| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * bcache journalling code, for btree insertions |
| * |
| * Copyright 2012 Google, Inc. |
| */ |
| |
| #include "bcache.h" |
| #include "btree.h" |
| #include "debug.h" |
| #include "extents.h" |
| |
| #include <trace/events/bcache.h> |
| |
| /* |
| * Journal replay/recovery: |
| * |
| * This code is all driven from run_cache_set(); we first read the journal |
| * entries, do some other stuff, then we mark all the keys in the journal |
| * entries (same as garbage collection would), then we replay them - reinserting |
| * them into the cache in precisely the same order as they appear in the |
| * journal. |
| * |
| * We only journal keys that go in leaf nodes, which simplifies things quite a |
| * bit. |
| */ |
| |
| static void journal_read_endio(struct bio *bio) |
| { |
| struct closure *cl = bio->bi_private; |
| |
| closure_put(cl); |
| } |
| |
| static int journal_read_bucket(struct cache *ca, struct list_head *list, |
| unsigned int bucket_index) |
| { |
| struct journal_device *ja = &ca->journal; |
| struct bio *bio = &ja->bio; |
| |
| struct journal_replay *i; |
| struct jset *j, *data = ca->set->journal.w[0].data; |
| struct closure cl; |
| unsigned int len, left, offset = 0; |
| int ret = 0; |
| sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]); |
| |
| closure_init_stack(&cl); |
| |
| pr_debug("reading %u\n", bucket_index); |
| |
| while (offset < ca->sb.bucket_size) { |
| reread: left = ca->sb.bucket_size - offset; |
| len = min_t(unsigned int, left, PAGE_SECTORS << JSET_BITS); |
| |
| bio_reset(bio, ca->bdev, REQ_OP_READ); |
| bio->bi_iter.bi_sector = bucket + offset; |
| bio->bi_iter.bi_size = len << 9; |
| |
| bio->bi_end_io = journal_read_endio; |
| bio->bi_private = &cl; |
| bch_bio_map(bio, data); |
| |
| closure_bio_submit(ca->set, bio, &cl); |
| closure_sync(&cl); |
| |
| /* This function could be simpler now since we no longer write |
| * journal entries that overlap bucket boundaries; this means |
| * the start of a bucket will always have a valid journal entry |
| * if it has any journal entries at all. |
| */ |
| |
| j = data; |
| while (len) { |
| struct list_head *where; |
| size_t blocks, bytes = set_bytes(j); |
| |
| if (j->magic != jset_magic(&ca->sb)) { |
| pr_debug("%u: bad magic\n", bucket_index); |
| return ret; |
| } |
| |
| if (bytes > left << 9 || |
| bytes > PAGE_SIZE << JSET_BITS) { |
| pr_info("%u: too big, %zu bytes, offset %u\n", |
| bucket_index, bytes, offset); |
| return ret; |
| } |
| |
| if (bytes > len << 9) |
| goto reread; |
| |
| if (j->csum != csum_set(j)) { |
| pr_info("%u: bad csum, %zu bytes, offset %u\n", |
| bucket_index, bytes, offset); |
| return ret; |
| } |
| |
| blocks = set_blocks(j, block_bytes(ca)); |
| |
| /* |
| * Nodes in 'list' are in linear increasing order of |
| * i->j.seq, the node on head has the smallest (oldest) |
| * journal seq, the node on tail has the biggest |
| * (latest) journal seq. |
| */ |
| |
| /* |
| * Check from the oldest jset for last_seq. If |
| * i->j.seq < j->last_seq, it means the oldest jset |
| * in list is expired and useless, remove it from |
| * this list. Otherwise, j is a candidate jset for |
| * further following checks. |
| */ |
| while (!list_empty(list)) { |
