Memory Controller which is never good. |
| */ |
| |
| /* We want the Packing Boundary to be based on the Cache Line |
| * Size in order to help avoid False Sharing performance |
| * issues between CPUs, etc. We also want the Packing |
| * Boundary to incorporate the PCI-E Maximum Payload Size. We |
| * get best performance when the Packing Boundary is a |
| * multiple of the Maximum Payload Size. |
| */ |
| pack_align = fl_align; |
| if (pci_is_pcie(hw->pdev)) { |
| u32 mps, mps_log; |
| u16 devctl; |
| |
| /* The PCIe Device Control Maximum Payload Size field |
| * [bits 7:5] encodes sizes as powers of 2 starting at |
| * 128 bytes. |
| */ |
| pcie_capability_read_word(hw->pdev, PCI_EXP_DEVCTL, &devctl); |
| mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7; |
| mps = 1 << mps_log; |
| if (mps > pack_align) |
| pack_align = mps; |
| } |
| |
| /* T5/T6 have a special interpretation of the "0" |
| * value for the Packing Boundary. This corresponds to 16 |
| * bytes instead of the expected 32 bytes. |
| */ |
| if (pack_align <= 16) { |
| ingpack = INGPACKBOUNDARY_16B_X; |
| fl_align = 16; |
| } else if (pack_align == 32) { |
| ingpack = INGPACKBOUNDARY_64B_X; |
| fl_align = 64; |
| } else { |
| u32 pack_align_log = fls(pack_align) - 1; |
| |
| ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X; |
| fl_align = pack_align; |
| } |
| |
| /* Use the smallest Ingress Padding which isn't smaller than |
| * the Memory Controller Read/Write Size. We'll take that as |
| * being 8 bytes since we don't know of any system with a |
| * wider Memory Controller Bus Width. |
| */ |
| if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK)) |
| ingpad = INGPADBOUNDARY_32B_X; |
| else |
| ingpad = T6_INGPADBOUNDARY_8B_X; |
| |
| csio_set_reg_field(hw, SGE_CONTROL_A, |
| INGPADBOUNDARY_V(INGPADBOUNDARY_M) | |
| EGRSTATUSPAGESIZE_F, |
| INGPADBOUNDARY_V(ingpad) | |
| EGRSTATUSPAGESIZE_V(stat_len != 64)); |
| csio_set_reg_field(hw, SGE_CONTROL2_A, |
| INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), |
| INGPACKBOUNDARY_V(ingpack)); |
| |
| /* FL BUFFER SIZE#0 is Page size i,e already aligned to cache line */ |
| csio_wr_reg32(hw, PAGE_SIZE, SGE_FL_BUFFER_SIZE0_A); |
| |
| /* |
| * If using hard params, the following will get set correctly |
| * in csio_wr_set_sge(). |
| */ |
| if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS) { |
| csio_wr_reg32(hw, |
| (csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE2_A) + |
| fl_align - 1) & ~(fl_align - 1), |
| SGE_FL_BUFFER_SIZE2_A); |
| csio_wr_reg32(hw, |
| (csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE3_A) + |
| fl_align - 1) & ~(fl_align - 1), |
| SGE_FL_BUFFER_SIZE3_A); |
| } |
| |
| sge->csio_fl_align = fl_align; |
| |
| csio_wr_reg32(hw, HPZ0_V(PAGE_SHIFT - 12), ULP_RX_TDDP_PSZ_A); |
| |
| /* default value of rx_dma_offset of the NIC driver */ |
| csio_set_reg_field(hw, SGE_CONTROL_A, |
| PKTSHIFT_V(PKTSHIFT_M), |
| PKTSHIFT_V(CSIO_SGE_RX_DMA_OFFSET)); |
| |
| csio_hw_tp_wr_bits_indirect(hw, TP_INGRESS_CONFIG_A, |
| CSUM_HAS_PSEUDO_HDR_F, 0); |
| } |
| |
| static void |
