| /* |
| * SuperH Timer Support - CMT |
| * |
| * Copyright (C) 2008 Magnus Damm |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/clockchips.h> |
| #include <linux/clocksource.h> |
| #include <linux/delay.h> |
| #include <linux/err.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/ioport.h> |
| #include <linux/irq.h> |
| #include <linux/module.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_domain.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/sh_timer.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| |
| struct sh_cmt_device; |
| |
| /* |
| * The CMT comes in 5 different identified flavours, depending not only on the |
| * SoC but also on the particular instance. The following table lists the main |
| * characteristics of those flavours. |
| * |
| * 16B 32B 32B-F 48B 48B-2 |
| * ----------------------------------------------------------------------------- |
| * Channels 2 1/4 1 6 2/8 |
| * Control Width 16 16 16 16 32 |
| * Counter Width 16 32 32 32/48 32/48 |
| * Shared Start/Stop Y Y Y Y N |
| * |
| * The 48-bit gen2 version has a per-channel start/stop register located in the |
| * channel registers block. All other versions have a shared start/stop register |
| * located in the global space. |
| * |
| * Channels are indexed from 0 to N-1 in the documentation. The channel index |
| * infers the start/stop bit position in the control register and the channel |
| * registers block address. Some CMT instances have a subset of channels |
| * available, in which case the index in the documentation doesn't match the |
| * "real" index as implemented in hardware. This is for instance the case with |
| * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0 |
| * in the documentation but using start/stop bit 5 and having its registers |
| * block at 0x60. |
| * |
| * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit |
| * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable. |
| */ |
| |
| enum sh_cmt_model { |
| SH_CMT_16BIT, |
| SH_CMT_32BIT, |
| SH_CMT_32BIT_FAST, |
| SH_CMT_48BIT, |
| SH_CMT_48BIT_GEN2, |
| }; |
| |
| struct sh_cmt_info { |
| enum sh_cmt_model model; |
| |
| unsigned long width; /* 16 or 32 bit version of hardware block */ |
| unsigned long overflow_bit; |
| unsigned long clear_bits; |
| |
| /* callbacks for CMSTR and CMCSR access */ |
| unsigned long (*read_control)(void __iomem *base, unsigned long offs); |
| void (*write_control)(void __iomem *base, unsigned long offs, |
| unsigned long value); |
| |
| /* callbacks for CMCNT and CMCOR access */ |
| unsigned long (*read_count)(void __iomem *base, unsigned long offs); |
| void (*write_count)(void __iomem *base, unsigned long offs, |
| unsigned long value); |
| }; |
| |
| struct sh_cmt_channel { |
| struct sh_cmt_device *cmt; |
| |
| unsigned int index; /* Index in the documentation */ |
| unsigned int hwidx; /* Real hardware index */ |
| |
| void __iomem *iostart; |
| void __iomem *ioctrl; |
| |
| unsigned int timer_bit; |
| unsigned long flags; |
| unsigned long match_value; |
| unsigned long next_match_value; |
| unsigned long max_match_value; |
| unsigned long rate; |
| raw_spinlock_t lock; |
| struct clock_event_device ced; |
| struct clocksource cs; |
| unsigned long total_cycles; |
| bool cs_enabled; |
| }; |
| |
| struct sh_cmt_device { |
| struct platform_device *pdev; |
| |
| const struct sh_cmt_info *info; |
| bool legacy; |
| |
| void __iomem *mapbase_ch; |
| void __iomem *mapbase; |
| struct clk *clk; |
| |
| struct sh_cmt_channel *channels; |
| unsigned int num_channels; |
| |
| bool has_clockevent; |
| bool has_clocksource; |
| }; |
| |
| #define SH_CMT16_CMCSR_CMF (1 << 7) |
| #define SH_CMT16_CMCSR_CMIE (1 << 6) |
| #define SH_CMT16_CMCSR_CKS8 (0 << 0) |
| #define SH_CMT16_CMCSR_CKS32 (1 << 0) |
| #define SH_CMT16_CMCSR_CKS128 (2 << 0) |
| #define SH_CMT16_CMCSR_CKS512 (3 << 0) |
| #define SH_CMT16_CMCSR_CKS_MASK (3 << 0) |
| |
| #define SH_CMT32_CMCSR_CMF (1 << 15) |
| #define SH_CMT32_CMCSR_OVF (1 << 14) |
| #define SH_CMT32_CMCSR_WRFLG (1 << 13) |
| #define SH_CMT32_CMCSR_STTF (1 << 12) |
