| /* |
| * linux/drivers/mmc/core/core.c |
| * |
| * Copyright (C) 2003-2004 Russell King, All Rights Reserved. |
| * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. |
| * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. |
| * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/completion.h> |
| #include <linux/device.h> |
| #include <linux/delay.h> |
| #include <linux/pagemap.h> |
| #include <linux/err.h> |
| #include <linux/leds.h> |
| #include <linux/scatterlist.h> |
| #include <linux/log2.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/pm_wakeup.h> |
| #include <linux/suspend.h> |
| #include <linux/fault-inject.h> |
| #include <linux/random.h> |
| #include <linux/slab.h> |
| #include <linux/of.h> |
| |
| #include <linux/mmc/card.h> |
| #include <linux/mmc/host.h> |
| #include <linux/mmc/mmc.h> |
| #include <linux/mmc/sd.h> |
| #include <linux/mmc/slot-gpio.h> |
| |
| #include "core.h" |
| #include "bus.h" |
| #include "host.h" |
| #include "sdio_bus.h" |
| |
| #include "mmc_ops.h" |
| #include "sd_ops.h" |
| #include "sdio_ops.h" |
| |
| /* If the device is not responding */ |
| #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */ |
| |
| /* |
| * Background operations can take a long time, depending on the housekeeping |
| * operations the card has to perform. |
| */ |
| #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */ |
| |
| static struct workqueue_struct *workqueue; |
| static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; |
| |
| /* |
| * Enabling software CRCs on the data blocks can be a significant (30%) |
| * performance cost, and for other reasons may not always be desired. |
| * So we allow it it to be disabled. |
| */ |
| bool use_spi_crc = 1; |
| module_param(use_spi_crc, bool, 0); |
| |
| /* |
| * Internal function. Schedule delayed work in the MMC work queue. |
| */ |
| static int mmc_schedule_delayed_work(struct delayed_work *work, |
| unsigned long delay) |
| { |
| return queue_delayed_work(workqueue, work, delay); |
| } |
| |
| /* |
| * Internal function. Flush all scheduled work from the MMC work queue. |
| */ |
| static void mmc_flush_scheduled_work(void) |
| { |
| flush_workqueue(workqueue); |
| } |
| |
| #ifdef CONFIG_FAIL_MMC_REQUEST |
| |
| /* |
| * Internal function. Inject random data errors. |
| * If mmc_data is NULL no errors are injected. |
| */ |
| static void mmc_should_fail_request(struct mmc_host *host, |
| struct mmc_request *mrq) |
| { |
| struct mmc_command *cmd = mrq->cmd; |
| struct mmc_data *data = mrq->data; |
| static const int data_errors[] = { |
| -ETIMEDOUT, |
| -EILSEQ, |
| -EIO, |
| }; |
| |
| if (!data) |
| return; |
| |
| if (cmd->error || data->error || |
| !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) |
| return; |
| |
| data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)]; |
| data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9; |
| } |
| |
| #else /* CONFIG_FAIL_MMC_REQUEST */ |
| |
| static inline void mmc_should_fail_request(struct mmc_host *host, |
| struct mmc_request *mrq) |
| { |
| } |
| |
| #endif /* CONFIG_FAIL_MMC_REQUEST */ |
| |
| /** |
| * mmc_request_done - finish processing an MMC request |
| * @host: MMC host which completed request |
| * @mrq: MMC request which request |
| * |
| * MMC drivers should call this function when they have completed |
| * their processing of a request. |
| */ |
| void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| struct mmc_command *cmd = mrq->cmd; |
| int err = cmd->error; |
| |
| if (err && cmd->retries && mmc_host_is_spi(host)) { |
| if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) |
| cmd->retries = 0; |
| } |
| |
| if (err && cmd->retries && !mmc_card_removed(host->card)) { |
| /* |
| * Request starter must handle retries - see |
| * mmc_wait_for_req_done(). |
| */ |
| if (mrq->done) |
| mrq->done(mrq); |
| } else { |
| mmc_should_fail_request(host, mrq); |
| |
| led_trigger_event(host->led, LED_OFF); |
| |
| pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", |
| mmc_hostname(host), cmd->opcode, err, |
| cmd->resp[0], cmd->resp[1], |
| cmd->resp[2], cmd->resp[3]); |
| |
| if (mrq->data) { |
| pr_debug("%s: %d bytes transferred: %d\n", |
| mmc_hostname(host), |
| mrq->data->bytes_xfered, mrq->data->error); |
| } |
| |
| if (mrq->stop) { |
| pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", |
| mmc_hostname(host), mrq->stop->opcode, |
| mrq->stop->error, |
| mrq->stop->resp[0], mrq->stop->resp[1], |
| mrq->stop->resp[2], mrq->stop->resp[3]); |
| } |
| |
| if (mrq->done) |
| mrq->done(mrq); |
| |
| mmc_host_clk_release(host); |
| } |
| } |
| |
| EXPORT_SYMBOL(mmc_request_done); |
| |
| static void |
| mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| #ifdef CONFIG_MMC_DEBUG |
| unsigned int i, sz; |
| struct scatterlist *sg; |
| #endif |
| |
| if (mrq->sbc) { |
| pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", |
| mmc_hostname(host), mrq->sbc->opcode, |
| mrq->sbc->arg, mrq->sbc->flags); |
| } |
| |
| pr_debug("%s: starting CMD%u arg %08x flags %08x\n", |
| mmc_hostname(host), mrq->cmd->opcode, |
| mrq->cmd->arg, mrq->cmd->flags); |
| |
| if (mrq->data) { |
| pr_debug("%s: blksz %d blocks %d flags %08x " |
| "tsac %d ms nsac %d\n", |
| mmc_hostname(host), mrq->data->blksz, |
| mrq->data->blocks, mrq->data->flags, |
| mrq->data->timeout_ns / 1000000, |
| mrq->data->timeout_clks); |
| } |
| |
| if (mrq->stop) { |
| pr_debug("%s: CMD%u arg %08x flags %08x\n", |
| mmc_hostname(host), mrq->stop->opcode, |
| mrq->stop->arg, mrq->stop->flags); |
| } |
| |
| WARN_ON(!host->claimed); |
| |
| mrq->cmd->error = 0; |
| mrq->cmd->mrq = mrq; |
| if (mrq->data) { |
| BUG_ON(mrq->data->blksz > host->max_blk_size); |
| BUG_ON(mrq->data->blocks > host->max_blk_count); |
| BUG_ON(mrq->data->blocks * mrq->data->blksz > |
| host->max_req_size); |
| |
| #ifdef CONFIG_MMC_DEBUG |
| sz = 0; |
| for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) |
| sz += sg->length; |
| BUG_ON(sz != mrq->data->blocks * mrq->data->blksz); |
| #endif |
| |
| mrq->cmd->data = mrq->data; |
| mrq->data->error = 0; |
| mrq->data->mrq = mrq; |
| if (mrq->stop) { |
| mrq->data->stop = mrq->stop; |
| mrq->stop->error = 0; |
| mrq->stop->mrq = mrq; |
| } |
| } |
| mmc_host_clk_hold(host); |
| led_trigger_event(host->led, LED_FULL); |
| host->ops->request(host, mrq); |
| } |
| |
| /** |
| * mmc_start_bkops - start BKOPS for supported cards |
| * @card: MMC card to start BKOPS |
| * @form_exception: A flag to indicate if this function was |
| * called due to an exception raised by the card |
| * |
| * Start background operations whenever requested. |
| * When the urgent BKOPS bit is set in a R1 command response |
| * then background operations should be started immediately. |
| */ |
| void mmc_start_bkops(struct mmc_card *card, bool from_exception) |
| { |
| int err; |
| int timeout; |
| bool use_busy_signal; |
| |
| BUG_ON(!card); |
| |
| if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card)) |
| return; |
| |
| err = mmc_read_bkops_status(card); |
| if (err) { |
| pr_err("%s: Failed to read bkops status: %d\n", |
| mmc_hostname(card->host), err); |
| return; |
| } |
| |
| if (!card->ext_csd.raw_bkops_status) |
| return; |
| |
| if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 && |
| from_exception) |
| return; |
| |
| mmc_claim_host(card->host); |
| if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) { |
| timeout = MMC_BKOPS_MAX_TIMEOUT; |
| use_busy_signal = true; |
| } else { |
| timeout = 0; |
| use_busy_signal = false; |
| } |
| |
| err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, |
| EXT_CSD_BKOPS_START, 1, timeout, |
| use_busy_signal, true, false); |
| if (err) { |
| pr_warn("%s: Error %d starting bkops\n", |
| mmc_hostname(card->host), err); |
| goto out; |
| } |
| |
| /* |
| * For urgent bkops status (LEVEL_2 and more) |
| * bkops executed synchronously, otherwise |
| * the operation is in progress |
| */ |
| if (!use_busy_signal) |
| mmc_card_set_doing_bkops(card); |
| out: |
| mmc_release_host(card->host); |
| } |
| EXPORT_SYMBOL(mmc_start_bkops); |
| |
| /* |
| * mmc_wait_data_done() - done callback for data request |
| * @mrq: done data request |
| * |
| * Wakes up mmc context, passed as a callback to host controller driver |
| */ |
| static void mmc_wait_data_done(struct mmc_request *mrq) |
| { |
| mrq->host->context_info.is_done_rcv = true; |
| wake_up_interruptible(&mrq->host->context_info.wait); |
| } |
| |
| static void mmc_wait_done(struct mmc_request *mrq) |
| { |
| complete(&mrq->completion); |
| } |
| |
| /* |
| *__mmc_start_data_req() - starts data request |
| * @host: MMC host to start the request |
| * @mrq: data request to start |
| * |
| * Sets the done callback to be called when request is completed by the card. |
| * Starts data mmc request execution |
| */ |
| static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| mrq->done = mmc_wait_data_done; |
| mrq->host = host; |
| if (mmc_card_removed(host->card)) { |
| mrq->cmd->error = -ENOMEDIUM; |
| mmc_wait_data_done(mrq); |
| return -ENOMEDIUM; |
| } |
| mmc_start_request(host, mrq); |
| |
| return 0; |
| } |
| |
| static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| init_completion(&mrq->completion); |