| csio_init_intr_coalesce_parms(struct csio_hw *hw) |
| { |
| struct csio_wrm *wrm = csio_hw_to_wrm(hw); |
| struct csio_sge *sge = &wrm->sge; |
| |
| csio_sge_thresh_reg = csio_closest_thresh(sge, csio_intr_coalesce_cnt); |
| if (csio_intr_coalesce_cnt) { |
| csio_sge_thresh_reg = 0; |
| csio_sge_timer_reg = X_TIMERREG_RESTART_COUNTER; |
| return; |
| } |
| |
| csio_sge_timer_reg = csio_closest_timer(sge, csio_intr_coalesce_time); |
| } |
| |
| /* |
| * csio_wr_get_sge - Get SGE register values. |
| * @hw: HW module. |
| * |
| * Used by non-master functions and by master-functions relying on config file. |
| */ |
| static void |
| csio_wr_get_sge(struct csio_hw *hw) |
| { |
| struct csio_wrm *wrm = csio_hw_to_wrm(hw); |
| struct csio_sge *sge = &wrm->sge; |
| uint32_t ingpad; |
| int i; |
| u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5; |
| u32 ingress_rx_threshold; |
| |
| sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A); |
| |
| ingpad = INGPADBOUNDARY_G(sge->sge_control); |
| |
| switch (ingpad) { |
| case X_INGPCIEBOUNDARY_32B: |
| sge->csio_fl_align = 32; break; |
| case X_INGPCIEBOUNDARY_64B: |
| sge->csio_fl_align = 64; break; |
| case X_INGPCIEBOUNDARY_128B: |
| sge->csio_fl_align = 128; break; |
| case X_INGPCIEBOUNDARY_256B: |
| sge->csio_fl_align = 256; break; |
| case X_INGPCIEBOUNDARY_512B: |
| sge->csio_fl_align = 512; break; |
| case X_INGPCIEBOUNDARY_1024B: |
| sge->csio_fl_align = 1024; break; |
| case X_INGPCIEBOUNDARY_2048B: |
| sge->csio_fl_align = 2048; break; |
| case X_INGPCIEBOUNDARY_4096B: |
| sge->csio_fl_align = 4096; break; |
| } |
| |
| for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++) |
| csio_get_flbuf_size(hw, sge, i); |
| |
| timer_value_0_and_1 = csio_rd_reg32(hw, SGE_TIMER_VALUE_0_AND_1_A); |
| timer_value_2_and_3 = csio_rd_reg32(hw, SGE_TIMER_VALUE_2_AND_3_A); |
| timer_value_4_and_5 = csio_rd_reg32(hw, SGE_TIMER_VALUE_4_AND_5_A); |
| |
| sge->timer_val[0] = (uint16_t)csio_core_ticks_to_us(hw, |
| TIMERVALUE0_G(timer_value_0_and_1)); |
| sge->timer_val[1] = (uint16_t)csio_core_ticks_to_us(hw, |
| TIMERVALUE1_G(timer_value_0_and_1)); |
| sge->timer_val[2] = (uint16_t)csio_core_ticks_to_us(hw, |
| TIMERVALUE2_G(timer_value_2_and_3)); |
| sge->timer_val[3] = (uint16_t)csio_core_ticks_to_us(hw, |
| TIMERVALUE3_G(timer_value_2_and_3)); |
| sge->timer_val[4] = (uint16_t)csio_core_ticks_to_us(hw, |
| TIMERVALUE4_G(timer_value_4_and_5)); |
| sge->timer_val[5] = (uint16_t)csio_core_ticks_to_us(hw, |
| TIMERVALUE5_G(timer_value_4_and_5)); |
| |
| ingress_rx_threshold = csio_rd_reg32(hw, SGE_INGRESS_RX_THRESHOLD_A); |
| sge->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold); |
| sge->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold); |
| sge->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold); |
| sge->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold); |
| |
| csio_init_intr_coalesce_parms(hw); |
| } |
| |
| /* |
| * csio_wr_set_sge - Initialize SGE registers |
| * @hw: HW module. |
| * |
| * Used by Master function to initialize SGE registers in the absence |
| * of a config file. |
| */ |
