| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright (C) 2017-2023 Oracle. All Rights Reserved. |
| * Author: Darrick J. Wong <djwong@kernel.org> |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_mount.h" |
| #include "xfs_btree.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans.h" |
| #include "xfs_inode.h" |
| #include "xfs_icache.h" |
| #include "xfs_alloc.h" |
| #include "xfs_alloc_btree.h" |
| #include "xfs_ialloc.h" |
| #include "xfs_ialloc_btree.h" |
| #include "xfs_refcount_btree.h" |
| #include "xfs_rmap.h" |
| #include "xfs_rmap_btree.h" |
| #include "xfs_log.h" |
| #include "xfs_trans_priv.h" |
| #include "xfs_da_format.h" |
| #include "xfs_da_btree.h" |
| #include "xfs_dir2_priv.h" |
| #include "xfs_attr.h" |
| #include "xfs_reflink.h" |
| #include "xfs_ag.h" |
| #include "xfs_error.h" |
| #include "xfs_quota.h" |
| #include "scrub/scrub.h" |
| #include "scrub/common.h" |
| #include "scrub/trace.h" |
| #include "scrub/repair.h" |
| #include "scrub/health.h" |
| |
| /* Common code for the metadata scrubbers. */ |
| |
| /* |
| * Handling operational errors. |
| * |
| * The *_process_error() family of functions are used to process error return |
| * codes from functions called as part of a scrub operation. |
| * |
| * If there's no error, we return true to tell the caller that it's ok |
| * to move on to the next check in its list. |
| * |
| * For non-verifier errors (e.g. ENOMEM) we return false to tell the |
| * caller that something bad happened, and we preserve *error so that |
| * the caller can return the *error up the stack to userspace. |
| * |
| * Verifier errors (EFSBADCRC/EFSCORRUPTED) are recorded by setting |
| * OFLAG_CORRUPT in sm_flags and the *error is cleared. In other words, |
| * we track verifier errors (and failed scrub checks) via OFLAG_CORRUPT, |
| * not via return codes. We return false to tell the caller that |
| * something bad happened. Since the error has been cleared, the caller |
| * will (presumably) return that zero and scrubbing will move on to |
| * whatever's next. |
| * |
| * ftrace can be used to record the precise metadata location and the |
| * approximate code location of the failed operation. |
| */ |
| |
| /* Check for operational errors. */ |
| static bool |
| __xchk_process_error( |
| struct xfs_scrub *sc, |
| xfs_agnumber_t agno, |
| xfs_agblock_t bno, |
| int *error, |
| __u32 errflag, |
| void *ret_ip) |
| { |
| switch (*error) { |
| case 0: |
| return true; |
| case -EDEADLOCK: |
| case -ECHRNG: |
| /* Used to restart an op with deadlock avoidance. */ |
| trace_xchk_deadlock_retry( |
| sc->ip ? sc->ip : XFS_I(file_inode(sc->file)), |
| sc->sm, *error); |
| break; |
| case -ECANCELED: |
| /* |
| * ECANCELED here means that the caller set one of the scrub |
| * outcome flags (corrupt, xfail, xcorrupt) and wants to exit |
| * quickly. Set error to zero and do not continue. |
| */ |
| trace_xchk_op_error(sc, agno, bno, *error, ret_ip); |
| *error = 0; |
| break; |
| case -EFSBADCRC: |
| case -EFSCORRUPTED: |
| /* Note the badness but don't abort. */ |
| sc->sm->sm_flags |= errflag; |
| *error = 0; |
| fallthrough; |
| default: |
| trace_xchk_op_error(sc, agno, bno, *error, ret_ip); |
| break; |
| } |
| return false; |
| } |
| |
| bool |
| xchk_process_error( |
| struct xfs_scrub *sc, |
| xfs_agnumber_t agno, |
| xfs_agblock_t bno, |
| int *error) |
| { |
| return __xchk_process_error(sc, agno, bno, error, |
| XFS_SCRUB_OFLAG_CORRUPT, __return_address); |
| } |
| |
| bool |
| xchk_xref_process_error( |
| struct xfs_scrub *sc, |
| xfs_agnumber_t agno, |
| xfs_agblock_t bno, |
| int *error) |
| { |
| return __xchk_process_error(sc, agno, bno, error, |
| XFS_SCRUB_OFLAG_XFAIL, __return_address); |
| } |
| |
| /* Check for operational errors for a file offset. */ |
| static bool |
| __xchk_fblock_process_error( |
| struct xfs_scrub *sc, |
| int whichfork, |
| xfs_fileoff_t offset, |
| int *error, |
| __u32 errflag, |
| void *ret_ip) |
| { |
| switch (*error) { |
| case 0: |
| return true; |
| case -EDEADLOCK: |
| case -ECHRNG: |
| /* Used to restart an op with deadlock avoidance. */ |
| trace_xchk_deadlock_retry(sc->ip, sc->sm, *error); |
| break; |
| case -ECANCELED: |
| /* |
| * ECANCELED here means that the caller set one of the scrub |
| * outcome flags (corrupt, xfail, xcorrupt) and wants to exit |
| * quickly. Set error to zero and do not continue. |
| */ |
| trace_xchk_file_op_error(sc, whichfork, offset, *error, |
| ret_ip); |
| *error = 0; |
| break; |
| case -EFSBADCRC: |
| case -EFSCORRUPTED: |
| /* Note the badness but don't abort. */ |
| sc->sm->sm_flags |= errflag; |
| *error = 0; |
| fallthrough; |
| default: |
| trace_xchk_file_op_error(sc, whichfork, offset, *error, |
| ret_ip); |
| break; |
| } |
| return false; |
| } |
| |
| bool |
| xchk_fblock_process_error( |
| struct xfs_scrub *sc, |
| int whichfork, |
| xfs_fileoff_t offset, |
| int *error) |
| { |
| return __xchk_fblock_process_error(sc, whichfork, offset, error, |
| XFS_SCRUB_OFLAG_CORRUPT, __return_address); |
| } |
| |
| bool |
| xchk_fblock_xref_process_error( |
| struct xfs_scrub *sc, |
| int whichfork, |
| xfs_fileoff_t offset, |
| int *error) |