| mrq->done = mmc_wait_done; |
| if (mmc_card_removed(host->card)) { |
| mrq->cmd->error = -ENOMEDIUM; |
| complete(&mrq->completion); |
| return -ENOMEDIUM; |
| } |
| mmc_start_request(host, mrq); |
| return 0; |
| } |
| |
| /* |
| * mmc_wait_for_data_req_done() - wait for request completed |
| * @host: MMC host to prepare the command. |
| * @mrq: MMC request to wait for |
| * |
| * Blocks MMC context till host controller will ack end of data request |
| * execution or new request notification arrives from the block layer. |
| * Handles command retries. |
| * |
| * Returns enum mmc_blk_status after checking errors. |
| */ |
| static int mmc_wait_for_data_req_done(struct mmc_host *host, |
| struct mmc_request *mrq, |
| struct mmc_async_req *next_req) |
| { |
| struct mmc_command *cmd; |
| struct mmc_context_info *context_info = &host->context_info; |
| int err; |
| unsigned long flags; |
| |
| while (1) { |
| wait_event_interruptible(context_info->wait, |
| (context_info->is_done_rcv || |
| context_info->is_new_req)); |
| spin_lock_irqsave(&context_info->lock, flags); |
| context_info->is_waiting_last_req = false; |
| spin_unlock_irqrestore(&context_info->lock, flags); |
| if (context_info->is_done_rcv) { |
| context_info->is_done_rcv = false; |
| context_info->is_new_req = false; |
| cmd = mrq->cmd; |
| |
| if (!cmd->error || !cmd->retries || |
| mmc_card_removed(host->card)) { |
| err = host->areq->err_check(host->card, |
| host->areq); |
| break; /* return err */ |
| } else { |
| pr_info("%s: req failed (CMD%u): %d, retrying...\n", |
| mmc_hostname(host), |
| cmd->opcode, cmd->error); |
| cmd->retries--; |
| cmd->error = 0; |
| host->ops->request(host, mrq); |
| continue; /* wait for done/new event again */ |
| } |
| } else if (context_info->is_new_req) { |
| context_info->is_new_req = false; |
| if (!next_req) { |
| err = MMC_BLK_NEW_REQUEST; |
| break; /* return err */ |
| } |
| } |
| } |
| return err; |
| } |
| |
| static void mmc_wait_for_req_done(struct mmc_host *host, |
| struct mmc_request *mrq) |
| { |
| struct mmc_command *cmd; |
| |
| while (1) { |
| wait_for_completion(&mrq->completion); |
| |
| cmd = mrq->cmd; |
| |
| /* |
| * If host has timed out waiting for the sanitize |
| * to complete, card might be still in programming state |
| * so let's try to bring the card out of programming |
| * state. |
| */ |
| if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) { |
| if (!mmc_interrupt_hpi(host->card)) { |
| pr_warn("%s: %s: Interrupted sanitize\n", |
| mmc_hostname(host), __func__); |
| cmd->error = 0; |
| break; |
| } else { |
| pr_err("%s: %s: Failed to interrupt sanitize\n", |
| mmc_hostname(host), __func__); |
| } |
| } |
| if (!cmd->error || !cmd->retries || |
| mmc_card_removed(host->card)) |
| break; |
| |
| pr_debug("%s: req failed (CMD%u): %d, retrying...\n", |
| mmc_hostname(host), cmd->opcode, cmd->error); |
| cmd->retries--; |
| cmd->error = 0; |
| host->ops->request(host, mrq); |
| } |
| } |
| |
| /** |
| * mmc_pre_req - Prepare for a new request |
| * @host: MMC host to prepare command |
| * @mrq: MMC request to prepare for |
| * @is_first_req: true if there is no previous started request |
| * that may run in parellel to this call, otherwise false |
| * |
| * mmc_pre_req() is called in prior to mmc_start_req() to let |
| * host prepare for the new request. Preparation of a request may be |
| * performed while another request is running on the host. |
| */ |
| static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq, |
| bool is_first_req) |
| { |
| if (host->ops->pre_req) { |
| mmc_host_clk_hold(host); |
| host->ops->pre_req(host, mrq, is_first_req); |
| mmc_host_clk_release(host); |
| } |
| } |
| |
| /** |
| * mmc_post_req - Post process a completed request |
| * @host: MMC host to post process command |
| * @mrq: MMC request to post process for |
| * @err: Error, if non zero, clean up any resources made in pre_req |
| * |
| * Let the host post process a completed request. Post processing of |
| * a request may be performed while another reuqest is running. |
| */ |
| static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq, |
| int err) |
| { |
| if (host->ops->post_req) { |
| mmc_host_clk_hold(host); |
| host->ops->post_req(host, mrq, err); |
| mmc_host_clk_release(host); |
| } |
| } |
| |
| /** |
| * mmc_start_req - start a non-blocking request |
| * @host: MMC host to start command |
| * @areq: async request to start |
| * @error: out parameter returns 0 for success, otherwise non zero |
| * |
| * Start a new MMC custom command request for a host. |
| * If there is on ongoing async request wait for completion |
| * of that request and start the new one and return. |
| * Does not wait for the new request to complete. |
| * |
| * Returns the completed request, NULL in case of none completed. |
| * Wait for the an ongoing request (previoulsy started) to complete and |
| * return the completed request. If there is no ongoing request, NULL |
| * is returned without waiting. NULL is not an error condition. |
| */ |
| struct mmc_async_req *mmc_start_req(struct mmc_host *host, |
| struct mmc_async_req *areq, int *error) |
| { |
| int err = 0; |
| int start_err = 0; |
| struct mmc_async_req *data = host->areq; |
| |
| /* Prepare a new request */ |
| if (areq) |
| mmc_pre_req(host, areq->mrq, !host->areq); |
| |
| if (host->areq) { |
| err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq); |
| if (err == MMC_BLK_NEW_REQUEST) { |
| if (error) |
| *error = err; |
| /* |
| * The previous request was not completed, |
| * nothing to return |
| */ |
| return NULL; |
| } |
| /* |
| * Check BKOPS urgency for each R1 response |
| */ |
| if (host->card && mmc_card_mmc(host->card) && |
| ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) || |
| (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) && |
| (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) |
| mmc_start_bkops(host->card, true); |
| } |
| |
| if (!err && areq) |
| start_err = __mmc_start_data_req(host, areq->mrq); |
| |
| if (host->areq) |
| mmc_post_req(host, host->areq->mrq, 0); |
| |
| /* Cancel a prepared request if it was not started. */ |
| if ((err || start_err) && areq) |
| mmc_post_req(host, areq->mrq, -EINVAL); |
| |
| if (err) |
| host->areq = NULL; |
| else |
| host->areq = areq; |
| |
| if (error) |
| *error = err; |
| return data; |
| } |
| EXPORT_SYMBOL(mmc_start_req); |
| |
| /** |
| * mmc_wait_for_req - start a request and wait for completion |
| * @host: MMC host to start command |
| * @mrq: MMC request to start |
| * |
| * Start a new MMC custom command request for a host, and wait |
| * for the command to complete. Does not attempt to parse the |
| * response. |
| */ |
| void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| __mmc_start_req(host, mrq); |
| mmc_wait_for_req_done(host, mrq); |
| } |
| EXPORT_SYMBOL(mmc_wait_for_req); |
| |
| /** |
| * mmc_interrupt_hpi - Issue for High priority Interrupt |
| * @card: the MMC card associated with the HPI transfer |
| * |
| * Issued High Priority Interrupt, and check for card status |
| * until out-of prg-state. |
| */ |
| int mmc_interrupt_hpi(struct mmc_card *card) |
| { |
| int err; |
| u32 status; |
| unsigned long prg_wait; |
| |
| BUG_ON(!card); |
| |
| if (!card->ext_csd.hpi_en) { |
| pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host)); |
| return 1; |
| } |
| |
| mmc_claim_host(card->host); |
| err = mmc_send_status(card, &status); |
| if (err) { |
| pr_err("%s: Get card status fail\n", mmc_hostname(card->host)); |
| goto out; |
| } |
| |
| switch (R1_CURRENT_STATE(status)) { |
| case R1_STATE_IDLE: |
| case R1_STATE_READY: |
| case R1_STATE_STBY: |
| case R1_STATE_TRAN: |
| /* |
| * In idle and transfer states, HPI is not needed and the caller |
| * can issue the next intended command immediately |
| */ |
| goto out; |
| case R1_STATE_PRG: |
| break; |
| default: |
| /* In all other states, it's illegal to issue HPI */ |
| pr_debug("%s: HPI cannot be sent. Card state=%d\n", |
| mmc_hostname(card->host), R1_CURRENT_STATE(status)); |
| err = -EINVAL; |
| goto out; |
| } |
| |
| err = mmc_send_hpi_cmd(card, &status); |
| if (err) |
| goto out; |
| |
| prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time); |
| do { |
| err = mmc_send_status(card, &status); |
| |
| if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN) |
| break; |
| if (time_after(jiffies, prg_wait)) |
| err = -ETIMEDOUT; |
| } while (!err); |
| |
| out: |
| mmc_release_host(card->host); |
| return err; |
| } |
| EXPORT_SYMBOL(mmc_interrupt_hpi); |
| |
| /** |
| * mmc_wait_for_cmd - start a command and wait for completion |
| * @host: MMC host to start command |
| * @cmd: MMC command to start |
| * @retries: maximum number of retries |
| * |
| * Start a new MMC command for a host, and wait for the command |
| * to complete. Return any error that occurred while the command |
| * was executing. Do not attempt to parse the response. |
| */ |
| int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) |
| { |
| struct mmc_request mrq = {NULL}; |
| |
| WARN_ON(!host->claimed); |
| |
| memset(cmd->resp, 0, sizeof(cmd->resp)); |
| cmd->retries = retries; |
| |