| static void |
| csio_wr_set_sge(struct csio_hw *hw) |
| { |
| struct csio_wrm *wrm = csio_hw_to_wrm(hw); |
| struct csio_sge *sge = &wrm->sge; |
| int i; |
| |
| /* |
| * Set up our basic SGE mode to deliver CPL messages to our Ingress |
| * Queue and Packet Date to the Free List. |
| */ |
| csio_set_reg_field(hw, SGE_CONTROL_A, RXPKTCPLMODE_F, RXPKTCPLMODE_F); |
| |
| sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A); |
| |
| /* sge->csio_fl_align is set up by csio_wr_fixup_host_params(). */ |
| |
| /* |
| * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows |
| * and generate an interrupt when this occurs so we can recover. |
| */ |
| csio_set_reg_field(hw, SGE_DBFIFO_STATUS_A, |
| LP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M), |
| LP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH)); |
| csio_set_reg_field(hw, SGE_DBFIFO_STATUS2_A, |
| HP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M), |
| HP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH)); |
| |
| csio_set_reg_field(hw, SGE_DOORBELL_CONTROL_A, ENABLE_DROP_F, |
| ENABLE_DROP_F); |
| |
| /* SGE_FL_BUFFER_SIZE0 is set up by csio_wr_fixup_host_params(). */ |
| |
| CSIO_SET_FLBUF_SIZE(hw, 1, CSIO_SGE_FLBUF_SIZE1); |
| csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE2 + sge->csio_fl_align - 1) |
| & ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE2_A); |
| csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE3 + sge->csio_fl_align - 1) |
| & ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE3_A); |
| CSIO_SET_FLBUF_SIZE(hw, 4, CSIO_SGE_FLBUF_SIZE4); |
| CSIO_SET_FLBUF_SIZE(hw, 5, CSIO_SGE_FLBUF_SIZE5); |
| CSIO_SET_FLBUF_SIZE(hw, 6, CSIO_SGE_FLBUF_SIZE6); |
| CSIO_SET_FLBUF_SIZE(hw, 7, CSIO_SGE_FLBUF_SIZE7); |
| CSIO_SET_FLBUF_SIZE(hw, 8, CSIO_SGE_FLBUF_SIZE8); |
| |
| for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++) |
| csio_get_flbuf_size(hw, sge, i); |
| |
| /* Initialize interrupt coalescing attributes */ |
| sge->timer_val[0] = CSIO_SGE_TIMER_VAL_0; |
| sge->timer_val[1] = CSIO_SGE_TIMER_VAL_1; |
| sge->timer_val[2] = CSIO_SGE_TIMER_VAL_2; |
| sge->timer_val[3] = CSIO_SGE_TIMER_VAL_3; |
| sge->timer_val[4] = CSIO_SGE_TIMER_VAL_4; |
| sge->timer_val[5] = CSIO_SGE_TIMER_VAL_5; |
| |
| sge->counter_val[0] = CSIO_SGE_INT_CNT_VAL_0; |
| sge->counter_val[1] = CSIO_SGE_INT_CNT_VAL_1; |
| sge->counter_val[2] = CSIO_SGE_INT_CNT_VAL_2; |
| sge->counter_val[3] = CSIO_SGE_INT_CNT_VAL_3; |
| |
| csio_wr_reg32(hw, THRESHOLD_0_V(sge->counter_val[0]) | |
| THRESHOLD_1_V(sge->counter_val[1]) | |
| THRESHOLD_2_V(sge->counter_val[2]) | |
| THRESHOLD_3_V(sge->counter_val[3]), |
| SGE_INGRESS_RX_THRESHOLD_A); |
| |
| csio_wr_reg32(hw, |
| TIMERVALUE0_V(csio_us_to_core_ticks(hw, sge->timer_val[0])) | |
| TIMERVALUE1_V(csio_us_to_core_ticks(hw, sge->timer_val[1])), |
| SGE_TIMER_VALUE_0_AND_1_A); |
| |
| csio_wr_reg32(hw, |
| TIMERVALUE2_V(csio_us_to_core_ticks(hw, sge->timer_val[2])) | |
| TIMERVALUE3_V(csio_us_to_core_ticks(hw, sge->timer_val[3])), |
| SGE_TIMER_VALUE_2_AND_3_A); |
| |
| csio_wr_reg32(hw, |
| TIMERVALUE4_V(csio_us_to_core_ticks(hw, sge->timer_val[4])) | |