| i = list_first_entry(list, |
| struct journal_replay, list); |
| if (i->j.seq >= j->last_seq) |
| break; |
| list_del(&i->list); |
| kfree(i); |
| } |
| |
| /* iterate list in reverse order (from latest jset) */ |
| list_for_each_entry_reverse(i, list, list) { |
| if (j->seq == i->j.seq) |
| goto next_set; |
| |
| /* |
| * if j->seq is less than any i->j.last_seq |
| * in list, j is an expired and useless jset. |
| */ |
| if (j->seq < i->j.last_seq) |
| goto next_set; |
| |
| /* |
| * 'where' points to first jset in list which |
| * is elder then j. |
| */ |
| if (j->seq > i->j.seq) { |
| where = &i->list; |
| goto add; |
| } |
| } |
| |
| where = list; |
| add: |
| i = kmalloc(offsetof(struct journal_replay, j) + |
| bytes, GFP_KERNEL); |
| if (!i) |
| return -ENOMEM; |
| memcpy(&i->j, j, bytes); |
| /* Add to the location after 'where' points to */ |
| list_add(&i->list, where); |
| ret = 1; |
| |
| if (j->seq > ja->seq[bucket_index]) |
| ja->seq[bucket_index] = j->seq; |
| next_set: |
| offset += blocks * ca->sb.block_size; |
| len -= blocks * ca->sb.block_size; |
| j = ((void *) j) + blocks * block_bytes(ca); |
| } |
| } |
| |
| return ret; |
| } |
| |
| int bch_journal_read(struct cache_set *c, struct list_head *list) |
| { |
| #define read_bucket(b) \ |
| ({ \ |
| ret = journal_read_bucket(ca, list, b); \ |
| __set_bit(b, bitmap); \ |
| if (ret < 0) \ |
| return ret; \ |
| ret; \ |
| }) |
| |
| struct cache *ca = c->cache; |
| int ret = 0; |
| struct journal_device *ja = &ca->journal; |
| DECLARE_BITMAP(bitmap, SB_JOURNAL_BUCKETS); |
| unsigned int i, l, r, m; |
| uint64_t seq; |
| |
| bitmap_zero(bitmap, SB_JOURNAL_BUCKETS); |
| pr_debug("%u journal buckets\n", ca->sb.njournal_buckets); |
| |
| /* |
| * Read journal buckets ordered by golden ratio hash to quickly |
| * find a sequence of buckets with valid journal entries |
| */ |
| for (i = 0; i < ca->sb.njournal_buckets; i++) { |
| /* |
| * We must try the index l with ZERO first for |
| * correctness due to the scenario that the journal |
| * bucket is circular buffer which might have wrapped |
| */ |
| l = (i * 2654435769U) % ca->sb.njournal_buckets; |
| |
| if (test_bit(l, bitmap)) |
| break; |
| |
| if (read_bucket(l)) |
| goto bsearch; |
| } |
| |
| /* |
| * If that fails, check all the buckets we haven't checked |
| * already |
| */ |
| pr_debug("falling back to linear search\n"); |
| |
| for_each_clear_bit(l, bitmap, ca->sb.njournal_buckets) |
| if (read_bucket(l)) |
| goto bsearch; |
| |
| /* no journal entries on this device? */ |
| if (l == ca->sb.njournal_buckets) |
| goto out; |
| bsearch: |
| BUG_ON(list_empty(list)); |
| |
| /* Binary search */ |
| m = l; |
| r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1); |
| pr_debug("starting binary search, l %u r %u\n", l, r); |
| |
| while (l + 1 < r) { |
| seq = list_entry(list->prev, struct journal_replay, |
| list)->j.seq; |
| |
| m = (l + r) >> 1; |
| read_bucket(m); |
| |
| if (seq != list_entry(list->prev, struct journal_replay, |
| list)->j.seq) |
| l = m; |
| else |
| r = m; |
| } |
| |
| /* |
| * Read buckets in reverse order until we stop finding more |
| * journal entries |
| */ |
| pr_debug("finishing up: m %u njournal_buckets %u\n", |
| m, ca->sb.njournal_buckets); |
| l = m; |
| |