| { |
| return __xchk_fblock_process_error(sc, whichfork, offset, error, |
| XFS_SCRUB_OFLAG_XFAIL, __return_address); |
| } |
| |
| /* |
| * Handling scrub corruption/optimization/warning checks. |
| * |
| * The *_set_{corrupt,preen,warning}() family of functions are used to |
| * record the presence of metadata that is incorrect (corrupt), could be |
| * optimized somehow (preen), or should be flagged for administrative |
| * review but is not incorrect (warn). |
| * |
| * ftrace can be used to record the precise metadata location and |
| * approximate code location of the failed check. |
| */ |
| |
| /* Record a block which could be optimized. */ |
| void |
| xchk_block_set_preen( |
| struct xfs_scrub *sc, |
| struct xfs_buf *bp) |
| { |
| sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN; |
| trace_xchk_block_preen(sc, xfs_buf_daddr(bp), __return_address); |
| } |
| |
| /* |
| * Record an inode which could be optimized. The trace data will |
| * include the block given by bp if bp is given; otherwise it will use |
| * the block location of the inode record itself. |
| */ |
| void |
| xchk_ino_set_preen( |
| struct xfs_scrub *sc, |
| xfs_ino_t ino) |
| { |
| sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN; |
| trace_xchk_ino_preen(sc, ino, __return_address); |
| } |
| |
| /* Record something being wrong with the filesystem primary superblock. */ |
| void |
| xchk_set_corrupt( |
| struct xfs_scrub *sc) |
| { |
| sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; |
| trace_xchk_fs_error(sc, 0, __return_address); |
| } |
| |
| /* Record a corrupt block. */ |
| void |
| xchk_block_set_corrupt( |
| struct xfs_scrub *sc, |
| struct xfs_buf *bp) |
| { |
| sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; |
| trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address); |
| } |
| |
| #ifdef CONFIG_XFS_QUOTA |
| /* Record a corrupt quota counter. */ |
| void |
| xchk_qcheck_set_corrupt( |
| struct xfs_scrub *sc, |
| unsigned int dqtype, |
| xfs_dqid_t id) |
| { |
| sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; |
| trace_xchk_qcheck_error(sc, dqtype, id, __return_address); |
| } |
| #endif |
| |
| /* Record a corruption while cross-referencing. */ |
| void |
| xchk_block_xref_set_corrupt( |
| struct xfs_scrub *sc, |
| struct xfs_buf *bp) |
| { |
| sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT; |
| trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address); |
| } |
| |
| /* |
| * Record a corrupt inode. The trace data will include the block given |
| * by bp if bp is given; otherwise it will use the block location of the |
| * inode record itself. |
| */ |
| void |
| xchk_ino_set_corrupt( |
| struct xfs_scrub *sc, |
| xfs_ino_t ino) |
| { |
| sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; |
| trace_xchk_ino_error(sc, ino, __return_address); |
| } |
| |
| /* Record a corruption while cross-referencing with an inode. */ |
| void |
| xchk_ino_xref_set_corrupt( |
| struct xfs_scrub *sc, |
| xfs_ino_t ino) |
| { |
| sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT; |
| trace_xchk_ino_error(sc, ino, __return_address); |
| } |
| |
| /* Record corruption in a block indexed by a file fork. */ |
| void |
| xchk_fblock_set_corrupt( |
| struct xfs_scrub *sc, |
| int whichfork, |
| xfs_fileoff_t offset) |
| { |
| sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; |
| trace_xchk_fblock_error(sc, whichfork, offset, __return_address); |
| } |
| |
| /* Record a corruption while cross-referencing a fork block. */ |
| void |
| xchk_fblock_xref_set_corrupt( |
| struct xfs_scrub *sc, |
| int whichfork, |
| xfs_fileoff_t offset) |
| { |
| sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT; |
| trace_xchk_fblock_error(sc, whichfork, offset, __return_address); |
| } |
| |
| /* |
| * Warn about inodes that need administrative review but is not |
| * incorrect. |
| */ |
| void |
| xchk_ino_set_warning( |
| struct xfs_scrub *sc, |
| xfs_ino_t ino) |
| { |
| sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING; |
| trace_xchk_ino_warning(sc, ino, __return_address); |
| } |
| |
| /* Warn about a block indexed by a file fork that needs review. */ |
| void |
| xchk_fblock_set_warning( |
| struct xfs_scrub *sc, |
| int whichfork, |
| xfs_fileoff_t offset) |
| { |
| sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING; |
| trace_xchk_fblock_warning(sc, whichfork, offset, __return_address); |
| } |
| |
| /* Signal an incomplete scrub. */ |
| void |
| xchk_set_incomplete( |
| struct xfs_scrub *sc) |
| { |
| sc->sm->sm_flags |= XFS_SCRUB_OFLAG_INCOMPLETE; |
| trace_xchk_incomplete(sc, __return_address); |
| } |
| |
| /* |
| * rmap scrubbing -- compute the number of blocks with a given owner, |
| * at least according to the reverse mapping data. |
| */ |
| |
| struct xchk_rmap_ownedby_info { |
| const struct xfs_owner_info *oinfo; |
| xfs_filblks_t *blocks; |
| }; |
| |
| STATIC int |
| xchk_count_rmap_ownedby_irec( |
| struct xfs_btree_cur *cur, |
| const struct xfs_rmap_irec *rec, |
| void *priv) |
| { |
| struct xchk_rmap_ownedby_info *sroi = priv; |
| bool irec_attr; |
| bool oinfo_attr; |
| |
| irec_attr = rec->rm_flags & XFS_RMAP_ATTR_FORK; |
