| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2012 Alexander Block. All rights reserved. |
| */ |
| |
| #include <linux/bsearch.h> |
| #include <linux/fs.h> |
| #include <linux/file.h> |
| #include <linux/sort.h> |
| #include <linux/mount.h> |
| #include <linux/xattr.h> |
| #include <linux/posix_acl_xattr.h> |
| #include <linux/radix-tree.h> |
| #include <linux/vmalloc.h> |
| #include <linux/string.h> |
| #include <linux/compat.h> |
| #include <linux/crc32c.h> |
| #include <linux/fsverity.h> |
| |
| #include "send.h" |
| #include "ctree.h" |
| #include "backref.h" |
| #include "locking.h" |
| #include "disk-io.h" |
| #include "btrfs_inode.h" |
| #include "transaction.h" |
| #include "compression.h" |
| #include "print-tree.h" |
| #include "accessors.h" |
| #include "dir-item.h" |
| #include "file-item.h" |
| #include "ioctl.h" |
| #include "verity.h" |
| #include "lru_cache.h" |
| |
| /* |
| * Maximum number of references an extent can have in order for us to attempt to |
| * issue clone operations instead of write operations. This currently exists to |
| * avoid hitting limitations of the backreference walking code (taking a lot of |
| * time and using too much memory for extents with large number of references). |
| */ |
| #define SEND_MAX_EXTENT_REFS 1024 |
| |
| /* |
| * A fs_path is a helper to dynamically build path names with unknown size. |
| * It reallocates the internal buffer on demand. |
| * It allows fast adding of path elements on the right side (normal path) and |
| * fast adding to the left side (reversed path). A reversed path can also be |
| * unreversed if needed. |
| */ |
| struct fs_path { |
| union { |
| struct { |
| char *start; |
| char *end; |
| |
| char *buf; |
| unsigned short buf_len:15; |
| unsigned short reversed:1; |
| char inline_buf[]; |
| }; |
| /* |
| * Average path length does not exceed 200 bytes, we'll have |
| * better packing in the slab and higher chance to satisfy |
| * a allocation later during send. |
| */ |
| char pad[256]; |
| }; |
| }; |
| #define FS_PATH_INLINE_SIZE \ |
| (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) |
| |
| |
| /* reused for each extent */ |
| struct clone_root { |
| struct btrfs_root *root; |
| u64 ino; |
| u64 offset; |
| u64 num_bytes; |
| bool found_ref; |
| }; |
| |
| #define SEND_MAX_NAME_CACHE_SIZE 256 |
| |
| /* |
| * Limit the root_ids array of struct backref_cache_entry to 17 elements. |
| * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which |
| * can be satisfied from the kmalloc-192 slab, without wasting any space. |
| * The most common case is to have a single root for cloning, which corresponds |
| * to the send root. Having the user specify more than 16 clone roots is not |
| * common, and in such rare cases we simply don't use caching if the number of |
| * cloning roots that lead down to a leaf is more than 17. |
| */ |
| #define SEND_MAX_BACKREF_CACHE_ROOTS 17 |
| |
| /* |
| * Max number of entries in the cache. |
| * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding |
| * maple tree's internal nodes, is 24K. |
| */ |
| #define SEND_MAX_BACKREF_CACHE_SIZE 128 |
| |
| /* |
| * A backref cache entry maps a leaf to a list of IDs of roots from which the |
| * leaf is accessible and we can use for clone operations. |
| * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on |
| * x86_64). |
| */ |
| struct backref_cache_entry { |
| struct btrfs_lru_cache_entry entry; |
| u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS]; |
| /* Number of valid elements in the root_ids array. */ |
| int num_roots; |
| }; |
| |
| /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */ |
| static_assert(offsetof(struct backref_cache_entry, entry) == 0); |
| |
| /* |
| * Max number of entries in the cache that stores directories that were already |
| * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses |
| * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but |
| * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64). |
| */ |
| #define SEND_MAX_DIR_CREATED_CACHE_SIZE 64 |
| |
| /* |
| * Max number of entries in the cache that stores directories that were already |
| * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses |
| * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but |
| * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64). |
| */ |
| #define SEND_MAX_DIR_UTIMES_CACHE_SIZE 64 |
| |
| struct send_ctx { |
| struct file *send_filp; |
| loff_t send_off; |
| char *send_buf; |
| u32 send_size; |
| u32 send_max_size; |
| /* |
| * Whether BTRFS_SEND_A_DATA attribute was already added to current |
| * command (since protocol v2, data must be the last attribute). |
| */ |
| bool put_data; |
| struct page **send_buf_pages; |
| u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ |
| /* Protocol version compatibility requested */ |
| u32 proto; |
| |
| struct btrfs_root *send_root; |
| struct btrfs_root *parent_root; |
| struct clone_root *clone_roots; |
| int clone_roots_cnt; |
| |
| /* current state of the compare_tree call */ |
| struct btrfs_path *left_path; |
| struct btrfs_path *right_path; |
| struct btrfs_key *cmp_key; |
| |
| /* |
| * Keep track of the generation of the last transaction that was used |
| * for relocating a block group. This is periodically checked in order |
| * to detect if a relocation happened since the last check, so that we |
| * don't operate on stale extent buffers for nodes (level >= 1) or on |
| * stale disk_bytenr values of file extent items. |
| */ |
| u64 last_reloc_trans; |
| |
| /* |
| * infos of the currently processed inode. In case of deleted inodes, |
| * these are the values from the deleted inode. |
| */ |
| u64 cur_ino; |
| u64 cur_inode_gen; |
| u64 cur_inode_size; |
| u64 cur_inode_mode; |
| u64 cur_inode_rdev; |
| u64 cur_inode_last_extent; |
| u64 cur_inode_next_write_offset; |
| bool cur_inode_new; |
| bool cur_inode_new_gen; |
| bool cur_inode_deleted; |
| bool ignore_cur_inode; |
| bool cur_inode_needs_verity; |
| void *verity_descriptor; |
| |
| u64 send_progress; |
| |
| struct list_head new_refs; |
| struct list_head deleted_refs; |
| |
| struct btrfs_lru_cache name_cache; |
| |
| /* |
| * The inode we are currently processing. It's not NULL only when we |
| * need to issue write commands for data extents from this inode. |
| */ |
| struct inode *cur_inode; |
| struct file_ra_state ra; |
| u64 page_cache_clear_start; |
| bool clean_page_cache; |
| |
| /* |
| * We process inodes by their increasing order, so if before an |
| * incremental send we reverse the parent/child relationship of |
| * directories such that a directory with a lower inode number was |
| * the parent of a directory with a higher inode number, and the one |
| * becoming the new parent got renamed too, we can't rename/move the |
| * directory with lower inode number when we finish processing it - we |
| * must process the directory with higher inode number first, then |
| * rename/move it and then rename/move the directory with lower inode |
| * number. Example follows. |
| * |
| * Tree state when the first send was performed: |
| * |
| * . |
| * |-- a (ino 257) |
| * |-- b (ino 258) |
| * | |
| * | |
| * |-- c (ino 259) |
| * | |-- d (ino 260) |
| * | |
| * |-- c2 (ino 261) |
| * |
| * Tree state when the second (incremental) send is performed: |
| * |
| * . |
| * |-- a (ino 257) |
| * |-- b (ino 258) |
| * |-- c2 (ino 261) |
| * |-- d2 (ino 260) |
| * |-- cc (ino 259) |
| * |
| * The sequence of steps that lead to the second state was: |
| * |
| * mv /a/b/c/d /a/b/c2/d2 |
| * mv /a/b/c /a/b/c2/d2/cc |
| * |
| * "c" has lower inode number, but we can't move it (2nd mv operation) |
| * before we move "d", which has higher inode number. |
| * |
| * So we just memorize which move/rename operations must be performed |
| * later when their respective parent is processed and moved/renamed. |
| */ |
| |
| /* Indexed by parent directory inode number. */ |
| struct rb_root pending_dir_moves; |
| |
| /* |
| * Reverse index, indexed by the inode number of a directory that |
| * is waiting for the move/rename of its immediate parent before its |
| * own move/rename can be performed. |
| */ |
| struct rb_root waiting_dir_moves; |
| |
| /* |
| * A directory that is going to be rm'ed might have a child directory |
| * which is in the pending directory moves index above. In this case, |
| * the directory can only be removed after the move/rename of its child |
| * is performed. Example: |
| * |
| * Parent snapshot: |
| * |
| * . (ino 256) |
| * |-- a/ (ino 257) |
| * |-- b/ (ino 258) |
| * |-- c/ (ino 259) |
| * | |-- x/ (ino 260) |
| * | |
| * |-- y/ (ino 261) |
| * |
| * Send snapshot: |
| * |
| * . (ino 256) |
| * |-- a/ (ino 257) |
| * |-- b/ (ino 258) |
| * |-- YY/ (ino 261) |
| * |-- x/ (ino 260) |
| * |
| * Sequence of steps that lead to the send snapshot: |
| * rm -f /a/b/c/foo.txt |
| * mv /a/b/y /a/b/YY |
| * mv /a/b/c/x /a/b/YY |
| * rmdir /a/b/c |
| * |
| * When the child is processed, its move/rename is delayed until its |
| * parent is processed (as explained above), but all other operations |
| * like update utimes, chown, chgrp, etc, are performed and the paths |
| * that it uses for those operations must use the orphanized name of |
| * its parent (the directory we're going to rm later), so we need to |
| * memorize that name. |
| * |
| * Indexed by the inode number of the directory to be deleted. |
| */ |
| struct rb_root orphan_dirs; |
| |
| struct rb_root rbtree_new_refs; |
| struct rb_root rbtree_deleted_refs; |
| |
| struct btrfs_lru_cache backref_cache; |
| u64 backref_cache_last_reloc_trans; |
| |
| struct btrfs_lru_cache dir_created_cache; |
| struct btrfs_lru_cache dir_utimes_cache; |
| }; |
| |
| struct pending_dir_move { |
| struct rb_node node; |
| struct list_head list; |
| u64 parent_ino; |
| u64 ino; |
| u64 gen; |
| struct list_head update_refs; |
| }; |
| |
| struct waiting_dir_move { |
| struct rb_node node; |
| u64 ino; |
| /* |
| * There might be some directory that could not be removed because it |
| * was waiting for this directory inode to be moved first. Therefore |
| * after this directory is moved, we can try to rmdir the ino rmdir_ino. |
| */ |
| u64 rmdir_ino; |
| u64 rmdir_gen; |
| bool orphanized; |
| }; |
| |
| struct orphan_dir_info { |
| struct rb_node node; |
| u64 ino; |
| u64 gen; |
| u64 last_dir_index_offset; |
| u64 dir_high_seq_ino; |
| }; |
| |
| struct name_cache_entry { |
| /* |
| * The key in the entry is an inode number, and the generation matches |
| * the inode's generation. |
| */ |
| struct btrfs_lru_cache_entry entry; |
| u64 parent_ino; |
| u64 parent_gen; |
| int ret; |
| int need_later_update; |
| int name_len; |
| char name[]; |
| }; |
| |
| /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */ |
| static_assert(offsetof(struct name_cache_entry, entry) == 0); |
| |
| #define ADVANCE 1 |
| #define ADVANCE_ONLY_NEXT -1 |
| |
| enum btrfs_compare_tree_result { |
| BTRFS_COMPARE_TREE_NEW, |
| BTRFS_COMPARE_TREE_DELETED, |
| BTRFS_COMPARE_TREE_CHANGED, |
| BTRFS_COMPARE_TREE_SAME, |
| }; |
| |
| __cold |
| static void inconsistent_snapshot_error(struct send_ctx *sctx, |
| enum btrfs_compare_tree_result result, |
| const char *what) |
| { |
| const char *result_string; |
| |
| switch (result) { |
| case BTRFS_COMPARE_TREE_NEW: |
| result_string = "new"; |
| break; |
| case BTRFS_COMPARE_TREE_DELETED: |
| result_string = "deleted"; |
| break; |
| case BTRFS_COMPARE_TREE_CHANGED: |
| result_string = "updated"; |
| break; |
| case BTRFS_COMPARE_TREE_SAME: |
| ASSERT(0); |
| result_string = "unchanged"; |
| break; |
| default: |
| ASSERT(0); |
| result_string = "unexpected"; |
| } |
| |
| btrfs_err(sctx->send_root->fs_info, |
| "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", |
| result_string, what, sctx->cmp_key->objectid, |
| btrfs_root_id(sctx->send_root), |
| (sctx->parent_root ? btrfs_root_id(sctx->parent_root) : 0)); |
| } |
| |
| __maybe_unused |
| static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd) |
| { |
| switch (sctx->proto) { |
| case 1: return cmd <= BTRFS_SEND_C_MAX_V1; |
| case 2: return cmd <= BTRFS_SEND_C_MAX_V2; |
| case 3: return cmd <= BTRFS_SEND_C_MAX_V3; |
| default: return false; |
| } |
| } |
| |
| static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); |
| |
| static struct waiting_dir_move * |
| get_waiting_dir_move(struct send_ctx *sctx, u64 ino); |
| |
| static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen); |
| |
| static int need_send_hole(struct send_ctx *sctx) |
| { |
| return (sctx->parent_root && !sctx->cur_inode_new && |
| !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && |
| S_ISREG(sctx->cur_inode_mode)); |
| } |
| |
| static void fs_path_reset(struct fs_path *p) |
| { |
| if (p->reversed) { |
| p->start = p->buf + p->buf_len - 1; |
| p->end = p->start; |
| *p->start = 0; |
| } else { |
| p->start = p->buf; |
| p->end = p->start; |
| *p->start = 0; |
| } |
| } |
| |
| static struct fs_path *fs_path_alloc(void) |
| { |
| struct fs_path *p; |
| |
| p = kmalloc(sizeof(*p), GFP_KERNEL); |
| if (!p) |
| return NULL; |
| p->reversed = 0; |
| p->buf = p->inline_buf; |
| p->buf_len = FS_PATH_INLINE_SIZE; |
| fs_path_reset(p); |
| return p; |
| } |
| |
| static struct fs_path *fs_path_alloc_reversed(void) |
| { |
| struct fs_path *p; |
| |
| p = fs_path_alloc(); |
| if (!p) |
| return NULL; |
| p->reversed = 1; |
| fs_path_reset(p); |
| return p; |
| } |
| |
| static void fs_path_free(struct fs_path *p) |
| { |
| if (!p) |
| return; |
| if (p->buf != p->inline_buf) |
| kfree(p->buf); |
| kfree(p); |
| } |
| |
| static int fs_path_len(struct fs_path *p) |
| { |
| return p->end - p->start; |
| } |
| |
| static int fs_path_ensure_buf(struct fs_path *p, int len) |
| { |
| char *tmp_buf; |
| int path_len; |
| int old_buf_len; |
| |
| len++; |
| |
| if (p->buf_len >= len) |
| return 0; |
| |
| if (len > PATH_MAX) { |
| WARN_ON(1); |
| return -ENOMEM; |
| } |
| |
| path_len = p->end - p->start; |
| old_buf_len = p->buf_len; |
| |
| /* |
| * Allocate to the next largest kmalloc bucket size, to let |
| * the fast path happen most of the time. |
| */ |
| len = kmalloc_size_roundup(len); |
| /* |
| * First time the inline_buf does not suffice |
| */ |
| if (p->buf == p->inline_buf) { |
| tmp_buf = kmalloc(len, GFP_KERNEL); |
| if (tmp_buf) |
| memcpy(tmp_buf, p->buf, old_buf_len); |
| } else { |
| tmp_buf = krealloc(p->buf, len, GFP_KERNEL); |
| } |
| if (!tmp_buf) |
| return -ENOMEM; |
| p->buf = tmp_buf; |
| p->buf_len = len; |
| |
| if (p->reversed) { |
| tmp_buf = p->buf + old_buf_len - path_len - 1; |
| p->end = p->buf + p->buf_len - 1; |