| mrq.cmd = cmd; |
| cmd->data = NULL; |
| |
| mmc_wait_for_req(host, &mrq); |
| |
| return cmd->error; |
| } |
| |
| EXPORT_SYMBOL(mmc_wait_for_cmd); |
| |
| /** |
| * mmc_stop_bkops - stop ongoing BKOPS |
| * @card: MMC card to check BKOPS |
| * |
| * Send HPI command to stop ongoing background operations to |
| * allow rapid servicing of foreground operations, e.g. read/ |
| * writes. Wait until the card comes out of the programming state |
| * to avoid errors in servicing read/write requests. |
| */ |
| int mmc_stop_bkops(struct mmc_card *card) |
| { |
| int err = 0; |
| |
| BUG_ON(!card); |
| err = mmc_interrupt_hpi(card); |
| |
| /* |
| * If err is EINVAL, we can't issue an HPI. |
| * It should complete the BKOPS. |
| */ |
| if (!err || (err == -EINVAL)) { |
| mmc_card_clr_doing_bkops(card); |
| err = 0; |
| } |
| |
| return err; |
| } |
| EXPORT_SYMBOL(mmc_stop_bkops); |
| |
| int mmc_read_bkops_status(struct mmc_card *card) |
| { |
| int err; |
| u8 *ext_csd; |
| |
| /* |
| * In future work, we should consider storing the entire ext_csd. |
| */ |
| ext_csd = kmalloc(512, GFP_KERNEL); |
| if (!ext_csd) { |
| pr_err("%s: could not allocate buffer to receive the ext_csd.\n", |
| mmc_hostname(card->host)); |
| return -ENOMEM; |
| } |
| |
| mmc_claim_host(card->host); |
| err = mmc_send_ext_csd(card, ext_csd); |
| mmc_release_host(card->host); |
| if (err) |
| goto out; |
| |
| card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS]; |
| card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS]; |
| out: |
| kfree(ext_csd); |
| return err; |
| } |
| EXPORT_SYMBOL(mmc_read_bkops_status); |
| |
| /** |
| * mmc_set_data_timeout - set the timeout for a data command |
| * @data: data phase for command |
| * @card: the MMC card associated with the data transfer |
| * |
| * Computes the data timeout parameters according to the |
| * correct algorithm given the card type. |
| */ |
| void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) |
| { |
| unsigned int mult; |
| |
| /* |
| * SDIO cards only define an upper 1 s limit on access. |
| */ |
| if (mmc_card_sdio(card)) { |
| data->timeout_ns = 1000000000; |
| data->timeout_clks = 0; |
| return; |
| } |
| |
| /* |
| * SD cards use a 100 multiplier rather than 10 |
| */ |
| mult = mmc_card_sd(card) ? 100 : 10; |
| |
| /* |
| * Scale up the multiplier (and therefore the timeout) by |
| * the r2w factor for writes. |
| */ |
| if (data->flags & MMC_DATA_WRITE) |
| mult <<= card->csd.r2w_factor; |
| |
| data->timeout_ns = card->csd.tacc_ns * mult; |
| data->timeout_clks = card->csd.tacc_clks * mult; |
| |
| /* |
| * SD cards also have an upper limit on the timeout. |
| */ |
| if (mmc_card_sd(card)) { |
| unsigned int timeout_us, limit_us; |
| |
| timeout_us = data->timeout_ns / 1000; |
| if (mmc_host_clk_rate(card->host)) |
| timeout_us += data->timeout_clks * 1000 / |
| (mmc_host_clk_rate(card->host) / 1000); |
| |
| if (data->flags & MMC_DATA_WRITE) |
| /* |
| * The MMC spec "It is strongly recommended |
| * for hosts to implement more than 500ms |
| * timeout value even if the card indicates |
| * the 250ms maximum busy length." Even the |
| * previous value of 300ms is known to be |
| * insufficient for some cards. |
| */ |
| limit_us = 3000000; |
| else |
| limit_us = 100000; |
| |
| /* |
| * SDHC cards always use these fixed values. |
| */ |
| if (timeout_us > limit_us || mmc_card_blockaddr(card)) { |
| data->timeout_ns = limit_us * 1000; |
| data->timeout_clks = 0; |
| } |
| |
| /* assign limit value if invalid */ |
| if (timeout_us == 0) |
| data->timeout_ns = limit_us * 1000; |
| } |
| |
| /* |
| * Some cards require longer data read timeout than indicated in CSD. |
| * Address this by setting the read timeout to a "reasonably high" |
| * value. For the cards tested, 300ms has proven enough. If necessary, |
| * this value can be increased if other problematic cards require this. |
| */ |
| if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { |
| data->timeout_ns = 300000000; |
| data->timeout_clks = 0; |
| } |
| |
| /* |
| * Some cards need very high timeouts if driven in SPI mode. |
| * The worst observed timeout was 900ms after writing a |
| * continuous stream of data until the internal logic |
| * overflowed. |
| */ |
| if (mmc_host_is_spi(card->host)) { |
| if (data->flags & MMC_DATA_WRITE) { |
| if (data->timeout_ns < 1000000000) |
| data->timeout_ns = 1000000000; /* 1s */ |
| } else { |
| if (data->timeout_ns < 100000000) |
| data->timeout_ns = 100000000; /* 100ms */ |
| } |
| } |
| } |
| EXPORT_SYMBOL(mmc_set_data_timeout); |
| |
| /** |
| * mmc_align_data_size - pads a transfer size to a more optimal value |
| * @card: the MMC card associated with the data transfer |
| * @sz: original transfer size |
| * |
| * Pads the original data size with a number of extra bytes in |
| * order to avoid controller bugs and/or performance hits |
| * (e.g. some controllers revert to PIO for certain sizes). |
| * |
| * Returns the improved size, which might be unmodified. |
| * |
| * Note that this function is only relevant when issuing a |
| * single scatter gather entry. |
| */ |
| unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz) |
| { |
| /* |
| * FIXME: We don't have a system for the controller to tell |
| * the core about its problems yet, so for now we just 32-bit |
| * align the size. |
| */ |
| sz = ((sz + 3) / 4) * 4; |
| |
| return sz; |
| } |
| EXPORT_SYMBOL(mmc_align_data_size); |
| |
| /** |
| * __mmc_claim_host - exclusively claim a host |
| * @host: mmc host to claim |
| * @abort: whether or not the operation should be aborted |
| * |
| * Claim a host for a set of operations. If @abort is non null and |
| * dereference a non-zero value then this will return prematurely with |
| * that non-zero value without acquiring the lock. Returns zero |
| * with the lock held otherwise. |
| */ |
| int __mmc_claim_host(struct mmc_host *host, atomic_t *abort) |
| { |
| DECLARE_WAITQUEUE(wait, current); |
| unsigned long flags; |
| int stop; |
| |
| might_sleep(); |
| |
| add_wait_queue(&host->wq, &wait); |
| spin_lock_irqsave(&host->lock, flags); |
| while (1) { |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| stop = abort ? atomic_read(abort) : 0; |
| if (stop || !host->claimed || host->claimer == current) |
| break; |
| spin_unlock_irqrestore(&host->lock, flags); |
| schedule(); |
| spin_lock_irqsave(&host->lock, flags); |
| } |
| set_current_state(TASK_RUNNING); |
| if (!stop) { |
| host->claimed = 1; |
| host->claimer = current; |
| host->claim_cnt += 1; |
| } else |
| wake_up(&host->wq); |
| spin_unlock_irqrestore(&host->lock, flags); |
| remove_wait_queue(&host->wq, &wait); |
| if (host->ops->enable && !stop && host->claim_cnt == 1) |
| host->ops->enable(host); |
| return stop; |
| } |
| |
| EXPORT_SYMBOL(__mmc_claim_host); |
| |
| /** |
| * mmc_release_host - release a host |
| * @host: mmc host to release |
| * |
| * Release a MMC host, allowing others to claim the host |
| * for their operations. |
| */ |
| void mmc_release_host(struct mmc_host *host) |
| { |
| unsigned long flags; |
| |
| WARN_ON(!host->claimed); |
| |
| if (host->ops->disable && host->claim_cnt == 1) |
| host->ops->disable(host); |
| |
| spin_lock_irqsave(&host->lock, flags); |
| if (--host->claim_cnt) { |
| /* Release for nested claim */ |
| spin_unlock_irqrestore(&host->lock, flags); |
| } else { |
| host->claimed = 0; |
| host->claimer = NULL; |
| spin_unlock_irqrestore(&host->lock, flags); |
| wake_up(&host->wq); |
| } |
| } |
| EXPORT_SYMBOL(mmc_release_host); |
| |
| /* |
| * This is a helper function, which fetches a runtime pm reference for the |
| * card device and also claims the host. |
| */ |
| void mmc_get_card(struct mmc_card *card) |
| { |
| pm_runtime_get_sync(&card->dev); |
| mmc_claim_host(card->host); |
| } |
| EXPORT_SYMBOL(mmc_get_card); |
| |
| /* |
| * This is a helper function, which releases the host and drops the runtime |
| * pm reference for the card device. |
| */ |
| void mmc_put_card(struct mmc_card *card) |
| { |
| mmc_release_host(card->host); |
| pm_runtime_mark_last_busy(&card->dev); |
| pm_runtime_put_autosuspend(&card->dev); |
| } |
| EXPORT_SYMBOL(mmc_put_card); |
| |
| /* |
| * Internal function that does the actual ios call to the host driver, |
| * optionally printing some debug output. |
| */ |
| static inline void mmc_set_ios(struct mmc_host *host) |
| { |
| struct mmc_ios *ios = &host->ios; |
| |
| pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " |
| "width %u timing %u\n", |
| mmc_hostname(host), ios->clock, ios->bus_mode, |
| ios->power_mode, ios->chip_select, ios->vdd, |
| ios->bus_width, ios->timing); |
| |
| if (ios->clock > 0) |
| mmc_set_ungated(host); |
| host->ops->set_ios(host, ios); |
| } |
| |
| /* |
| * Control chip select pin on a host. |
| */ |
| void mmc_set_chip_select(struct mmc_host *host, int mode) |
| { |
| mmc_host_clk_hold(host); |
| host->ios.chip_select = mode; |
| mmc_set_ios(host); |
| mmc_host_clk_release(host); |
| } |
| |
| /* |
| * Sets the host clock to the highest possible frequency that |
| * is below "hz". |
| */ |
| static void __mmc_set_clock(struct mmc_host *host, unsigned int hz) |
| { |
| WARN_ON(hz && hz < host->f_min); |
