| /* |
| * cxd2099.c: Driver for the CXD2099AR Common Interface Controller |
| * |
| * Copyright (C) 2010-2011 Digital Devices GmbH |
| * |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * version 2 only, as published by the Free Software Foundation. |
| * |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
| * 02110-1301, USA |
| * Or, point your browser to http://www.gnu.org/copyleft/gpl.html |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/init.h> |
| #include <linux/i2c.h> |
| #include <linux/wait.h> |
| #include <linux/delay.h> |
| #include <linux/mutex.h> |
| #include <linux/io.h> |
| |
| #include "cxd2099.h" |
| |
| #define MAX_BUFFER_SIZE 248 |
| |
| struct cxd { |
| struct dvb_ca_en50221 en; |
| |
| struct i2c_adapter *i2c; |
| struct cxd2099_cfg cfg; |
| |
| u8 regs[0x23]; |
| u8 lastaddress; |
| u8 clk_reg_f; |
| u8 clk_reg_b; |
| int mode; |
| int ready; |
| int dr; |
| int slot_stat; |
| |
| u8 amem[1024]; |
| int amem_read; |
| |
| int cammode; |
| struct mutex lock; |
| }; |
| |
| static int i2c_write_reg(struct i2c_adapter *adapter, u8 adr, |
| u8 reg, u8 data) |
| { |
| u8 m[2] = {reg, data}; |
| struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = m, .len = 2}; |
| |
| if (i2c_transfer(adapter, &msg, 1) != 1) { |
| printk(KERN_ERR "Failed to write to I2C register %02x@%02x!\n", |
| reg, adr); |
| return -1; |
| } |
| return 0; |
| } |
| |
| static int i2c_write(struct i2c_adapter *adapter, u8 adr, |
| u8 *data, u8 len) |
| { |
| struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len}; |
| |
| if (i2c_transfer(adapter, &msg, 1) != 1) { |
| printk(KERN_ERR "Failed to write to I2C!\n"); |
| return -1; |
| } |
| return 0; |
| } |
| |
| static int i2c_read_reg(struct i2c_adapter *adapter, u8 adr, |
| u8 reg, u8 *val) |
| { |
| struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0, |
| .buf = ®, .len = 1}, |
| {.addr = adr, .flags = I2C_M_RD, |
| .buf = val, .len = 1} }; |
| |
| if (i2c_transfer(adapter, msgs, 2) != 2) { |
| printk(KERN_ERR "error in i2c_read_reg\n"); |
| return -1; |
| } |
| return 0; |
| } |
| |
| static int i2c_read(struct i2c_adapter *adapter, u8 adr, |
| u8 reg, u8 *data, u8 n) |
| { |
| struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0, |
| .buf = ®, .len = 1}, |
| {.addr = adr, .flags = I2C_M_RD, |
| .buf = data, .len = n} }; |
| |
| if (i2c_transfer(adapter, msgs, 2) != 2) { |
| printk(KERN_ERR "error in i2c_read\n"); |
| return -1; |
| } |
| return 0; |
| } |
| |
| static int read_block(struct cxd *ci, u8 adr, u8 *data, u8 n) |
| { |
| int status; |
| |
| status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, adr); |
| if (!status) { |
| ci->lastaddress = adr; |
| status = i2c_read(ci->i2c, ci->cfg.adr, 1, data, n); |
| } |
| return status; |
| } |
| |
| static int read_reg(struct cxd *ci, u8 reg, u8 *val) |
| { |
| return read_block(ci, reg, val, 1); |
| } |
| |
| |
| static int read_pccard(struct cxd *ci, u16 address, u8 *data, u8 n) |
| { |
| int status; |
| u8 addr[3] = {2, address & 0xff, address >> 8}; |
| |
| status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3); |
| if (!status) |
| status = i2c_read(ci->i2c, ci->cfg.adr, 3, data, n); |
| return status; |
| } |
| |
| static int write_pccard(struct cxd *ci, u16 address, u8 *data, u8 n) |