| oinfo_attr = sroi->oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK; |
| |
| if (rec->rm_owner != sroi->oinfo->oi_owner) |
| return 0; |
| |
| if (XFS_RMAP_NON_INODE_OWNER(rec->rm_owner) || irec_attr == oinfo_attr) |
| (*sroi->blocks) += rec->rm_blockcount; |
| |
| return 0; |
| } |
| |
| /* |
| * Calculate the number of blocks the rmap thinks are owned by something. |
| * The caller should pass us an rmapbt cursor. |
| */ |
| int |
| xchk_count_rmap_ownedby_ag( |
| struct xfs_scrub *sc, |
| struct xfs_btree_cur *cur, |
| const struct xfs_owner_info *oinfo, |
| xfs_filblks_t *blocks) |
| { |
| struct xchk_rmap_ownedby_info sroi = { |
| .oinfo = oinfo, |
| .blocks = blocks, |
| }; |
| |
| *blocks = 0; |
| return xfs_rmap_query_all(cur, xchk_count_rmap_ownedby_irec, |
| &sroi); |
| } |
| |
| /* |
| * AG scrubbing |
| * |
| * These helpers facilitate locking an allocation group's header |
| * buffers, setting up cursors for all btrees that are present, and |
| * cleaning everything up once we're through. |
| */ |
| |
| /* Decide if we want to return an AG header read failure. */ |
| static inline bool |
| want_ag_read_header_failure( |
| struct xfs_scrub *sc, |
| unsigned int type) |
| { |
| /* Return all AG header read failures when scanning btrees. */ |
| if (sc->sm->sm_type != XFS_SCRUB_TYPE_AGF && |
| sc->sm->sm_type != XFS_SCRUB_TYPE_AGFL && |
| sc->sm->sm_type != XFS_SCRUB_TYPE_AGI) |
| return true; |
| /* |
| * If we're scanning a given type of AG header, we only want to |
| * see read failures from that specific header. We'd like the |
| * other headers to cross-check them, but this isn't required. |
| */ |
| if (sc->sm->sm_type == type) |
| return true; |
| return false; |
| } |
| |
| /* |
| * Grab the AG header buffers for the attached perag structure. |
| * |
| * The headers should be released by xchk_ag_free, but as a fail safe we attach |
| * all the buffers we grab to the scrub transaction so they'll all be freed |
| * when we cancel it. |
| */ |
| static inline int |
| xchk_perag_read_headers( |
| struct xfs_scrub *sc, |
| struct xchk_ag *sa) |
| { |
| int error; |
| |
| error = xfs_ialloc_read_agi(sa->pag, sc->tp, &sa->agi_bp); |
| if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGI)) |
| return error; |
| |
| error = xfs_alloc_read_agf(sa->pag, sc->tp, 0, &sa->agf_bp); |
| if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGF)) |
| return error; |
| |
| return 0; |
| } |
| |
| /* |
| * Grab the AG headers for the attached perag structure and wait for pending |
| * intents to drain. |
| */ |
| int |
| xchk_perag_drain_and_lock( |
| struct xfs_scrub *sc) |
| { |
| struct xchk_ag *sa = &sc->sa; |
| int error = 0; |
| |
| ASSERT(sa->pag != NULL); |
| ASSERT(sa->agi_bp == NULL); |
| ASSERT(sa->agf_bp == NULL); |
| |
| do { |
| if (xchk_should_terminate(sc, &error)) |
| return error; |
| |
| error = xchk_perag_read_headers(sc, sa); |
| if (error) |
| return error; |
| |
| /* |
| * If we've grabbed an inode for scrubbing then we assume that |
| * holding its ILOCK will suffice to coordinate with any intent |
| * chains involving this inode. |
| */ |
| if (sc->ip) |
| return 0; |
| |
| /* |
| * Decide if this AG is quiet enough for all metadata to be |
| * consistent with each other. XFS allows the AG header buffer |
| * locks to cycle across transaction rolls while processing |
| * chains of deferred ops, which means that there could be |
| * other threads in the middle of processing a chain of |
| * deferred ops. For regular operations we are careful about |
| * ordering operations to prevent collisions between threads |
| * (which is why we don't need a per-AG lock), but scrub and |
| * repair have to serialize against chained operations. |
| * |
| * We just locked all the AG headers buffers; now take a look |
| * to see if there are any intents in progress. If there are, |
| * drop the AG headers and wait for the intents to drain. |
| * Since we hold all the AG header locks for the duration of |
| * the scrub, this is the only time we have to sample the |
| * intents counter; any threads increasing it after this point |
| * can't possibly be in the middle of a chain of AG metadata |
| * updates. |
| * |
| * Obviously, this should be slanted against scrub and in favor |
| * of runtime threads. |
| */ |
| if (!xfs_perag_intent_busy(sa->pag)) |
| return 0; |
| |
| if (sa->agf_bp) { |
| xfs_trans_brelse(sc->tp, sa->agf_bp); |
| sa->agf_bp = NULL; |
| } |
| |
| if (sa->agi_bp) { |
| xfs_trans_brelse(sc->tp, sa->agi_bp); |
| sa->agi_bp = NULL; |
| } |
| |
| if (!(sc->flags & XCHK_FSGATES_DRAIN)) |
| return -ECHRNG; |
| error = xfs_perag_intent_drain(sa->pag); |
| if (error == -ERESTARTSYS) |
| error = -EINTR; |
| } while (!error); |
| |
| return error; |
| } |
| |
| /* |
| * Grab the per-AG structure, grab all AG header buffers, and wait until there |
| * aren't any pending intents. Returns -ENOENT if we can't grab the perag |
| * structure. |
| */ |
| int |
| xchk_ag_read_headers( |
| struct xfs_scrub *sc, |
| xfs_agnumber_t agno, |
| struct xchk_ag *sa) |
| { |
| struct xfs_mount *mp = sc->mp; |
| |
| ASSERT(!sa->pag); |
| sa->pag = xfs_perag_get(mp, agno); |