| |
| if (hz > host->f_max) |
| hz = host->f_max; |
| |
| host->ios.clock = hz; |
| mmc_set_ios(host); |
| } |
| |
| void mmc_set_clock(struct mmc_host *host, unsigned int hz) |
| { |
| mmc_host_clk_hold(host); |
| __mmc_set_clock(host, hz); |
| mmc_host_clk_release(host); |
| } |
| |
| #ifdef CONFIG_MMC_CLKGATE |
| /* |
| * This gates the clock by setting it to 0 Hz. |
| */ |
| void mmc_gate_clock(struct mmc_host *host) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&host->clk_lock, flags); |
| host->clk_old = host->ios.clock; |
| host->ios.clock = 0; |
| host->clk_gated = true; |
| spin_unlock_irqrestore(&host->clk_lock, flags); |
| mmc_set_ios(host); |
| } |
| |
| /* |
| * This restores the clock from gating by using the cached |
| * clock value. |
| */ |
| void mmc_ungate_clock(struct mmc_host *host) |
| { |
| /* |
| * We should previously have gated the clock, so the clock shall |
| * be 0 here! The clock may however be 0 during initialization, |
| * when some request operations are performed before setting |
| * the frequency. When ungate is requested in that situation |
| * we just ignore the call. |
| */ |
| if (host->clk_old) { |
| BUG_ON(host->ios.clock); |
| /* This call will also set host->clk_gated to false */ |
| __mmc_set_clock(host, host->clk_old); |
| } |
| } |
| |
| void mmc_set_ungated(struct mmc_host *host) |
| { |
| unsigned long flags; |
| |
| /* |
| * We've been given a new frequency while the clock is gated, |
| * so make sure we regard this as ungating it. |
| */ |
| spin_lock_irqsave(&host->clk_lock, flags); |
| host->clk_gated = false; |
| spin_unlock_irqrestore(&host->clk_lock, flags); |
| } |
| |
| #else |
| void mmc_set_ungated(struct mmc_host *host) |
| { |
| } |
| #endif |
| |
| /* |
| * Change the bus mode (open drain/push-pull) of a host. |
| */ |
| void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) |
| { |
| mmc_host_clk_hold(host); |
| host->ios.bus_mode = mode; |
| mmc_set_ios(host); |
| mmc_host_clk_release(host); |
| } |
| |
| /* |
| * Change data bus width of a host. |
| */ |
| void mmc_set_bus_width(struct mmc_host *host, unsigned int width) |
| { |
| mmc_host_clk_hold(host); |
| host->ios.bus_width = width; |
| mmc_set_ios(host); |
| mmc_host_clk_release(host); |
| } |
| |
| /** |
| * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number |
| * @vdd: voltage (mV) |
| * @low_bits: prefer low bits in boundary cases |
| * |
| * This function returns the OCR bit number according to the provided @vdd |
| * value. If conversion is not possible a negative errno value returned. |
| * |
| * Depending on the @low_bits flag the function prefers low or high OCR bits |
| * on boundary voltages. For example, |
| * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); |
| * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); |
| * |
| * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). |
| */ |
| static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) |
| { |
| const int max_bit = ilog2(MMC_VDD_35_36); |
| int bit; |
| |
| if (vdd < 1650 || vdd > 3600) |
| return -EINVAL; |
| |
| if (vdd >= 1650 && vdd <= 1950) |
| return ilog2(MMC_VDD_165_195); |
| |
| if (low_bits) |
| vdd -= 1; |
| |
| /* Base 2000 mV, step 100 mV, bit's base 8. */ |
| bit = (vdd - 2000) / 100 + 8; |
| if (bit > max_bit) |
| return max_bit; |
| return bit; |
| } |
| |
| /** |
| * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask |
| * @vdd_min: minimum voltage value (mV) |
| * @vdd_max: maximum voltage value (mV) |
| * |
| * This function returns the OCR mask bits according to the provided @vdd_min |
| * and @vdd_max values. If conversion is not possible the function returns 0. |
| * |
| * Notes wrt boundary cases: |
| * This function sets the OCR bits for all boundary voltages, for example |
| * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | |
| * MMC_VDD_34_35 mask. |
| */ |
| u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) |
| { |
| u32 mask = 0; |
| |
| if (vdd_max < vdd_min) |
| return 0; |
| |
| /* Prefer high bits for the boundary vdd_max values. */ |
| vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); |
| if (vdd_max < 0) |
| return 0; |
| |
| /* Prefer low bits for the boundary vdd_min values. */ |
| vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); |
| if (vdd_min < 0) |
| return 0; |
| |
| /* Fill the mask, from max bit to min bit. */ |
| while (vdd_max >= vdd_min) |
| mask |= 1 << vdd_max--; |
| |
| return mask; |
| } |
| EXPORT_SYMBOL(mmc_vddrange_to_ocrmask); |
| |
| #ifdef CONFIG_OF |
| |
| /** |
| * mmc_of_parse_voltage - return mask of supported voltages |
| * @np: The device node need to be parsed. |
| * @mask: mask of voltages available for MMC/SD/SDIO |
| * |
| * 1. Return zero on success. |
| * 2. Return negative errno: voltage-range is invalid. |
| */ |
| int mmc_of_parse_voltage(struct device_node *np, u32 *mask) |
| { |
| const u32 *voltage_ranges; |
| int num_ranges, i; |
| |
| voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges); |
| num_ranges = num_ranges / sizeof(*voltage_ranges) / 2; |
| if (!voltage_ranges || !num_ranges) { |
| pr_info("%s: voltage-ranges unspecified\n", np->full_name); |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < num_ranges; i++) { |
| const int j = i * 2; |
| u32 ocr_mask; |
| |
| ocr_mask = mmc_vddrange_to_ocrmask( |
| be32_to_cpu(voltage_ranges[j]), |
| be32_to_cpu(voltage_ranges[j + 1])); |
| if (!ocr_mask) { |
| pr_err("%s: voltage-range #%d is invalid\n", |
| np->full_name, i); |
| return -EINVAL; |
| } |
| *mask |= ocr_mask; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(mmc_of_parse_voltage); |
| |
| #endif /* CONFIG_OF */ |
| |
| #ifdef CONFIG_REGULATOR |
| |
| /** |
| * mmc_regulator_get_ocrmask - return mask of supported voltages |
| * @supply: regulator to use |
| * |
| * This returns either a negative errno, or a mask of voltages that |
| * can be provided to MMC/SD/SDIO devices using the specified voltage |
| * regulator. This would normally be called before registering the |
| * MMC host adapter. |
| */ |
| int mmc_regulator_get_ocrmask(struct regulator *supply) |
| { |
| int result = 0; |
| int count; |
| int i; |
| int vdd_uV; |
| int vdd_mV; |
| |
| count = regulator_count_voltages(supply); |
| if (count < 0) |
| return count; |
| |
| for (i = 0; i < count; i++) { |
| vdd_uV = regulator_list_voltage(supply, i); |
| if (vdd_uV <= 0) |
| continue; |
| |
| vdd_mV = vdd_uV / 1000; |
| result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); |
| } |
| |
| if (!result) { |
| vdd_uV = regulator_get_voltage(supply); |
| if (vdd_uV <= 0) |
| return vdd_uV; |
| |
| vdd_mV = vdd_uV / 1000; |
| result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); |
| } |
| |
| return result; |
| } |
| EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask); |
| |
| /** |
| * mmc_regulator_set_ocr - set regulator to match host->ios voltage |
| * @mmc: the host to regulate |
| * @supply: regulator to use |
| * @vdd_bit: zero for power off, else a bit number (host->ios.vdd) |
| * |
| * Returns zero on success, else negative errno. |
| * |
| * MMC host drivers may use this to enable or disable a regulator using |
| * a particular supply voltage. This would normally be called from the |
| * set_ios() method. |
| */ |
| int mmc_regulator_set_ocr(struct mmc_host *mmc, |
| struct regulator *supply, |
| unsigned short vdd_bit) |
| { |
| int result = 0; |
| int min_uV, max_uV; |
| |
| if (vdd_bit) { |
| int tmp; |
| |
| /* |
| * REVISIT mmc_vddrange_to_ocrmask() may have set some |
| * bits this regulator doesn't quite support ... don't |
| * be too picky, most cards and regulators are OK with |
| * a 0.1V range goof (it's a small error percentage). |
| */ |
| tmp = vdd_bit - ilog2(MMC_VDD_165_195); |
| if (tmp == 0) { |
| min_uV = 1650 * 1000; |
| max_uV = 1950 * 1000; |
| } else { |
| min_uV = 1900 * 1000 + tmp * 100 * 1000; |
| max_uV = min_uV + 100 * 1000; |
| } |
| |
| result = regulator_set_voltage(supply, min_uV, max_uV); |
| if (result == 0 && !mmc->regulator_enabled) { |
| result = regulator_enable(supply); |
| if (!result) |
| mmc->regulator_enabled = true; |
| } |
| } else if (mmc->regulator_enabled) { |
| result = regulator_disable(supply); |
| if (result == 0) |
| mmc->regulator_enabled = false; |
| } |
| |
| if (result) |
| dev_err(mmc_dev(mmc), |
| "could not set regulator OCR (%d)\n", result); |
| return result; |
| } |
| EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr); |
| |
| #endif /* CONFIG_REGULATOR */ |
| |
| int mmc_regulator_get_supply(struct mmc_host *mmc) |
| { |
| struct device *dev = mmc_dev(mmc); |
| int ret; |
| |
| mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc"); |
| mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc"); |
| |
| if (IS_ERR(mmc->supply.vmmc)) { |
| if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER) |
| return -EPROBE_DEFER; |
| dev_info(dev, "No vmmc regulator found\n"); |
| } else { |
| ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc); |
| if (ret > 0) |
| mmc->ocr_avail = ret; |
| else |
| dev_warn(dev, "Failed getting OCR mask: %d\n", ret); |
| } |
| |
| if (IS_ERR(mmc->supply.vqmmc)) { |
| if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER) |