| { |
| int status; |
| u8 addr[3] = {2, address & 0xff, address >> 8}; |
| |
| status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3); |
| if (!status) { |
| u8 buf[256] = {3}; |
| memcpy(buf+1, data, n); |
| status = i2c_write(ci->i2c, ci->cfg.adr, buf, n+1); |
| } |
| return status; |
| } |
| |
| static int read_io(struct cxd *ci, u16 address, u8 *val) |
| { |
| int status; |
| u8 addr[3] = {2, address & 0xff, address >> 8}; |
| |
| status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3); |
| if (!status) |
| status = i2c_read(ci->i2c, ci->cfg.adr, 3, val, 1); |
| return status; |
| } |
| |
| static int write_io(struct cxd *ci, u16 address, u8 val) |
| { |
| int status; |
| u8 addr[3] = {2, address & 0xff, address >> 8}; |
| u8 buf[2] = {3, val}; |
| |
| status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3); |
| if (!status) |
| status = i2c_write(ci->i2c, ci->cfg.adr, buf, 2); |
| return status; |
| } |
| |
| #if 0 |
| static int read_io_data(struct cxd *ci, u8 *data, u8 n) |
| { |
| int status; |
| u8 addr[3] = { 2, 0, 0 }; |
| |
| status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3); |
| if (!status) |
| status = i2c_read(ci->i2c, ci->cfg.adr, 3, data, n); |
| return 0; |
| } |
| |
| static int write_io_data(struct cxd *ci, u8 *data, u8 n) |
| { |
| int status; |
| u8 addr[3] = {2, 0, 0}; |
| |
| status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3); |
| if (!status) { |
| u8 buf[256] = {3}; |
| memcpy(buf+1, data, n); |
| status = i2c_write(ci->i2c, ci->cfg.adr, buf, n + 1); |
| } |
| return 0; |
| } |
| #endif |
| |
| static int write_regm(struct cxd *ci, u8 reg, u8 val, u8 mask) |
| { |
| int status; |
| |
| status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, reg); |
| if (!status && reg >= 6 && reg <= 8 && mask != 0xff) |
| status = i2c_read_reg(ci->i2c, ci->cfg.adr, 1, &ci->regs[reg]); |
| ci->regs[reg] = (ci->regs[reg] & (~mask)) | val; |
| if (!status) { |
| ci->lastaddress = reg; |
| status = i2c_write_reg(ci->i2c, ci->cfg.adr, 1, ci->regs[reg]); |
| } |
| if (reg == 0x20) |
| ci->regs[reg] &= 0x7f; |
| return status; |
| } |
| |
| static int write_reg(struct cxd *ci, u8 reg, u8 val) |
| { |
| return write_regm(ci, reg, val, 0xff); |
| } |
| |
| #ifdef BUFFER_MODE |
| static int write_block(struct cxd *ci, u8 adr, u8 *data, int n) |
| { |
| int status; |
| u8 buf[256] = {1}; |
| |
| status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, adr); |
| if (!status) { |
| ci->lastaddress = adr; |
| memcpy(buf + 1, data, n); |
| status = i2c_write(ci->i2c, ci->cfg.adr, buf, n + 1); |
| } |
| return status; |
| } |
| #endif |
| |
| static void set_mode(struct cxd *ci, int mode) |
| { |
| if (mode == ci->mode) |
| return; |
| |
| switch (mode) { |
| case 0x00: /* IO mem */ |
| write_regm(ci, 0x06, 0x00, 0x07); |
| break; |
| case 0x01: /* ATT mem */ |
| write_regm(ci, 0x06, 0x02, 0x07); |
| break; |
| default: |
| break; |
| } |
| ci->mode = mode; |
| } |
| |
| static void cam_mode(struct cxd *ci, int mode) |
| { |
| if (mode == ci->cammode) |
| return; |
| |
| switch (mode) { |
| case 0x00: |
| write_regm(ci, 0x20, 0x80, 0x80); |
| break; |
| case 0x01: |
| #ifdef BUFFER_MODE |
| if (!ci->en.read_data) |
| return; |
| printk(KERN_INFO "enable cam buffer mode\n"); |