| if (!sa->pag) |
| return -ENOENT; |
| |
| return xchk_perag_drain_and_lock(sc); |
| } |
| |
| /* Release all the AG btree cursors. */ |
| void |
| xchk_ag_btcur_free( |
| struct xchk_ag *sa) |
| { |
| if (sa->refc_cur) |
| xfs_btree_del_cursor(sa->refc_cur, XFS_BTREE_ERROR); |
| if (sa->rmap_cur) |
| xfs_btree_del_cursor(sa->rmap_cur, XFS_BTREE_ERROR); |
| if (sa->fino_cur) |
| xfs_btree_del_cursor(sa->fino_cur, XFS_BTREE_ERROR); |
| if (sa->ino_cur) |
| xfs_btree_del_cursor(sa->ino_cur, XFS_BTREE_ERROR); |
| if (sa->cnt_cur) |
| xfs_btree_del_cursor(sa->cnt_cur, XFS_BTREE_ERROR); |
| if (sa->bno_cur) |
| xfs_btree_del_cursor(sa->bno_cur, XFS_BTREE_ERROR); |
| |
| sa->refc_cur = NULL; |
| sa->rmap_cur = NULL; |
| sa->fino_cur = NULL; |
| sa->ino_cur = NULL; |
| sa->bno_cur = NULL; |
| sa->cnt_cur = NULL; |
| } |
| |
| /* Initialize all the btree cursors for an AG. */ |
| void |
| xchk_ag_btcur_init( |
| struct xfs_scrub *sc, |
| struct xchk_ag *sa) |
| { |
| struct xfs_mount *mp = sc->mp; |
| |
| if (sa->agf_bp) { |
| /* Set up a bnobt cursor for cross-referencing. */ |
| sa->bno_cur = xfs_bnobt_init_cursor(mp, sc->tp, sa->agf_bp, |
| sa->pag); |
| xchk_ag_btree_del_cursor_if_sick(sc, &sa->bno_cur, |
| XFS_SCRUB_TYPE_BNOBT); |
| |
| /* Set up a cntbt cursor for cross-referencing. */ |
| sa->cnt_cur = xfs_cntbt_init_cursor(mp, sc->tp, sa->agf_bp, |
| sa->pag); |
| xchk_ag_btree_del_cursor_if_sick(sc, &sa->cnt_cur, |
| XFS_SCRUB_TYPE_CNTBT); |
| |
| /* Set up a rmapbt cursor for cross-referencing. */ |
| if (xfs_has_rmapbt(mp)) { |
| sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, |
| sa->agf_bp, sa->pag); |
| xchk_ag_btree_del_cursor_if_sick(sc, &sa->rmap_cur, |
| XFS_SCRUB_TYPE_RMAPBT); |
| } |
| |
| /* Set up a refcountbt cursor for cross-referencing. */ |
| if (xfs_has_reflink(mp)) { |
| sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp, |
| sa->agf_bp, sa->pag); |
| xchk_ag_btree_del_cursor_if_sick(sc, &sa->refc_cur, |
| XFS_SCRUB_TYPE_REFCNTBT); |
| } |
| } |
| |
| if (sa->agi_bp) { |
| /* Set up a inobt cursor for cross-referencing. */ |
| sa->ino_cur = xfs_inobt_init_cursor(sa->pag, sc->tp, |
| sa->agi_bp); |
| xchk_ag_btree_del_cursor_if_sick(sc, &sa->ino_cur, |
| XFS_SCRUB_TYPE_INOBT); |
| |
| /* Set up a finobt cursor for cross-referencing. */ |
| if (xfs_has_finobt(mp)) { |
| sa->fino_cur = xfs_finobt_init_cursor(sa->pag, sc->tp, |
| sa->agi_bp); |
| xchk_ag_btree_del_cursor_if_sick(sc, &sa->fino_cur, |
| XFS_SCRUB_TYPE_FINOBT); |
| } |
| } |
| } |
| |
| /* Release the AG header context and btree cursors. */ |
| void |
| xchk_ag_free( |
| struct xfs_scrub *sc, |
| struct xchk_ag *sa) |
| { |
| xchk_ag_btcur_free(sa); |
| xrep_reset_perag_resv(sc); |
| if (sa->agf_bp) { |
| xfs_trans_brelse(sc->tp, sa->agf_bp); |
| sa->agf_bp = NULL; |
| } |
| if (sa->agi_bp) { |
| xfs_trans_brelse(sc->tp, sa->agi_bp); |
| sa->agi_bp = NULL; |
| } |
| if (sa->pag) { |
| xfs_perag_put(sa->pag); |
| sa->pag = NULL; |
| } |
| } |
| |
| /* |
| * For scrub, grab the perag structure, the AGI, and the AGF headers, in that |
| * order. Locking order requires us to get the AGI before the AGF. We use the |
| * transaction to avoid deadlocking on crosslinked metadata buffers; either the |
| * caller passes one in (bmap scrub) or we have to create a transaction |
| * ourselves. Returns ENOENT if the perag struct cannot be grabbed. |
| */ |
| int |
| xchk_ag_init( |
| struct xfs_scrub *sc, |
| xfs_agnumber_t agno, |
| struct xchk_ag *sa) |
| { |
| int error; |
| |
| error = xchk_ag_read_headers(sc, agno, sa); |
| if (error) |
| return error; |
| |
| xchk_ag_btcur_init(sc, sa); |
| return 0; |
| } |
| |
| /* Per-scrubber setup functions */ |
| |
| void |
| xchk_trans_cancel( |
| struct xfs_scrub *sc) |
| { |
| xfs_trans_cancel(sc->tp); |
| sc->tp = NULL; |
| } |
| |
| int |
| xchk_trans_alloc_empty( |
| struct xfs_scrub *sc) |
| { |
| return xfs_trans_alloc_empty(sc->mp, &sc->tp); |
| } |
| |
| /* |
| * Grab an empty transaction so that we can re-grab locked buffers if |
| * one of our btrees turns out to be cyclic. |
| * |
| * If we're going to repair something, we need to ask for the largest possible |
| * log reservation so that we can handle the worst case scenario for metadata |
| * updates while rebuilding a metadata item. We also need to reserve as many |
| * blocks in the head transaction as we think we're going to need to rebuild |
| * the metadata object. |
| */ |
| int |
| xchk_trans_alloc( |
| struct xfs_scrub *sc, |
| uint resblks) |
| { |
| if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) |
| return xfs_trans_alloc(sc->mp, &M_RES(sc->mp)->tr_itruncate, |
| resblks, 0, 0, &sc->tp); |
| |
| return xchk_trans_alloc_empty(sc); |
| } |
| |
| /* Set us up with a transaction and an empty context. */ |
| int |
| xchk_setup_fs( |
| struct xfs_scrub *sc) |
| { |
| uint resblks; |
| |
| resblks = xrep_calc_ag_resblks(sc); |
| return xchk_trans_alloc(sc, resblks); |
| } |
| |
| /* Set us up with AG headers and btree cursors. */ |
| int |
| xchk_setup_ag_btree( |
| struct xfs_scrub *sc, |
| bool force_log) |
| { |
| struct xfs_mount *mp = sc->mp; |
| int error; |
| |
| /* |