| while (1) { |
| if (!l--) |
| l = ca->sb.njournal_buckets - 1; |
| |
| if (l == m) |
| break; |
| |
| if (test_bit(l, bitmap)) |
| continue; |
| |
| if (!read_bucket(l)) |
| break; |
| } |
| |
| seq = 0; |
| |
| for (i = 0; i < ca->sb.njournal_buckets; i++) |
| if (ja->seq[i] > seq) { |
| seq = ja->seq[i]; |
| /* |
| * When journal_reclaim() goes to allocate for |
| * the first time, it'll use the bucket after |
| * ja->cur_idx |
| */ |
| ja->cur_idx = i; |
| ja->last_idx = ja->discard_idx = (i + 1) % |
| ca->sb.njournal_buckets; |
| |
| } |
| |
| out: |
| if (!list_empty(list)) |
| c->journal.seq = list_entry(list->prev, |
| struct journal_replay, |
| list)->j.seq; |
| |
| return 0; |
| #undef read_bucket |
| } |
| |
| void bch_journal_mark(struct cache_set *c, struct list_head *list) |
| { |
| atomic_t p = { 0 }; |
| struct bkey *k; |
| struct journal_replay *i; |
| struct journal *j = &c->journal; |
| uint64_t last = j->seq; |
| |
| /* |
| * journal.pin should never fill up - we never write a journal |
| * entry when it would fill up. But if for some reason it does, we |
| * iterate over the list in reverse order so that we can just skip that |
| * refcount instead of bugging. |
| */ |
| |
| list_for_each_entry_reverse(i, list, list) { |
| BUG_ON(last < i->j.seq); |
| i->pin = NULL; |
| |
| while (last-- != i->j.seq) |
| if (fifo_free(&j->pin) > 1) { |
| fifo_push_front(&j->pin, p); |
| atomic_set(&fifo_front(&j->pin), 0); |
| } |
| |
| if (fifo_free(&j->pin) > 1) { |
| fifo_push_front(&j->pin, p); |
| i->pin = &fifo_front(&j->pin); |
| atomic_set(i->pin, 1); |
| } |
| |
| for (k = i->j.start; |
| k < bset_bkey_last(&i->j); |
| k = bkey_next(k)) |
| if (!__bch_extent_invalid(c, k)) { |
| unsigned int j; |
| |
| for (j = 0; j < KEY_PTRS(k); j++) |
| if (ptr_available(c, k, j)) |
| atomic_inc(&PTR_BUCKET(c, k, j)->pin); |
| |
| bch_initial_mark_key(c, 0, k); |
| } |
| } |
| } |
| |
| static bool is_discard_enabled(struct cache_set *s) |
| { |
| struct cache *ca = s->cache; |
| |
| if (ca->discard) |
| return true; |
| |
| return false; |
| } |
| |
| int bch_journal_replay(struct cache_set *s, struct list_head *list) |
| { |
| int ret = 0, keys = 0, entries = 0; |
| struct bkey *k; |
| struct journal_replay *i = |
| list_entry(list->prev, struct journal_replay, list); |
| |
| uint64_t start = i->j.last_seq, end = i->j.seq, n = start; |
| struct keylist keylist; |
| |
| list_for_each_entry(i, list, list) { |
| BUG_ON(i->pin && atomic_read(i->pin) != 1); |
| |
| if (n != i->j.seq) { |
| if (n == start && is_discard_enabled(s)) |
| pr_info("journal entries %llu-%llu may be discarded! (replaying %llu-%llu)\n", |
| n, i->j.seq - 1, start, end); |
| else { |
| pr_err("journal entries %llu-%llu missing! (replaying %llu-%llu)\n", |
| n, i->j.seq - 1, start, end); |
| ret = -EIO; |
| goto err; |
| } |
| } |
| |
| for (k = i->j.start; |
| k < bset_bkey_last(&i->j); |
| k = bkey_next(k)) { |
| trace_bcache_journal_replay_key(k); |
| |
| bch_keylist_init_single(&keylist, k); |
| |
| ret = bch_btree_insert(s, &keylist, i->pin, NULL); |
| if (ret) |
| goto err; |
| |
| BUG_ON(!bch_keylist_empty(&keylist)); |
| keys++; |
| |
| cond_resched(); |
| } |
| |
| if (i->pin) |
| atomic_dec(i->pin); |
| n = i->j.seq + 1; |
| entries++; |