| #define SH_CMT32_CMCSR_STPF (1 << 11) |
| #define SH_CMT32_CMCSR_SSIE (1 << 10) |
| #define SH_CMT32_CMCSR_CMS (1 << 9) |
| #define SH_CMT32_CMCSR_CMM (1 << 8) |
| #define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7) |
| #define SH_CMT32_CMCSR_CMR_NONE (0 << 4) |
| #define SH_CMT32_CMCSR_CMR_DMA (1 << 4) |
| #define SH_CMT32_CMCSR_CMR_IRQ (2 << 4) |
| #define SH_CMT32_CMCSR_CMR_MASK (3 << 4) |
| #define SH_CMT32_CMCSR_DBGIVD (1 << 3) |
| #define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0) |
| #define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0) |
| #define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0) |
| #define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0) |
| #define SH_CMT32_CMCSR_CKS_MASK (7 << 0) |
| |
| static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs) |
| { |
| return ioread16(base + (offs << 1)); |
| } |
| |
| static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs) |
| { |
| return ioread32(base + (offs << 2)); |
| } |
| |
| static void sh_cmt_write16(void __iomem *base, unsigned long offs, |
| unsigned long value) |
| { |
| iowrite16(value, base + (offs << 1)); |
| } |
| |
| static void sh_cmt_write32(void __iomem *base, unsigned long offs, |
| unsigned long value) |
| { |
| iowrite32(value, base + (offs << 2)); |
| } |
| |
| static const struct sh_cmt_info sh_cmt_info[] = { |
| [SH_CMT_16BIT] = { |
| .model = SH_CMT_16BIT, |
| .width = 16, |
| .overflow_bit = SH_CMT16_CMCSR_CMF, |
| .clear_bits = ~SH_CMT16_CMCSR_CMF, |
| .read_control = sh_cmt_read16, |
| .write_control = sh_cmt_write16, |
| .read_count = sh_cmt_read16, |
| .write_count = sh_cmt_write16, |
| }, |
| [SH_CMT_32BIT] = { |
| .model = SH_CMT_32BIT, |
| .width = 32, |
| .overflow_bit = SH_CMT32_CMCSR_CMF, |
| .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF), |
| .read_control = sh_cmt_read16, |
| .write_control = sh_cmt_write16, |
| .read_count = sh_cmt_read32, |
| .write_count = sh_cmt_write32, |
| }, |
| [SH_CMT_32BIT_FAST] = { |
| .model = SH_CMT_32BIT_FAST, |
| .width = 32, |
| .overflow_bit = SH_CMT32_CMCSR_CMF, |
| .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF), |
| .read_control = sh_cmt_read16, |
| .write_control = sh_cmt_write16, |
| .read_count = sh_cmt_read32, |
| .write_count = sh_cmt_write32, |
| }, |
| [SH_CMT_48BIT] = { |
| .model = SH_CMT_48BIT, |
| .width = 32, |
| .overflow_bit = SH_CMT32_CMCSR_CMF, |
| .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF), |
| .read_control = sh_cmt_read32, |
| .write_control = sh_cmt_write32, |
| .read_count = sh_cmt_read32, |
| .write_count = sh_cmt_write32, |
| }, |
| [SH_CMT_48BIT_GEN2] = { |
| .model = SH_CMT_48BIT_GEN2, |
| .width = 32, |
| .overflow_bit = SH_CMT32_CMCSR_CMF, |
| .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF), |
| .read_control = sh_cmt_read32, |
| .write_control = sh_cmt_write32, |
| .read_count = sh_cmt_read32, |
| .write_count = sh_cmt_write32, |
| }, |
| }; |
| |
| #define CMCSR 0 /* channel register */ |
| #define CMCNT 1 /* channel register */ |
| #define CMCOR 2 /* channel register */ |
| |
| static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch) |
| { |
| if (ch->iostart) |
| return ch->cmt->info->read_control(ch->iostart, 0); |
| else |
| return ch->cmt->info->read_control(ch->cmt->mapbase, 0); |
| } |
| |
| static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, |
| unsigned long value) |
| { |
| if (ch->iostart) |
| ch->cmt->info->write_control(ch->iostart, 0, value); |
| else |
| ch->cmt->info->write_control(ch->cmt->mapbase, 0, value); |
| } |
| |
| static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch) |
| { |
| return ch->cmt->info->read_control(ch->ioctrl, CMCSR); |
| } |
| |
| static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, |
| unsigned long value) |
| { |
| ch->cmt->info->write_control(ch->ioctrl, CMCSR, value); |
| } |
| |
| static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch) |
| { |
| return ch->cmt->info->read_count(ch->ioctrl, CMCNT); |
| } |
| |