| return -EPROBE_DEFER; |
| dev_info(dev, "No vqmmc regulator found\n"); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(mmc_regulator_get_supply); |
| |
| /* |
| * Mask off any voltages we don't support and select |
| * the lowest voltage |
| */ |
| u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) |
| { |
| int bit; |
| |
| /* |
| * Sanity check the voltages that the card claims to |
| * support. |
| */ |
| if (ocr & 0x7F) { |
| dev_warn(mmc_dev(host), |
| "card claims to support voltages below defined range\n"); |
| ocr &= ~0x7F; |
| } |
| |
| ocr &= host->ocr_avail; |
| if (!ocr) { |
| dev_warn(mmc_dev(host), "no support for card's volts\n"); |
| return 0; |
| } |
| |
| if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) { |
| bit = ffs(ocr) - 1; |
| ocr &= 3 << bit; |
| mmc_power_cycle(host, ocr); |
| } else { |
| bit = fls(ocr) - 1; |
| ocr &= 3 << bit; |
| if (bit != host->ios.vdd) |
| dev_warn(mmc_dev(host), "exceeding card's volts\n"); |
| } |
| |
| return ocr; |
| } |
| |
| int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage) |
| { |
| int err = 0; |
| int old_signal_voltage = host->ios.signal_voltage; |
| |
| host->ios.signal_voltage = signal_voltage; |
| if (host->ops->start_signal_voltage_switch) { |
| mmc_host_clk_hold(host); |
| err = host->ops->start_signal_voltage_switch(host, &host->ios); |
| mmc_host_clk_release(host); |
| } |
| |
| if (err) |
| host->ios.signal_voltage = old_signal_voltage; |
| |
| return err; |
| |
| } |
| |
| int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr) |
| { |
| struct mmc_command cmd = {0}; |
| int err = 0; |
| u32 clock; |
| |
| BUG_ON(!host); |
| |
| /* |
| * Send CMD11 only if the request is to switch the card to |
| * 1.8V signalling. |
| */ |
| if (signal_voltage == MMC_SIGNAL_VOLTAGE_330) |
| return __mmc_set_signal_voltage(host, signal_voltage); |
| |
| /* |
| * If we cannot switch voltages, return failure so the caller |
| * can continue without UHS mode |
| */ |
| if (!host->ops->start_signal_voltage_switch) |
| return -EPERM; |
| if (!host->ops->card_busy) |
| pr_warn("%s: cannot verify signal voltage switch\n", |
| mmc_hostname(host)); |
| |
| cmd.opcode = SD_SWITCH_VOLTAGE; |
| cmd.arg = 0; |
| cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; |
| |
| err = mmc_wait_for_cmd(host, &cmd, 0); |
| if (err) |
| return err; |
| |
| if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) |
| return -EIO; |
| |
| mmc_host_clk_hold(host); |
| /* |
| * The card should drive cmd and dat[0:3] low immediately |
| * after the response of cmd11, but wait 1 ms to be sure |
| */ |
| mmc_delay(1); |
| if (host->ops->card_busy && !host->ops->card_busy(host)) { |
| err = -EAGAIN; |
| goto power_cycle; |
| } |
| /* |
| * During a signal voltage level switch, the clock must be gated |
| * for 5 ms according to the SD spec |
| */ |
| clock = host->ios.clock; |
| host->ios.clock = 0; |
| mmc_set_ios(host); |
| |
| if (__mmc_set_signal_voltage(host, signal_voltage)) { |
| /* |
| * Voltages may not have been switched, but we've already |
| * sent CMD11, so a power cycle is required anyway |
| */ |
| err = -EAGAIN; |
| goto power_cycle; |
| } |
| |
| /* Keep clock gated for at least 5 ms */ |
| mmc_delay(5); |
| host->ios.clock = clock; |
| mmc_set_ios(host); |
| |
| /* Wait for at least 1 ms according to spec */ |
| mmc_delay(1); |
| |
| /* |
| * Failure to switch is indicated by the card holding |
| * dat[0:3] low |
| */ |
| if (host->ops->card_busy && host->ops->card_busy(host)) |
| err = -EAGAIN; |
| |
| power_cycle: |
| if (err) { |
| pr_debug("%s: Signal voltage switch failed, " |
| "power cycling card\n", mmc_hostname(host)); |
| mmc_power_cycle(host, ocr); |
| } |
| |
| mmc_host_clk_release(host); |
| |
| return err; |
| } |
| |
| /* |
| * Select timing parameters for host. |
| */ |
| void mmc_set_timing(struct mmc_host *host, unsigned int timing) |
| { |
| mmc_host_clk_hold(host); |
| host->ios.timing = timing; |
| mmc_set_ios(host); |
| mmc_host_clk_release(host); |
| } |
| |
| /* |
| * Select appropriate driver type for host. |
| */ |
| void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) |
| { |
| mmc_host_clk_hold(host); |
| host->ios.drv_type = drv_type; |
| mmc_set_ios(host); |
| mmc_host_clk_release(host); |
| } |
| |
| /* |
| * Apply power to the MMC stack. This is a two-stage process. |
| * First, we enable power to the card without the clock running. |
| * We then wait a bit for the power to stabilise. Finally, |
| * enable the bus drivers and clock to the card. |
| * |
| * We must _NOT_ enable the clock prior to power stablising. |
| * |
| * If a host does all the power sequencing itself, ignore the |
| * initial MMC_POWER_UP stage. |
| */ |
| void mmc_power_up(struct mmc_host *host, u32 ocr) |
| { |
| if (host->ios.power_mode == MMC_POWER_ON) |
| return; |
| |
| mmc_host_clk_hold(host); |
| |
| host->ios.vdd = fls(ocr) - 1; |
| if (mmc_host_is_spi(host)) |
| host->ios.chip_select = MMC_CS_HIGH; |
| else |
| host->ios.chip_select = MMC_CS_DONTCARE; |
| host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; |
| host->ios.power_mode = MMC_POWER_UP; |
| host->ios.bus_width = MMC_BUS_WIDTH_1; |
| host->ios.timing = MMC_TIMING_LEGACY; |
| mmc_set_ios(host); |
| |
| /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */ |
| if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0) |
| dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n"); |
| else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0) |
| dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n"); |
| else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0) |
| dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n"); |
| |
| /* |
| * This delay should be sufficient to allow the power supply |
| * to reach the minimum voltage. |
| */ |
| mmc_delay(10); |
| |
| host->ios.clock = host->f_init; |
| |
| host->ios.power_mode = MMC_POWER_ON; |
| mmc_set_ios(host); |
| |
| /* |
| * This delay must be at least 74 clock sizes, or 1 ms, or the |
| * time required to reach a stable voltage. |
| */ |
| mmc_delay(10); |
| |
| mmc_host_clk_release(host); |
| } |
| |
| void mmc_power_off(struct mmc_host *host) |
| { |
| if (host->ios.power_mode == MMC_POWER_OFF) |
| return; |
| |
| mmc_host_clk_hold(host); |
| |
| host->ios.clock = 0; |
| host->ios.vdd = 0; |
| |
| if (!mmc_host_is_spi(host)) { |
| host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; |
| host->ios.chip_select = MMC_CS_DONTCARE; |
| } |
| host->ios.power_mode = MMC_POWER_OFF; |
| host->ios.bus_width = MMC_BUS_WIDTH_1; |
| host->ios.timing = MMC_TIMING_LEGACY; |
| mmc_set_ios(host); |
| |
| /* |
| * Some configurations, such as the 802.11 SDIO card in the OLPC |
| * XO-1.5, require a short delay after poweroff before the card |
| * can be successfully turned on again. |
| */ |
| mmc_delay(1); |
| |
| mmc_host_clk_release(host); |
| } |
| |
| void mmc_power_cycle(struct mmc_host *host, u32 ocr) |
| { |
| mmc_power_off(host); |
| /* Wait at least 1 ms according to SD spec */ |
| mmc_delay(1); |
| mmc_power_up(host, ocr); |
| } |
| |
| /* |
| * Cleanup when the last reference to the bus operator is dropped. |
| */ |
| static void __mmc_release_bus(struct mmc_host *host) |
| { |
| BUG_ON(!host); |
| BUG_ON(host->bus_refs); |
| BUG_ON(!host->bus_dead); |
| |
| host->bus_ops = NULL; |
| } |
| |
| /* |
| * Increase reference count of bus operator |
| */ |
| static inline void mmc_bus_get(struct mmc_host *host) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&host->lock, flags); |
| host->bus_refs++; |
| spin_unlock_irqrestore(&host->lock, flags); |
| } |
| |
| /* |
| * Decrease reference count of bus operator and free it if |
| * it is the last reference. |
| */ |
| static inline void mmc_bus_put(struct mmc_host *host) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&host->lock, flags); |
| host->bus_refs--; |
| if ((host->bus_refs == 0) && host->bus_ops) |
| __mmc_release_bus(host); |
| spin_unlock_irqrestore(&host->lock, flags); |
| } |
| |
| /* |
| * Assign a mmc bus handler to a host. Only one bus handler may control a |
| * host at any given time. |
| */ |
| void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) |
| { |
| unsigned long flags; |
| |
| BUG_ON(!host); |
| BUG_ON(!ops); |
| |
| WARN_ON(!host->claimed); |
| |
| spin_lock_irqsave(&host->lock, flags); |
| |
| BUG_ON(host->bus_ops); |
| BUG_ON(host->bus_refs); |
| |
| host->bus_ops = ops; |
| host->bus_refs = 1; |
| host->bus_dead = 0; |
| |
| spin_unlock_irqrestore(&host->lock, flags); |
| } |
| |
| /* |
| * Remove the current bus handler from a host. |
| */ |
| void mmc_detach_bus(struct mmc_host *host) |
| { |
| unsigned long flags; |
| |
| BUG_ON(!host); |
| |
| WARN_ON(!host->claimed); |
| WARN_ON(!host->bus_ops); |
| |
| spin_lock_irqsave(&host->lock, flags); |
| |
| host->bus_dead = 1; |
| |
| spin_unlock_irqrestore(&host->lock, flags); |
| |
| mmc_bus_put(host); |
| } |
| |
| static void _mmc_detect_change(struct mmc_host *host, unsigned long delay, |
| bool cd_irq) |
| { |
| #ifdef CONFIG_MMC_DEBUG |
| unsigned long flags; |
| spin_lock_irqsave(&host->lock, flags); |
| WARN_ON(host->removed); |
| spin_unlock_irqrestore(&host->lock, flags); |