| } |
| |
| pr_info("journal replay done, %i keys in %i entries, seq %llu\n", |
| keys, entries, end); |
| err: |
| while (!list_empty(list)) { |
| i = list_first_entry(list, struct journal_replay, list); |
| list_del(&i->list); |
| kfree(i); |
| } |
| |
| return ret; |
| } |
| |
| void bch_journal_space_reserve(struct journal *j) |
| { |
| j->do_reserve = true; |
| } |
| |
| /* Journalling */ |
| |
| static void btree_flush_write(struct cache_set *c) |
| { |
| struct btree *b, *t, *btree_nodes[BTREE_FLUSH_NR]; |
| unsigned int i, nr; |
| int ref_nr; |
| atomic_t *fifo_front_p, *now_fifo_front_p; |
| size_t mask; |
| |
| if (c->journal.btree_flushing) |
| return; |
| |
| spin_lock(&c->journal.flush_write_lock); |
| if (c->journal.btree_flushing) { |
| spin_unlock(&c->journal.flush_write_lock); |
| return; |
| } |
| c->journal.btree_flushing = true; |
| spin_unlock(&c->journal.flush_write_lock); |
| |
| /* get the oldest journal entry and check its refcount */ |
| spin_lock(&c->journal.lock); |
| fifo_front_p = &fifo_front(&c->journal.pin); |
| ref_nr = atomic_read(fifo_front_p); |
| if (ref_nr <= 0) { |
| /* |
| * do nothing if no btree node references |
| * the oldest journal entry |
| */ |
| spin_unlock(&c->journal.lock); |
| goto out; |
| } |
| spin_unlock(&c->journal.lock); |
| |
| mask = c->journal.pin.mask; |
| nr = 0; |
| atomic_long_inc(&c->flush_write); |
| memset(btree_nodes, 0, sizeof(btree_nodes)); |
| |
| mutex_lock(&c->bucket_lock); |
| list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) { |
| /* |
| * It is safe to get now_fifo_front_p without holding |
| * c->journal.lock here, because we don't need to know |
| * the exactly accurate value, just check whether the |
| * front pointer of c->journal.pin is changed. |
| */ |
| now_fifo_front_p = &fifo_front(&c->journal.pin); |
| /* |
| * If the oldest journal entry is reclaimed and front |
| * pointer of c->journal.pin changes, it is unnecessary |
| * to scan c->btree_cache anymore, just quit the loop and |
| * flush out what we have already. |
| */ |
| if (now_fifo_front_p != fifo_front_p) |
| break; |
| /* |
| * quit this loop if all matching btree nodes are |
| * scanned and record in btree_nodes[] already. |
| */ |
| ref_nr = atomic_read(fifo_front_p); |
| if (nr >= ref_nr) |
| break; |
| |
| if (btree_node_journal_flush(b)) |
| pr_err("BUG: flush_write bit should not be set here!\n"); |
| |
| mutex_lock(&b->write_lock); |
| |
| if (!btree_node_dirty(b)) { |
| mutex_unlock(&b->write_lock); |
| continue; |
| } |
| |
| if (!btree_current_write(b)->journal) { |
| mutex_unlock(&b->write_lock); |
| continue; |
| } |
| |
| /* |
| * Only select the btree node which exactly references |
| * the oldest journal entry. |
| * |
| * If the journal entry pointed by fifo_front_p is |
| * reclaimed in parallel, don't worry: |
| * - the list_for_each_xxx loop will quit when checking |
| * next now_fifo_front_p. |
| * - If there are matched nodes recorded in btree_nodes[], |
| * they are clean now (this is why and how the oldest |
| * journal entry can be reclaimed). These selected nodes |
| * will be ignored and skipped in the following for-loop. |
| */ |
| if (((btree_current_write(b)->journal - fifo_front_p) & |
| mask) != 0) { |
| mutex_unlock(&b->write_lock); |