| static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, |
| unsigned long value) |
| { |
| ch->cmt->info->write_count(ch->ioctrl, CMCNT, value); |
| } |
| |
| static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, |
| unsigned long value) |
| { |
| ch->cmt->info->write_count(ch->ioctrl, CMCOR, value); |
| } |
| |
| static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch, |
| int *has_wrapped) |
| { |
| unsigned long v1, v2, v3; |
| int o1, o2; |
| |
| o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit; |
| |
| /* Make sure the timer value is stable. Stolen from acpi_pm.c */ |
| do { |
| o2 = o1; |
| v1 = sh_cmt_read_cmcnt(ch); |
| v2 = sh_cmt_read_cmcnt(ch); |
| v3 = sh_cmt_read_cmcnt(ch); |
| o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit; |
| } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3) |
| || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2))); |
| |
| *has_wrapped = o1; |
| return v2; |
| } |
| |
| static DEFINE_RAW_SPINLOCK(sh_cmt_lock); |
| |
| static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start) |
| { |
| unsigned long flags, value; |
| |
| /* start stop register shared by multiple timer channels */ |
| raw_spin_lock_irqsave(&sh_cmt_lock, flags); |
| value = sh_cmt_read_cmstr(ch); |
| |
| if (start) |
| value |= 1 << ch->timer_bit; |
| else |
| value &= ~(1 << ch->timer_bit); |
| |
| sh_cmt_write_cmstr(ch, value); |
| raw_spin_unlock_irqrestore(&sh_cmt_lock, flags); |
| } |
| |
| static int sh_cmt_enable(struct sh_cmt_channel *ch, unsigned long *rate) |
| { |
| int k, ret; |
| |
| pm_runtime_get_sync(&ch->cmt->pdev->dev); |
| dev_pm_syscore_device(&ch->cmt->pdev->dev, true); |
| |
| /* enable clock */ |
| ret = clk_enable(ch->cmt->clk); |
| if (ret) { |
| dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n", |
| ch->index); |
| goto err0; |
| } |
| |
| /* make sure channel is disabled */ |
| sh_cmt_start_stop_ch(ch, 0); |
| |
| /* configure channel, periodic mode and maximum timeout */ |
| if (ch->cmt->info->width == 16) { |
| *rate = clk_get_rate(ch->cmt->clk) / 512; |
| sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE | |
| SH_CMT16_CMCSR_CKS512); |
| } else { |
| *rate = clk_get_rate(ch->cmt->clk) / 8; |
| sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM | |
| SH_CMT32_CMCSR_CMTOUT_IE | |
| SH_CMT32_CMCSR_CMR_IRQ | |
| SH_CMT32_CMCSR_CKS_RCLK8); |
| } |
| |
| sh_cmt_write_cmcor(ch, 0xffffffff); |
| sh_cmt_write_cmcnt(ch, 0); |
| |
| /* |
| * According to the sh73a0 user's manual, as CMCNT can be operated |
| * only by the RCLK (Pseudo 32 KHz), there's one restriction on |
| * modifying CMCNT register; two RCLK cycles are necessary before |
| * this register is either read or any modification of the value |
| * it holds is reflected in the LSI's actual operation. |
| * |
| * While at it, we're supposed to clear out the CMCNT as of this |
| * moment, so make sure it's processed properly here. This will |
| * take RCLKx2 at maximum. |
| */ |
| for (k = 0; k < 100; k++) { |
| if (!sh_cmt_read_cmcnt(ch)) |
| break; |
| udelay(1); |
| } |
| |
| if (sh_cmt_read_cmcnt(ch)) { |
| dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n", |
| ch->index); |
| ret = -ETIMEDOUT; |
| goto err1; |
| } |
| |
| /* enable channel */ |
| sh_cmt_start_stop_ch(ch, 1); |
| return 0; |
| err1: |
| /* stop clock */ |
| clk_disable(ch->cmt->clk); |
| |
| err0: |
| return ret; |
| } |
| |
| static void sh_cmt_disable(struct sh_cmt_channel *ch) |
| { |
| /* disable channel */ |
| sh_cmt_start_stop_ch(ch, 0); |
| |
| /* disable interrupts in CMT block */ |
| sh_cmt_write_cmcsr(ch, 0); |
| |
| /* stop clock */ |
| clk_disable(ch->cmt->clk); |
| |
| dev_pm_syscore_device(&ch->cmt->pdev->dev, false); |
| pm_runtime_put(&ch->cmt->pdev->dev); |
| } |
| |
| /* private flags */ |
| #define FLAG_CLOCKEVENT (1 << 0) |
| #define FLAG_CLOCKSOURCE (1 << 1) |
| #define FLAG_REPROGRAM (1 << 2) |
| #define FLAG_SKIPEVENT (1 << 3) |
| #define FLAG_IRQCONTEXT (1 << 4) |
| |
| static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch, |
| int absolute) |
| { |
| unsigned long new_match; |