| * If the caller asks us to checkpont the log, do so. This |
| * expensive operation should be performed infrequently and only |
| * as a last resort. Any caller that sets force_log should |
| * document why they need to do so. |
| */ |
| if (force_log) { |
| error = xchk_checkpoint_log(mp); |
| if (error) |
| return error; |
| } |
| |
| error = xchk_setup_fs(sc); |
| if (error) |
| return error; |
| |
| return xchk_ag_init(sc, sc->sm->sm_agno, &sc->sa); |
| } |
| |
| /* Push everything out of the log onto disk. */ |
| int |
| xchk_checkpoint_log( |
| struct xfs_mount *mp) |
| { |
| int error; |
| |
| error = xfs_log_force(mp, XFS_LOG_SYNC); |
| if (error) |
| return error; |
| xfs_ail_push_all_sync(mp->m_ail); |
| return 0; |
| } |
| |
| /* Verify that an inode is allocated ondisk, then return its cached inode. */ |
| int |
| xchk_iget( |
| struct xfs_scrub *sc, |
| xfs_ino_t inum, |
| struct xfs_inode **ipp) |
| { |
| ASSERT(sc->tp != NULL); |
| |
| return xfs_iget(sc->mp, sc->tp, inum, XFS_IGET_UNTRUSTED, 0, ipp); |
| } |
| |
| /* |
| * Try to grab an inode in a manner that avoids races with physical inode |
| * allocation. If we can't, return the locked AGI buffer so that the caller |
| * can single-step the loading process to see where things went wrong. |
| * Callers must have a valid scrub transaction. |
| * |
| * If the iget succeeds, return 0, a NULL AGI, and the inode. |
| * |
| * If the iget fails, return the error, the locked AGI, and a NULL inode. This |
| * can include -EINVAL and -ENOENT for invalid inode numbers or inodes that are |
| * no longer allocated; or any other corruption or runtime error. |
| * |
| * If the AGI read fails, return the error, a NULL AGI, and NULL inode. |
| * |
| * If a fatal signal is pending, return -EINTR, a NULL AGI, and a NULL inode. |
| */ |
| int |
| xchk_iget_agi( |
| struct xfs_scrub *sc, |
| xfs_ino_t inum, |
| struct xfs_buf **agi_bpp, |
| struct xfs_inode **ipp) |
| { |
| struct xfs_mount *mp = sc->mp; |
| struct xfs_trans *tp = sc->tp; |
| struct xfs_perag *pag; |
| int error; |
| |
| ASSERT(sc->tp != NULL); |
| |
| again: |
| *agi_bpp = NULL; |
| *ipp = NULL; |
| error = 0; |
| |
| if (xchk_should_terminate(sc, &error)) |
| return error; |
| |
| /* |
| * Attach the AGI buffer to the scrub transaction to avoid deadlocks |
| * in the iget cache miss path. |
| */ |
| pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); |
| error = xfs_ialloc_read_agi(pag, tp, agi_bpp); |
| xfs_perag_put(pag); |
| if (error) |
| return error; |
| |
| error = xfs_iget(mp, tp, inum, |
| XFS_IGET_NORETRY | XFS_IGET_UNTRUSTED, 0, ipp); |
| if (error == -EAGAIN) { |
| /* |
| * The inode may be in core but temporarily unavailable and may |
| * require the AGI buffer before it can be returned. Drop the |
| * AGI buffer and retry the lookup. |
| * |
| * Incore lookup will fail with EAGAIN on a cache hit if the |
| * inode is queued to the inactivation list. The inactivation |
| * worker may remove the inode from the unlinked list and hence |
| * needs the AGI. |
| * |
| * Hence xchk_iget_agi() needs to drop the AGI lock on EAGAIN |
| * to allow inodegc to make progress and move the inode to |
| * IRECLAIMABLE state where xfs_iget will be able to return it |
| * again if it can lock the inode. |
| */ |
| xfs_trans_brelse(tp, *agi_bpp); |
| delay(1); |
| goto again; |
| } |
| if (error) |
| return error; |
| |
| /* We got the inode, so we can release the AGI. */ |
| ASSERT(*ipp != NULL); |
| xfs_trans_brelse(tp, *agi_bpp); |
| *agi_bpp = NULL; |
| return 0; |
| } |
| |
| #ifdef CONFIG_XFS_QUOTA |
| /* |
| * Try to attach dquots to this inode if we think we might want to repair it. |
| * Callers must not hold any ILOCKs. If the dquots are broken and cannot be |
| * attached, a quotacheck will be scheduled. |
| */ |
| int |
| xchk_ino_dqattach( |
| struct xfs_scrub *sc) |
| { |
| ASSERT(sc->tp != NULL); |
| ASSERT(sc->ip != NULL); |
| |
| if (!xchk_could_repair(sc)) |
| return 0; |
| |
| return xrep_ino_dqattach(sc); |
| } |
| #endif |
| |
| /* Install an inode that we opened by handle for scrubbing. */ |
| int |
| xchk_install_handle_inode( |
| struct xfs_scrub *sc, |
| struct xfs_inode *ip) |
| { |
| if (VFS_I(ip)->i_generation != sc->sm->sm_gen) { |
| xchk_irele(sc, ip); |
| return -ENOENT; |
| } |
| |
| sc->ip = ip; |
| return 0; |
| } |
| |
| /* |
| * Install an already-referenced inode for scrubbing. Get our own reference to |
| * the inode to make disposal simpler. The inode must not be in I_FREEING or |
| * I_WILL_FREE state! |
| */ |
| int |
| xchk_install_live_inode( |
| struct xfs_scrub *sc, |
| struct xfs_inode *ip) |
| { |
| if (!igrab(VFS_I(ip))) { |
| xchk_ino_set_corrupt(sc, ip->i_ino); |
| return -EFSCORRUPTED; |
| } |
| |
| sc->ip = ip; |
| return 0; |
| } |
| |
| /* |
| * In preparation to scrub metadata structures that hang off of an inode, |
| * grab either the inode referenced in the scrub control structure or the |
| * inode passed in. If the inumber does not reference an allocated inode |
| * record, the function returns ENOENT to end the scrub early. The inode |
| * is not locked. |
| */ |
| int |
| xchk_iget_for_scrubbing( |
| struct xfs_scrub *sc) |