| continue; |
| } |
| |
| set_btree_node_journal_flush(b); |
| |
| mutex_unlock(&b->write_lock); |
| |
| btree_nodes[nr++] = b; |
| /* |
| * To avoid holding c->bucket_lock too long time, |
| * only scan for BTREE_FLUSH_NR matched btree nodes |
| * at most. If there are more btree nodes reference |
| * the oldest journal entry, try to flush them next |
| * time when btree_flush_write() is called. |
| */ |
| if (nr == BTREE_FLUSH_NR) |
| break; |
| } |
| mutex_unlock(&c->bucket_lock); |
| |
| for (i = 0; i < nr; i++) { |
| b = btree_nodes[i]; |
| if (!b) { |
| pr_err("BUG: btree_nodes[%d] is NULL\n", i); |
| continue; |
| } |
| |
| /* safe to check without holding b->write_lock */ |
| if (!btree_node_journal_flush(b)) { |
| pr_err("BUG: bnode %p: journal_flush bit cleaned\n", b); |
| continue; |
| } |
| |
| mutex_lock(&b->write_lock); |
| if (!btree_current_write(b)->journal) { |
| clear_bit(BTREE_NODE_journal_flush, &b->flags); |
| mutex_unlock(&b->write_lock); |
| pr_debug("bnode %p: written by others\n", b); |
| continue; |
| } |
| |
| if (!btree_node_dirty(b)) { |
| clear_bit(BTREE_NODE_journal_flush, &b->flags); |
| mutex_unlock(&b->write_lock); |
| pr_debug("bnode %p: dirty bit cleaned by others\n", b); |
| continue; |
| } |
| |
| __bch_btree_node_write(b, NULL); |
| clear_bit(BTREE_NODE_journal_flush, &b->flags); |
| mutex_unlock(&b->write_lock); |
| } |
| |
| out: |
| spin_lock(&c->journal.flush_write_lock); |
| c->journal.btree_flushing = false; |
| spin_unlock(&c->journal.flush_write_lock); |
| } |
| |
| #define last_seq(j) ((j)->seq - fifo_used(&(j)->pin) + 1) |
| |
| static void journal_discard_endio(struct bio *bio) |
| { |
| struct journal_device *ja = |
| container_of(bio, struct journal_device, discard_bio); |
| struct cache *ca = container_of(ja, struct cache, journal); |
| |
| atomic_set(&ja->discard_in_flight, DISCARD_DONE); |
| |
| closure_wake_up(&ca->set->journal.wait); |
| closure_put(&ca->set->cl); |
| } |
| |
| static void journal_discard_work(struct work_struct *work) |
| { |
| struct journal_device *ja = |
| container_of(work, struct journal_device, discard_work); |
| |
| submit_bio(&ja->discard_bio); |
| } |
| |
| static void do_journal_discard(struct cache *ca) |
| { |
| struct journal_device *ja = &ca->journal; |
| struct bio *bio = &ja->discard_bio; |
| |
| if (!ca->discard) { |
| ja->discard_idx = ja->last_idx; |
| return; |
| } |
| |
| switch (atomic_read(&ja->discard_in_flight)) { |
| case DISCARD_IN_FLIGHT: |
| return; |
| |
| case DISCARD_DONE: |
| ja->discard_idx = (ja->discard_idx + 1) % |
| ca->sb.njournal_buckets; |
| |
| atomic_set(&ja->discard_in_flight, DISCARD_READY); |
| fallthrough; |
| |
| case DISCARD_READY: |
| if (ja->discard_idx == ja->last_idx) |
| return; |
| |
| atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT); |
| |
| bio_init(bio, ca->bdev, bio->bi_inline_vecs, 1, REQ_OP_DISCARD); |
| bio->bi_iter.bi_sector = bucket_to_sector(ca->set, |
| ca->sb.d[ja->discard_idx]); |
| bio->bi_iter.bi_size = bucket_bytes(ca); |
| bio->bi_end_io = journal_discard_endio; |
| |
| closure_get(&ca->set->cl); |
| INIT_WORK(&ja->discard_work, journal_discard_work); |
| queue_work(bch_journal_wq, &ja->discard_work); |
| } |
| } |
| |
| static unsigned int free_journal_buckets(struct cache_set *c) |