| unsigned long value = ch->next_match_value; |
| unsigned long delay = 0; |
| unsigned long now = 0; |
| int has_wrapped; |
| |
| now = sh_cmt_get_counter(ch, &has_wrapped); |
| ch->flags |= FLAG_REPROGRAM; /* force reprogram */ |
| |
| if (has_wrapped) { |
| /* we're competing with the interrupt handler. |
| * -> let the interrupt handler reprogram the timer. |
| * -> interrupt number two handles the event. |
| */ |
| ch->flags |= FLAG_SKIPEVENT; |
| return; |
| } |
| |
| if (absolute) |
| now = 0; |
| |
| do { |
| /* reprogram the timer hardware, |
| * but don't save the new match value yet. |
| */ |
| new_match = now + value + delay; |
| if (new_match > ch->max_match_value) |
| new_match = ch->max_match_value; |
| |
| sh_cmt_write_cmcor(ch, new_match); |
| |
| now = sh_cmt_get_counter(ch, &has_wrapped); |
| if (has_wrapped && (new_match > ch->match_value)) { |
| /* we are changing to a greater match value, |
| * so this wrap must be caused by the counter |
| * matching the old value. |
| * -> first interrupt reprograms the timer. |
| * -> interrupt number two handles the event. |
| */ |
| ch->flags |= FLAG_SKIPEVENT; |
| break; |
| } |
| |
| if (has_wrapped) { |
| /* we are changing to a smaller match value, |
| * so the wrap must be caused by the counter |
| * matching the new value. |
| * -> save programmed match value. |
| * -> let isr handle the event. |
| */ |
| ch->match_value = new_match; |
| break; |
| } |
| |
| /* be safe: verify hardware settings */ |
| if (now < new_match) { |
| /* timer value is below match value, all good. |
| * this makes sure we won't miss any match events. |
| * -> save programmed match value. |
| * -> let isr handle the event. |
| */ |
| ch->match_value = new_match; |
| break; |
| } |
| |
| /* the counter has reached a value greater |
| * than our new match value. and since the |
| * has_wrapped flag isn't set we must have |
| * programmed a too close event. |
| * -> increase delay and retry. |
| */ |
| if (delay) |
| delay <<= 1; |
| else |
| delay = 1; |
| |
| if (!delay) |
| dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n", |
| ch->index); |
| |
| } while (delay); |
| } |
| |
| static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta) |
| { |
| if (delta > ch->max_match_value) |
| dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n", |
| ch->index); |
| |
| ch->next_match_value = delta; |
| sh_cmt_clock_event_program_verify(ch, 0); |
| } |
| |
| static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta) |
| { |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&ch->lock, flags); |
| __sh_cmt_set_next(ch, delta); |
| raw_spin_unlock_irqrestore(&ch->lock, flags); |
| } |
| |
| static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id) |
| { |
| struct sh_cmt_channel *ch = dev_id; |
| |
| /* clear flags */ |
| sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) & |
| ch->cmt->info->clear_bits); |
| |
| /* update clock source counter to begin with if enabled |
| * the wrap flag should be cleared by the timer specific |
| * isr before we end up here. |
| */ |
| if (ch->flags & FLAG_CLOCKSOURCE) |
| ch->total_cycles += ch->match_value + 1; |
| |
| if (!(ch->flags & FLAG_REPROGRAM)) |
| ch->next_match_value = ch->max_match_value; |
| |
| ch->flags |= FLAG_IRQCONTEXT; |
| |
| if (ch->flags & FLAG_CLOCKEVENT) { |
| if (!(ch->flags & FLAG_SKIPEVENT)) { |
| if (ch->ced.mode == CLOCK_EVT_MODE_ONESHOT) { |
| ch->next_match_value = ch->max_match_value; |
| ch->flags |= FLAG_REPROGRAM; |
| } |
| |
| ch->ced.event_handler(&ch->ced); |
| } |
| } |
| |
| ch->flags &= ~FLAG_SKIPEVENT; |
| |
| if (ch->flags & FLAG_REPROGRAM) { |
| ch->flags &= ~FLAG_REPROGRAM; |
| sh_cmt_clock_event_program_verify(ch, 1); |
| |
| if (ch->flags & FLAG_CLOCKEVENT) |
| if ((ch->ced.mode == CLOCK_EVT_MODE_SHUTDOWN) |
| || (ch->match_value == ch->next_match_value)) |
| ch->flags &= ~FLAG_REPROGRAM; |
| } |
| |
| ch->flags &= ~FLAG_IRQCONTEXT; |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag) |
| { |
| int ret = 0; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&ch->lock, flags); |