| #endif |
| |
| /* |
| * If the device is configured as wakeup, we prevent a new sleep for |
| * 5 s to give provision for user space to consume the event. |
| */ |
| if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) && |
| device_can_wakeup(mmc_dev(host))) |
| pm_wakeup_event(mmc_dev(host), 5000); |
| |
| host->detect_change = 1; |
| mmc_schedule_delayed_work(&host->detect, delay); |
| } |
| |
| /** |
| * mmc_detect_change - process change of state on a MMC socket |
| * @host: host which changed state. |
| * @delay: optional delay to wait before detection (jiffies) |
| * |
| * MMC drivers should call this when they detect a card has been |
| * inserted or removed. The MMC layer will confirm that any |
| * present card is still functional, and initialize any newly |
| * inserted. |
| */ |
| void mmc_detect_change(struct mmc_host *host, unsigned long delay) |
| { |
| _mmc_detect_change(host, delay, true); |
| } |
| EXPORT_SYMBOL(mmc_detect_change); |
| |
| void mmc_init_erase(struct mmc_card *card) |
| { |
| unsigned int sz; |
| |
| if (is_power_of_2(card->erase_size)) |
| card->erase_shift = ffs(card->erase_size) - 1; |
| else |
| card->erase_shift = 0; |
| |
| /* |
| * It is possible to erase an arbitrarily large area of an SD or MMC |
| * card. That is not desirable because it can take a long time |
| * (minutes) potentially delaying more important I/O, and also the |
| * timeout calculations become increasingly hugely over-estimated. |
| * Consequently, 'pref_erase' is defined as a guide to limit erases |
| * to that size and alignment. |
| * |
| * For SD cards that define Allocation Unit size, limit erases to one |
| * Allocation Unit at a time. For MMC cards that define High Capacity |
| * Erase Size, whether it is switched on or not, limit to that size. |
| * Otherwise just have a stab at a good value. For modern cards it |
| * will end up being 4MiB. Note that if the value is too small, it |
| * can end up taking longer to erase. |
| */ |
| if (mmc_card_sd(card) && card->ssr.au) { |
| card->pref_erase = card->ssr.au; |
| card->erase_shift = ffs(card->ssr.au) - 1; |
| } else if (card->ext_csd.hc_erase_size) { |
| card->pref_erase = card->ext_csd.hc_erase_size; |
| } else if (card->erase_size) { |
| sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; |
| if (sz < 128) |
| card->pref_erase = 512 * 1024 / 512; |
| else if (sz < 512) |
| card->pref_erase = 1024 * 1024 / 512; |
| else if (sz < 1024) |
| card->pref_erase = 2 * 1024 * 1024 / 512; |
| else |
| card->pref_erase = 4 * 1024 * 1024 / 512; |
| if (card->pref_erase < card->erase_size) |
| card->pref_erase = card->erase_size; |
| else { |
| sz = card->pref_erase % card->erase_size; |
| if (sz) |
| card->pref_erase += card->erase_size - sz; |
| } |
| } else |
| card->pref_erase = 0; |
| } |
| |
| static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, |
| unsigned int arg, unsigned int qty) |
| { |
| unsigned int erase_timeout; |
| |
| if (arg == MMC_DISCARD_ARG || |
| (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { |
| erase_timeout = card->ext_csd.trim_timeout; |
| } else if (card->ext_csd.erase_group_def & 1) { |
| /* High Capacity Erase Group Size uses HC timeouts */ |
| if (arg == MMC_TRIM_ARG) |
| erase_timeout = card->ext_csd.trim_timeout; |
| else |
| erase_timeout = card->ext_csd.hc_erase_timeout; |
| } else { |
| /* CSD Erase Group Size uses write timeout */ |
| unsigned int mult = (10 << card->csd.r2w_factor); |
| unsigned int timeout_clks = card->csd.tacc_clks * mult; |
| unsigned int timeout_us; |
| |
| /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */ |
| if (card->csd.tacc_ns < 1000000) |
| timeout_us = (card->csd.tacc_ns * mult) / 1000; |
| else |
| timeout_us = (card->csd.tacc_ns / 1000) * mult; |
| |
| /* |
| * ios.clock is only a target. The real clock rate might be |
| * less but not that much less, so fudge it by multiplying by 2. |
| */ |
| timeout_clks <<= 1; |
| timeout_us += (timeout_clks * 1000) / |
| (mmc_host_clk_rate(card->host) / 1000); |
| |
| erase_timeout = timeout_us / 1000; |
| |
| /* |
| * Theoretically, the calculation could underflow so round up |
| * to 1ms in that case. |
| */ |
| if (!erase_timeout) |
| erase_timeout = 1; |
| } |
| |
| /* Multiplier for secure operations */ |
| if (arg & MMC_SECURE_ARGS) { |
| if (arg == MMC_SECURE_ERASE_ARG) |
| erase_timeout *= card->ext_csd.sec_erase_mult; |
| else |
| erase_timeout *= card->ext_csd.sec_trim_mult; |
| } |
| |
| erase_timeout *= qty; |
| |
| /* |
| * Ensure at least a 1 second timeout for SPI as per |
| * 'mmc_set_data_timeout()' |
| */ |
| if (mmc_host_is_spi(card->host) && erase_timeout < 1000) |
| erase_timeout = 1000; |
| |
| return erase_timeout; |
| } |
| |
| static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, |
| unsigned int arg, |
| unsigned int qty) |
| { |
| unsigned int erase_timeout; |
| |
| if (card->ssr.erase_timeout) { |
| /* Erase timeout specified in SD Status Register (SSR) */ |
| erase_timeout = card->ssr.erase_timeout * qty + |
| card->ssr.erase_offset; |
| } else { |
| /* |
| * Erase timeout not specified in SD Status Register (SSR) so |
| * use 250ms per write block. |
| */ |
| erase_timeout = 250 * qty; |
| } |
| |
| /* Must not be less than 1 second */ |
| if (erase_timeout < 1000) |
| erase_timeout = 1000; |
| |
| return erase_timeout; |
| } |
| |
| static unsigned int mmc_erase_timeout(struct mmc_card *card, |
| unsigned int arg, |
| unsigned int qty) |
| { |
| if (mmc_card_sd(card)) |
| return mmc_sd_erase_timeout(card, arg, qty); |
| else |
| return mmc_mmc_erase_timeout(card, arg, qty); |
| } |
| |
| static int mmc_do_erase(struct mmc_card *card, unsigned int from, |
| unsigned int to, unsigned int arg) |
| { |
| struct mmc_command cmd = {0}; |
| unsigned int qty = 0; |
| unsigned long timeout; |
| int err; |
| |
| /* |
| * qty is used to calculate the erase timeout which depends on how many |
| * erase groups (or allocation units in SD terminology) are affected. |
| * We count erasing part of an erase group as one erase group. |
| * For SD, the allocation units are always a power of 2. For MMC, the |
| * erase group size is almost certainly also power of 2, but it does not |
| * seem to insist on that in the JEDEC standard, so we fall back to |
| * division in that case. SD may not specify an allocation unit size, |
| * in which case the timeout is based on the number of write blocks. |
| * |
| * Note that the timeout for secure trim 2 will only be correct if the |
| * number of erase groups specified is the same as the total of all |
| * preceding secure trim 1 commands. Since the power may have been |
| * lost since the secure trim 1 commands occurred, it is generally |
| * impossible to calculate the secure trim 2 timeout correctly. |
| */ |
| if (card->erase_shift) |
| qty += ((to >> card->erase_shift) - |
| (from >> card->erase_shift)) + 1; |
| else if (mmc_card_sd(card)) |
| qty += to - from + 1; |
| else |
| qty += ((to / card->erase_size) - |
| (from / card->erase_size)) + 1; |
| |
| if (!mmc_card_blockaddr(card)) { |
| from <<= 9; |
| to <<= 9; |
| } |
| |
| if (mmc_card_sd(card)) |
| cmd.opcode = SD_ERASE_WR_BLK_START; |
| else |
| cmd.opcode = MMC_ERASE_GROUP_START; |
| cmd.arg = from; |
| cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; |
| err = mmc_wait_for_cmd(card->host, &cmd, 0); |
| if (err) { |
| pr_err("mmc_erase: group start error %d, " |
| "status %#x\n", err, cmd.resp[0]); |
| err = -EIO; |
| goto out; |
| } |
| |
| memset(&cmd, 0, sizeof(struct mmc_command)); |
| if (mmc_card_sd(card)) |
| cmd.opcode = SD_ERASE_WR_BLK_END; |
| else |
| cmd.opcode = MMC_ERASE_GROUP_END; |
| cmd.arg = to; |
| cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; |
| err = mmc_wait_for_cmd(card->host, &cmd, 0); |
| if (err) { |
| pr_err("mmc_erase: group end error %d, status %#x\n", |
| err, cmd.resp[0]); |
| err = -EIO; |
| goto out; |
| } |
| |
| memset(&cmd, 0, sizeof(struct mmc_command)); |
| cmd.opcode = MMC_ERASE; |
| cmd.arg = arg; |
| cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; |
| cmd.busy_timeout = mmc_erase_timeout(card, arg, qty); |
| err = mmc_wait_for_cmd(card->host, &cmd, 0); |
| if (err) { |
| pr_err("mmc_erase: erase error %d, status %#x\n", |
| err, cmd.resp[0]); |
| err = -EIO; |
| goto out; |
| } |
| |
| if (mmc_host_is_spi(card->host)) |
| goto out; |
| |
| timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS); |
| do { |
| memset(&cmd, 0, sizeof(struct mmc_command)); |
| cmd.opcode = MMC_SEND_STATUS; |
| cmd.arg = card->rca << 16; |
| cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; |
| /* Do not retry else we can't see errors */ |
| err = mmc_wait_for_cmd(card->host, &cmd, 0); |
| if (err || (cmd.resp[0] & 0xFDF92000)) { |
| pr_err("error %d requesting status %#x\n", |
| err, cmd.resp[0]); |
| err = -EIO; |
| goto out; |
| } |
| |
| /* Timeout if the device never becomes ready for data and |
| * never leaves the program state. |
| */ |
| if (time_after(jiffies, timeout)) { |
| pr_err("%s: Card stuck in programming state! %s\n", |
| mmc_hostname(card->host), __func__); |
| err = -EIO; |
| goto out; |
| } |
| |
| } while (!(cmd.resp[0] & R1_READY_FOR_DATA) || |