| p->start = p->end - path_len; |
| memmove(p->start, tmp_buf, path_len + 1); |
| } else { |
| p->start = p->buf; |
| p->end = p->start + path_len; |
| } |
| return 0; |
| } |
| |
| static int fs_path_prepare_for_add(struct fs_path *p, int name_len, |
| char **prepared) |
| { |
| int ret; |
| int new_len; |
| |
| new_len = p->end - p->start + name_len; |
| if (p->start != p->end) |
| new_len++; |
| ret = fs_path_ensure_buf(p, new_len); |
| if (ret < 0) |
| goto out; |
| |
| if (p->reversed) { |
| if (p->start != p->end) |
| *--p->start = '/'; |
| p->start -= name_len; |
| *prepared = p->start; |
| } else { |
| if (p->start != p->end) |
| *p->end++ = '/'; |
| *prepared = p->end; |
| p->end += name_len; |
| *p->end = 0; |
| } |
| |
| out: |
| return ret; |
| } |
| |
| static int fs_path_add(struct fs_path *p, const char *name, int name_len) |
| { |
| int ret; |
| char *prepared; |
| |
| ret = fs_path_prepare_for_add(p, name_len, &prepared); |
| if (ret < 0) |
| goto out; |
| memcpy(prepared, name, name_len); |
| |
| out: |
| return ret; |
| } |
| |
| static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) |
| { |
| int ret; |
| char *prepared; |
| |
| ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); |
| if (ret < 0) |
| goto out; |
| memcpy(prepared, p2->start, p2->end - p2->start); |
| |
| out: |
| return ret; |
| } |
| |
| static int fs_path_add_from_extent_buffer(struct fs_path *p, |
| struct extent_buffer *eb, |
| unsigned long off, int len) |
| { |
| int ret; |
| char *prepared; |
| |
| ret = fs_path_prepare_for_add(p, len, &prepared); |
| if (ret < 0) |
| goto out; |
| |
| read_extent_buffer(eb, prepared, off, len); |
| |
| out: |
| return ret; |
| } |
| |
| static int fs_path_copy(struct fs_path *p, struct fs_path *from) |
| { |
| p->reversed = from->reversed; |
| fs_path_reset(p); |
| |
| return fs_path_add_path(p, from); |
| } |
| |
| static void fs_path_unreverse(struct fs_path *p) |
| { |
| char *tmp; |
| int len; |
| |
| if (!p->reversed) |
| return; |
| |
| tmp = p->start; |
| len = p->end - p->start; |
| p->start = p->buf; |
| p->end = p->start + len; |
| memmove(p->start, tmp, len + 1); |
| p->reversed = 0; |
| } |
| |
| static struct btrfs_path *alloc_path_for_send(void) |
| { |
| struct btrfs_path *path; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return NULL; |
| path->search_commit_root = 1; |
| path->skip_locking = 1; |
| path->need_commit_sem = 1; |
| return path; |
| } |
| |
| static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) |
| { |
| int ret; |
| u32 pos = 0; |
| |
| while (pos < len) { |
| ret = kernel_write(filp, buf + pos, len - pos, off); |
| if (ret < 0) |
| return ret; |
| if (ret == 0) |
| return -EIO; |
| pos += ret; |
| } |
| |
| return 0; |
| } |
| |
| static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) |
| { |
| struct btrfs_tlv_header *hdr; |
| int total_len = sizeof(*hdr) + len; |
| int left = sctx->send_max_size - sctx->send_size; |
| |
| if (WARN_ON_ONCE(sctx->put_data)) |
| return -EINVAL; |
| |
| if (unlikely(left < total_len)) |
| return -EOVERFLOW; |
| |
| hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); |
| put_unaligned_le16(attr, &hdr->tlv_type); |
| put_unaligned_le16(len, &hdr->tlv_len); |
| memcpy(hdr + 1, data, len); |
| sctx->send_size += total_len; |
| |
| return 0; |
| } |
| |
| #define TLV_PUT_DEFINE_INT(bits) \ |
| static int tlv_put_u##bits(struct send_ctx *sctx, \ |
| u##bits attr, u##bits value) \ |
| { \ |
| __le##bits __tmp = cpu_to_le##bits(value); \ |
| return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ |
| } |
| |
| TLV_PUT_DEFINE_INT(8) |
| TLV_PUT_DEFINE_INT(32) |
| TLV_PUT_DEFINE_INT(64) |
| |
| static int tlv_put_string(struct send_ctx *sctx, u16 attr, |
| const char *str, int len) |
| { |
| if (len == -1) |
| len = strlen(str); |
| return tlv_put(sctx, attr, str, len); |
| } |
| |
| static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, |
| const u8 *uuid) |
| { |
| return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); |
| } |
| |
| static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, |
| struct extent_buffer *eb, |
| struct btrfs_timespec *ts) |
| { |
| struct btrfs_timespec bts; |
| read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); |
| return tlv_put(sctx, attr, &bts, sizeof(bts)); |
| } |
| |
| |
| #define TLV_PUT(sctx, attrtype, data, attrlen) \ |
| do { \ |
| ret = tlv_put(sctx, attrtype, data, attrlen); \ |
| if (ret < 0) \ |
| goto tlv_put_failure; \ |
| } while (0) |
| |
| #define TLV_PUT_INT(sctx, attrtype, bits, value) \ |
| do { \ |
| ret = tlv_put_u##bits(sctx, attrtype, value); \ |
| if (ret < 0) \ |
| goto tlv_put_failure; \ |
| } while (0) |
| |
| #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) |
| #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) |
| #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) |
| #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) |
| #define TLV_PUT_STRING(sctx, attrtype, str, len) \ |
| do { \ |
| ret = tlv_put_string(sctx, attrtype, str, len); \ |
| if (ret < 0) \ |
| goto tlv_put_failure; \ |
| } while (0) |
| #define TLV_PUT_PATH(sctx, attrtype, p) \ |
| do { \ |
| ret = tlv_put_string(sctx, attrtype, p->start, \ |
| p->end - p->start); \ |
| if (ret < 0) \ |
| goto tlv_put_failure; \ |
| } while(0) |
| #define TLV_PUT_UUID(sctx, attrtype, uuid) \ |
| do { \ |
| ret = tlv_put_uuid(sctx, attrtype, uuid); \ |
| if (ret < 0) \ |
| goto tlv_put_failure; \ |
| } while (0) |
| #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ |
| do { \ |
| ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ |
| if (ret < 0) \ |
| goto tlv_put_failure; \ |
| } while (0) |
| |
| static int send_header(struct send_ctx *sctx) |
| { |
| struct btrfs_stream_header hdr; |
| |
| strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); |
| hdr.version = cpu_to_le32(sctx->proto); |
| return write_buf(sctx->send_filp, &hdr, sizeof(hdr), |
| &sctx->send_off); |
| } |
| |
| /* |
| * For each command/item we want to send to userspace, we call this function. |
| */ |
| static int begin_cmd(struct send_ctx *sctx, int cmd) |
| { |
| struct btrfs_cmd_header *hdr; |
| |
| if (WARN_ON(!sctx->send_buf)) |
| return -EINVAL; |
| |
| if (unlikely(sctx->send_size != 0)) { |
| btrfs_err(sctx->send_root->fs_info, |
| "send: command header buffer not empty cmd %d offset %llu", |
| cmd, sctx->send_off); |
| return -EINVAL; |
| } |
| |
| sctx->send_size += sizeof(*hdr); |
| hdr = (struct btrfs_cmd_header *)sctx->send_buf; |
| put_unaligned_le16(cmd, &hdr->cmd); |
| |
| return 0; |
| } |
| |
| static int send_cmd(struct send_ctx *sctx) |
| { |
| int ret; |
| struct btrfs_cmd_header *hdr; |
| u32 crc; |
| |
| hdr = (struct btrfs_cmd_header *)sctx->send_buf; |
| put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len); |
| put_unaligned_le32(0, &hdr->crc); |
| |
| crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); |
| put_unaligned_le32(crc, &hdr->crc); |
| |
| ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, |
| &sctx->send_off); |
| |
| sctx->send_size = 0; |
| sctx->put_data = false; |
| |
| return ret; |
| } |
| |
| /* |
| * Sends a move instruction to user space |
| */ |
| static int send_rename(struct send_ctx *sctx, |
| struct fs_path *from, struct fs_path *to) |
| { |
| struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; |
| int ret; |
| |
| btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); |
| |
| ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); |
| if (ret < 0) |
| goto out; |
| |
| TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); |
| TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); |
| |
| ret = send_cmd(sctx); |
| |
| tlv_put_failure: |
| out: |
| return ret; |
| } |
| |
| /* |
| * Sends a link instruction to user space |
| */ |
| static int send_link(struct send_ctx *sctx, |
| struct fs_path *path, struct fs_path *lnk) |
| { |
| struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; |
| int ret; |
| |
| btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); |
| |
| ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); |
| if (ret < 0) |
| goto out; |
| |
| TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); |
| TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); |
| |
| ret = send_cmd(sctx); |
| |
| tlv_put_failure: |
| out: |
| return ret; |
| } |
| |
| /* |
| * Sends an unlink instruction to user space |
| */ |
| static int send_unlink(struct send_ctx *sctx, struct fs_path *path) |
| { |
| struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; |
| int ret; |
| |
| btrfs_debug(fs_info, "send_unlink %s", path->start); |
| |
| ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); |
| if (ret < 0) |
| goto out; |
| |
| TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); |
| |
| ret = send_cmd(sctx); |
| |
| tlv_put_failure: |
| out: |
| return ret; |
| } |
| |
| /* |
| * Sends a rmdir instruction to user space |
| */ |
| static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) |
| { |
| struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; |
| int ret; |
| |
| btrfs_debug(fs_info, "send_rmdir %s", path->start); |
| |
| ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); |
| if (ret < 0) |
| goto out; |
| |
| TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); |
| |
| ret = send_cmd(sctx); |
| |
| tlv_put_failure: |
| out: |
| return ret; |
| } |
| |
| struct btrfs_inode_info { |
| u64 size; |
| u64 gen; |
| u64 mode; |
| u64 uid; |
| u64 gid; |
| u64 rdev; |
| u64 fileattr; |
| u64 nlink; |
| }; |
| |
| /* |
| * Helper function to retrieve some fields from an inode item. |
| */ |
| static int get_inode_info(struct btrfs_root *root, u64 ino, |
| struct btrfs_inode_info *info) |
| { |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_inode_item *ii; |
| struct btrfs_key key; |
| |
| path = alloc_path_for_send(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = ino; |
| key.type = BTRFS_INODE_ITEM_KEY; |
| key.offset = 0; |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret) { |
| if (ret > 0) |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| if (!info) |
| goto out; |
| |
| ii = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_inode_item); |
| info->size = btrfs_inode_size(path->nodes[0], ii); |
| info->gen = btrfs_inode_generation(path->nodes[0], ii); |
| info->mode = btrfs_inode_mode(path->nodes[0], ii); |
| info->uid = btrfs_inode_uid(path->nodes[0], ii); |
| info->gid = btrfs_inode_gid(path->nodes[0], ii); |
| info->rdev = btrfs_inode_rdev(path->nodes[0], ii); |
| info->nlink = btrfs_inode_nlink(path->nodes[0], ii); |
| /* |
| * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's |
| * otherwise logically split to 32/32 parts. |
| */ |
| info->fileattr = btrfs_inode_flags(path->nodes[0], ii); |
| |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen) |
| { |
| int ret; |
| struct btrfs_inode_info info = { 0 }; |
| |
| ASSERT(gen); |
| |
| ret = get_inode_info(root, ino, &info); |
| *gen = info.gen; |
| return ret; |
| } |
| |
| typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, |
| struct fs_path *p, |
| void *ctx); |
| |
| /* |
| * Helper function to iterate the entries in ONE btrfs_inode_ref or |
| * btrfs_inode_extref. |
| * The iterate callback may return a non zero value to stop iteration. This can |
| * be a negative value for error codes or 1 to simply stop it. |
| * |
| * path must point to the INODE_REF or INODE_EXTREF when called. |
| */ |
| static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, |
| struct btrfs_key *found_key, int resolve, |
| iterate_inode_ref_t iterate, void *ctx) |
| { |
| struct extent_buffer *eb = path->nodes[0]; |
| struct btrfs_inode_ref *iref; |
| struct btrfs_inode_extref *extref; |
| struct btrfs_path *tmp_path; |
| struct fs_path *p; |
| u32 cur = 0; |
| u32 total; |
| int slot = path->slots[0]; |
| u32 name_len; |
| char *start; |
| int ret = 0; |
| int num = 0; |
| int index; |
| u64 dir; |
| unsigned long name_off; |
| unsigned long elem_size; |
| unsigned long ptr; |
| |
| p = fs_path_alloc_reversed(); |
| if (!p) |
| return -ENOMEM; |
| |
| tmp_path = alloc_path_for_send(); |
| if (!tmp_path) { |
| fs_path_free(p); |
| return -ENOMEM; |
| } |
| |
| |
| if (found_key->type == BTRFS_INODE_REF_KEY) { |
| ptr = (unsigned long)btrfs_item_ptr(eb, slot, |
| struct btrfs_inode_ref); |
| total = btrfs_item_size(eb, slot); |
| elem_size = sizeof(*iref); |
| } else { |
| ptr = btrfs_item_ptr_offset(eb, slot); |
| total = btrfs_item_size(eb, slot); |
| elem_size = sizeof(*extref); |
| } |
| |
| while (cur < total) { |
| fs_path_reset(p); |
| |
| if (found_key->type == BTRFS_INODE_REF_KEY) { |
| iref = (struct btrfs_inode_ref *)(ptr + cur); |
| name_len = btrfs_inode_ref_name_len(eb, iref); |
| name_off = (unsigned long)(iref + 1); |
| index = btrfs_inode_ref_index(eb, iref); |
| dir = found_key->offset; |
| } else { |
| extref = (struct btrfs_inode_extref *)(ptr + cur); |
| name_len = btrfs_inode_extref_name_len(eb, extref); |
| name_off = (unsigned long)&extref->name; |
| index = btrfs_inode_extref_index(eb, extref); |
| dir = btrfs_inode_extref_parent(eb, extref); |
| } |
| |
| if (resolve) { |
| start = btrfs_ref_to_path(root, tmp_path, name_len, |
| name_off, eb, dir, |
| p->buf, p->buf_len); |
| if (IS_ERR(start)) { |
| ret = PTR_ERR(start); |
| goto out; |
| } |
| if (start < p->buf) { |
| /* overflow , try again with larger buffer */ |
| ret = fs_path_ensure_buf(p, |
| p->buf_len + p->buf - start); |
| if (ret < 0) |
| goto out; |
| start = btrfs_ref_to_path(root, tmp_path, |
| name_len, name_off, |
| eb, dir, |
| p->buf, p->buf_len); |
| if (IS_ERR(start)) { |
| ret = PTR_ERR(start); |
| goto out; |
| } |
| if (unlikely(start < p->buf)) { |
| btrfs_err(root->fs_info, |
| "send: path ref buffer underflow for key (%llu %u %llu)", |
| found_key->objectid, |
| found_key->type, |
| found_key->offset); |
| ret = -EINVAL; |
| goto out; |
| } |
| } |
| p->start = start; |
| } else { |
| ret = fs_path_add_from_extent_buffer(p, eb, name_off, |
| name_len); |
| if (ret < 0) |
| goto out; |
| } |
| |
| cur += elem_size + name_len; |
| ret = iterate(num, dir, index, p, ctx); |
| if (ret) |
| goto out; |
| num++; |
| } |
| |
| out: |
| btrfs_free_path(tmp_path); |
| fs_path_free(p); |
| return ret; |
| } |
| |
| typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, |
| const char *name, int name_len, |
| const char *data, int data_len, |
| void *ctx); |
| |
| /* |
| * Helper function to iterate the entries in ONE btrfs_dir_item. |
| * The iterate callback may return a non zero value to stop iteration. This can |
| * be a negative value for error codes or 1 to simply stop it. |