| { |
| struct xfs_imap imap; |
| struct xfs_mount *mp = sc->mp; |
| struct xfs_perag *pag; |
| struct xfs_buf *agi_bp; |
| struct xfs_inode *ip_in = XFS_I(file_inode(sc->file)); |
| struct xfs_inode *ip = NULL; |
| xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, sc->sm->sm_ino); |
| int error; |
| |
| ASSERT(sc->tp == NULL); |
| |
| /* We want to scan the inode we already had opened. */ |
| if (sc->sm->sm_ino == 0 || sc->sm->sm_ino == ip_in->i_ino) |
| return xchk_install_live_inode(sc, ip_in); |
| |
| /* Reject internal metadata files and obviously bad inode numbers. */ |
| if (xfs_internal_inum(mp, sc->sm->sm_ino)) |
| return -ENOENT; |
| if (!xfs_verify_ino(sc->mp, sc->sm->sm_ino)) |
| return -ENOENT; |
| |
| /* Try a safe untrusted iget. */ |
| error = xchk_iget_safe(sc, sc->sm->sm_ino, &ip); |
| if (!error) |
| return xchk_install_handle_inode(sc, ip); |
| if (error == -ENOENT) |
| return error; |
| if (error != -EINVAL) |
| goto out_error; |
| |
| /* |
| * EINVAL with IGET_UNTRUSTED probably means one of several things: |
| * userspace gave us an inode number that doesn't correspond to fs |
| * space; the inode btree lacks a record for this inode; or there is a |
| * record, and it says this inode is free. |
| * |
| * We want to look up this inode in the inobt to distinguish two |
| * scenarios: (1) the inobt says the inode is free, in which case |
| * there's nothing to do; and (2) the inobt says the inode is |
| * allocated, but loading it failed due to corruption. |
| * |
| * Allocate a transaction and grab the AGI to prevent inobt activity |
| * in this AG. Retry the iget in case someone allocated a new inode |
| * after the first iget failed. |
| */ |
| error = xchk_trans_alloc(sc, 0); |
| if (error) |
| goto out_error; |
| |
| error = xchk_iget_agi(sc, sc->sm->sm_ino, &agi_bp, &ip); |
| if (error == 0) { |
| /* Actually got the inode, so install it. */ |
| xchk_trans_cancel(sc); |
| return xchk_install_handle_inode(sc, ip); |
| } |
| if (error == -ENOENT) |
| goto out_gone; |
| if (error != -EINVAL) |
| goto out_cancel; |
| |
| /* Ensure that we have protected against inode allocation/freeing. */ |
| if (agi_bp == NULL) { |
| ASSERT(agi_bp != NULL); |
| error = -ECANCELED; |
| goto out_cancel; |
| } |
| |
| /* |
| * Untrusted iget failed a second time. Let's try an inobt lookup. |
| * If the inobt thinks this the inode neither can exist inside the |
| * filesystem nor is allocated, return ENOENT to signal that the check |
| * can be skipped. |
| * |
| * If the lookup returns corruption, we'll mark this inode corrupt and |
| * exit to userspace. There's little chance of fixing anything until |
| * the inobt is straightened out, but there's nothing we can do here. |
| * |
| * If the lookup encounters any other error, exit to userspace. |
| * |
| * If the lookup succeeds, something else must be very wrong in the fs |
| * such that setting up the incore inode failed in some strange way. |
| * Treat those as corruptions. |
| */ |
| pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sc->sm->sm_ino)); |
| if (!pag) { |
| error = -EFSCORRUPTED; |
| goto out_cancel; |
| } |
| |
| error = xfs_imap(pag, sc->tp, sc->sm->sm_ino, &imap, |
| XFS_IGET_UNTRUSTED); |
| xfs_perag_put(pag); |
| if (error == -EINVAL || error == -ENOENT) |
| goto out_gone; |
| if (!error) |
| error = -EFSCORRUPTED; |
| |
| out_cancel: |
| xchk_trans_cancel(sc); |
| out_error: |
| trace_xchk_op_error(sc, agno, XFS_INO_TO_AGBNO(mp, sc->sm->sm_ino), |
| error, __return_address); |
| return error; |
| out_gone: |
| /* The file is gone, so there's nothing to check. */ |
| xchk_trans_cancel(sc); |
| return -ENOENT; |
| } |
| |
| /* Release an inode, possibly dropping it in the process. */ |
| void |
| xchk_irele( |
| struct xfs_scrub *sc, |
| struct xfs_inode *ip) |
| { |
| if (current->journal_info != NULL) { |
| ASSERT(current->journal_info == sc->tp); |
| |
| /* |
| * If we are in a transaction, we /cannot/ drop the inode |
| * ourselves, because the VFS will trigger writeback, which |
| * can require a transaction. Clear DONTCACHE to force the |
| * inode to the LRU, where someone else can take care of |
| * dropping it. |
| * |
| * Note that when we grabbed our reference to the inode, it |
| * could have had an active ref and DONTCACHE set if a sysadmin |
| * is trying to coerce a change in file access mode. icache |
| * hits do not clear DONTCACHE, so we must do it here. |
| */ |
| spin_lock(&VFS_I(ip)->i_lock); |
| VFS_I(ip)->i_state &= ~I_DONTCACHE; |
| spin_unlock(&VFS_I(ip)->i_lock); |
| } else if (atomic_read(&VFS_I(ip)->i_count) == 1) { |
| /* |
| * If this is the last reference to the inode and the caller |
| * permits it, set DONTCACHE to avoid thrashing. |
| */ |
| d_mark_dontcache(VFS_I(ip)); |
| } |
| |
| xfs_irele(ip); |
| } |
| |
| /* |
| * Set us up to scrub metadata mapped by a file's fork. Callers must not use |
| * this to operate on user-accessible regular file data because the MMAPLOCK is |
| * not taken. |
| */ |
| int |
| xchk_setup_inode_contents( |
| struct xfs_scrub *sc, |
| unsigned int resblks) |
| { |
| int error; |
| |
| error = xchk_iget_for_scrubbing(sc); |