| /* write_reg(ci, 0x0d, 0x00); */ |
| /* write_reg(ci, 0x0e, 0x01); */ |
| write_regm(ci, 0x08, 0x40, 0x40); |
| /* read_reg(ci, 0x12, &dummy); */ |
| write_regm(ci, 0x08, 0x80, 0x80); |
| #endif |
| break; |
| default: |
| break; |
| } |
| ci->cammode = mode; |
| } |
| |
| |
| |
| static int init(struct cxd *ci) |
| { |
| int status; |
| |
| mutex_lock(&ci->lock); |
| ci->mode = -1; |
| do { |
| status = write_reg(ci, 0x00, 0x00); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x01, 0x00); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x02, 0x10); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x03, 0x00); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x05, 0xFF); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x06, 0x1F); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x07, 0x1F); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x08, 0x28); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x14, 0x20); |
| if (status < 0) |
| break; |
| |
| #if 0 |
| status = write_reg(ci, 0x09, 0x4D); /* Input Mode C, BYPass Serial, TIVAL = low, MSB */ |
| if (status < 0) |
| break; |
| #endif |
| status = write_reg(ci, 0x0A, 0xA7); /* TOSTRT = 8, Mode B (gated clock), falling Edge, Serial, POL=HIGH, MSB */ |
| if (status < 0) |
| break; |
| |
| status = write_reg(ci, 0x0B, 0x33); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x0C, 0x33); |
| if (status < 0) |
| break; |
| |
| status = write_regm(ci, 0x14, 0x00, 0x0F); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x15, ci->clk_reg_b); |
| if (status < 0) |
| break; |
| status = write_regm(ci, 0x16, 0x00, 0x0F); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x17, ci->clk_reg_f); |
| if (status < 0) |
| break; |
| |
| if (ci->cfg.clock_mode) { |
| if (ci->cfg.polarity) { |
| status = write_reg(ci, 0x09, 0x6f); |
| if (status < 0) |
| break; |
| } else { |
| status = write_reg(ci, 0x09, 0x6d); |
| if (status < 0) |
| break; |
| } |
| status = write_reg(ci, 0x20, 0x68); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x21, 0x00); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x22, 0x02); |
| if (status < 0) |
| break; |
| } else { |
| if (ci->cfg.polarity) { |
| status = write_reg(ci, 0x09, 0x4f); |
| if (status < 0) |
| break; |
| } else { |
| status = write_reg(ci, 0x09, 0x4d); |
| if (status < 0) |
| break; |
| } |
| |
| status = write_reg(ci, 0x20, 0x28); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x21, 0x00); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x22, 0x07); |
| if (status < 0) |
| break; |
| } |
| |
| status = write_regm(ci, 0x20, 0x80, 0x80); |
| if (status < 0) |
| break; |
| status = write_regm(ci, 0x03, 0x02, 0x02); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x01, 0x04); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x00, 0x31); |
| if (status < 0) |
| break; |
| |
| /* Put TS in bypass */ |
| status = write_regm(ci, 0x09, 0x08, 0x08); |
| if (status < 0) |
| break; |
| ci->cammode = -1; |
| cam_mode(ci, 0); |
| } while (0); |
| mutex_unlock(&ci->lock); |
| |
| return 0; |
| } |
| |
| static int read_attribute_mem(struct dvb_ca_en50221 *ca, |
| int slot, int address) |
| { |
| struct cxd *ci = ca->data; |
| #if 0 |
| if (ci->amem_read) { |
| if (address <= 0 || address > 1024) |