| (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG)); |
| out: |
| return err; |
| } |
| |
| /** |
| * mmc_erase - erase sectors. |
| * @card: card to erase |
| * @from: first sector to erase |
| * @nr: number of sectors to erase |
| * @arg: erase command argument (SD supports only %MMC_ERASE_ARG) |
| * |
| * Caller must claim host before calling this function. |
| */ |
| int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, |
| unsigned int arg) |
| { |
| unsigned int rem, to = from + nr; |
| |
| if (!(card->host->caps & MMC_CAP_ERASE) || |
| !(card->csd.cmdclass & CCC_ERASE)) |
| return -EOPNOTSUPP; |
| |
| if (!card->erase_size) |
| return -EOPNOTSUPP; |
| |
| if (mmc_card_sd(card) && arg != MMC_ERASE_ARG) |
| return -EOPNOTSUPP; |
| |
| if ((arg & MMC_SECURE_ARGS) && |
| !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) |
| return -EOPNOTSUPP; |
| |
| if ((arg & MMC_TRIM_ARGS) && |
| !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) |
| return -EOPNOTSUPP; |
| |
| if (arg == MMC_SECURE_ERASE_ARG) { |
| if (from % card->erase_size || nr % card->erase_size) |
| return -EINVAL; |
| } |
| |
| if (arg == MMC_ERASE_ARG) { |
| rem = from % card->erase_size; |
| if (rem) { |
| rem = card->erase_size - rem; |
| from += rem; |
| if (nr > rem) |
| nr -= rem; |
| else |
| return 0; |
| } |
| rem = nr % card->erase_size; |
| if (rem) |
| nr -= rem; |
| } |
| |
| if (nr == 0) |
| return 0; |
| |
| to = from + nr; |
| |
| if (to <= from) |
| return -EINVAL; |
| |
| /* 'from' and 'to' are inclusive */ |
| to -= 1; |
| |
| return mmc_do_erase(card, from, to, arg); |
| } |
| EXPORT_SYMBOL(mmc_erase); |
| |
| int mmc_can_erase(struct mmc_card *card) |
| { |
| if ((card->host->caps & MMC_CAP_ERASE) && |
| (card->csd.cmdclass & CCC_ERASE) && card->erase_size) |
| return 1; |
| return 0; |
| } |
| EXPORT_SYMBOL(mmc_can_erase); |
| |
| int mmc_can_trim(struct mmc_card *card) |
| { |
| if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) |
| return 1; |
| return 0; |
| } |
| EXPORT_SYMBOL(mmc_can_trim); |
| |
| int mmc_can_discard(struct mmc_card *card) |
| { |
| /* |
| * As there's no way to detect the discard support bit at v4.5 |
| * use the s/w feature support filed. |
| */ |
| if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) |
| return 1; |
| return 0; |
| } |
| EXPORT_SYMBOL(mmc_can_discard); |
| |
| int mmc_can_sanitize(struct mmc_card *card) |
| { |
| if (!mmc_can_trim(card) && !mmc_can_erase(card)) |
| return 0; |
| if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) |
| return 1; |
| return 0; |
| } |
| EXPORT_SYMBOL(mmc_can_sanitize); |
| |
| int mmc_can_secure_erase_trim(struct mmc_card *card) |
| { |
| if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) && |
| !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN)) |
| return 1; |
| return 0; |
| } |
| EXPORT_SYMBOL(mmc_can_secure_erase_trim); |
| |
| int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, |
| unsigned int nr) |
| { |
| if (!card->erase_size) |
| return 0; |
| if (from % card->erase_size || nr % card->erase_size) |
| return 0; |
| return 1; |
| } |
| EXPORT_SYMBOL(mmc_erase_group_aligned); |
| |
| static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, |
| unsigned int arg) |
| { |
| struct mmc_host *host = card->host; |
| unsigned int max_discard, x, y, qty = 0, max_qty, timeout; |
| unsigned int last_timeout = 0; |
| |
| if (card->erase_shift) |
| max_qty = UINT_MAX >> card->erase_shift; |
| else if (mmc_card_sd(card)) |
| max_qty = UINT_MAX; |
| else |
| max_qty = UINT_MAX / card->erase_size; |
| |
| /* Find the largest qty with an OK timeout */ |
| do { |
| y = 0; |
| for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { |
| timeout = mmc_erase_timeout(card, arg, qty + x); |
| if (timeout > host->max_busy_timeout) |
| break; |
| if (timeout < last_timeout) |
| break; |
| last_timeout = timeout; |
| y = x; |
| } |
| qty += y; |
| } while (y); |
| |
| if (!qty) |
| return 0; |
| |
| if (qty == 1) |
| return 1; |
| |
| /* Convert qty to sectors */ |
| if (card->erase_shift) |
| max_discard = --qty << card->erase_shift; |
| else if (mmc_card_sd(card)) |
| max_discard = qty; |
| else |
| max_discard = --qty * card->erase_size; |
| |
| return max_discard; |
| } |
| |
| unsigned int mmc_calc_max_discard(struct mmc_card *card) |
| { |
| struct mmc_host *host = card->host; |
| unsigned int max_discard, max_trim; |
| |
| if (!host->max_busy_timeout) |
| return UINT_MAX; |
| |
| /* |
| * Without erase_group_def set, MMC erase timeout depends on clock |
| * frequence which can change. In that case, the best choice is |
| * just the preferred erase size. |
| */ |
| if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) |
| return card->pref_erase; |
| |
| max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); |
| if (mmc_can_trim(card)) { |
| max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); |
| if (max_trim < max_discard) |
| max_discard = max_trim; |
| } else if (max_discard < card->erase_size) { |
| max_discard = 0; |
| } |
| pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", |
| mmc_hostname(host), max_discard, host->max_busy_timeout); |
| return max_discard; |
| } |
| EXPORT_SYMBOL(mmc_calc_max_discard); |
| |
| int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) |
| { |
| struct mmc_command cmd = {0}; |
| |
| if (mmc_card_blockaddr(card) || mmc_card_ddr52(card)) |
| return 0; |
| |
| cmd.opcode = MMC_SET_BLOCKLEN; |
| cmd.arg = blocklen; |
| cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; |
| return mmc_wait_for_cmd(card->host, &cmd, 5); |
| } |
| EXPORT_SYMBOL(mmc_set_blocklen); |
| |
| int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount, |
| bool is_rel_write) |
| { |
| struct mmc_command cmd = {0}; |
| |
| cmd.opcode = MMC_SET_BLOCK_COUNT; |
| cmd.arg = blockcount & 0x0000FFFF; |
| if (is_rel_write) |
| cmd.arg |= 1 << 31; |
| cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; |
| return mmc_wait_for_cmd(card->host, &cmd, 5); |
| } |
| EXPORT_SYMBOL(mmc_set_blockcount); |
| |
| static void mmc_hw_reset_for_init(struct mmc_host *host) |
| { |
| if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) |
| return; |
| mmc_host_clk_hold(host); |
| host->ops->hw_reset(host); |
| mmc_host_clk_release(host); |
| } |
| |
| int mmc_can_reset(struct mmc_card *card) |
| { |
| u8 rst_n_function; |
| |
| if (!mmc_card_mmc(card)) |
| return 0; |
| rst_n_function = card->ext_csd.rst_n_function; |
| if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) |
| return 0; |
| return 1; |
| } |
| EXPORT_SYMBOL(mmc_can_reset); |
| |
| static int mmc_do_hw_reset(struct mmc_host *host, int check) |
| { |
| struct mmc_card *card = host->card; |
| |
| if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) |
| return -EOPNOTSUPP; |
| |
| if (!card) |
| return -EINVAL; |
| |
| if (!mmc_can_reset(card)) |
| return -EOPNOTSUPP; |
| |
| mmc_host_clk_hold(host); |
| mmc_set_clock(host, host->f_init); |
| |
| host->ops->hw_reset(host); |
| |
| /* If the reset has happened, then a status command will fail */ |
| if (check) { |
| struct mmc_command cmd = {0}; |
| int err; |
| |
| cmd.opcode = MMC_SEND_STATUS; |
| if (!mmc_host_is_spi(card->host)) |
| cmd.arg = card->rca << 16; |
| cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC; |
| err = mmc_wait_for_cmd(card->host, &cmd, 0); |
| if (!err) { |
| mmc_host_clk_release(host); |
| return -ENOSYS; |
| } |
| } |
| |
| if (mmc_host_is_spi(host)) { |
| host->ios.chip_select = MMC_CS_HIGH; |
| host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; |
| } else { |
| host->ios.chip_select = MMC_CS_DONTCARE; |
| host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; |
| } |
| host->ios.bus_width = MMC_BUS_WIDTH_1; |
| host->ios.timing = MMC_TIMING_LEGACY; |
| mmc_set_ios(host); |
| |
| mmc_host_clk_release(host); |
| |
| return host->bus_ops->power_restore(host); |
| } |
| |
| int mmc_hw_reset(struct mmc_host *host) |
| { |
| return mmc_do_hw_reset(host, 0); |
| } |
| EXPORT_SYMBOL(mmc_hw_reset); |
| |
| int mmc_hw_reset_check(struct mmc_host *host) |
| { |
| return mmc_do_hw_reset(host, 1); |
| } |
| EXPORT_SYMBOL(mmc_hw_reset_check); |
| |
| static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) |
| { |
| host->f_init = freq; |
| |
| #ifdef CONFIG_MMC_DEBUG |
| pr_info("%s: %s: trying to init card at %u Hz\n", |
| mmc_hostname(host), __func__, host->f_init); |
| #endif |
| mmc_power_up(host, host->ocr_avail); |
| |
| /* |
| * Some eMMCs (with VCCQ always on) may not be reset after power up, so |
| * do a hardware reset if possible. |
| */ |
| mmc_hw_reset_for_init(host); |
| |
| /* |
| * sdio_reset sends CMD52 to reset card. Since we do not know |
| * if the card is being re-initialized, just send it. CMD52 |
| * should be ignored by SD/eMMC cards. |
| */ |
| sdio_reset(host); |
| mmc_go_idle(host); |
| |
| mmc_send_if_cond(host, host->ocr_avail); |
| |
| /* Order's important: probe SDIO, then SD, then MMC */ |
| if (!mmc_attach_sdio(host)) |
| return 0; |
| if (!mmc_attach_sd(host)) |
| return 0; |
| if (!mmc_attach_mmc(host)) |
| return 0; |
| |
| mmc_power_off(host); |
| return -EIO; |
| } |
| |
| int _mmc_detect_card_removed(struct mmc_host *host) |
| { |
| int ret; |