| |
| if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) |
| ret = sh_cmt_enable(ch, &ch->rate); |
| |
| if (ret) |
| goto out; |
| ch->flags |= flag; |
| |
| /* setup timeout if no clockevent */ |
| if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT))) |
| __sh_cmt_set_next(ch, ch->max_match_value); |
| out: |
| raw_spin_unlock_irqrestore(&ch->lock, flags); |
| |
| return ret; |
| } |
| |
| static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag) |
| { |
| unsigned long flags; |
| unsigned long f; |
| |
| raw_spin_lock_irqsave(&ch->lock, flags); |
| |
| f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE); |
| ch->flags &= ~flag; |
| |
| if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) |
| sh_cmt_disable(ch); |
| |
| /* adjust the timeout to maximum if only clocksource left */ |
| if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE)) |
| __sh_cmt_set_next(ch, ch->max_match_value); |
| |
| raw_spin_unlock_irqrestore(&ch->lock, flags); |
| } |
| |
| static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs) |
| { |
| return container_of(cs, struct sh_cmt_channel, cs); |
| } |
| |
| static cycle_t sh_cmt_clocksource_read(struct clocksource *cs) |
| { |
| struct sh_cmt_channel *ch = cs_to_sh_cmt(cs); |
| unsigned long flags, raw; |
| unsigned long value; |
| int has_wrapped; |
| |
| raw_spin_lock_irqsave(&ch->lock, flags); |
| value = ch->total_cycles; |
| raw = sh_cmt_get_counter(ch, &has_wrapped); |
| |
| if (unlikely(has_wrapped)) |
| raw += ch->match_value + 1; |
| raw_spin_unlock_irqrestore(&ch->lock, flags); |
| |
| return value + raw; |
| } |
| |
| static int sh_cmt_clocksource_enable(struct clocksource *cs) |
| { |
| int ret; |
| struct sh_cmt_channel *ch = cs_to_sh_cmt(cs); |
| |
| WARN_ON(ch->cs_enabled); |
| |
| ch->total_cycles = 0; |
| |
| ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE); |
| if (!ret) { |
| __clocksource_updatefreq_hz(cs, ch->rate); |
| ch->cs_enabled = true; |
| } |
| return ret; |
| } |
| |
| static void sh_cmt_clocksource_disable(struct clocksource *cs) |
| { |
| struct sh_cmt_channel *ch = cs_to_sh_cmt(cs); |
| |
| WARN_ON(!ch->cs_enabled); |
| |
| sh_cmt_stop(ch, FLAG_CLOCKSOURCE); |
| ch->cs_enabled = false; |
| } |
| |
| static void sh_cmt_clocksource_suspend(struct clocksource *cs) |
| { |
| struct sh_cmt_channel *ch = cs_to_sh_cmt(cs); |
| |
| sh_cmt_stop(ch, FLAG_CLOCKSOURCE); |
| pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev); |
| } |
| |
| static void sh_cmt_clocksource_resume(struct clocksource *cs) |
| { |
| struct sh_cmt_channel *ch = cs_to_sh_cmt(cs); |
| |
| pm_genpd_syscore_poweron(&ch->cmt->pdev->dev); |
| sh_cmt_start(ch, FLAG_CLOCKSOURCE); |
| } |
| |
| static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch, |
| const char *name) |
| { |
| struct clocksource *cs = &ch->cs; |
| |
| cs->name = name; |
| cs->rating = 125; |
| cs->read = sh_cmt_clocksource_read; |
| cs->enable = sh_cmt_clocksource_enable; |
| cs->disable = sh_cmt_clocksource_disable; |
| cs->suspend = sh_cmt_clocksource_suspend; |
| cs->resume = sh_cmt_clocksource_resume; |
| cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8); |
| cs->flags = CLOCK_SOURCE_IS_CONTINUOUS; |
| |
| dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n", |
| ch->index); |
| |
| /* Register with dummy 1 Hz value, gets updated in ->enable() */ |
| clocksource_register_hz(cs, 1); |
| return 0; |
| } |
| |
| static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced) |
| { |
| return container_of(ced, struct sh_cmt_channel, ced); |
| } |
| |
| static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic) |
| { |
| struct clock_event_device *ced = &ch->ced; |
| |
| sh_cmt_start(ch, FLAG_CLOCKEVENT); |
| |
| /* TODO: calculate good shift from rate and counter bit width */ |
| |
| ced->shift = 32; |
| ced->mult = div_sc(ch->rate, NSEC_PER_SEC, ced->shift); |
| ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced); |
| ced->min_delta_ns = clockevent_delta2ns(0x1f, ced); |
| |
| if (periodic) |