| return -EIO; |
| return ci->amem[address]; |
| } |
| |
| mutex_lock(&ci->lock); |
| write_regm(ci, 0x06, 0x00, 0x05); |
| read_pccard(ci, 0, &ci->amem[0], 128); |
| read_pccard(ci, 128, &ci->amem[0], 128); |
| read_pccard(ci, 256, &ci->amem[0], 128); |
| read_pccard(ci, 384, &ci->amem[0], 128); |
| write_regm(ci, 0x06, 0x05, 0x05); |
| mutex_unlock(&ci->lock); |
| return ci->amem[address]; |
| #else |
| u8 val; |
| mutex_lock(&ci->lock); |
| set_mode(ci, 1); |
| read_pccard(ci, address, &val, 1); |
| mutex_unlock(&ci->lock); |
| /* printk(KERN_INFO "%02x:%02x\n", address,val); */ |
| return val; |
| #endif |
| } |
| |
| static int write_attribute_mem(struct dvb_ca_en50221 *ca, int slot, |
| int address, u8 value) |
| { |
| struct cxd *ci = ca->data; |
| |
| mutex_lock(&ci->lock); |
| set_mode(ci, 1); |
| write_pccard(ci, address, &value, 1); |
| mutex_unlock(&ci->lock); |
| return 0; |
| } |
| |
| static int read_cam_control(struct dvb_ca_en50221 *ca, |
| int slot, u8 address) |
| { |
| struct cxd *ci = ca->data; |
| u8 val; |
| |
| mutex_lock(&ci->lock); |
| set_mode(ci, 0); |
| read_io(ci, address, &val); |
| mutex_unlock(&ci->lock); |
| return val; |
| } |
| |
| static int write_cam_control(struct dvb_ca_en50221 *ca, int slot, |
| u8 address, u8 value) |
| { |
| struct cxd *ci = ca->data; |
| |
| mutex_lock(&ci->lock); |
| set_mode(ci, 0); |
| write_io(ci, address, value); |
| mutex_unlock(&ci->lock); |
| return 0; |
| } |
| |
| static int slot_reset(struct dvb_ca_en50221 *ca, int slot) |
| { |
| struct cxd *ci = ca->data; |
| |
| mutex_lock(&ci->lock); |
| #if 0 |
| write_reg(ci, 0x00, 0x21); |
| write_reg(ci, 0x06, 0x1F); |
| write_reg(ci, 0x00, 0x31); |
| #else |
| #if 0 |
| write_reg(ci, 0x06, 0x1F); |
| write_reg(ci, 0x06, 0x2F); |
| #else |
| cam_mode(ci, 0); |
| write_reg(ci, 0x00, 0x21); |
| write_reg(ci, 0x06, 0x1F); |
| write_reg(ci, 0x00, 0x31); |
| write_regm(ci, 0x20, 0x80, 0x80); |
| write_reg(ci, 0x03, 0x02); |
| ci->ready = 0; |
| #endif |
| #endif |
| ci->mode = -1; |
| { |
| int i; |
| #if 0 |
| u8 val; |
| #endif |
| for (i = 0; i < 100; i++) { |
| msleep(10); |
| #if 0 |
| read_reg(ci, 0x06, &val); |
| printk(KERN_INFO "%d:%02x\n", i, val); |
| if (!(val&0x10)) |
| break; |
| #else |
| if (ci->ready) |
| break; |
| #endif |
| } |
| } |
| mutex_unlock(&ci->lock); |
| /* msleep(500); */ |
| return 0; |
| } |
| |
| static int slot_shutdown(struct dvb_ca_en50221 *ca, int slot) |
| { |
| struct cxd *ci = ca->data; |
| |
| printk(KERN_INFO "slot_shutdown\n"); |
| mutex_lock(&ci->lock); |
| write_regm(ci, 0x09, 0x08, 0x08); |
| write_regm(ci, 0x20, 0x80, 0x80); /* Reset CAM Mode */ |
| write_regm(ci, 0x06, 0x07, 0x07); /* Clear IO Mode */ |
| ci->mode = -1; |
| mutex_unlock(&ci->lock); |
| return 0; |
| } |
| |
| static int slot_ts_enable(struct dvb_ca_en50221 *ca, int slot) |
| { |
| struct cxd *ci = ca->data; |
| |
| mutex_lock(&ci->lock); |
| write_regm(ci, 0x09, 0x00, 0x08); |
| set_mode(ci, 0); |
| #ifdef BUFFER_MODE |
| cam_mode(ci, 1); |
| #endif |
| mutex_unlock(&ci->lock); |
| return 0; |
| } |
| |
| |
| static int campoll(struct cxd *ci) |
| { |
| u8 istat; |
| |
| read_reg(ci, 0x04, &istat); |
| if (!istat) |
| return 0; |
| write_reg(ci, 0x05, istat); |
| |
| if (istat&0x40) { |
| ci->dr = 1; |