| * |
| * path must point to the dir item when called. |
| */ |
| static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, |
| iterate_dir_item_t iterate, void *ctx) |
| { |
| int ret = 0; |
| struct extent_buffer *eb; |
| struct btrfs_dir_item *di; |
| struct btrfs_key di_key; |
| char *buf = NULL; |
| int buf_len; |
| u32 name_len; |
| u32 data_len; |
| u32 cur; |
| u32 len; |
| u32 total; |
| int slot; |
| int num; |
| |
| /* |
| * Start with a small buffer (1 page). If later we end up needing more |
| * space, which can happen for xattrs on a fs with a leaf size greater |
| * then the page size, attempt to increase the buffer. Typically xattr |
| * values are small. |
| */ |
| buf_len = PATH_MAX; |
| buf = kmalloc(buf_len, GFP_KERNEL); |
| if (!buf) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| eb = path->nodes[0]; |
| slot = path->slots[0]; |
| di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); |
| cur = 0; |
| len = 0; |
| total = btrfs_item_size(eb, slot); |
| |
| num = 0; |
| while (cur < total) { |
| name_len = btrfs_dir_name_len(eb, di); |
| data_len = btrfs_dir_data_len(eb, di); |
| btrfs_dir_item_key_to_cpu(eb, di, &di_key); |
| |
| if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) { |
| if (name_len > XATTR_NAME_MAX) { |
| ret = -ENAMETOOLONG; |
| goto out; |
| } |
| if (name_len + data_len > |
| BTRFS_MAX_XATTR_SIZE(root->fs_info)) { |
| ret = -E2BIG; |
| goto out; |
| } |
| } else { |
| /* |
| * Path too long |
| */ |
| if (name_len + data_len > PATH_MAX) { |
| ret = -ENAMETOOLONG; |
| goto out; |
| } |
| } |
| |
| if (name_len + data_len > buf_len) { |
| buf_len = name_len + data_len; |
| if (is_vmalloc_addr(buf)) { |
| vfree(buf); |
| buf = NULL; |
| } else { |
| char *tmp = krealloc(buf, buf_len, |
| GFP_KERNEL | __GFP_NOWARN); |
| |
| if (!tmp) |
| kfree(buf); |
| buf = tmp; |
| } |
| if (!buf) { |
| buf = kvmalloc(buf_len, GFP_KERNEL); |
| if (!buf) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| } |
| } |
| |
| read_extent_buffer(eb, buf, (unsigned long)(di + 1), |
| name_len + data_len); |
| |
| len = sizeof(*di) + name_len + data_len; |
| di = (struct btrfs_dir_item *)((char *)di + len); |
| cur += len; |
| |
| ret = iterate(num, &di_key, buf, name_len, buf + name_len, |
| data_len, ctx); |
| if (ret < 0) |
| goto out; |
| if (ret) { |
| ret = 0; |
| goto out; |
| } |
| |
| num++; |
| } |
| |
| out: |
| kvfree(buf); |
| return ret; |
| } |
| |
| static int __copy_first_ref(int num, u64 dir, int index, |
| struct fs_path *p, void *ctx) |
| { |
| int ret; |
| struct fs_path *pt = ctx; |
| |
| ret = fs_path_copy(pt, p); |
| if (ret < 0) |
| return ret; |
| |
| /* we want the first only */ |
| return 1; |
| } |
| |
| /* |
| * Retrieve the first path of an inode. If an inode has more then one |
| * ref/hardlink, this is ignored. |
| */ |
| static int get_inode_path(struct btrfs_root *root, |
| u64 ino, struct fs_path *path) |
| { |
| int ret; |
| struct btrfs_key key, found_key; |
| struct btrfs_path *p; |
| |
| p = alloc_path_for_send(); |
| if (!p) |
| return -ENOMEM; |
| |
| fs_path_reset(path); |
| |
| key.objectid = ino; |
| key.type = BTRFS_INODE_REF_KEY; |
| key.offset = 0; |
| |
| ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); |
| if (ret < 0) |
| goto out; |
| if (ret) { |
| ret = 1; |
| goto out; |
| } |
| btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); |
| if (found_key.objectid != ino || |
| (found_key.type != BTRFS_INODE_REF_KEY && |
| found_key.type != BTRFS_INODE_EXTREF_KEY)) { |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| ret = iterate_inode_ref(root, p, &found_key, 1, |
| __copy_first_ref, path); |
| if (ret < 0) |
| goto out; |
| ret = 0; |
| |
| out: |
| btrfs_free_path(p); |
| return ret; |
| } |
| |
| struct backref_ctx { |
| struct send_ctx *sctx; |
| |
| /* number of total found references */ |
| u64 found; |
| |
| /* |
| * used for clones found in send_root. clones found behind cur_objectid |
| * and cur_offset are not considered as allowed clones. |
| */ |
| u64 cur_objectid; |
| u64 cur_offset; |
| |
| /* may be truncated in case it's the last extent in a file */ |
| u64 extent_len; |
| |
| /* The bytenr the file extent item we are processing refers to. */ |
| u64 bytenr; |
| /* The owner (root id) of the data backref for the current extent. */ |
| u64 backref_owner; |
| /* The offset of the data backref for the current extent. */ |
| u64 backref_offset; |
| }; |
| |
| static int __clone_root_cmp_bsearch(const void *key, const void *elt) |
| { |
| u64 root = (u64)(uintptr_t)key; |
| const struct clone_root *cr = elt; |
| |
| if (root < btrfs_root_id(cr->root)) |
| return -1; |
| if (root > btrfs_root_id(cr->root)) |
| return 1; |
| return 0; |
| } |
| |
| static int __clone_root_cmp_sort(const void *e1, const void *e2) |
| { |
| const struct clone_root *cr1 = e1; |
| const struct clone_root *cr2 = e2; |
| |
| if (btrfs_root_id(cr1->root) < btrfs_root_id(cr2->root)) |
| return -1; |
| if (btrfs_root_id(cr1->root) > btrfs_root_id(cr2->root)) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * Called for every backref that is found for the current extent. |
| * Results are collected in sctx->clone_roots->ino/offset. |
| */ |
| static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id, |
| void *ctx_) |
| { |
| struct backref_ctx *bctx = ctx_; |
| struct clone_root *clone_root; |
| |
| /* First check if the root is in the list of accepted clone sources */ |
| clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots, |
| bctx->sctx->clone_roots_cnt, |
| sizeof(struct clone_root), |
| __clone_root_cmp_bsearch); |
| if (!clone_root) |
| return 0; |
| |
| /* This is our own reference, bail out as we can't clone from it. */ |
| if (clone_root->root == bctx->sctx->send_root && |
| ino == bctx->cur_objectid && |
| offset == bctx->cur_offset) |
| return 0; |
| |
| /* |
| * Make sure we don't consider clones from send_root that are |
| * behind the current inode/offset. |
| */ |
| if (clone_root->root == bctx->sctx->send_root) { |
| /* |
| * If the source inode was not yet processed we can't issue a |
| * clone operation, as the source extent does not exist yet at |
| * the destination of the stream. |
| */ |
| if (ino > bctx->cur_objectid) |
| return 0; |
| /* |
| * We clone from the inode currently being sent as long as the |
| * source extent is already processed, otherwise we could try |
| * to clone from an extent that does not exist yet at the |
| * destination of the stream. |
| */ |
| if (ino == bctx->cur_objectid && |
| offset + bctx->extent_len > |
| bctx->sctx->cur_inode_next_write_offset) |
| return 0; |
| } |
| |
| bctx->found++; |
| clone_root->found_ref = true; |
| |
| /* |
| * If the given backref refers to a file extent item with a larger |
| * number of bytes than what we found before, use the new one so that |
| * we clone more optimally and end up doing less writes and getting |
| * less exclusive, non-shared extents at the destination. |
| */ |
| if (num_bytes > clone_root->num_bytes) { |
| clone_root->ino = ino; |
| clone_root->offset = offset; |
| clone_root->num_bytes = num_bytes; |
| |
| /* |
| * Found a perfect candidate, so there's no need to continue |
| * backref walking. |
| */ |
| if (num_bytes >= bctx->extent_len) |
| return BTRFS_ITERATE_EXTENT_INODES_STOP; |
| } |
| |
| return 0; |
| } |
| |
| static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx, |
| const u64 **root_ids_ret, int *root_count_ret) |
| { |
| struct backref_ctx *bctx = ctx; |
| struct send_ctx *sctx = bctx->sctx; |
| struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; |
| const u64 key = leaf_bytenr >> fs_info->sectorsize_bits; |
| struct btrfs_lru_cache_entry *raw_entry; |
| struct backref_cache_entry *entry; |
| |
| if (sctx->backref_cache.size == 0) |
| return false; |
| |
| /* |
| * If relocation happened since we first filled the cache, then we must |
| * empty the cache and can not use it, because even though we operate on |
| * read-only roots, their leaves and nodes may have been reallocated and |
| * now be used for different nodes/leaves of the same tree or some other |
| * tree. |
| * |
| * We are called from iterate_extent_inodes() while either holding a |
| * transaction handle or holding fs_info->commit_root_sem, so no need |
| * to take any lock here. |
| */ |
| if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) { |
| btrfs_lru_cache_clear(&sctx->backref_cache); |
| return false; |
| } |
| |
| raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0); |
| if (!raw_entry) |
| return false; |
| |
| entry = container_of(raw_entry, struct backref_cache_entry, entry); |
| *root_ids_ret = entry->root_ids; |
| *root_count_ret = entry->num_roots; |
| |
| return true; |
| } |
| |
| static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids, |
| void *ctx) |
| { |
| struct backref_ctx *bctx = ctx; |
| struct send_ctx *sctx = bctx->sctx; |
| struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; |
| struct backref_cache_entry *new_entry; |
| struct ulist_iterator uiter; |
| struct ulist_node *node; |
| int ret; |
| |
| /* |
| * We're called while holding a transaction handle or while holding |
| * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a |
| * NOFS allocation. |
| */ |
| new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS); |
| /* No worries, cache is optional. */ |
| if (!new_entry) |
| return; |
| |
| new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits; |
| new_entry->entry.gen = 0; |
| new_entry->num_roots = 0; |
| ULIST_ITER_INIT(&uiter); |
| while ((node = ulist_next(root_ids, &uiter)) != NULL) { |
| const u64 root_id = node->val; |
| struct clone_root *root; |
| |
| root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots, |
| sctx->clone_roots_cnt, sizeof(struct clone_root), |
| __clone_root_cmp_bsearch); |
| if (!root) |
| continue; |
| |
| /* Too many roots, just exit, no worries as caching is optional. */ |
| if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) { |
| kfree(new_entry); |
| return; |
| } |
| |
| new_entry->root_ids[new_entry->num_roots] = root_id; |
| new_entry->num_roots++; |
| } |
| |
| /* |
| * We may have not added any roots to the new cache entry, which means |
| * none of the roots is part of the list of roots from which we are |
| * allowed to clone. Cache the new entry as it's still useful to avoid |
| * backref walking to determine which roots have a path to the leaf. |
| * |
| * Also use GFP_NOFS because we're called while holding a transaction |
| * handle or while holding fs_info->commit_root_sem. |
| */ |
| ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry, |
| GFP_NOFS); |
| ASSERT(ret == 0 || ret == -ENOMEM); |
| if (ret) { |
| /* Caching is optional, no worries. */ |
| kfree(new_entry); |
| return; |
| } |
| |
| /* |
| * We are called from iterate_extent_inodes() while either holding a |
| * transaction handle or holding fs_info->commit_root_sem, so no need |
| * to take any lock here. |
| */ |
| if (sctx->backref_cache.size == 1) |
| sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans; |
| } |
| |
| static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei, |
| const struct extent_buffer *leaf, void *ctx) |
| { |
| const u64 refs = btrfs_extent_refs(leaf, ei); |
| const struct backref_ctx *bctx = ctx; |
| const struct send_ctx *sctx = bctx->sctx; |
| |
| if (bytenr == bctx->bytenr) { |
| const u64 flags = btrfs_extent_flags(leaf, ei); |
| |
| if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) |
| return -EUCLEAN; |
| |
| /* |
| * If we have only one reference and only the send root as a |
| * clone source - meaning no clone roots were given in the |
| * struct btrfs_ioctl_send_args passed to the send ioctl - then |
| * it's our reference and there's no point in doing backref |
| * walking which is expensive, so exit early. |
| */ |
| if (refs == 1 && sctx->clone_roots_cnt == 1) |
| return -ENOENT; |
| } |
| |
| /* |
| * Backreference walking (iterate_extent_inodes() below) is currently |
| * too expensive when an extent has a large number of references, both |
| * in time spent and used memory. So for now just fallback to write |
| * operations instead of clone operations when an extent has more than |
| * a certain amount of references. |
| */ |
| if (refs > SEND_MAX_EXTENT_REFS) |
| return -ENOENT; |
| |
| return 0; |
| } |
| |
| static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx) |
| { |
| const struct backref_ctx *bctx = ctx; |
| |
| if (ino == bctx->cur_objectid && |
| root == bctx->backref_owner && |
| offset == bctx->backref_offset) |
| return true; |
| |
| return false; |
| } |
| |
| /* |
| * Given an inode, offset and extent item, it finds a good clone for a clone |
| * instruction. Returns -ENOENT when none could be found. The function makes |
| * sure that the returned clone is usable at the point where sending is at the |
| * moment. This means, that no clones are accepted which lie behind the current |
| * inode+offset. |
| * |
| * path must point to the extent item when called. |
| */ |
| static int find_extent_clone(struct send_ctx *sctx, |
| struct btrfs_path *path, |
| u64 ino, u64 data_offset, |
| u64 ino_size, |
| struct clone_root **found) |
| { |
| struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; |
| int ret; |
| int extent_type; |
| u64 logical; |
| u64 disk_byte; |
| u64 num_bytes; |
| struct btrfs_file_extent_item *fi; |
| struct extent_buffer *eb = path->nodes[0]; |
| struct backref_ctx backref_ctx = { 0 }; |
| struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 }; |
| struct clone_root *cur_clone_root; |
| int compressed; |
| u32 i; |
| |
| /* |
| * With fallocate we can get prealloc extents beyond the inode's i_size, |
| * so we don't do anything here because clone operations can not clone |
| * to a range beyond i_size without increasing the i_size of the |
| * destination inode. |
| */ |
| if (data_offset >= ino_size) |
| return 0; |
| |
| fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item); |
| extent_type = btrfs_file_extent_type(eb, fi); |
| if (extent_type == BTRFS_FILE_EXTENT_INLINE) |
| return -ENOENT; |
| |
| disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); |
| if (disk_byte == 0) |
| return -ENOENT; |
| |
| compressed = btrfs_file_extent_compression(eb, fi); |
| num_bytes = btrfs_file_extent_num_bytes(eb, fi); |
| logical = disk_byte + btrfs_file_extent_offset(eb, fi); |
| |
| /* |
| * Setup the clone roots. |
| */ |
| for (i = 0; i < sctx->clone_roots_cnt; i++) { |
| cur_clone_root = sctx->clone_roots + i; |
| cur_clone_root->ino = (u64)-1; |
| cur_clone_root->offset = 0; |