| { |
| struct journal *j = &c->journal; |
| struct cache *ca = c->cache; |
| struct journal_device *ja = &c->cache->journal; |
| unsigned int n; |
| |
| /* In case njournal_buckets is not power of 2 */ |
| if (ja->cur_idx >= ja->discard_idx) |
| n = ca->sb.njournal_buckets + ja->discard_idx - ja->cur_idx; |
| else |
| n = ja->discard_idx - ja->cur_idx; |
| |
| if (n > (1 + j->do_reserve)) |
| return n - (1 + j->do_reserve); |
| |
| return 0; |
| } |
| |
| static void journal_reclaim(struct cache_set *c) |
| { |
| struct bkey *k = &c->journal.key; |
| struct cache *ca = c->cache; |
| uint64_t last_seq; |
| struct journal_device *ja = &ca->journal; |
| atomic_t p __maybe_unused; |
| |
| atomic_long_inc(&c->reclaim); |
| |
| while (!atomic_read(&fifo_front(&c->journal.pin))) |
| fifo_pop(&c->journal.pin, p); |
| |
| last_seq = last_seq(&c->journal); |
| |
| /* Update last_idx */ |
| |
| while (ja->last_idx != ja->cur_idx && |
| ja->seq[ja->last_idx] < last_seq) |
| ja->last_idx = (ja->last_idx + 1) % |
| ca->sb.njournal_buckets; |
| |
| do_journal_discard(ca); |
| |
| if (c->journal.blocks_free) |
| goto out; |
| |
| if (!free_journal_buckets(c)) |
| goto out; |
| |
| ja->cur_idx = (ja->cur_idx + 1) % ca->sb.njournal_buckets; |
| k->ptr[0] = MAKE_PTR(0, |
| bucket_to_sector(c, ca->sb.d[ja->cur_idx]), |
| ca->sb.nr_this_dev); |
| atomic_long_inc(&c->reclaimed_journal_buckets); |
| |
| bkey_init(k); |
| SET_KEY_PTRS(k, 1); |
| c->journal.blocks_free = ca->sb.bucket_size >> c->block_bits; |
| |
| out: |
| if (!journal_full(&c->journal)) |
| __closure_wake_up(&c->journal.wait); |
| } |
| |
| void bch_journal_next(struct journal *j) |
| { |
| atomic_t p = { 1 }; |
| |
| j->cur = (j->cur == j->w) |
| ? &j->w[1] |
| : &j->w[0]; |
| |
| /* |
| * The fifo_push() needs to happen at the same time as j->seq is |
| * incremented for last_seq() to be calculated correctly |
| */ |
| BUG_ON(!fifo_push(&j->pin, p)); |
| atomic_set(&fifo_back(&j->pin), 1); |
| |
| j->cur->data->seq = ++j->seq; |
| j->cur->dirty = false; |
| j->cur->need_write = false; |
| j->cur->data->keys = 0; |
| |
| if (fifo_full(&j->pin)) |
| pr_debug("journal_pin full (%zu)\n", fifo_used(&j->pin)); |
| } |
| |
| static void journal_write_endio(struct bio *bio) |
| { |
| struct journal_write *w = bio->bi_private; |
| |
| cache_set_err_on(bio->bi_status, w->c, "journal io error"); |
| closure_put(&w->c->journal.io); |
| } |
| |
| static void journal_write(struct closure *cl); |
| |
| static void journal_write_done(struct closure *cl) |
| { |
| struct journal *j = container_of(cl, struct journal, io); |
| struct journal_write *w = (j->cur == j->w) |
| ? &j->w[1] |
| : &j->w[0]; |
| |
| __closure_wake_up(&w->wait); |
| continue_at_nobarrier(cl, journal_write, bch_journal_wq); |
| } |
| |
| static void journal_write_unlock(struct closure *cl) |
| __releases(&c->journal.lock) |
| { |
| struct cache_set *c = container_of(cl, struct cache_set, journal.io); |
| |
| c->journal.io_in_flight = 0; |
| spin_unlock(&c->journal.lock); |
| } |
| |
| static void journal_write_unlocked(struct closure *cl) |
| __releases(c->journal.lock) |
| { |
| struct cache_set *c = container_of(cl, struct cache_set, journal.io); |
| struct cache *ca = c->cache; |