| sh_cmt_set_next(ch, ((ch->rate + HZ/2) / HZ) - 1); |
| else |
| sh_cmt_set_next(ch, ch->max_match_value); |
| } |
| |
| static void sh_cmt_clock_event_mode(enum clock_event_mode mode, |
| struct clock_event_device *ced) |
| { |
| struct sh_cmt_channel *ch = ced_to_sh_cmt(ced); |
| |
| /* deal with old setting first */ |
| switch (ced->mode) { |
| case CLOCK_EVT_MODE_PERIODIC: |
| case CLOCK_EVT_MODE_ONESHOT: |
| sh_cmt_stop(ch, FLAG_CLOCKEVENT); |
| break; |
| default: |
| break; |
| } |
| |
| switch (mode) { |
| case CLOCK_EVT_MODE_PERIODIC: |
| dev_info(&ch->cmt->pdev->dev, |
| "ch%u: used for periodic clock events\n", ch->index); |
| sh_cmt_clock_event_start(ch, 1); |
| break; |
| case CLOCK_EVT_MODE_ONESHOT: |
| dev_info(&ch->cmt->pdev->dev, |
| "ch%u: used for oneshot clock events\n", ch->index); |
| sh_cmt_clock_event_start(ch, 0); |
| break; |
| case CLOCK_EVT_MODE_SHUTDOWN: |
| case CLOCK_EVT_MODE_UNUSED: |
| sh_cmt_stop(ch, FLAG_CLOCKEVENT); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static int sh_cmt_clock_event_next(unsigned long delta, |
| struct clock_event_device *ced) |
| { |
| struct sh_cmt_channel *ch = ced_to_sh_cmt(ced); |
| |
| BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT); |
| if (likely(ch->flags & FLAG_IRQCONTEXT)) |
| ch->next_match_value = delta - 1; |
| else |
| sh_cmt_set_next(ch, delta - 1); |
| |
| return 0; |
| } |
| |
| static void sh_cmt_clock_event_suspend(struct clock_event_device *ced) |
| { |
| struct sh_cmt_channel *ch = ced_to_sh_cmt(ced); |
| |
| pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev); |
| clk_unprepare(ch->cmt->clk); |
| } |
| |
| static void sh_cmt_clock_event_resume(struct clock_event_device *ced) |
| { |
| struct sh_cmt_channel *ch = ced_to_sh_cmt(ced); |
| |
| clk_prepare(ch->cmt->clk); |
| pm_genpd_syscore_poweron(&ch->cmt->pdev->dev); |
| } |
| |
| static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch, |
| const char *name) |
| { |
| struct clock_event_device *ced = &ch->ced; |
| int irq; |
| int ret; |
| |
| irq = platform_get_irq(ch->cmt->pdev, ch->cmt->legacy ? 0 : ch->index); |
| if (irq < 0) { |
| dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n", |
| ch->index); |
| return irq; |
| } |
| |
| ret = request_irq(irq, sh_cmt_interrupt, |
| IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING, |
| dev_name(&ch->cmt->pdev->dev), ch); |
| if (ret) { |
| dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n", |
| ch->index, irq); |
| return ret; |
| } |
| |
| ced->name = name; |
| ced->features = CLOCK_EVT_FEAT_PERIODIC; |
| ced->features |= CLOCK_EVT_FEAT_ONESHOT; |
| ced->rating = 125; |
| ced->cpumask = cpu_possible_mask; |
| ced->set_next_event = sh_cmt_clock_event_next; |
| ced->set_mode = sh_cmt_clock_event_mode; |
| ced->suspend = sh_cmt_clock_event_suspend; |
| ced->resume = sh_cmt_clock_event_resume; |
| |
| dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n", |
| ch->index); |
| clockevents_register_device(ced); |
| |
| return 0; |
| } |
| |
| static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name, |
| bool clockevent, bool clocksource) |
| { |
| int ret; |
| |
| if (clockevent) { |
| ch->cmt->has_clockevent = true; |
| ret = sh_cmt_register_clockevent(ch, name); |
| if (ret < 0) |
| return ret; |
| } |
| |
| if (clocksource) { |
| ch->cmt->has_clocksource = true; |
| sh_cmt_register_clocksource(ch, name); |
| } |
| |
| return 0; |
| } |
| |
| static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index, |
| unsigned int hwidx, bool clockevent, |
| bool clocksource, struct sh_cmt_device *cmt) |
| { |
| int ret; |
| |
| /* Skip unused channels. */ |
| if (!clockevent && !clocksource) |
| return 0; |
| |
| ch->cmt = cmt; |
| ch->index = index; |
| ch->hwidx = hwidx; |
| |
| /* |
| * Compute the address of the channel control register block. For the |
| * timers with a per-channel start/stop register, compute its address |
| * as well. |
| * |
| * For legacy configuration the address has been mapped explicitly. |
| */ |
| if (cmt->legacy) { |
| ch->ioctrl = cmt->mapbase_ch; |