| cur_clone_root->num_bytes = 0; |
| cur_clone_root->found_ref = false; |
| } |
| |
| backref_ctx.sctx = sctx; |
| backref_ctx.cur_objectid = ino; |
| backref_ctx.cur_offset = data_offset; |
| backref_ctx.bytenr = disk_byte; |
| /* |
| * Use the header owner and not the send root's id, because in case of a |
| * snapshot we can have shared subtrees. |
| */ |
| backref_ctx.backref_owner = btrfs_header_owner(eb); |
| backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi); |
| |
| /* |
| * The last extent of a file may be too large due to page alignment. |
| * We need to adjust extent_len in this case so that the checks in |
| * iterate_backrefs() work. |
| */ |
| if (data_offset + num_bytes >= ino_size) |
| backref_ctx.extent_len = ino_size - data_offset; |
| else |
| backref_ctx.extent_len = num_bytes; |
| |
| /* |
| * Now collect all backrefs. |
| */ |
| backref_walk_ctx.bytenr = disk_byte; |
| if (compressed == BTRFS_COMPRESS_NONE) |
| backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi); |
| backref_walk_ctx.fs_info = fs_info; |
| backref_walk_ctx.cache_lookup = lookup_backref_cache; |
| backref_walk_ctx.cache_store = store_backref_cache; |
| backref_walk_ctx.indirect_ref_iterator = iterate_backrefs; |
| backref_walk_ctx.check_extent_item = check_extent_item; |
| backref_walk_ctx.user_ctx = &backref_ctx; |
| |
| /* |
| * If have a single clone root, then it's the send root and we can tell |
| * the backref walking code to skip our own backref and not resolve it, |
| * since we can not use it for cloning - the source and destination |
| * ranges can't overlap and in case the leaf is shared through a subtree |
| * due to snapshots, we can't use those other roots since they are not |
| * in the list of clone roots. |
| */ |
| if (sctx->clone_roots_cnt == 1) |
| backref_walk_ctx.skip_data_ref = skip_self_data_ref; |
| |
| ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs, |
| &backref_ctx); |
| if (ret < 0) |
| return ret; |
| |
| down_read(&fs_info->commit_root_sem); |
| if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { |
| /* |
| * A transaction commit for a transaction in which block group |
| * relocation was done just happened. |
| * The disk_bytenr of the file extent item we processed is |
| * possibly stale, referring to the extent's location before |
| * relocation. So act as if we haven't found any clone sources |
| * and fallback to write commands, which will read the correct |
| * data from the new extent location. Otherwise we will fail |
| * below because we haven't found our own back reference or we |
| * could be getting incorrect sources in case the old extent |
| * was already reallocated after the relocation. |
| */ |
| up_read(&fs_info->commit_root_sem); |
| return -ENOENT; |
| } |
| up_read(&fs_info->commit_root_sem); |
| |
| btrfs_debug(fs_info, |
| "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", |
| data_offset, ino, num_bytes, logical); |
| |
| if (!backref_ctx.found) { |
| btrfs_debug(fs_info, "no clones found"); |
| return -ENOENT; |
| } |
| |
| cur_clone_root = NULL; |
| for (i = 0; i < sctx->clone_roots_cnt; i++) { |
| struct clone_root *clone_root = &sctx->clone_roots[i]; |
| |
| if (!clone_root->found_ref) |
| continue; |
| |
| /* |
| * Choose the root from which we can clone more bytes, to |
| * minimize write operations and therefore have more extent |
| * sharing at the destination (the same as in the source). |
| */ |
| if (!cur_clone_root || |
| clone_root->num_bytes > cur_clone_root->num_bytes) { |
| cur_clone_root = clone_root; |
| |
| /* |
| * We found an optimal clone candidate (any inode from |
| * any root is fine), so we're done. |
| */ |
| if (clone_root->num_bytes >= backref_ctx.extent_len) |
| break; |
| } |
| } |
| |
| if (cur_clone_root) { |
| *found = cur_clone_root; |
| ret = 0; |
| } else { |
| ret = -ENOENT; |
| } |
| |
| return ret; |
| } |
| |
| static int read_symlink(struct btrfs_root *root, |
| u64 ino, |
| struct fs_path *dest) |
| { |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| struct btrfs_file_extent_item *ei; |
| u8 type; |
| u8 compression; |
| unsigned long off; |
| int len; |
| |
| path = alloc_path_for_send(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = ino; |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| key.offset = 0; |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| if (ret) { |
| /* |
| * An empty symlink inode. Can happen in rare error paths when |
| * creating a symlink (transaction committed before the inode |
| * eviction handler removed the symlink inode items and a crash |
| * happened in between or the subvol was snapshoted in between). |
| * Print an informative message to dmesg/syslog so that the user |
| * can delete the symlink. |
| */ |
| btrfs_err(root->fs_info, |
| "Found empty symlink inode %llu at root %llu", |
| ino, btrfs_root_id(root)); |
| ret = -EIO; |
| goto out; |
| } |
| |
| ei = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_file_extent_item); |
| type = btrfs_file_extent_type(path->nodes[0], ei); |
| if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) { |
| ret = -EUCLEAN; |
| btrfs_crit(root->fs_info, |
| "send: found symlink extent that is not inline, ino %llu root %llu extent type %d", |
| ino, btrfs_root_id(root), type); |
| goto out; |
| } |
| compression = btrfs_file_extent_compression(path->nodes[0], ei); |
| if (unlikely(compression != BTRFS_COMPRESS_NONE)) { |
| ret = -EUCLEAN; |
| btrfs_crit(root->fs_info, |
| "send: found symlink extent with compression, ino %llu root %llu compression type %d", |
| ino, btrfs_root_id(root), compression); |
| goto out; |
| } |
| |
| off = btrfs_file_extent_inline_start(ei); |
| len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); |
| |
| ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); |
| |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * Helper function to generate a file name that is unique in the root of |
| * send_root and parent_root. This is used to generate names for orphan inodes. |
| */ |
| static int gen_unique_name(struct send_ctx *sctx, |
| u64 ino, u64 gen, |
| struct fs_path *dest) |
| { |
| int ret = 0; |
| struct btrfs_path *path; |
| struct btrfs_dir_item *di; |
| char tmp[64]; |
| int len; |
| u64 idx = 0; |
| |
| path = alloc_path_for_send(); |
| if (!path) |
| return -ENOMEM; |
| |
| while (1) { |
| struct fscrypt_str tmp_name; |
| |
| len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", |
| ino, gen, idx); |
| ASSERT(len < sizeof(tmp)); |
| tmp_name.name = tmp; |
| tmp_name.len = strlen(tmp); |
| |
| di = btrfs_lookup_dir_item(NULL, sctx->send_root, |
| path, BTRFS_FIRST_FREE_OBJECTID, |
| &tmp_name, 0); |
| btrfs_release_path(path); |
| if (IS_ERR(di)) { |
| ret = PTR_ERR(di); |
| goto out; |
| } |
| if (di) { |
| /* not unique, try again */ |
| idx++; |
| continue; |
| } |
| |
| if (!sctx->parent_root) { |
| /* unique */ |
| ret = 0; |
| break; |
| } |
| |
| di = btrfs_lookup_dir_item(NULL, sctx->parent_root, |
| path, BTRFS_FIRST_FREE_OBJECTID, |
| &tmp_name, 0); |
| btrfs_release_path(path); |
| if (IS_ERR(di)) { |
| ret = PTR_ERR(di); |
| goto out; |
| } |
| if (di) { |
| /* not unique, try again */ |
| idx++; |
| continue; |
| } |
| /* unique */ |
| break; |
| } |
| |
| ret = fs_path_add(dest, tmp, strlen(tmp)); |
| |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| enum inode_state { |
| inode_state_no_change, |
| inode_state_will_create, |
| inode_state_did_create, |
| inode_state_will_delete, |
| inode_state_did_delete, |
| }; |
| |
| static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen, |
| u64 *send_gen, u64 *parent_gen) |
| { |
| int ret; |
| int left_ret; |
| int right_ret; |
| u64 left_gen; |
| u64 right_gen = 0; |
| struct btrfs_inode_info info; |
| |
| ret = get_inode_info(sctx->send_root, ino, &info); |
| if (ret < 0 && ret != -ENOENT) |
| goto out; |
| left_ret = (info.nlink == 0) ? -ENOENT : ret; |
| left_gen = info.gen; |
| if (send_gen) |
| *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen); |
| |
| if (!sctx->parent_root) { |
| right_ret = -ENOENT; |
| } else { |
| ret = get_inode_info(sctx->parent_root, ino, &info); |
| if (ret < 0 && ret != -ENOENT) |
| goto out; |
| right_ret = (info.nlink == 0) ? -ENOENT : ret; |
| right_gen = info.gen; |
| if (parent_gen) |
| *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen); |
| } |
| |
| if (!left_ret && !right_ret) { |
| if (left_gen == gen && right_gen == gen) { |
| ret = inode_state_no_change; |
| } else if (left_gen == gen) { |
| if (ino < sctx->send_progress) |
| ret = inode_state_did_create; |
| else |
| ret = inode_state_will_create; |
| } else if (right_gen == gen) { |
| if (ino < sctx->send_progress) |
| ret = inode_state_did_delete; |
| else |
| ret = inode_state_will_delete; |
| } else { |
| ret = -ENOENT; |
| } |
| } else if (!left_ret) { |
| if (left_gen == gen) { |
| if (ino < sctx->send_progress) |
| ret = inode_state_did_create; |
| else |
| ret = inode_state_will_create; |
| } else { |
| ret = -ENOENT; |
| } |
| } else if (!right_ret) { |
| if (right_gen == gen) { |
| if (ino < sctx->send_progress) |
| ret = inode_state_did_delete; |
| else |
| ret = inode_state_will_delete; |
| } else { |
| ret = -ENOENT; |
| } |
| } else { |
| ret = -ENOENT; |
| } |
| |
| out: |
| return ret; |
| } |
| |
| static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen, |
| u64 *send_gen, u64 *parent_gen) |
| { |
| int ret; |
| |
| if (ino == BTRFS_FIRST_FREE_OBJECTID) |
| return 1; |
| |
| ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen); |
| if (ret < 0) |
| goto out; |
| |
| if (ret == inode_state_no_change || |
| ret == inode_state_did_create || |
| ret == inode_state_will_delete) |
| ret = 1; |
| else |
| ret = 0; |
| |
| out: |
| return ret; |
| } |
| |
| /* |
| * Helper function to lookup a dir item in a dir. |
| */ |
| static int lookup_dir_item_inode(struct btrfs_root *root, |
| u64 dir, const char *name, int name_len, |
| u64 *found_inode) |
| { |
| int ret = 0; |
| struct btrfs_dir_item *di; |
| struct btrfs_key key; |
| struct btrfs_path *path; |
| struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len); |
| |
| path = alloc_path_for_send(); |
| if (!path) |
| return -ENOMEM; |
| |
| di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0); |
| if (IS_ERR_OR_NULL(di)) { |
| ret = di ? PTR_ERR(di) : -ENOENT; |
| goto out; |
| } |
| btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); |
| if (key.type == BTRFS_ROOT_ITEM_KEY) { |
| ret = -ENOENT; |
| goto out; |
| } |
| *found_inode = key.objectid; |
| |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, |
| * generation of the parent dir and the name of the dir entry. |
| */ |
| static int get_first_ref(struct btrfs_root *root, u64 ino, |
| u64 *dir, u64 *dir_gen, struct fs_path *name) |
| { |
| int ret; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| struct btrfs_path *path; |
| int len; |
| u64 parent_dir; |
| |
| path = alloc_path_for_send(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = ino; |
| key.type = BTRFS_INODE_REF_KEY; |
| key.offset = 0; |
| |
| ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); |
| if (ret < 0) |
| goto out; |
| if (!ret) |
| btrfs_item_key_to_cpu(path->nodes[0], &found_key, |
| path->slots[0]); |
| if (ret || found_key.objectid != ino || |
| (found_key.type != BTRFS_INODE_REF_KEY && |
| found_key.type != BTRFS_INODE_EXTREF_KEY)) { |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| if (found_key.type == BTRFS_INODE_REF_KEY) { |
| struct btrfs_inode_ref *iref; |
| iref = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_inode_ref); |
| len = btrfs_inode_ref_name_len(path->nodes[0], iref); |
| ret = fs_path_add_from_extent_buffer(name, path->nodes[0], |
| (unsigned long)(iref + 1), |
| len); |
| parent_dir = found_key.offset; |
| } else { |
| struct btrfs_inode_extref *extref; |
| extref = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_inode_extref); |
| len = btrfs_inode_extref_name_len(path->nodes[0], extref); |
| ret = fs_path_add_from_extent_buffer(name, path->nodes[0], |
| (unsigned long)&extref->name, len); |
| parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); |
| } |
| if (ret < 0) |
| goto out; |
| btrfs_release_path(path); |
| |
| if (dir_gen) { |
| ret = get_inode_gen(root, parent_dir, dir_gen); |
| if (ret < 0) |
| goto out; |
| } |
| |
| *dir = parent_dir; |
| |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int is_first_ref(struct btrfs_root *root, |
| u64 ino, u64 dir, |
| const char *name, int name_len) |
| { |
| int ret; |
| struct fs_path *tmp_name; |
| u64 tmp_dir; |
| |
| tmp_name = fs_path_alloc(); |
| if (!tmp_name) |
| return -ENOMEM; |
| |
| ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); |
| if (ret < 0) |
| goto out; |
| |
| if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { |
| ret = 0; |
| goto out; |
| } |
| |
| ret = !memcmp(tmp_name->start, name, name_len); |
| |
| out: |
| fs_path_free(tmp_name); |
| return ret; |
| } |
| |
| /* |
| * Used by process_recorded_refs to determine if a new ref would overwrite an |
| * already existing ref. In case it detects an overwrite, it returns the |
| * inode/gen in who_ino/who_gen. |
| * When an overwrite is detected, process_recorded_refs does proper orphanizing |
| * to make sure later references to the overwritten inode are possible. |
| * Orphanizing is however only required for the first ref of an inode. |
| * process_recorded_refs does an additional is_first_ref check to see if |
| * orphanizing is really required. |
| */ |
| static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, |
| const char *name, int name_len, |
| u64 *who_ino, u64 *who_gen, u64 *who_mode) |
| { |
| int ret; |
| u64 parent_root_dir_gen; |
| u64 other_inode = 0; |
| struct btrfs_inode_info info; |
| |
| if (!sctx->parent_root) |
| return 0; |
| |
| ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen); |
| if (ret <= 0) |
| return 0; |
| |
| /* |
| * If we have a parent root we need to verify that the parent dir was |
| * not deleted and then re-created, if it was then we have no overwrite |
| * and we can just unlink this entry. |
| * |
| * @parent_root_dir_gen was set to 0 if the inode does not exist in the |
| * parent root. |
| */ |
| if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID && |
| parent_root_dir_gen != dir_gen) |
| return 0; |
| |
| ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, |
| &other_inode); |
| if (ret == -ENOENT) |
| return 0; |
| else if (ret < 0) |
| return ret; |
| |
| /* |
| * Check if the overwritten ref was already processed. If yes, the ref |
| * was already unlinked/moved, so we can safely assume that we will not |