| printk(KERN_INFO "DR\n"); |
| } |
| if (istat&0x20) |
| printk(KERN_INFO "WC\n"); |
| |
| if (istat&2) { |
| u8 slotstat; |
| |
| read_reg(ci, 0x01, &slotstat); |
| if (!(2&slotstat)) { |
| if (!ci->slot_stat) { |
| ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_PRESENT; |
| write_regm(ci, 0x03, 0x08, 0x08); |
| } |
| |
| } else { |
| if (ci->slot_stat) { |
| ci->slot_stat = 0; |
| write_regm(ci, 0x03, 0x00, 0x08); |
| printk(KERN_INFO "NO CAM\n"); |
| ci->ready = 0; |
| } |
| } |
| if (istat&8 && ci->slot_stat == DVB_CA_EN50221_POLL_CAM_PRESENT) { |
| ci->ready = 1; |
| ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_READY; |
| } |
| } |
| return 0; |
| } |
| |
| |
| static int poll_slot_status(struct dvb_ca_en50221 *ca, int slot, int open) |
| { |
| struct cxd *ci = ca->data; |
| u8 slotstat; |
| |
| mutex_lock(&ci->lock); |
| campoll(ci); |
| read_reg(ci, 0x01, &slotstat); |
| mutex_unlock(&ci->lock); |
| |
| return ci->slot_stat; |
| } |
| |
| #ifdef BUFFER_MODE |
| static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount) |
| { |
| struct cxd *ci = ca->data; |
| u8 msb, lsb; |
| u16 len; |
| |
| mutex_lock(&ci->lock); |
| campoll(ci); |
| mutex_unlock(&ci->lock); |
| |
| printk(KERN_INFO "read_data\n"); |
| if (!ci->dr) |
| return 0; |
| |
| mutex_lock(&ci->lock); |
| read_reg(ci, 0x0f, &msb); |
| read_reg(ci, 0x10, &lsb); |
| len = (msb<<8)|lsb; |
| read_block(ci, 0x12, ebuf, len); |
| ci->dr = 0; |
| mutex_unlock(&ci->lock); |
| |
| return len; |
| } |
| |
| static int write_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount) |
| { |
| struct cxd *ci = ca->data; |
| |
| mutex_lock(&ci->lock); |
| printk(kern_INFO "write_data %d\n", ecount); |
| write_reg(ci, 0x0d, ecount>>8); |
| write_reg(ci, 0x0e, ecount&0xff); |
| write_block(ci, 0x11, ebuf, ecount); |
| mutex_unlock(&ci->lock); |
| return ecount; |
| } |
| #endif |
| |
| static struct dvb_ca_en50221 en_templ = { |
| .read_attribute_mem = read_attribute_mem, |
| .write_attribute_mem = write_attribute_mem, |
| .read_cam_control = read_cam_control, |
| .write_cam_control = write_cam_control, |
| .slot_reset = slot_reset, |
| .slot_shutdown = slot_shutdown, |
| .slot_ts_enable = slot_ts_enable, |
| .poll_slot_status = poll_slot_status, |
| #ifdef BUFFER_MODE |
| .read_data = read_data, |
| .write_data = write_data, |
| #endif |
| |
| }; |
| |
| struct dvb_ca_en50221 *cxd2099_attach(struct cxd2099_cfg *cfg, |
| void *priv, |
| struct i2c_adapter *i2c) |
| { |
| struct cxd *ci = 0; |
| u8 val; |
| |
| if (i2c_read_reg(i2c, cfg->adr, 0, &val) < 0) { |
| printk(KERN_INFO "No CXD2099 detected at %02x\n", cfg->adr); |
| return 0; |
| } |
| |
| ci = kmalloc(sizeof(struct cxd), GFP_KERNEL); |
| if (!ci) |
| return 0; |
| memset(ci, 0, sizeof(*ci)); |
| |
| mutex_init(&ci->lock); |
| memcpy(&ci->cfg, cfg, sizeof(struct cxd2099_cfg)); |
| ci->i2c = i2c; |
| ci->lastaddress = 0xff; |
| ci->clk_reg_b = 0x4a; |
| ci->clk_reg_f = 0x1b; |
| |
| memcpy(&ci->en, &en_templ, sizeof(en_templ)); |
| ci->en.data = ci; |
| init(ci); |
| printk(KERN_INFO "Attached CXD2099AR at %02x\n", ci->cfg.adr); |
| return &ci->en; |
| } |
| EXPORT_SYMBOL(cxd2099_attach); |
| |
| MODULE_DESCRIPTION("cxd2099"); |
| MODULE_AUTHOR("Ralph Metzler"); |
| MODULE_LICENSE("GPL"); |