| TIMERVALUE5_V(csio_us_to_core_ticks(hw, sge->timer_val[5])), |
| SGE_TIMER_VALUE_4_AND_5_A); |
| |
| csio_init_intr_coalesce_parms(hw); |
| } |
| |
| void |
| csio_wr_sge_init(struct csio_hw *hw) |
| { |
| /* |
| * If we are master and chip is not initialized: |
| * - If we plan to use the config file, we need to fixup some |
| * host specific registers, and read the rest of the SGE |
| * configuration. |
| * - If we dont plan to use the config file, we need to initialize |
| * SGE entirely, including fixing the host specific registers. |
| * If we are master and chip is initialized, just read and work off of |
| * the already initialized SGE values. |
| * If we arent the master, we are only allowed to read and work off of |
| * the already initialized SGE values. |
| * |
| * Therefore, before calling this function, we assume that the master- |
| * ship of the card, state and whether to use config file or not, have |
| * already been decided. |
| */ |
| if (csio_is_hw_master(hw)) { |
| if (hw->fw_state != CSIO_DEV_STATE_INIT) |
| csio_wr_fixup_host_params(hw); |
| |
| if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS) |
| csio_wr_get_sge(hw); |
| else |
| csio_wr_set_sge(hw); |
| } else |
| csio_wr_get_sge(hw); |
| } |
| |
| /* |
| * csio_wrm_init - Initialize Work request module. |
| * @wrm: WR module |
| * @hw: HW pointer |
| * |
| * Allocates memory for an array of queue pointers starting at q_arr. |
| */ |
| int |
| csio_wrm_init(struct csio_wrm *wrm, struct csio_hw *hw) |
| { |
| int i; |
| |
| if (!wrm->num_q) { |
| csio_err(hw, "Num queues is not set\n"); |
| return -EINVAL; |
| } |
| |
| wrm->q_arr = kcalloc(wrm->num_q, sizeof(struct csio_q *), GFP_KERNEL); |
| if (!wrm->q_arr) |
| goto err; |
| |
| for (i = 0; i < wrm->num_q; i++) { |
| wrm->q_arr[i] = kzalloc(sizeof(struct csio_q), GFP_KERNEL); |
| if (!wrm->q_arr[i]) { |
| while (--i >= 0) |
| kfree(wrm->q_arr[i]); |
| goto err_free_arr; |
| } |
| } |
| wrm->free_qidx = 0; |
| |
| return 0; |
| |
| err_free_arr: |
| kfree(wrm->q_arr); |
| err: |
| return -ENOMEM; |
| } |
| |
| /* |
| * csio_wrm_exit - Initialize Work request module. |
| * @wrm: WR module |
| * @hw: HW module |
| * |
| * Uninitialize WR module. Free q_arr and pointers in it. |
| * We have the additional job of freeing the DMA memory associated |
| * with the queues. |
| */ |
| void |
| csio_wrm_exit(struct csio_wrm *wrm, struct csio_hw *hw) |
| { |
| int i; |
| uint32_t j; |
| struct csio_q *q; |
| struct csio_dma_buf *buf; |
| |
| for (i = 0; i < wrm->num_q; i++) { |
| q = wrm->q_arr[i]; |
| |
| if (wrm->free_qidx && (i < wrm->free_qidx)) { |
| if (q->type == CSIO_FREELIST) { |
| if (!q->un.fl.bufs) |
| continue; |
| for (j = 0; j < q->credits; j++) { |
| buf = &q->un.fl.bufs[j]; |
| if (!buf->vaddr) |
| continue; |
| dma_free_coherent(&hw->pdev->dev, |
| buf->len, buf->vaddr, |
| buf->paddr); |
| } |
| kfree(q->un.fl.bufs); |
| } |
| dma_free_coherent(&hw->pdev->dev, q->size, |
| q->vstart, q->pstart); |
| } |
| kfree(q); |
| } |
| |
| hw->flags &= ~CSIO_HWF_Q_MEM_ALLOCED; |
| |
| kfree(wrm->q_arr); |
| } |