| * overwrite anything at this point in time. |
| */ |
| if (other_inode > sctx->send_progress || |
| is_waiting_for_move(sctx, other_inode)) { |
| ret = get_inode_info(sctx->parent_root, other_inode, &info); |
| if (ret < 0) |
| return ret; |
| |
| *who_ino = other_inode; |
| *who_gen = info.gen; |
| *who_mode = info.mode; |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Checks if the ref was overwritten by an already processed inode. This is |
| * used by __get_cur_name_and_parent to find out if the ref was orphanized and |
| * thus the orphan name needs be used. |
| * process_recorded_refs also uses it to avoid unlinking of refs that were |
| * overwritten. |
| */ |
| static int did_overwrite_ref(struct send_ctx *sctx, |
| u64 dir, u64 dir_gen, |
| u64 ino, u64 ino_gen, |
| const char *name, int name_len) |
| { |
| int ret; |
| u64 ow_inode; |
| u64 ow_gen = 0; |
| u64 send_root_dir_gen; |
| |
| if (!sctx->parent_root) |
| return 0; |
| |
| ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL); |
| if (ret <= 0) |
| return ret; |
| |
| /* |
| * @send_root_dir_gen was set to 0 if the inode does not exist in the |
| * send root. |
| */ |
| if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen) |
| return 0; |
| |
| /* check if the ref was overwritten by another ref */ |
| ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, |
| &ow_inode); |
| if (ret == -ENOENT) { |
| /* was never and will never be overwritten */ |
| return 0; |
| } else if (ret < 0) { |
| return ret; |
| } |
| |
| if (ow_inode == ino) { |
| ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen); |
| if (ret < 0) |
| return ret; |
| |
| /* It's the same inode, so no overwrite happened. */ |
| if (ow_gen == ino_gen) |
| return 0; |
| } |
| |
| /* |
| * We know that it is or will be overwritten. Check this now. |
| * The current inode being processed might have been the one that caused |
| * inode 'ino' to be orphanized, therefore check if ow_inode matches |
| * the current inode being processed. |
| */ |
| if (ow_inode < sctx->send_progress) |
| return 1; |
| |
| if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) { |
| if (ow_gen == 0) { |
| ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen); |
| if (ret < 0) |
| return ret; |
| } |
| if (ow_gen == sctx->cur_inode_gen) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Same as did_overwrite_ref, but also checks if it is the first ref of an inode |
| * that got overwritten. This is used by process_recorded_refs to determine |
| * if it has to use the path as returned by get_cur_path or the orphan name. |
| */ |
| static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) |
| { |
| int ret = 0; |
| struct fs_path *name = NULL; |
| u64 dir; |
| u64 dir_gen; |
| |
| if (!sctx->parent_root) |
| goto out; |
| |
| name = fs_path_alloc(); |
| if (!name) |
| return -ENOMEM; |
| |
| ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); |
| if (ret < 0) |
| goto out; |
| |
| ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, |
| name->start, fs_path_len(name)); |
| |
| out: |
| fs_path_free(name); |
| return ret; |
| } |
| |
| static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx, |
| u64 ino, u64 gen) |
| { |
| struct btrfs_lru_cache_entry *entry; |
| |
| entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen); |
| if (!entry) |
| return NULL; |
| |
| return container_of(entry, struct name_cache_entry, entry); |
| } |
| |
| /* |
| * Used by get_cur_path for each ref up to the root. |
| * Returns 0 if it succeeded. |
| * Returns 1 if the inode is not existent or got overwritten. In that case, the |
| * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 |
| * is returned, parent_ino/parent_gen are not guaranteed to be valid. |
| * Returns <0 in case of error. |
| */ |
| static int __get_cur_name_and_parent(struct send_ctx *sctx, |
| u64 ino, u64 gen, |
| u64 *parent_ino, |
| u64 *parent_gen, |
| struct fs_path *dest) |
| { |
| int ret; |
| int nce_ret; |
| struct name_cache_entry *nce; |
| |
| /* |
| * First check if we already did a call to this function with the same |
| * ino/gen. If yes, check if the cache entry is still up-to-date. If yes |
| * return the cached result. |
| */ |
| nce = name_cache_search(sctx, ino, gen); |
| if (nce) { |
| if (ino < sctx->send_progress && nce->need_later_update) { |
| btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry); |
| nce = NULL; |
| } else { |
| *parent_ino = nce->parent_ino; |
| *parent_gen = nce->parent_gen; |
| ret = fs_path_add(dest, nce->name, nce->name_len); |
| if (ret < 0) |
| goto out; |
| ret = nce->ret; |
| goto out; |
| } |
| } |
| |
| /* |
| * If the inode is not existent yet, add the orphan name and return 1. |
| * This should only happen for the parent dir that we determine in |
| * record_new_ref_if_needed(). |
| */ |
| ret = is_inode_existent(sctx, ino, gen, NULL, NULL); |
| if (ret < 0) |
| goto out; |
| |
| if (!ret) { |
| ret = gen_unique_name(sctx, ino, gen, dest); |
| if (ret < 0) |
| goto out; |
| ret = 1; |
| goto out_cache; |
| } |
| |
| /* |
| * Depending on whether the inode was already processed or not, use |
| * send_root or parent_root for ref lookup. |
| */ |
| if (ino < sctx->send_progress) |
| ret = get_first_ref(sctx->send_root, ino, |
| parent_ino, parent_gen, dest); |
| else |
| ret = get_first_ref(sctx->parent_root, ino, |
| parent_ino, parent_gen, dest); |
| if (ret < 0) |
| goto out; |
| |
| /* |
| * Check if the ref was overwritten by an inode's ref that was processed |
| * earlier. If yes, treat as orphan and return 1. |
| */ |
| ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, |
| dest->start, dest->end - dest->start); |
| if (ret < 0) |
| goto out; |
| if (ret) { |
| fs_path_reset(dest); |
| ret = gen_unique_name(sctx, ino, gen, dest); |
| if (ret < 0) |
| goto out; |
| ret = 1; |
| } |
| |
| out_cache: |
| /* |
| * Store the result of the lookup in the name cache. |
| */ |
| nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); |
| if (!nce) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| nce->entry.key = ino; |
| nce->entry.gen = gen; |
| nce->parent_ino = *parent_ino; |
| nce->parent_gen = *parent_gen; |
| nce->name_len = fs_path_len(dest); |
| nce->ret = ret; |
| strcpy(nce->name, dest->start); |
| |
| if (ino < sctx->send_progress) |
| nce->need_later_update = 0; |
| else |
| nce->need_later_update = 1; |
| |
| nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL); |
| if (nce_ret < 0) { |
| kfree(nce); |
| ret = nce_ret; |
| } |
| |
| out: |
| return ret; |
| } |
| |
| /* |
| * Magic happens here. This function returns the first ref to an inode as it |
| * would look like while receiving the stream at this point in time. |
| * We walk the path up to the root. For every inode in between, we check if it |
| * was already processed/sent. If yes, we continue with the parent as found |
| * in send_root. If not, we continue with the parent as found in parent_root. |
| * If we encounter an inode that was deleted at this point in time, we use the |
| * inodes "orphan" name instead of the real name and stop. Same with new inodes |
| * that were not created yet and overwritten inodes/refs. |
| * |
| * When do we have orphan inodes: |
| * 1. When an inode is freshly created and thus no valid refs are available yet |
| * 2. When a directory lost all it's refs (deleted) but still has dir items |
| * inside which were not processed yet (pending for move/delete). If anyone |
| * tried to get the path to the dir items, it would get a path inside that |
| * orphan directory. |
| * 3. When an inode is moved around or gets new links, it may overwrite the ref |
| * of an unprocessed inode. If in that case the first ref would be |
| * overwritten, the overwritten inode gets "orphanized". Later when we |
| * process this overwritten inode, it is restored at a new place by moving |
| * the orphan inode. |
| * |
| * sctx->send_progress tells this function at which point in time receiving |
| * would be. |
| */ |
| static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, |
| struct fs_path *dest) |
| { |
| int ret = 0; |
| struct fs_path *name = NULL; |
| u64 parent_inode = 0; |
| u64 parent_gen = 0; |
| int stop = 0; |
| |
| name = fs_path_alloc(); |
| if (!name) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| dest->reversed = 1; |
| fs_path_reset(dest); |
| |
| while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { |
| struct waiting_dir_move *wdm; |
| |
| fs_path_reset(name); |
| |
| if (is_waiting_for_rm(sctx, ino, gen)) { |
| ret = gen_unique_name(sctx, ino, gen, name); |
| if (ret < 0) |
| goto out; |
| ret = fs_path_add_path(dest, name); |
| break; |
| } |
| |
| wdm = get_waiting_dir_move(sctx, ino); |
| if (wdm && wdm->orphanized) { |
| ret = gen_unique_name(sctx, ino, gen, name); |
| stop = 1; |
| } else if (wdm) { |
| ret = get_first_ref(sctx->parent_root, ino, |
| &parent_inode, &parent_gen, name); |
| } else { |
| ret = __get_cur_name_and_parent(sctx, ino, gen, |
| &parent_inode, |
| &parent_gen, name); |
| if (ret) |
| stop = 1; |
| } |
| |
| if (ret < 0) |
| goto out; |
| |
| ret = fs_path_add_path(dest, name); |
| if (ret < 0) |
| goto out; |
| |
| ino = parent_inode; |
| gen = parent_gen; |
| } |
| |
| out: |
| fs_path_free(name); |
| if (!ret) |
| fs_path_unreverse(dest); |
| return ret; |
| } |
| |
| /* |
| * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace |
| */ |
| static int send_subvol_begin(struct send_ctx *sctx) |
| { |
| int ret; |
| struct btrfs_root *send_root = sctx->send_root; |
| struct btrfs_root *parent_root = sctx->parent_root; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| struct btrfs_root_ref *ref; |
| struct extent_buffer *leaf; |
| char *name = NULL; |
| int namelen; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); |
| if (!name) { |
| btrfs_free_path(path); |
| return -ENOMEM; |
| } |
| |
| key.objectid = btrfs_root_id(send_root); |
| key.type = BTRFS_ROOT_BACKREF_KEY; |
| key.offset = 0; |
| |
| ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, |
| &key, path, 1, 0); |
| if (ret < 0) |
| goto out; |
| if (ret) { |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| if (key.type != BTRFS_ROOT_BACKREF_KEY || |
| key.objectid != btrfs_root_id(send_root)) { |
| ret = -ENOENT; |
| goto out; |
| } |
| ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); |
| namelen = btrfs_root_ref_name_len(leaf, ref); |
| read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); |
| btrfs_release_path(path); |
| |
| if (parent_root) { |
| ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); |
| if (ret < 0) |
| goto out; |
| } else { |
| ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); |
| if (ret < 0) |
| goto out; |
| } |
| |
| TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); |
| |
| if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) |
| TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, |
| sctx->send_root->root_item.received_uuid); |
| else |
| TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, |
| sctx->send_root->root_item.uuid); |
| |
| TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, |
| btrfs_root_ctransid(&sctx->send_root->root_item)); |
| if (parent_root) { |
| if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) |
| TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, |
| parent_root->root_item.received_uuid); |
| else |
| TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, |
| parent_root->root_item.uuid); |
| TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, |
| btrfs_root_ctransid(&sctx->parent_root->root_item)); |
| } |
| |
| ret = send_cmd(sctx); |
| |
| tlv_put_failure: |
| out: |
| btrfs_free_path(path); |
| kfree(name); |
| return ret; |
| } |
| |
| static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) |
| { |
| struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; |
| int ret = 0; |
| struct fs_path *p; |
| |
| btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); |
| |
| p = fs_path_alloc(); |
| if (!p) |
| return -ENOMEM; |
| |
| ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); |
| if (ret < 0) |
| goto out; |
| |
| ret = get_cur_path(sctx, ino, gen, p); |
| if (ret < 0) |
| goto out; |
| TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); |
| TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); |
| |
| ret = send_cmd(sctx); |
| |
| tlv_put_failure: |
| out: |
| fs_path_free(p); |
| return ret; |
| } |
| |
| static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) |
| { |
| struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; |
| int ret = 0; |
| struct fs_path *p; |
| |
| btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); |
| |
| p = fs_path_alloc(); |
| if (!p) |
| return -ENOMEM; |
| |
| ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); |
| if (ret < 0) |
| goto out; |
| |
| ret = get_cur_path(sctx, ino, gen, p); |
| if (ret < 0) |
| goto out; |
| TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); |
| TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); |
| |
| ret = send_cmd(sctx); |
| |
| tlv_put_failure: |
| out: |
| fs_path_free(p); |
| return ret; |
| } |
| |
| static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr) |
| { |
| struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; |
| int ret = 0; |
| struct fs_path *p; |
| |
| if (sctx->proto < 2) |
| return 0; |
| |
| btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr); |
| |
| p = fs_path_alloc(); |
| if (!p) |
| return -ENOMEM; |
| |
| ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR); |
| if (ret < 0) |
| goto out; |
| |
| ret = get_cur_path(sctx, ino, gen, p); |
| if (ret < 0) |
| goto out; |
| TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); |
| TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr); |
| |
| ret = send_cmd(sctx); |
| |
| tlv_put_failure: |
| out: |
| fs_path_free(p); |
| return ret; |
| } |
| |
| static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) |
| { |
| struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; |
| int ret = 0; |
| struct fs_path *p; |
| |
| btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", |
| ino, uid, gid); |
| |
| p = fs_path_alloc(); |
| if (!p) |
| return -ENOMEM; |
| |
| ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); |
| if (ret < 0) |
| goto out; |
| |
| ret = get_cur_path(sctx, ino, gen, p); |
| if (ret < 0) |
| goto out; |
| TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); |
| TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); |
| TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); |
| |
| ret = send_cmd(sctx); |
| |
| tlv_put_failure: |
| out: |