| struct journal_write *w = c->journal.cur; |
| struct bkey *k = &c->journal.key; |
| unsigned int i, sectors = set_blocks(w->data, block_bytes(ca)) * |
| ca->sb.block_size; |
| |
| struct bio *bio; |
| struct bio_list list; |
| |
| bio_list_init(&list); |
| |
| if (!w->need_write) { |
| closure_return_with_destructor(cl, journal_write_unlock); |
| return; |
| } else if (journal_full(&c->journal)) { |
| journal_reclaim(c); |
| spin_unlock(&c->journal.lock); |
| |
| btree_flush_write(c); |
| continue_at(cl, journal_write, bch_journal_wq); |
| return; |
| } |
| |
| c->journal.blocks_free -= set_blocks(w->data, block_bytes(ca)); |
| |
| w->data->btree_level = c->root->level; |
| |
| bkey_copy(&w->data->btree_root, &c->root->key); |
| bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket); |
| |
| w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0]; |
| w->data->magic = jset_magic(&ca->sb); |
| w->data->version = BCACHE_JSET_VERSION; |
| w->data->last_seq = last_seq(&c->journal); |
| w->data->csum = csum_set(w->data); |
| |
| for (i = 0; i < KEY_PTRS(k); i++) { |
| ca = c->cache; |
| bio = &ca->journal.bio; |
| |
| atomic_long_add(sectors, &ca->meta_sectors_written); |
| |
| bio_reset(bio, ca->bdev, REQ_OP_WRITE | |
| REQ_SYNC | REQ_META | REQ_PREFLUSH | REQ_FUA); |
| bio->bi_iter.bi_sector = PTR_OFFSET(k, i); |
| bio->bi_iter.bi_size = sectors << 9; |
| |
| bio->bi_end_io = journal_write_endio; |
| bio->bi_private = w; |
| bch_bio_map(bio, w->data); |
| |
| trace_bcache_journal_write(bio, w->data->keys); |
| bio_list_add(&list, bio); |
| |
| SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors); |
| |
| ca->journal.seq[ca->journal.cur_idx] = w->data->seq; |
| } |
| |
| /* If KEY_PTRS(k) == 0, this jset gets lost in air */ |
| BUG_ON(i == 0); |
| |
| atomic_dec_bug(&fifo_back(&c->journal.pin)); |
| bch_journal_next(&c->journal); |
| journal_reclaim(c); |
| |
| spin_unlock(&c->journal.lock); |
| |
| while ((bio = bio_list_pop(&list))) |
| closure_bio_submit(c, bio, cl); |
| |
| continue_at(cl, journal_write_done, NULL); |
| } |
| |
| static void journal_write(struct closure *cl) |
| { |
| struct cache_set *c = container_of(cl, struct cache_set, journal.io); |
| |
| spin_lock(&c->journal.lock); |
| journal_write_unlocked(cl); |
| } |
| |
| static void journal_try_write(struct cache_set *c) |
| __releases(c->journal.lock) |
| { |
| struct closure *cl = &c->journal.io; |
| struct journal_write *w = c->journal.cur; |
| |
| w->need_write = true; |
| |
| if (!c->journal.io_in_flight) { |
| c->journal.io_in_flight = 1; |
| closure_call(cl, journal_write_unlocked, NULL, &c->cl); |
| } else { |
| spin_unlock(&c->journal.lock); |
| } |
| } |
| |
| static struct journal_write *journal_wait_for_write(struct cache_set *c, |
| unsigned int nkeys) |
| __acquires(&c->journal.lock) |
| { |
| size_t sectors; |
| struct closure cl; |
| bool wait = false; |
| struct cache *ca = c->cache; |
| |
| closure_init_stack(&cl); |
| |
| spin_lock(&c->journal.lock); |
| |
| while (1) { |
| struct journal_write *w = c->journal.cur; |
| |
| sectors = __set_blocks(w->data, w->data->keys + nkeys, |
| block_bytes(ca)) * ca->sb.block_size; |
| |
| if (sectors <= min_t(size_t, |
| c->journal.blocks_free * ca->sb.block_size, |
| PAGE_SECTORS << JSET_BITS)) |