| |
| if (host->caps & MMC_CAP_NONREMOVABLE) |
| return 0; |
| |
| if (!host->card || mmc_card_removed(host->card)) |
| return 1; |
| |
| ret = host->bus_ops->alive(host); |
| |
| /* |
| * Card detect status and alive check may be out of sync if card is |
| * removed slowly, when card detect switch changes while card/slot |
| * pads are still contacted in hardware (refer to "SD Card Mechanical |
| * Addendum, Appendix C: Card Detection Switch"). So reschedule a |
| * detect work 200ms later for this case. |
| */ |
| if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) { |
| mmc_detect_change(host, msecs_to_jiffies(200)); |
| pr_debug("%s: card removed too slowly\n", mmc_hostname(host)); |
| } |
| |
| if (ret) { |
| mmc_card_set_removed(host->card); |
| pr_debug("%s: card remove detected\n", mmc_hostname(host)); |
| } |
| |
| return ret; |
| } |
| |
| int mmc_detect_card_removed(struct mmc_host *host) |
| { |
| struct mmc_card *card = host->card; |
| int ret; |
| |
| WARN_ON(!host->claimed); |
| |
| if (!card) |
| return 1; |
| |
| ret = mmc_card_removed(card); |
| /* |
| * The card will be considered unchanged unless we have been asked to |
| * detect a change or host requires polling to provide card detection. |
| */ |
| if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL)) |
| return ret; |
| |
| host->detect_change = 0; |
| if (!ret) { |
| ret = _mmc_detect_card_removed(host); |
| if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) { |
| /* |
| * Schedule a detect work as soon as possible to let a |
| * rescan handle the card removal. |
| */ |
| cancel_delayed_work(&host->detect); |
| _mmc_detect_change(host, 0, false); |
| } |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(mmc_detect_card_removed); |
| |
| void mmc_rescan(struct work_struct *work) |
| { |
| struct mmc_host *host = |
| container_of(work, struct mmc_host, detect.work); |
| int i; |
| |
| if (host->trigger_card_event && host->ops->card_event) { |
| host->ops->card_event(host); |
| host->trigger_card_event = false; |
| } |
| |
| if (host->rescan_disable) |
| return; |
| |
| /* If there is a non-removable card registered, only scan once */ |
| if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered) |
| return; |
| host->rescan_entered = 1; |
| |
| mmc_bus_get(host); |
| |
| /* |
| * if there is a _removable_ card registered, check whether it is |
| * still present |
| */ |
| if (host->bus_ops && !host->bus_dead |
| && !(host->caps & MMC_CAP_NONREMOVABLE)) |
| host->bus_ops->detect(host); |
| |
| host->detect_change = 0; |
| |
| /* |
| * Let mmc_bus_put() free the bus/bus_ops if we've found that |
| * the card is no longer present. |
| */ |
| mmc_bus_put(host); |
| mmc_bus_get(host); |
| |
| /* if there still is a card present, stop here */ |
| if (host->bus_ops != NULL) { |
| mmc_bus_put(host); |
| goto out; |
| } |
| |
| /* |
| * Only we can add a new handler, so it's safe to |
| * release the lock here. |
| */ |
| mmc_bus_put(host); |
| |
| if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd && |
| host->ops->get_cd(host) == 0) { |
| mmc_claim_host(host); |
| mmc_power_off(host); |
| mmc_release_host(host); |
| goto out; |
| } |
| |
| mmc_claim_host(host); |
| for (i = 0; i < ARRAY_SIZE(freqs); i++) { |
| if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min))) |
| break; |
| if (freqs[i] <= host->f_min) |
| break; |
| } |
| mmc_release_host(host); |
| |
| out: |
| if (host->caps & MMC_CAP_NEEDS_POLL) |
| mmc_schedule_delayed_work(&host->detect, HZ); |
| } |
| |
| void mmc_start_host(struct mmc_host *host) |
| { |
| host->f_init = max(freqs[0], host->f_min); |
| host->rescan_disable = 0; |
| host->ios.power_mode = MMC_POWER_UNDEFINED; |
| if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP) |
| mmc_power_off(host); |
| else |
| mmc_power_up(host, host->ocr_avail); |
| mmc_gpiod_request_cd_irq(host); |
| _mmc_detect_change(host, 0, false); |
| } |
| |
| void mmc_stop_host(struct mmc_host *host) |
| { |
| #ifdef CONFIG_MMC_DEBUG |
| unsigned long flags; |
| spin_lock_irqsave(&host->lock, flags); |
| host->removed = 1; |
| spin_unlock_irqrestore(&host->lock, flags); |
| #endif |
| if (host->slot.cd_irq >= 0) |
| disable_irq(host->slot.cd_irq); |
| |
| host->rescan_disable = 1; |
| cancel_delayed_work_sync(&host->detect); |
| mmc_flush_scheduled_work(); |
| |
| /* clear pm flags now and let card drivers set them as needed */ |
| host->pm_flags = 0; |
| |
| mmc_bus_get(host); |
| if (host->bus_ops && !host->bus_dead) { |
| /* Calling bus_ops->remove() with a claimed host can deadlock */ |
| host->bus_ops->remove(host); |
| mmc_claim_host(host); |
| mmc_detach_bus(host); |
| mmc_power_off(host); |
| mmc_release_host(host); |
| mmc_bus_put(host); |
| return; |
| } |
| mmc_bus_put(host); |
| |
| BUG_ON(host->card); |
| |
| mmc_power_off(host); |
| } |
| |
| int mmc_power_save_host(struct mmc_host *host) |
| { |
| int ret = 0; |
| |
| #ifdef CONFIG_MMC_DEBUG |
| pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__); |
| #endif |
| |
| mmc_bus_get(host); |
| |
| if (!host->bus_ops || host->bus_dead) { |
| mmc_bus_put(host); |
| return -EINVAL; |
| } |
| |
| if (host->bus_ops->power_save) |
| ret = host->bus_ops->power_save(host); |
| |
| mmc_bus_put(host); |
| |
| mmc_power_off(host); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(mmc_power_save_host); |
| |
| int mmc_power_restore_host(struct mmc_host *host) |
| { |
| int ret; |
| |
| #ifdef CONFIG_MMC_DEBUG |
| pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__); |
| #endif |
| |
| mmc_bus_get(host); |
| |
| if (!host->bus_ops || host->bus_dead) { |
| mmc_bus_put(host); |
| return -EINVAL; |
| } |
| |
| mmc_power_up(host, host->card->ocr); |
| ret = host->bus_ops->power_restore(host); |
| |
| mmc_bus_put(host); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(mmc_power_restore_host); |
| |
| /* |
| * Flush the cache to the non-volatile storage. |
| */ |
| int mmc_flush_cache(struct mmc_card *card) |
| { |
| int err = 0; |
| |
| if (mmc_card_mmc(card) && |
| (card->ext_csd.cache_size > 0) && |
| (card->ext_csd.cache_ctrl & 1)) { |
| err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, |
| EXT_CSD_FLUSH_CACHE, 1, 0); |
| if (err) |
| pr_err("%s: cache flush error %d\n", |
| mmc_hostname(card->host), err); |
| } |
| |
| return err; |
| } |
| EXPORT_SYMBOL(mmc_flush_cache); |
| |
| #ifdef CONFIG_PM |
| |
| /* Do the card removal on suspend if card is assumed removeable |
| * Do that in pm notifier while userspace isn't yet frozen, so we will be able |
| to sync the card. |
| */ |
| int mmc_pm_notify(struct notifier_block *notify_block, |
| unsigned long mode, void *unused) |
| { |
| struct mmc_host *host = container_of( |
| notify_block, struct mmc_host, pm_notify); |
| unsigned long flags; |
| int err = 0; |
| |
| switch (mode) { |
| case PM_HIBERNATION_PREPARE: |
| case PM_SUSPEND_PREPARE: |
| spin_lock_irqsave(&host->lock, flags); |
| host->rescan_disable = 1; |
| spin_unlock_irqrestore(&host->lock, flags); |
| cancel_delayed_work_sync(&host->detect); |
| |
| if (!host->bus_ops) |
| break; |
| |
| /* Validate prerequisites for suspend */ |
| if (host->bus_ops->pre_suspend) |
| err = host->bus_ops->pre_suspend(host); |
| if (!err) |
| break; |
| |
| /* Calling bus_ops->remove() with a claimed host can deadlock */ |
| host->bus_ops->remove(host); |
| mmc_claim_host(host); |
| mmc_detach_bus(host); |
| mmc_power_off(host); |
| mmc_release_host(host); |
| host->pm_flags = 0; |
| break; |
| |
| case PM_POST_SUSPEND: |
| case PM_POST_HIBERNATION: |
| case PM_POST_RESTORE: |
| |
| spin_lock_irqsave(&host->lock, flags); |
| host->rescan_disable = 0; |
| spin_unlock_irqrestore(&host->lock, flags); |
| _mmc_detect_change(host, 0, false); |
| |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| /** |
| * mmc_init_context_info() - init synchronization context |
| * @host: mmc host |
| * |
| * Init struct context_info needed to implement asynchronous |
| * request mechanism, used by mmc core, host driver and mmc requests |
| * supplier. |
| */ |
| void mmc_init_context_info(struct mmc_host *host) |
| { |
| spin_lock_init(&host->context_info.lock); |
| host->context_info.is_new_req = false; |
| host->context_info.is_done_rcv = false; |
| host->context_info.is_waiting_last_req = false; |
| init_waitqueue_head(&host->context_info.wait); |
| } |
| |
| static int __init mmc_init(void) |
| { |
| int ret; |
| |
| workqueue = alloc_ordered_workqueue("kmmcd", 0); |
| if (!workqueue) |
| return -ENOMEM; |
| |
| ret = mmc_register_bus(); |
| if (ret) |
| goto destroy_workqueue; |
| |
| ret = mmc_register_host_class(); |
| if (ret) |
| goto unregister_bus; |
| |
| ret = sdio_register_bus(); |
| if (ret) |
| goto unregister_host_class; |
| |
| return 0; |
| |
| unregister_host_class: |
| mmc_unregister_host_class(); |
| unregister_bus: |
| mmc_unregister_bus(); |
| destroy_workqueue: |
| destroy_workqueue(workqueue); |
| |
| return ret; |
| } |
| |
| static void __exit mmc_exit(void) |
| { |
| sdio_unregister_bus(); |
| mmc_unregister_host_class(); |
| mmc_unregister_bus(); |
| destroy_workqueue(workqueue); |
| } |
| |
| subsys_initcall(mmc_init); |
| module_exit(mmc_exit); |
| |
| MODULE_LICENSE("GPL"); |