| fs_path_free(p); |
| return ret; |
| } |
| |
| static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) |
| { |
| struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; |
| int ret = 0; |
| struct fs_path *p = NULL; |
| struct btrfs_inode_item *ii; |
| struct btrfs_path *path = NULL; |
| struct extent_buffer *eb; |
| struct btrfs_key key; |
| int slot; |
| |
| btrfs_debug(fs_info, "send_utimes %llu", ino); |
| |
| p = fs_path_alloc(); |
| if (!p) |
| return -ENOMEM; |
| |
| path = alloc_path_for_send(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| key.objectid = ino; |
| key.type = BTRFS_INODE_ITEM_KEY; |
| key.offset = 0; |
| ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); |
| if (ret > 0) |
| ret = -ENOENT; |
| if (ret < 0) |
| goto out; |
| |
| eb = path->nodes[0]; |
| slot = path->slots[0]; |
| ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); |
| |
| ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); |
| if (ret < 0) |
| goto out; |
| |
| ret = get_cur_path(sctx, ino, gen, p); |
| if (ret < 0) |
| goto out; |
| TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); |
| TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); |
| TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); |
| TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); |
| if (sctx->proto >= 2) |
| TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime); |
| |
| ret = send_cmd(sctx); |
| |
| tlv_put_failure: |
| out: |
| fs_path_free(p); |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * If the cache is full, we can't remove entries from it and do a call to |
| * send_utimes() for each respective inode, because we might be finishing |
| * processing an inode that is a directory and it just got renamed, and existing |
| * entries in the cache may refer to inodes that have the directory in their |
| * full path - in which case we would generate outdated paths (pre-rename) |
| * for the inodes that the cache entries point to. Instead of prunning the |
| * cache when inserting, do it after we finish processing each inode at |
| * finish_inode_if_needed(). |
| */ |
| static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen) |
| { |
| struct btrfs_lru_cache_entry *entry; |
| int ret; |
| |
| entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen); |
| if (entry != NULL) |
| return 0; |
| |
| /* Caching is optional, don't fail if we can't allocate memory. */ |
| entry = kmalloc(sizeof(*entry), GFP_KERNEL); |
| if (!entry) |
| return send_utimes(sctx, dir, gen); |
| |
| entry->key = dir; |
| entry->gen = gen; |
| |
| ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL); |
| ASSERT(ret != -EEXIST); |
| if (ret) { |
| kfree(entry); |
| return send_utimes(sctx, dir, gen); |
| } |
| |
| return 0; |
| } |
| |
| static int trim_dir_utimes_cache(struct send_ctx *sctx) |
| { |
| while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) { |
| struct btrfs_lru_cache_entry *lru; |
| int ret; |
| |
| lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache); |
| ASSERT(lru != NULL); |
| |
| ret = send_utimes(sctx, lru->key, lru->gen); |
| if (ret) |
| return ret; |
| |
| btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have |
| * a valid path yet because we did not process the refs yet. So, the inode |
| * is created as orphan. |
| */ |
| static int send_create_inode(struct send_ctx *sctx, u64 ino) |
| { |
| struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; |
| int ret = 0; |
| struct fs_path *p; |
| int cmd; |
| struct btrfs_inode_info info; |
| u64 gen; |
| u64 mode; |
| u64 rdev; |
| |
| btrfs_debug(fs_info, "send_create_inode %llu", ino); |
| |
| p = fs_path_alloc(); |
| if (!p) |
| return -ENOMEM; |
| |
| if (ino != sctx->cur_ino) { |
| ret = get_inode_info(sctx->send_root, ino, &info); |
| if (ret < 0) |
| goto out; |
| gen = info.gen; |
| mode = info.mode; |
| rdev = info.rdev; |
| } else { |
| gen = sctx->cur_inode_gen; |
| mode = sctx->cur_inode_mode; |
| rdev = sctx->cur_inode_rdev; |
| } |
| |
| if (S_ISREG(mode)) { |
| cmd = BTRFS_SEND_C_MKFILE; |
| } else if (S_ISDIR(mode)) { |
| cmd = BTRFS_SEND_C_MKDIR; |
| } else if (S_ISLNK(mode)) { |
| cmd = BTRFS_SEND_C_SYMLINK; |
| } else if (S_ISCHR(mode) || S_ISBLK(mode)) { |
| cmd = BTRFS_SEND_C_MKNOD; |
| } else if (S_ISFIFO(mode)) { |
| cmd = BTRFS_SEND_C_MKFIFO; |
| } else if (S_ISSOCK(mode)) { |
| cmd = BTRFS_SEND_C_MKSOCK; |
| } else { |
| btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", |
| (int)(mode & S_IFMT)); |
| ret = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| ret = begin_cmd(sctx, cmd); |
| if (ret < 0) |
| goto out; |
| |
| ret = gen_unique_name(sctx, ino, gen, p); |
| if (ret < 0) |
| goto out; |
| |
| TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); |
| TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); |
| |
| if (S_ISLNK(mode)) { |
| fs_path_reset(p); |
| ret = read_symlink(sctx->send_root, ino, p); |
| if (ret < 0) |
| goto out; |
| TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); |
| } else if (S_ISCHR(mode) || S_ISBLK(mode) || |
| S_ISFIFO(mode) || S_ISSOCK(mode)) { |
| TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); |
| TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); |
| } |
| |
| ret = send_cmd(sctx); |
| if (ret < 0) |
| goto out; |
| |
| |
| tlv_put_failure: |
| out: |
| fs_path_free(p); |
| return ret; |
| } |
| |
| static void cache_dir_created(struct send_ctx *sctx, u64 dir) |
| { |
| struct btrfs_lru_cache_entry *entry; |
| int ret; |
| |
| /* Caching is optional, ignore any failures. */ |
| entry = kmalloc(sizeof(*entry), GFP_KERNEL); |
| if (!entry) |
| return; |
| |
| entry->key = dir; |
| entry->gen = 0; |
| ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL); |
| if (ret < 0) |
| kfree(entry); |
| } |
| |
| /* |
| * We need some special handling for inodes that get processed before the parent |
| * directory got created. See process_recorded_refs for details. |
| * This function does the check if we already created the dir out of order. |
| */ |
| static int did_create_dir(struct send_ctx *sctx, u64 dir) |
| { |
| int ret = 0; |
| int iter_ret = 0; |
| struct btrfs_path *path = NULL; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| struct btrfs_key di_key; |
| struct btrfs_dir_item *di; |
| |
| if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0)) |
| return 1; |
| |
| path = alloc_path_for_send(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = dir; |
| key.type = BTRFS_DIR_INDEX_KEY; |
| key.offset = 0; |
| |
| btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) { |
| struct extent_buffer *eb = path->nodes[0]; |
| |
| if (found_key.objectid != key.objectid || |
| found_key.type != key.type) { |
| ret = 0; |
| break; |
| } |
| |
| di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item); |
| btrfs_dir_item_key_to_cpu(eb, di, &di_key); |
| |
| if (di_key.type != BTRFS_ROOT_ITEM_KEY && |
| di_key.objectid < sctx->send_progress) { |
| ret = 1; |
| cache_dir_created(sctx, dir); |
| break; |
| } |
| } |
| /* Catch error found during iteration */ |
| if (iter_ret < 0) |
| ret = iter_ret; |
| |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * Only creates the inode if it is: |
| * 1. Not a directory |
| * 2. Or a directory which was not created already due to out of order |
| * directories. See did_create_dir and process_recorded_refs for details. |
| */ |
| static int send_create_inode_if_needed(struct send_ctx *sctx) |
| { |
| int ret; |
| |
| if (S_ISDIR(sctx->cur_inode_mode)) { |
| ret = did_create_dir(sctx, sctx->cur_ino); |
| if (ret < 0) |
| return ret; |
| else if (ret > 0) |
| return 0; |
| } |
| |
| ret = send_create_inode(sctx, sctx->cur_ino); |
| |
| if (ret == 0 && S_ISDIR(sctx->cur_inode_mode)) |
| cache_dir_created(sctx, sctx->cur_ino); |
| |
| return ret; |
| } |
| |
| struct recorded_ref { |
| struct list_head list; |
| char *name; |
| struct fs_path *full_path; |
| u64 dir; |
| u64 dir_gen; |
| int name_len; |
| struct rb_node node; |
| struct rb_root *root; |
| }; |
| |
| static struct recorded_ref *recorded_ref_alloc(void) |
| { |
| struct recorded_ref *ref; |
| |
| ref = kzalloc(sizeof(*ref), GFP_KERNEL); |
| if (!ref) |
| return NULL; |
| RB_CLEAR_NODE(&ref->node); |
| INIT_LIST_HEAD(&ref->list); |
| return ref; |
| } |
| |
| static void recorded_ref_free(struct recorded_ref *ref) |
| { |
| if (!ref) |
| return; |
| if (!RB_EMPTY_NODE(&ref->node)) |
| rb_erase(&ref->node, ref->root); |
| list_del(&ref->list); |
| fs_path_free(ref->full_path); |
| kfree(ref); |
| } |
| |
| static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) |
| { |
| ref->full_path = path; |
| ref->name = (char *)kbasename(ref->full_path->start); |
| ref->name_len = ref->full_path->end - ref->name; |
| } |
| |
| static int dup_ref(struct recorded_ref *ref, struct list_head *list) |
| { |
| struct recorded_ref *new; |
| |
| new = recorded_ref_alloc(); |
| if (!new) |
| return -ENOMEM; |
| |
| new->dir = ref->dir; |
| new->dir_gen = ref->dir_gen; |
| list_add_tail(&new->list, list); |
| return 0; |
| } |
| |
| static void __free_recorded_refs(struct list_head *head) |
| { |
| struct recorded_ref *cur; |
| |
| while (!list_empty(head)) { |
| cur = list_entry(head->next, struct recorded_ref, list); |
| recorded_ref_free(cur); |
| } |
| } |
| |
| static void free_recorded_refs(struct send_ctx *sctx) |
| { |
| __free_recorded_refs(&sctx->new_refs); |
| __free_recorded_refs(&sctx->deleted_refs); |
| } |
| |
| /* |
| * Renames/moves a file/dir to its orphan name. Used when the first |
| * ref of an unprocessed inode gets overwritten and for all non empty |
| * directories. |
| */ |
| static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, |
| struct fs_path *path) |
| { |
| int ret; |
| struct fs_path *orphan; |
| |
| orphan = fs_path_alloc(); |
| if (!orphan) |
| return -ENOMEM; |
| |
| ret = gen_unique_name(sctx, ino, gen, orphan); |
| if (ret < 0) |
| goto out; |
| |
| ret = send_rename(sctx, path, orphan); |
| |
| out: |
| fs_path_free(orphan); |
| return ret; |
| } |
| |
| static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx, |
| u64 dir_ino, u64 dir_gen) |
| { |
| struct rb_node **p = &sctx->orphan_dirs.rb_node; |
| struct rb_node *parent = NULL; |
| struct orphan_dir_info *entry, *odi; |
| |
| while (*p) { |
| parent = *p; |
| entry = rb_entry(parent, struct orphan_dir_info, node); |
| if (dir_ino < entry->ino) |
| p = &(*p)->rb_left; |
| else if (dir_ino > entry->ino) |
| p = &(*p)->rb_right; |
| else if (dir_gen < entry->gen) |
| p = &(*p)->rb_left; |
| else if (dir_gen > entry->gen) |
| p = &(*p)->rb_right; |
| else |
| return entry; |
| } |
| |
| odi = kmalloc(sizeof(*odi), GFP_KERNEL); |
| if (!odi) |
| return ERR_PTR(-ENOMEM); |
| odi->ino = dir_ino; |
| odi->gen = dir_gen; |
| odi->last_dir_index_offset = 0; |
| odi->dir_high_seq_ino = 0; |
| |
| rb_link_node(&odi->node, parent, p); |
| rb_insert_color(&odi->node, &sctx->orphan_dirs); |
| return odi; |
| } |
| |
| static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx, |
| u64 dir_ino, u64 gen) |
| { |
| struct rb_node *n = sctx->orphan_dirs.rb_node; |
| struct orphan_dir_info *entry; |
| |
| while (n) { |
| entry = rb_entry(n, struct orphan_dir_info, node); |
| if (dir_ino < entry->ino) |
| n = n->rb_left; |
| else if (dir_ino > entry->ino) |
| n = n->rb_right; |
| else if (gen < entry->gen) |
| n = n->rb_left; |
| else if (gen > entry->gen) |
| n = n->rb_right; |
| else |
| return entry; |
| } |
| return NULL; |
| } |
| |
| static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen) |
| { |
| struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen); |
| |
| return odi != NULL; |
| } |
| |
| static void free_orphan_dir_info(struct send_ctx *sctx, |
| struct orphan_dir_info *odi) |
| { |
| if (!odi) |
| return; |
| rb_erase(&odi->node, &sctx->orphan_dirs); |
| kfree(odi); |
| } |
| |
| /* |
| * Returns 1 if a directory can be removed at this point in time. |
| * We check this by iterating all dir items and checking if the inode behind |
| * the dir item was already processed. |
| */ |
| static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen) |
| { |
| int ret = 0; |
| int iter_ret = 0; |
| struct btrfs_root *root = sctx->parent_root; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| struct btrfs_key loc; |
| struct btrfs_dir_item *di; |
| struct orphan_dir_info *odi = NULL; |
| u64 dir_high_seq_ino = 0; |
| u64 last_dir_index_offset = 0; |
| |
| /* |
| * Don't try to rmdir the top/root subvolume dir. |
| */ |
| if (dir == BTRFS_FIRST_FREE_OBJECTID) |
| return 0; |
| |
| odi = get_orphan_dir_info(sctx, dir, dir_gen); |
| if (odi && sctx->cur_ino < odi->dir_high_seq_ino) |
| return 0; |
| |
| path = alloc_path_for_send(); |
| if (!path) |
| return -ENOMEM; |
| |
| if (!odi) { |
| /* |
| * Find the inode number associated with the last dir index |
| * entry. This is very likely the inode with the highest number |
| * of all inodes that have an entry in the directory. We can |
| * then use it to avoid future calls to can_rmdir(), when |
| * processing inodes with a lower number, from having to search |
| * the parent root b+tree for dir index keys. |
| */ |
| key.objectid = dir; |
| key.type = BTRFS_DIR_INDEX_KEY; |
| key.offset = (u64)-1; |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) { |
| goto out; |
| } else if (ret > 0) { |
| /* Can't happen, the root is never empty. */ |
| ASSERT(path->slots[0] > 0); |
| if (WARN_ON(path->slots[0] == 0)) { |
| ret = -EUCLEAN; |
| goto out; |
| } |
| path->slots[0]--; |
| } |
| |
| btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) { |
| /* No index keys, dir can be removed. */ |
| ret = 1; |
| goto out; |
| } |
| |
| di = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_dir_item); |
| btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); |
| dir_high_seq_ino = loc.objectid; |
| if (sctx->cur_ino < dir_high_seq_ino) { |
| ret = 0; |
| goto out; |
| } |
| |
| btrfs_release_path(path); |
| } |
| |
| key.objectid = dir; |
| key.type = BTRFS_DIR_INDEX_KEY; |
| key.offset = (odi ? odi->last_dir_index_offset : 0); |
| |
| btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { |
| struct waiting_dir_move *dm; |
| |
| if (found_key.objectid != key.objectid || |
| found_key.type != key.type) |
| break; |
| |
| di = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_dir_item); |
| btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); |
| |
| dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid); |
| last_dir_index_offset = found_key.offset; |
| |
| dm = get_waiting_dir_move(sctx, loc.objectid); |
| if (dm) { |
| dm->rmdir_ino = dir; |