| if (error) |
| return error; |
| |
| /* Lock the inode so the VFS cannot touch this file. */ |
| xchk_ilock(sc, XFS_IOLOCK_EXCL); |
| |
| error = xchk_trans_alloc(sc, resblks); |
| if (error) |
| goto out; |
| |
| error = xchk_ino_dqattach(sc); |
| if (error) |
| goto out; |
| |
| xchk_ilock(sc, XFS_ILOCK_EXCL); |
| out: |
| /* scrub teardown will unlock and release the inode for us */ |
| return error; |
| } |
| |
| void |
| xchk_ilock( |
| struct xfs_scrub *sc, |
| unsigned int ilock_flags) |
| { |
| xfs_ilock(sc->ip, ilock_flags); |
| sc->ilock_flags |= ilock_flags; |
| } |
| |
| bool |
| xchk_ilock_nowait( |
| struct xfs_scrub *sc, |
| unsigned int ilock_flags) |
| { |
| if (xfs_ilock_nowait(sc->ip, ilock_flags)) { |
| sc->ilock_flags |= ilock_flags; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void |
| xchk_iunlock( |
| struct xfs_scrub *sc, |
| unsigned int ilock_flags) |
| { |
| sc->ilock_flags &= ~ilock_flags; |
| xfs_iunlock(sc->ip, ilock_flags); |
| } |
| |
| /* |
| * Predicate that decides if we need to evaluate the cross-reference check. |
| * If there was an error accessing the cross-reference btree, just delete |
| * the cursor and skip the check. |
| */ |
| bool |
| xchk_should_check_xref( |
| struct xfs_scrub *sc, |
| int *error, |
| struct xfs_btree_cur **curpp) |
| { |
| /* No point in xref if we already know we're corrupt. */ |
| if (xchk_skip_xref(sc->sm)) |
| return false; |
| |
| if (*error == 0) |
| return true; |
| |
| if (curpp) { |
| /* If we've already given up on xref, just bail out. */ |
| if (!*curpp) |
| return false; |
| |
| /* xref error, delete cursor and bail out. */ |
| xfs_btree_del_cursor(*curpp, XFS_BTREE_ERROR); |
| *curpp = NULL; |
| } |
| |
| sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL; |
| trace_xchk_xref_error(sc, *error, __return_address); |
| |
| /* |
| * Errors encountered during cross-referencing with another |
| * data structure should not cause this scrubber to abort. |
| */ |
| *error = 0; |
| return false; |
| } |
| |
| /* Run the structure verifiers on in-memory buffers to detect bad memory. */ |
| void |
| xchk_buffer_recheck( |
| struct xfs_scrub *sc, |
| struct xfs_buf *bp) |
| { |
| xfs_failaddr_t fa; |
| |
| if (bp->b_ops == NULL) { |
| xchk_block_set_corrupt(sc, bp); |
| return; |
| } |
| if (bp->b_ops->verify_struct == NULL) { |
| xchk_set_incomplete(sc); |
| return; |
| } |
| fa = bp->b_ops->verify_struct(bp); |
| if (!fa) |
| return; |
| sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; |
| trace_xchk_block_error(sc, xfs_buf_daddr(bp), fa); |
| } |
| |
| static inline int |
| xchk_metadata_inode_subtype( |
| struct xfs_scrub *sc, |
| unsigned int scrub_type) |
| { |
| __u32 smtype = sc->sm->sm_type; |
| unsigned int sick_mask = sc->sick_mask; |
| int error; |
| |
| sc->sm->sm_type = scrub_type; |
| |
| switch (scrub_type) { |
| case XFS_SCRUB_TYPE_INODE: |
| error = xchk_inode(sc); |
| break; |
| case XFS_SCRUB_TYPE_BMBTD: |
| error = xchk_bmap_data(sc); |
| break; |
| default: |
| ASSERT(0); |
| error = -EFSCORRUPTED; |
| break; |
| } |
| |
| sc->sick_mask = sick_mask; |
| sc->sm->sm_type = smtype; |
| return error; |
| } |
| |
| /* |
| * Scrub the attr/data forks of a metadata inode. The metadata inode must be |
| * pointed to by sc->ip and the ILOCK must be held. |
| */ |
| int |
| xchk_metadata_inode_forks( |
| struct xfs_scrub *sc) |
| { |
| bool shared; |
| int error; |
| |
| if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT) |
| return 0; |
| |
| /* Check the inode record. */ |
| error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE); |
| if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)) |
| return error; |
| |
| /* Metadata inodes don't live on the rt device. */ |
| if (sc->ip->i_diflags & XFS_DIFLAG_REALTIME) { |
| xchk_ino_set_corrupt(sc, sc->ip->i_ino); |
| return 0; |
| } |
| |
| /* They should never participate in reflink. */ |
| if (xfs_is_reflink_inode(sc->ip)) { |
| xchk_ino_set_corrupt(sc, sc->ip->i_ino); |
| return 0; |
| } |
| |
| /* They also should never have extended attributes. */ |
| if (xfs_inode_hasattr(sc->ip)) { |
| xchk_ino_set_corrupt(sc, sc->ip->i_ino); |
| return 0; |
| } |
| |
| /* Invoke the data fork scrubber. */ |
| error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD); |
| if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)) |
| return error; |
| |
| /* Look for incorrect shared blocks. */ |
| if (xfs_has_reflink(sc->mp)) { |
| error = xfs_reflink_inode_has_shared_extents(sc->tp, sc->ip, |
| &shared); |
| if (!xchk_fblock_process_error(sc, XFS_DATA_FORK, 0, |
| &error)) |
| return error; |
| if (shared) |
| xchk_ino_set_corrupt(sc, sc->ip->i_ino); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Enable filesystem hooks (i.e. runtime code patching) before starting a scrub |
| * operation. Callers must not hold any locks that intersect with the CPU |
| * hotplug lock (e.g. writeback locks) because code patching must halt the CPUs |
| * to change kernel code. |
| */ |
| void |
| xchk_fsgates_enable( |
| struct xfs_scrub *sc, |
| unsigned int scrub_fsgates) |
| { |
| ASSERT(!(scrub_fsgates & ~XCHK_FSGATES_ALL)); |
| ASSERT(!(sc->flags & scrub_fsgates)); |