| } else { |
| switch (cmt->info->model) { |
| case SH_CMT_16BIT: |
| ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6; |
| break; |
| case SH_CMT_32BIT: |
| case SH_CMT_48BIT: |
| ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10; |
| break; |
| case SH_CMT_32BIT_FAST: |
| /* |
| * The 32-bit "fast" timer has a single channel at hwidx |
| * 5 but is located at offset 0x40 instead of 0x60 for |
| * some reason. |
| */ |
| ch->ioctrl = cmt->mapbase + 0x40; |
| break; |
| case SH_CMT_48BIT_GEN2: |
| ch->iostart = cmt->mapbase + ch->hwidx * 0x100; |
| ch->ioctrl = ch->iostart + 0x10; |
| break; |
| } |
| } |
| |
| if (cmt->info->width == (sizeof(ch->max_match_value) * 8)) |
| ch->max_match_value = ~0; |
| else |
| ch->max_match_value = (1 << cmt->info->width) - 1; |
| |
| ch->match_value = ch->max_match_value; |
| raw_spin_lock_init(&ch->lock); |
| |
| if (cmt->legacy) { |
| ch->timer_bit = ch->hwidx; |
| } else { |
| ch->timer_bit = cmt->info->model == SH_CMT_48BIT_GEN2 |
| ? 0 : ch->hwidx; |
| } |
| |
| ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev), |
| clockevent, clocksource); |
| if (ret) { |
| dev_err(&cmt->pdev->dev, "ch%u: registration failed\n", |
| ch->index); |
| return ret; |
| } |
| ch->cs_enabled = false; |
| |
| return 0; |
| } |
| |
| static int sh_cmt_map_memory(struct sh_cmt_device *cmt) |
| { |
| struct resource *mem; |
| |
| mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0); |
| if (!mem) { |
| dev_err(&cmt->pdev->dev, "failed to get I/O memory\n"); |
| return -ENXIO; |
| } |
| |
| cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem)); |
| if (cmt->mapbase == NULL) { |
| dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n"); |
| return -ENXIO; |
| } |
| |
| return 0; |
| } |
| |
| static int sh_cmt_map_memory_legacy(struct sh_cmt_device *cmt) |
| { |
| struct sh_timer_config *cfg = cmt->pdev->dev.platform_data; |
| struct resource *res, *res2; |
| |
| /* map memory, let mapbase_ch point to our channel */ |
| res = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0); |
| if (!res) { |
| dev_err(&cmt->pdev->dev, "failed to get I/O memory\n"); |
| return -ENXIO; |
| } |
| |
| cmt->mapbase_ch = ioremap_nocache(res->start, resource_size(res)); |
| if (cmt->mapbase_ch == NULL) { |
| dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n"); |
| return -ENXIO; |
| } |
| |
| /* optional resource for the shared timer start/stop register */ |
| res2 = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 1); |
| |
| /* map second resource for CMSTR */ |
| cmt->mapbase = ioremap_nocache(res2 ? res2->start : |
| res->start - cfg->channel_offset, |
| res2 ? resource_size(res2) : 2); |
| if (cmt->mapbase == NULL) { |
| dev_err(&cmt->pdev->dev, "failed to remap I/O second memory\n"); |
| iounmap(cmt->mapbase_ch); |
| return -ENXIO; |
| } |
| |
| /* identify the model based on the resources */ |
| if (resource_size(res) == 6) |
| cmt->info = &sh_cmt_info[SH_CMT_16BIT]; |
| else if (res2 && (resource_size(res2) == 4)) |
| cmt->info = &sh_cmt_info[SH_CMT_48BIT_GEN2]; |
| else |
| cmt->info = &sh_cmt_info[SH_CMT_32BIT]; |
| |
| return 0; |
| } |
| |
| static void sh_cmt_unmap_memory(struct sh_cmt_device *cmt) |
| { |
| iounmap(cmt->mapbase); |
| if (cmt->mapbase_ch) |
| iounmap(cmt->mapbase_ch); |
| } |
| |
| static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev) |
| { |
| struct sh_timer_config *cfg = pdev->dev.platform_data; |
| const struct platform_device_id *id = pdev->id_entry; |
| unsigned int hw_channels; |
| int ret; |
| |
| memset(cmt, 0, sizeof(*cmt)); |
| cmt->pdev = pdev; |
| |
| if (!cfg) { |
| dev_err(&cmt->pdev->dev, "missing platform data\n"); |
| return -ENXIO; |
| } |
| |
| cmt->info = (const struct sh_cmt_info *)id->driver_data; |
| cmt->legacy = cmt->info ? false : true; |
| |
| /* Get hold of clock. */ |
| cmt->clk = clk_get(&cmt->pdev->dev, cmt->legacy ? "cmt_fck" : "fck"); |
| if (IS_ERR(cmt->clk)) { |
| dev_err(&cmt->pdev->dev, "cannot get clock\n"); |
| return PTR_ERR(cmt->clk); |
| } |
| |
| ret = clk_prepare(cmt->clk); |
| if (ret < 0) |