| dm->rmdir_gen = dir_gen; |
| ret = 0; |
| goto out; |
| } |
| |
| if (loc.objectid > sctx->cur_ino) { |
| ret = 0; |
| goto out; |
| } |
| } |
| if (iter_ret < 0) { |
| ret = iter_ret; |
| goto out; |
| } |
| free_orphan_dir_info(sctx, odi); |
| |
| ret = 1; |
| |
| out: |
| btrfs_free_path(path); |
| |
| if (ret) |
| return ret; |
| |
| if (!odi) { |
| odi = add_orphan_dir_info(sctx, dir, dir_gen); |
| if (IS_ERR(odi)) |
| return PTR_ERR(odi); |
| |
| odi->gen = dir_gen; |
| } |
| |
| odi->last_dir_index_offset = last_dir_index_offset; |
| odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino); |
| |
| return 0; |
| } |
| |
| static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) |
| { |
| struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); |
| |
| return entry != NULL; |
| } |
| |
| static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) |
| { |
| struct rb_node **p = &sctx->waiting_dir_moves.rb_node; |
| struct rb_node *parent = NULL; |
| struct waiting_dir_move *entry, *dm; |
| |
| dm = kmalloc(sizeof(*dm), GFP_KERNEL); |
| if (!dm) |
| return -ENOMEM; |
| dm->ino = ino; |
| dm->rmdir_ino = 0; |
| dm->rmdir_gen = 0; |
| dm->orphanized = orphanized; |
| |
| while (*p) { |
| parent = *p; |
| entry = rb_entry(parent, struct waiting_dir_move, node); |
| if (ino < entry->ino) { |
| p = &(*p)->rb_left; |
| } else if (ino > entry->ino) { |
| p = &(*p)->rb_right; |
| } else { |
| kfree(dm); |
| return -EEXIST; |
| } |
| } |
| |
| rb_link_node(&dm->node, parent, p); |
| rb_insert_color(&dm->node, &sctx->waiting_dir_moves); |
| return 0; |
| } |
| |
| static struct waiting_dir_move * |
| get_waiting_dir_move(struct send_ctx *sctx, u64 ino) |
| { |
| struct rb_node *n = sctx->waiting_dir_moves.rb_node; |
| struct waiting_dir_move *entry; |
| |
| while (n) { |
| entry = rb_entry(n, struct waiting_dir_move, node); |
| if (ino < entry->ino) |
| n = n->rb_left; |
| else if (ino > entry->ino) |
| n = n->rb_right; |
| else |
| return entry; |
| } |
| return NULL; |
| } |
| |
| static void free_waiting_dir_move(struct send_ctx *sctx, |
| struct waiting_dir_move *dm) |
| { |
| if (!dm) |
| return; |
| rb_erase(&dm->node, &sctx->waiting_dir_moves); |
| kfree(dm); |
| } |
| |
| static int add_pending_dir_move(struct send_ctx *sctx, |
| u64 ino, |
| u64 ino_gen, |
| u64 parent_ino, |
| struct list_head *new_refs, |
| struct list_head *deleted_refs, |
| const bool is_orphan) |
| { |
| struct rb_node **p = &sctx->pending_dir_moves.rb_node; |
| struct rb_node *parent = NULL; |
| struct pending_dir_move *entry = NULL, *pm; |
| struct recorded_ref *cur; |
| int exists = 0; |
| int ret; |
| |
| pm = kmalloc(sizeof(*pm), GFP_KERNEL); |
| if (!pm) |
| return -ENOMEM; |
| pm->parent_ino = parent_ino; |
| pm->ino = ino; |
| pm->gen = ino_gen; |
| INIT_LIST_HEAD(&pm->list); |
| INIT_LIST_HEAD(&pm->update_refs); |
| RB_CLEAR_NODE(&pm->node); |
| |
| while (*p) { |
| parent = *p; |
| entry = rb_entry(parent, struct pending_dir_move, node); |
| if (parent_ino < entry->parent_ino) { |
| p = &(*p)->rb_left; |
| } else if (parent_ino > entry->parent_ino) { |
| p = &(*p)->rb_right; |
| } else { |
| exists = 1; |
| break; |
| } |
| } |
| |
| list_for_each_entry(cur, deleted_refs, list) { |
| ret = dup_ref(cur, &pm->update_refs); |
| if (ret < 0) |
| goto out; |
| } |
| list_for_each_entry(cur, new_refs, list) { |
| ret = dup_ref(cur, &pm->update_refs); |
| if (ret < 0) |
| goto out; |
| } |
| |
| ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); |
| if (ret) |
| goto out; |
| |
| if (exists) { |
| list_add_tail(&pm->list, &entry->list); |
| } else { |
| rb_link_node(&pm->node, parent, p); |
| rb_insert_color(&pm->node, &sctx->pending_dir_moves); |
| } |
| ret = 0; |
| out: |
| if (ret) { |
| __free_recorded_refs(&pm->update_refs); |
| kfree(pm); |
| } |
| return ret; |
| } |
| |
| static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, |
| u64 parent_ino) |
| { |
| struct rb_node *n = sctx->pending_dir_moves.rb_node; |
| struct pending_dir_move *entry; |
| |
| while (n) { |
| entry = rb_entry(n, struct pending_dir_move, node); |
| if (parent_ino < entry->parent_ino) |
| n = n->rb_left; |
| else if (parent_ino > entry->parent_ino) |
| n = n->rb_right; |
| else |
| return entry; |
| } |
| return NULL; |
| } |
| |
| static int path_loop(struct send_ctx *sctx, struct fs_path *name, |
| u64 ino, u64 gen, u64 *ancestor_ino) |
| { |
| int ret = 0; |
| u64 parent_inode = 0; |
| u64 parent_gen = 0; |
| u64 start_ino = ino; |
| |
| *ancestor_ino = 0; |
| while (ino != BTRFS_FIRST_FREE_OBJECTID) { |
| fs_path_reset(name); |
| |
| if (is_waiting_for_rm(sctx, ino, gen)) |
| break; |
| if (is_waiting_for_move(sctx, ino)) { |
| if (*ancestor_ino == 0) |
| *ancestor_ino = ino; |
| ret = get_first_ref(sctx->parent_root, ino, |
| &parent_inode, &parent_gen, name); |
| } else { |
| ret = __get_cur_name_and_parent(sctx, ino, gen, |
| &parent_inode, |
| &parent_gen, name); |
| if (ret > 0) { |
| ret = 0; |
| break; |
| } |
| } |
| if (ret < 0) |
| break; |
| if (parent_inode == start_ino) { |
| ret = 1; |
| if (*ancestor_ino == 0) |
| *ancestor_ino = ino; |
| break; |
| } |
| ino = parent_inode; |
| gen = parent_gen; |
| } |
| return ret; |
| } |
| |
| static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) |
| { |
| struct fs_path *from_path = NULL; |
| struct fs_path *to_path = NULL; |
| struct fs_path *name = NULL; |
| u64 orig_progress = sctx->send_progress; |
| struct recorded_ref *cur; |
| u64 parent_ino, parent_gen; |
| struct waiting_dir_move *dm = NULL; |
| u64 rmdir_ino = 0; |
| u64 rmdir_gen; |
| u64 ancestor; |
| bool is_orphan; |
| int ret; |
| |
| name = fs_path_alloc(); |
| from_path = fs_path_alloc(); |
| if (!name || !from_path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| dm = get_waiting_dir_move(sctx, pm->ino); |
| ASSERT(dm); |
| rmdir_ino = dm->rmdir_ino; |
| rmdir_gen = dm->rmdir_gen; |
| is_orphan = dm->orphanized; |
| free_waiting_dir_move(sctx, dm); |
| |
| if (is_orphan) { |
| ret = gen_unique_name(sctx, pm->ino, |
| pm->gen, from_path); |
| } else { |
| ret = get_first_ref(sctx->parent_root, pm->ino, |
| &parent_ino, &parent_gen, name); |
| if (ret < 0) |
| goto out; |
| ret = get_cur_path(sctx, parent_ino, parent_gen, |
| from_path); |
| if (ret < 0) |
| goto out; |
| ret = fs_path_add_path(from_path, name); |
| } |
| if (ret < 0) |
| goto out; |
| |
| sctx->send_progress = sctx->cur_ino + 1; |
| ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); |
| if (ret < 0) |
| goto out; |
| if (ret) { |
| LIST_HEAD(deleted_refs); |
| ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); |
| ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, |
| &pm->update_refs, &deleted_refs, |
| is_orphan); |
| if (ret < 0) |
| goto out; |
| if (rmdir_ino) { |
| dm = get_waiting_dir_move(sctx, pm->ino); |
| ASSERT(dm); |
| dm->rmdir_ino = rmdir_ino; |
| dm->rmdir_gen = rmdir_gen; |
| } |
| goto out; |
| } |
| fs_path_reset(name); |
| to_path = name; |
| name = NULL; |
| ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); |
| if (ret < 0) |
| goto out; |
| |
| ret = send_rename(sctx, from_path, to_path); |
| if (ret < 0) |
| goto out; |
| |
| if (rmdir_ino) { |
| struct orphan_dir_info *odi; |
| u64 gen; |
| |
| odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen); |
| if (!odi) { |
| /* already deleted */ |
| goto finish; |
| } |
| gen = odi->gen; |
| |
| ret = can_rmdir(sctx, rmdir_ino, gen); |
| if (ret < 0) |
| goto out; |
| if (!ret) |
| goto finish; |
| |
| name = fs_path_alloc(); |
| if (!name) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| ret = get_cur_path(sctx, rmdir_ino, gen, name); |
| if (ret < 0) |
| goto out; |
| ret = send_rmdir(sctx, name); |
| if (ret < 0) |
| goto out; |
| } |
| |
| finish: |
| ret = cache_dir_utimes(sctx, pm->ino, pm->gen); |
| if (ret < 0) |
| goto out; |
| |
| /* |
| * After rename/move, need to update the utimes of both new parent(s) |
| * and old parent(s). |
| */ |
| list_for_each_entry(cur, &pm->update_refs, list) { |
| /* |
| * The parent inode might have been deleted in the send snapshot |
| */ |
| ret = get_inode_info(sctx->send_root, cur->dir, NULL); |
| if (ret == -ENOENT) { |
| ret = 0; |
| continue; |
| } |
| if (ret < 0) |
| goto out; |
| |
| ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen); |
| if (ret < 0) |
| goto out; |
| } |
| |
| out: |
| fs_path_free(name); |
| fs_path_free(from_path); |
| fs_path_free(to_path); |
| sctx->send_progress = orig_progress; |
| |
| return ret; |
| } |
| |
| static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) |
| { |
| if (!list_empty(&m->list)) |
| list_del(&m->list); |
| if (!RB_EMPTY_NODE(&m->node)) |
| rb_erase(&m->node, &sctx->pending_dir_moves); |
| __free_recorded_refs(&m->update_refs); |
| kfree(m); |
| } |
| |
| static void tail_append_pending_moves(struct send_ctx *sctx, |
| struct pending_dir_move *moves, |
| struct list_head *stack) |
| { |
| if (list_empty(&moves->list)) { |
| list_add_tail(&moves->list, stack); |
| } else { |
| LIST_HEAD(list); |
| list_splice_init(&moves->list, &list); |
| list_add_tail(&moves->list, stack); |
| list_splice_tail(&list, stack); |
| } |
| if (!RB_EMPTY_NODE(&moves->node)) { |
| rb_erase(&moves->node, &sctx->pending_dir_moves); |
| RB_CLEAR_NODE(&moves->node); |
| } |
| } |
| |
| static int apply_children_dir_moves(struct send_ctx *sctx) |
| { |
| struct pending_dir_move *pm; |
| LIST_HEAD(stack); |
| u64 parent_ino = sctx->cur_ino; |
| int ret = 0; |
| |
| pm = get_pending_dir_moves(sctx, parent_ino); |
| if (!pm) |
| return 0; |
| |
| tail_append_pending_moves(sctx, pm, &stack); |
| |
| while (!list_empty(&stack)) { |
| pm = list_first_entry(&stack, struct pending_dir_move, list); |
| parent_ino = pm->ino; |
| ret = apply_dir_move(sctx, pm); |
| free_pending_move(sctx, pm); |
| if (ret) |
| goto out; |
| pm = get_pending_dir_moves(sctx, parent_ino); |
| if (pm) |
| tail_append_pending_moves(sctx, pm, &stack); |
| } |
| return 0; |
| |
| out: |
| while (!list_empty(&stack)) { |
| pm = list_first_entry(&stack, struct pending_dir_move, list); |
| free_pending_move(sctx, pm); |
| } |
| return ret; |
| } |
| |
| /* |
| * We might need to delay a directory rename even when no ancestor directory |
| * (in the send root) with a higher inode number than ours (sctx->cur_ino) was |
| * renamed. This happens when we rename a directory to the old name (the name |
| * in the parent root) of some other unrelated directory that got its rename |
| * delayed due to some ancestor with higher number that got renamed. |
| * |
| * Example: |
| * |
| * Parent snapshot: |
| * . (ino 256) |
| * |---- a/ (ino 257) |
| * | |---- file (ino 260) |
| * | |
| * |---- b/ (ino 258) |
| * |---- c/ (ino 259) |
| * |
| * Send snapshot: |
| * . (ino 256) |
| * |---- a/ (ino 258) |
| * |---- x/ (ino 259) |
| * |---- y/ (ino 257) |
| * |----- file (ino 260) |
| * |
| * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 |
| * from 'a' to 'x/y' happening first, which in turn depends on the rename of |
| * inode 259 from 'c' to 'x'. So the order of rename commands the send stream |
| * must issue is: |
| * |
| * 1 - rename 259 from 'c' to 'x' |
| * 2 - rename 257 from 'a' to 'x/y' |
| * 3 - rename 258 from 'b' to 'a' |
| * |
| * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can |
| * be done right away and < 0 on error. |
| */ |
| static int wait_for_dest_dir_move(struct send_ctx *sctx, |
| struct recorded_ref *parent_ref, |
| const bool is_orphan) |
| { |
| struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| struct btrfs_key di_key; |
| struct btrfs_dir_item *di; |
| u64 left_gen; |
| u64 right_gen; |
| int ret = 0; |
| struct waiting_dir_move *wdm; |
| |
| if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) |
| return 0; |
| |
| path = alloc_path_for_send(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = parent_ref->dir; |
| key.type = BTRFS_DIR_ITEM_KEY; |
| key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); |
| |
| ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); |
| if (ret < 0) { |
| goto out; |
| } else if (ret > 0) { |
| ret = 0; |
| goto out; |
| } |
| |
| di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, |
| parent_ref->name_len); |
| if (!di) { |
| ret = 0; |
| goto out; |
| } |
| /* |
| * di_key.objectid has the number of the inode that has a dentry in the |
| * parent directory with the same name that sctx->cur_ino is being |
| * renamed to. We need to check if that inode is in the send root as |
| * well and if it is currently marked as an inode with a pending rename, |
| * if it is, we need to delay the rename of sctx->cur_ino as well, so |
| * that it happens after that other inode is renamed. |
| */ |
| btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); |
| if (di_key.type != BTRFS_INODE_ITEM_KEY) { |
| ret = 0; |
| goto out; |
| } |
| |
| ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen); |
| if (ret < 0) |
| goto out; |
| ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen); |
| if (ret < 0) { |
| if (ret == -ENOENT) |
| ret = 0; |
| goto out; |
| } |
| |
| /* Different inode, no need to delay the rename of sctx->cur_ino */ |
| if (right_gen != left_gen) { |
| ret = 0; |
| goto out; |
| } |
| |
| wdm = get_waiting_dir_move(sctx, di_key.objectid); |
| if (wdm && !wdm->orphanized) { |
| ret = add_pending_dir_move(sctx, |
| sctx->cur_ino, |
| sctx->cur_inode_gen, |
| di_key.objectid, |
| &sctx->new_refs, |
| &sctx->deleted_refs, |
| is_orphan); |
| if (!ret) |
| ret = 1; |
| } |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * Check if inode ino2, or any of its ancestors, is inode ino1. |
| * Return 1 if true, 0 if false and < 0 on error. |
| */ |
| static int check_ino_in_path(struct btrfs_root *root, |
| const u64 ino1, |
| const u64 ino1_gen, |
| const u64 ino2, |
| const u64 ino2_gen, |
| struct fs_path *fs_path) |
| { |
| u64 ino = ino2; |
| |
| if (ino1 == ino2) |
| return ino1_gen == ino2_gen; |
| |
| while (ino > BTRFS_FIRST_FREE_OBJECTID) { |
| u64 parent; |
| u64 parent_gen; |
| int ret; |
| |
| fs_path_reset(fs_path); |
| ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); |
| if (ret < 0) |
| return ret; |
| if (parent == ino1) |
| return parent_gen == ino1_gen; |
| ino = parent; |
| } |
| return 0; |
| } |
| |
| /* |
| * Check if inode ino1 is an ancestor of inode ino2 in the given root for any |
| * possible path (in case ino2 is not a directory and has multiple hard links). |
| * Return 1 if true, 0 if false and < 0 on error. |
| */ |
| static int is_ancestor(struct btrfs_root *root, |
| const u64 ino1, |
| const u64 ino1_gen, |
| const u64 ino2, |
| struct fs_path *fs_path) |
| { |