| |
| trace_xchk_fsgates_enable(sc, scrub_fsgates); |
| |
| if (scrub_fsgates & XCHK_FSGATES_DRAIN) |
| xfs_drain_wait_enable(); |
| |
| if (scrub_fsgates & XCHK_FSGATES_QUOTA) |
| xfs_dqtrx_hook_enable(); |
| |
| if (scrub_fsgates & XCHK_FSGATES_DIRENTS) |
| xfs_dir_hook_enable(); |
| |
| if (scrub_fsgates & XCHK_FSGATES_RMAP) |
| xfs_rmap_hook_enable(); |
| |
| sc->flags |= scrub_fsgates; |
| } |
| |
| /* |
| * Decide if this is this a cached inode that's also allocated. The caller |
| * must hold a reference to an AG and the AGI buffer lock to prevent inodes |
| * from being allocated or freed. |
| * |
| * Look up an inode by number in the given file system. If the inode number |
| * is invalid, return -EINVAL. If the inode is not in cache, return -ENODATA. |
| * If the inode is being reclaimed, return -ENODATA because we know the inode |
| * cache cannot be updating the ondisk metadata. |
| * |
| * Otherwise, the incore inode is the one we want, and it is either live, |
| * somewhere in the inactivation machinery, or reclaimable. The inode is |
| * allocated if i_mode is nonzero. In all three cases, the cached inode will |
| * be more up to date than the ondisk inode buffer, so we must use the incore |
| * i_mode. |
| */ |
| int |
| xchk_inode_is_allocated( |
| struct xfs_scrub *sc, |
| xfs_agino_t agino, |
| bool *inuse) |
| { |
| struct xfs_mount *mp = sc->mp; |
| struct xfs_perag *pag = sc->sa.pag; |
| xfs_ino_t ino; |
| struct xfs_inode *ip; |
| int error; |
| |
| /* caller must hold perag reference */ |
| if (pag == NULL) { |
| ASSERT(pag != NULL); |
| return -EINVAL; |
| } |
| |
| /* caller must have AGI buffer */ |
| if (sc->sa.agi_bp == NULL) { |
| ASSERT(sc->sa.agi_bp != NULL); |
| return -EINVAL; |
| } |
| |
| /* reject inode numbers outside existing AGs */ |
| ino = XFS_AGINO_TO_INO(sc->mp, pag->pag_agno, agino); |
| if (!xfs_verify_ino(mp, ino)) |
| return -EINVAL; |
| |
| error = -ENODATA; |
| rcu_read_lock(); |
| ip = radix_tree_lookup(&pag->pag_ici_root, agino); |
| if (!ip) { |
| /* cache miss */ |
| goto out_rcu; |
| } |
| |
| /* |
| * If the inode number doesn't match, the incore inode got reused |
| * during an RCU grace period and the radix tree hasn't been updated. |
| * This isn't the inode we want. |
| */ |
| spin_lock(&ip->i_flags_lock); |
| if (ip->i_ino != ino) |
| goto out_skip; |
| |
| trace_xchk_inode_is_allocated(ip); |
| |
| /* |
| * We have an incore inode that matches the inode we want, and the |
| * caller holds the perag structure and the AGI buffer. Let's check |
| * our assumptions below: |
| */ |
| |
| #ifdef DEBUG |
| /* |
| * (1) If the incore inode is live (i.e. referenced from the dcache), |
| * it will not be INEW, nor will it be in the inactivation or reclaim |
| * machinery. The ondisk inode had better be allocated. This is the |
| * most trivial case. |
| */ |
| if (!(ip->i_flags & (XFS_NEED_INACTIVE | XFS_INEW | XFS_IRECLAIMABLE | |
| XFS_INACTIVATING))) { |
| /* live inode */ |
| ASSERT(VFS_I(ip)->i_mode != 0); |
| } |
| |
| /* |
| * If the incore inode is INEW, there are several possibilities: |
| * |
| * (2) For a file that is being created, note that we allocate the |
| * ondisk inode before allocating, initializing, and adding the incore |
| * inode to the radix tree. |
| * |
| * (3) If the incore inode is being recycled, the inode has to be |
| * allocated because we don't allow freed inodes to be recycled. |
| * Recycling doesn't touch i_mode. |
| */ |
| if (ip->i_flags & XFS_INEW) { |
| /* created on disk already or recycling */ |
| ASSERT(VFS_I(ip)->i_mode != 0); |
| } |
| |
| /* |
| * (4) If the inode is queued for inactivation (NEED_INACTIVE) but |
| * inactivation has not started (!INACTIVATING), it is still allocated. |
| */ |
| if ((ip->i_flags & XFS_NEED_INACTIVE) && |
| !(ip->i_flags & XFS_INACTIVATING)) { |
| /* definitely before difree */ |
| ASSERT(VFS_I(ip)->i_mode != 0); |
| } |
| #endif |
| |
| /* |
| * If the incore inode is undergoing inactivation (INACTIVATING), there |
| * are two possibilities: |
| * |
| * (5) It is before the point where it would get freed ondisk, in which |
| * case i_mode is still nonzero. |
| * |
| * (6) It has already been freed, in which case i_mode is zero. |
| * |
| * We don't take the ILOCK here, but difree and dialloc update the AGI, |
| * and we've taken the AGI buffer lock, which prevents that from |
| * happening. |
| */ |
| |
| /* |
| * (7) Inodes undergoing inactivation (INACTIVATING) or queued for |
| * reclaim (IRECLAIMABLE) could be allocated or free. i_mode still |
| * reflects the ondisk state. |
| */ |
| |
| /* |
| * (8) If the inode is in IFLUSHING, it's safe to query i_mode because |
| * the flush code uses i_mode to format the ondisk inode. |
| */ |
| |
| /* |
| * (9) If the inode is in IRECLAIM and was reachable via the radix |
| * tree, it still has the same i_mode as it did before it entered |
| * reclaim. The inode object is still alive because we hold the RCU |
| * read lock. |
| */ |
| |
| *inuse = VFS_I(ip)->i_mode != 0; |
| error = 0; |
| |
| out_skip: |
| spin_unlock(&ip->i_flags_lock); |
| out_rcu: |
| rcu_read_unlock(); |
| return error; |
| } |