| goto err_clk_put; |
| |
| /* |
| * Map the memory resource(s). We need to support both the legacy |
| * platform device configuration (with one device per channel) and the |
| * new version (with multiple channels per device). |
| */ |
| if (cmt->legacy) |
| ret = sh_cmt_map_memory_legacy(cmt); |
| else |
| ret = sh_cmt_map_memory(cmt); |
| |
| if (ret < 0) |
| goto err_clk_unprepare; |
| |
| /* Allocate and setup the channels. */ |
| if (cmt->legacy) { |
| cmt->num_channels = 1; |
| hw_channels = 0; |
| } else { |
| cmt->num_channels = hweight8(cfg->channels_mask); |
| hw_channels = cfg->channels_mask; |
| } |
| |
| cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels), |
| GFP_KERNEL); |
| if (cmt->channels == NULL) { |
| ret = -ENOMEM; |
| goto err_unmap; |
| } |
| |
| if (cmt->legacy) { |
| ret = sh_cmt_setup_channel(&cmt->channels[0], |
| cfg->timer_bit, cfg->timer_bit, |
| cfg->clockevent_rating != 0, |
| cfg->clocksource_rating != 0, cmt); |
| if (ret < 0) |
| goto err_unmap; |
| } else { |
| unsigned int mask = hw_channels; |
| unsigned int i; |
| |
| /* |
| * Use the first channel as a clock event device and the second |
| * channel as a clock source. If only one channel is available |
| * use it for both. |
| */ |
| for (i = 0; i < cmt->num_channels; ++i) { |
| unsigned int hwidx = ffs(mask) - 1; |
| bool clocksource = i == 1 || cmt->num_channels == 1; |
| bool clockevent = i == 0; |
| |
| ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx, |
| clockevent, clocksource, |
| cmt); |
| if (ret < 0) |
| goto err_unmap; |
| |
| mask &= ~(1 << hwidx); |
| } |
| } |
| |
| platform_set_drvdata(pdev, cmt); |
| |
| return 0; |
| |
| err_unmap: |
| kfree(cmt->channels); |
| sh_cmt_unmap_memory(cmt); |
| err_clk_unprepare: |
| clk_unprepare(cmt->clk); |
| err_clk_put: |
| clk_put(cmt->clk); |
| return ret; |
| } |
| |
| static int sh_cmt_probe(struct platform_device *pdev) |
| { |
| struct sh_cmt_device *cmt = platform_get_drvdata(pdev); |
| int ret; |
| |
| if (!is_early_platform_device(pdev)) { |
| pm_runtime_set_active(&pdev->dev); |
| pm_runtime_enable(&pdev->dev); |
| } |
| |
| if (cmt) { |
| dev_info(&pdev->dev, "kept as earlytimer\n"); |
| goto out; |
| } |
| |
| cmt = kzalloc(sizeof(*cmt), GFP_KERNEL); |
| if (cmt == NULL) { |
| dev_err(&pdev->dev, "failed to allocate driver data\n"); |
| return -ENOMEM; |
| } |
| |
| ret = sh_cmt_setup(cmt, pdev); |
| if (ret) { |
| kfree(cmt); |
| pm_runtime_idle(&pdev->dev); |
| return ret; |
| } |
| if (is_early_platform_device(pdev)) |
| return 0; |
| |
| out: |
| if (cmt->has_clockevent || cmt->has_clocksource) |
| pm_runtime_irq_safe(&pdev->dev); |
| else |
| pm_runtime_idle(&pdev->dev); |
| |
| return 0; |
| } |
| |
| static int sh_cmt_remove(struct platform_device *pdev) |
| { |
| return -EBUSY; /* cannot unregister clockevent and clocksource */ |
| } |
| |
| static const struct platform_device_id sh_cmt_id_table[] = { |
| { "sh_cmt", 0 }, |
| { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] }, |
| { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] }, |
| { "sh-cmt-32-fast", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT_FAST] }, |
| { "sh-cmt-48", (kernel_ulong_t)&sh_cmt_info[SH_CMT_48BIT] }, |
| { "sh-cmt-48-gen2", (kernel_ulong_t)&sh_cmt_info[SH_CMT_48BIT_GEN2] }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(platform, sh_cmt_id_table); |
| |
| static struct platform_driver sh_cmt_device_driver = { |
| .probe = sh_cmt_probe, |
| .remove = sh_cmt_remove, |
| .driver = { |
| .name = "sh_cmt", |
| }, |
| .id_table = sh_cmt_id_table, |
| }; |
| |
| static int __init sh_cmt_init(void) |
| { |
| return platform_driver_register(&sh_cmt_device_driver); |
| } |
| |
| static void __exit sh_cmt_exit(void) |
| { |
| platform_driver_unregister(&sh_cmt_device_driver); |
| } |
| |
| early_platform_init("earlytimer", &sh_cmt_device_driver); |
| subsys_initcall(sh_cmt_init); |
| module_exit(sh_cmt_exit); |
| |
| MODULE_AUTHOR("Magnus Damm"); |
| MODULE_DESCRIPTION("SuperH CMT Timer Driver"); |
| MODULE_LICENSE("GPL v2"); |