| return w; |
| |
| if (wait) |
| closure_wait(&c->journal.wait, &cl); |
| |
| if (!journal_full(&c->journal)) { |
| if (wait) |
| trace_bcache_journal_entry_full(c); |
| |
| /* |
| * XXX: If we were inserting so many keys that they |
| * won't fit in an _empty_ journal write, we'll |
| * deadlock. For now, handle this in |
| * bch_keylist_realloc() - but something to think about. |
| */ |
| BUG_ON(!w->data->keys); |
| |
| journal_try_write(c); /* unlocks */ |
| } else { |
| if (wait) |
| trace_bcache_journal_full(c); |
| |
| journal_reclaim(c); |
| spin_unlock(&c->journal.lock); |
| |
| btree_flush_write(c); |
| } |
| |
| closure_sync(&cl); |
| spin_lock(&c->journal.lock); |
| wait = true; |
| } |
| } |
| |
| static void journal_write_work(struct work_struct *work) |
| { |
| struct cache_set *c = container_of(to_delayed_work(work), |
| struct cache_set, |
| journal.work); |
| spin_lock(&c->journal.lock); |
| if (c->journal.cur->dirty) |
| journal_try_write(c); |
| else |
| spin_unlock(&c->journal.lock); |
| } |
| |
| /* |
| * Entry point to the journalling code - bio_insert() and btree_invalidate() |
| * pass bch_journal() a list of keys to be journalled, and then |
| * bch_journal() hands those same keys off to btree_insert_async() |
| */ |
| |
| atomic_t *bch_journal(struct cache_set *c, |
| struct keylist *keys, |
| struct closure *parent) |
| { |
| struct journal_write *w; |
| atomic_t *ret; |
| |
| /* No journaling if CACHE_SET_IO_DISABLE set already */ |
| if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags))) |
| return NULL; |
| |
| if (!CACHE_SYNC(&c->cache->sb)) |
| return NULL; |
| |
| w = journal_wait_for_write(c, bch_keylist_nkeys(keys)); |
| |
| memcpy(bset_bkey_last(w->data), keys->keys, bch_keylist_bytes(keys)); |
| w->data->keys += bch_keylist_nkeys(keys); |
| |
| ret = &fifo_back(&c->journal.pin); |
| atomic_inc(ret); |
| |
| if (parent) { |
| closure_wait(&w->wait, parent); |
| journal_try_write(c); |
| } else if (!w->dirty) { |
| w->dirty = true; |
| queue_delayed_work(bch_flush_wq, &c->journal.work, |
| msecs_to_jiffies(c->journal_delay_ms)); |
| spin_unlock(&c->journal.lock); |
| } else { |
| spin_unlock(&c->journal.lock); |
| } |
| |
| |
| return ret; |
| } |
| |
| void bch_journal_meta(struct cache_set *c, struct closure *cl) |
| { |
| struct keylist keys; |
| atomic_t *ref; |
| |
| bch_keylist_init(&keys); |
| |
| ref = bch_journal(c, &keys, cl); |
| if (ref) |
| atomic_dec_bug(ref); |
| } |
| |
| void bch_journal_free(struct cache_set *c) |
| { |
| free_pages((unsigned long) c->journal.w[1].data, JSET_BITS); |
| free_pages((unsigned long) c->journal.w[0].data, JSET_BITS); |
| free_fifo(&c->journal.pin); |
| } |
| |
| int bch_journal_alloc(struct cache_set *c) |
| { |
| struct journal *j = &c->journal; |
| |
| spin_lock_init(&j->lock); |
| spin_lock_init(&j->flush_write_lock); |
| INIT_DELAYED_WORK(&j->work, journal_write_work); |
| |
| c->journal_delay_ms = 100; |
| |
| j->w[0].c = c; |
| j->w[1].c = c; |
| |
| if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) || |
| !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL|__GFP_COMP, JSET_BITS)) || |
| !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL|__GFP_COMP, JSET_BITS))) |
| return -ENOMEM; |
| |
| return 0; |
| } |