| bool free_fs_path = false; |
| int ret = 0; |
| int iter_ret = 0; |
| struct btrfs_path *path = NULL; |
| struct btrfs_key key; |
| |
| if (!fs_path) { |
| fs_path = fs_path_alloc(); |
| if (!fs_path) |
| return -ENOMEM; |
| free_fs_path = true; |
| } |
| |
| path = alloc_path_for_send(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| key.objectid = ino2; |
| key.type = BTRFS_INODE_REF_KEY; |
| key.offset = 0; |
| |
| btrfs_for_each_slot(root, &key, &key, path, iter_ret) { |
| struct extent_buffer *leaf = path->nodes[0]; |
| int slot = path->slots[0]; |
| u32 cur_offset = 0; |
| u32 item_size; |
| |
| if (key.objectid != ino2) |
| break; |
| if (key.type != BTRFS_INODE_REF_KEY && |
| key.type != BTRFS_INODE_EXTREF_KEY) |
| break; |
| |
| item_size = btrfs_item_size(leaf, slot); |
| while (cur_offset < item_size) { |
| u64 parent; |
| u64 parent_gen; |
| |
| if (key.type == BTRFS_INODE_EXTREF_KEY) { |
| unsigned long ptr; |
| struct btrfs_inode_extref *extref; |
| |
| ptr = btrfs_item_ptr_offset(leaf, slot); |
| extref = (struct btrfs_inode_extref *) |
| (ptr + cur_offset); |
| parent = btrfs_inode_extref_parent(leaf, |
| extref); |
| cur_offset += sizeof(*extref); |
| cur_offset += btrfs_inode_extref_name_len(leaf, |
| extref); |
| } else { |
| parent = key.offset; |
| cur_offset = item_size; |
| } |
| |
| ret = get_inode_gen(root, parent, &parent_gen); |
| if (ret < 0) |
| goto out; |
| ret = check_ino_in_path(root, ino1, ino1_gen, |
| parent, parent_gen, fs_path); |
| if (ret) |
| goto out; |
| } |
| } |
| ret = 0; |
| if (iter_ret < 0) |
| ret = iter_ret; |
| |
| out: |
| btrfs_free_path(path); |
| if (free_fs_path) |
| fs_path_free(fs_path); |
| return ret; |
| } |
| |
| static int wait_for_parent_move(struct send_ctx *sctx, |
| struct recorded_ref *parent_ref, |
| const bool is_orphan) |
| { |
| int ret = 0; |
| u64 ino = parent_ref->dir; |
| u64 ino_gen = parent_ref->dir_gen; |
| u64 parent_ino_before, parent_ino_after; |
| struct fs_path *path_before = NULL; |
| struct fs_path *path_after = NULL; |
| int len1, len2; |
| |
| path_after = fs_path_alloc(); |
| path_before = fs_path_alloc(); |
| if (!path_after || !path_before) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| /* |
| * Our current directory inode may not yet be renamed/moved because some |
| * ancestor (immediate or not) has to be renamed/moved first. So find if |
| * such ancestor exists and make sure our own rename/move happens after |
| * that ancestor is processed to avoid path build infinite loops (done |
| * at get_cur_path()). |
| */ |
| while (ino > BTRFS_FIRST_FREE_OBJECTID) { |
| u64 parent_ino_after_gen; |
| |
| if (is_waiting_for_move(sctx, ino)) { |
| /* |
| * If the current inode is an ancestor of ino in the |
| * parent root, we need to delay the rename of the |
| * current inode, otherwise don't delayed the rename |
| * because we can end up with a circular dependency |
| * of renames, resulting in some directories never |
| * getting the respective rename operations issued in |
| * the send stream or getting into infinite path build |
| * loops. |
| */ |
| ret = is_ancestor(sctx->parent_root, |
| sctx->cur_ino, sctx->cur_inode_gen, |
| ino, path_before); |
| if (ret) |
| break; |
| } |
| |
| fs_path_reset(path_before); |
| fs_path_reset(path_after); |
| |
| ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, |
| &parent_ino_after_gen, path_after); |
| if (ret < 0) |
| goto out; |
| ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, |
| NULL, path_before); |
| if (ret < 0 && ret != -ENOENT) { |
| goto out; |
| } else if (ret == -ENOENT) { |
| ret = 0; |
| break; |
| } |
| |
| len1 = fs_path_len(path_before); |
| len2 = fs_path_len(path_after); |
| if (ino > sctx->cur_ino && |
| (parent_ino_before != parent_ino_after || len1 != len2 || |
| memcmp(path_before->start, path_after->start, len1))) { |
| u64 parent_ino_gen; |
| |
| ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen); |
| if (ret < 0) |
| goto out; |
| if (ino_gen == parent_ino_gen) { |
| ret = 1; |
| break; |
| } |
| } |
| ino = parent_ino_after; |
| ino_gen = parent_ino_after_gen; |
| } |
| |
| out: |
| fs_path_free(path_before); |
| fs_path_free(path_after); |
| |
| if (ret == 1) { |
| ret = add_pending_dir_move(sctx, |
| sctx->cur_ino, |
| sctx->cur_inode_gen, |
| ino, |
| &sctx->new_refs, |
| &sctx->deleted_refs, |
| is_orphan); |
| if (!ret) |
| ret = 1; |
| } |
| |
| return ret; |
| } |
| |
| static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) |
| { |
| int ret; |
| struct fs_path *new_path; |
| |
| /* |
| * Our reference's name member points to its full_path member string, so |
| * we use here a new path. |
| */ |
| new_path = fs_path_alloc(); |
| if (!new_path) |
| return -ENOMEM; |
| |
| ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); |
| if (ret < 0) { |
| fs_path_free(new_path); |
| return ret; |
| } |
| ret = fs_path_add(new_path, ref->name, ref->name_len); |
| if (ret < 0) { |
| fs_path_free(new_path); |
| return ret; |
| } |
| |
| fs_path_free(ref->full_path); |
| set_ref_path(ref, new_path); |
| |
| return 0; |
| } |
| |
| /* |
| * When processing the new references for an inode we may orphanize an existing |
| * directory inode because its old name conflicts with one of the new references |
| * of the current inode. Later, when processing another new reference of our |
| * inode, we might need to orphanize another inode, but the path we have in the |
| * reference reflects the pre-orphanization name of the directory we previously |
| * orphanized. For example: |
| * |
| * parent snapshot looks like: |
| * |
| * . (ino 256) |
| * |----- f1 (ino 257) |
| * |----- f2 (ino 258) |
| * |----- d1/ (ino 259) |
| * |----- d2/ (ino 260) |
| * |
| * send snapshot looks like: |
| * |
| * . (ino 256) |
| * |----- d1 (ino 258) |
| * |----- f2/ (ino 259) |
| * |----- f2_link/ (ino 260) |
| * | |----- f1 (ino 257) |
| * | |
| * |----- d2 (ino 258) |
| * |
| * When processing inode 257 we compute the name for inode 259 as "d1", and we |
| * cache it in the name cache. Later when we start processing inode 258, when |
| * collecting all its new references we set a full path of "d1/d2" for its new |
| * reference with name "d2". When we start processing the new references we |
| * start by processing the new reference with name "d1", and this results in |
| * orphanizing inode 259, since its old reference causes a conflict. Then we |
| * move on the next new reference, with name "d2", and we find out we must |
| * orphanize inode 260, as its old reference conflicts with ours - but for the |
| * orphanization we use a source path corresponding to the path we stored in the |
| * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the |
| * receiver fail since the path component "d1/" no longer exists, it was renamed |
| * to "o259-6-0/" when processing the previous new reference. So in this case we |
| * must recompute the path in the new reference and use it for the new |
| * orphanization operation. |
| */ |
| static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) |
| { |
| char *name; |
| int ret; |
| |
| name = kmemdup(ref->name, ref->name_len, GFP_KERNEL); |
| if (!name) |
| return -ENOMEM; |
| |
| fs_path_reset(ref->full_path); |
| ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path); |
| if (ret < 0) |
| goto out; |
| |
| ret = fs_path_add(ref->full_path, name, ref->name_len); |
| if (ret < 0) |
| goto out; |
| |
| /* Update the reference's base name pointer. */ |
| set_ref_path(ref, ref->full_path); |
| out: |
| kfree(name); |
| return ret; |
| } |
| |
| /* |
| * This does all the move/link/unlink/rmdir magic. |
| */ |
| static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) |
| { |
| struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; |
| int ret = 0; |
| struct recorded_ref *cur; |
| struct recorded_ref *cur2; |
| LIST_HEAD(check_dirs); |
| struct fs_path *valid_path = NULL; |
| u64 ow_inode = 0; |
| u64 ow_gen; |
| u64 ow_mode; |
| int did_overwrite = 0; |
| int is_orphan = 0; |
| u64 last_dir_ino_rm = 0; |
| bool can_rename = true; |
| bool orphanized_dir = false; |
| bool orphanized_ancestor = false; |
| |
| btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); |
| |
| /* |
| * This should never happen as the root dir always has the same ref |
| * which is always '..' |
| */ |
| if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) { |
| btrfs_err(fs_info, |
| "send: unexpected inode %llu in process_recorded_refs()", |
| sctx->cur_ino); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| valid_path = fs_path_alloc(); |
| if (!valid_path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| /* |
| * First, check if the first ref of the current inode was overwritten |
| * before. If yes, we know that the current inode was already orphanized |
| * and thus use the orphan name. If not, we can use get_cur_path to |
| * get the path of the first ref as it would like while receiving at |
| * this point in time. |
| * New inodes are always orphan at the beginning, so force to use the |
| * orphan name in this case. |
| * The first ref is stored in valid_path and will be updated if it |
| * gets moved around. |
| */ |
| if (!sctx->cur_inode_new) { |
| ret = did_overwrite_first_ref(sctx, sctx->cur_ino, |
| sctx->cur_inode_gen); |
| if (ret < 0) |
| goto out; |
| if (ret) |
| did_overwrite = 1; |
| } |
| if (sctx->cur_inode_new || did_overwrite) { |
| ret = gen_unique_name(sctx, sctx->cur_ino, |
| sctx->cur_inode_gen, valid_path); |
| if (ret < 0) |
| goto out; |
| is_orphan = 1; |
| } else { |
| ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, |
| valid_path); |
| if (ret < 0) |
| goto out; |
| } |
| |
| /* |
| * Before doing any rename and link operations, do a first pass on the |
| * new references to orphanize any unprocessed inodes that may have a |
| * reference that conflicts with one of the new references of the current |
| * inode. This needs to happen first because a new reference may conflict |
| * with the old reference of a parent directory, so we must make sure |
| * that the path used for link and rename commands don't use an |
| * orphanized name when an ancestor was not yet orphanized. |
| * |
| * Example: |
| * |
| * Parent snapshot: |
| * |
| * . (ino 256) |
| * |----- testdir/ (ino 259) |
| * | |----- a (ino 257) |
| * | |
| * |----- b (ino 258) |
| * |
| * Send snapshot: |
| * |
| * . (ino 256) |
| * |----- testdir_2/ (ino 259) |
| * | |----- a (ino 260) |
| * | |
| * |----- testdir (ino 257) |
| * |----- b (ino 257) |
| * |----- b2 (ino 258) |
| * |
| * Processing the new reference for inode 257 with name "b" may happen |
| * before processing the new reference with name "testdir". If so, we |
| * must make sure that by the time we send a link command to create the |
| * hard link "b", inode 259 was already orphanized, since the generated |
| * path in "valid_path" already contains the orphanized name for 259. |
| * We are processing inode 257, so only later when processing 259 we do |
| * the rename operation to change its temporary (orphanized) name to |
| * "testdir_2". |
| */ |
| list_for_each_entry(cur, &sctx->new_refs, list) { |
| ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); |
| if (ret < 0) |
| goto out; |
| if (ret == inode_state_will_create) |
| continue; |
| |
| /* |
| * Check if this new ref would overwrite the first ref of another |
| * unprocessed inode. If yes, orphanize the overwritten inode. |
| * If we find an overwritten ref that is not the first ref, |
| * simply unlink it. |
| */ |
| ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, |
| cur->name, cur->name_len, |
| &ow_inode, &ow_gen, &ow_mode); |
| if (ret < 0) |
| goto out; |
| if (ret) { |
| ret = is_first_ref(sctx->parent_root, |
| ow_inode, cur->dir, cur->name, |
| cur->name_len); |
| if (ret < 0) |
| goto out; |
| if (ret) { |
| struct name_cache_entry *nce; |
| struct waiting_dir_move *wdm; |
| |
| if (orphanized_dir) { |
| ret = refresh_ref_path(sctx, cur); |
| if (ret < 0) |
| goto out; |
| } |
| |
| ret = orphanize_inode(sctx, ow_inode, ow_gen, |
| cur->full_path); |
| if (ret < 0) |
| goto out; |
| if (S_ISDIR(ow_mode)) |
| orphanized_dir = true; |
| |
| /* |
| * If ow_inode has its rename operation delayed |
| * make sure that its orphanized name is used in |
| * the source path when performing its rename |
| * operation. |
| */ |
| wdm = get_waiting_dir_move(sctx, ow_inode); |
| if (wdm) |
| wdm->orphanized = true; |
| |
| /* |
| * Make sure we clear our orphanized inode's |
| * name from the name cache. This is because the |
| * inode ow_inode might be an ancestor of some |
| * other inode that will be orphanized as well |
| * later and has an inode number greater than |
| * sctx->send_progress. We need to prevent |
| * future name lookups from using the old name |
| * and get instead the orphan name. |
| */ |
| nce = name_cache_search(sctx, ow_inode, ow_gen); |
| if (nce) |
| btrfs_lru_cache_remove(&sctx->name_cache, |
| &nce->entry); |
| |
| /* |
| * ow_inode might currently be an ancestor of |
| * cur_ino, therefore compute valid_path (the |
| * current path of cur_ino) again because it |
| * might contain the pre-orphanization name of |
| * ow_inode, which is no longer valid. |
| */ |
| ret = is_ancestor(sctx->parent_root, |
| ow_inode, ow_gen, |
| sctx->cur_ino, NULL); |
| if (ret > 0) { |
| orphanized_ancestor = true; |
| fs_path_reset(valid_path); |
| ret = get_cur_path(sctx, sctx->cur_ino, |
| sctx->cur_inode_gen, |
| valid_path); |
| } |
| if (ret < 0) |
| goto out; |
| } else { |
| /* |
| * If we previously orphanized a directory that |
| * collided with a new reference that we already |
| * processed, recompute the current path because |
| * that directory may be part of the path. |
| */ |
| if (orphanized_dir) { |
| ret = refresh_ref_path(sctx, cur); |
| if (ret < 0) |
| goto out; |
| } |
| ret = send_unlink(sctx, cur->full_path); |
| if (ret < 0) |
| goto out; |
| } |
| } |
| |
| } |
| |
| list_for_each_entry(cur, &sctx->new_refs, list) { |
| /* |
| * We may have refs where the parent directory does not exist |
| * yet. This happens if the parent directories inum is higher |
| * than the current inum. To handle this case, we create the |
| * parent directory out of order. But we need to check if this |
| * did already happen before due to other refs in the same dir. |
| */ |
| ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); |
| if (ret < 0) |
| goto out; |
| if (ret == inode_state_will_create) { |
| ret = 0; |
| /* |
| * First check if any of the current inodes refs did |
| * already create the dir. |
| */ |
| list_for_each_entry(cur2, &sctx->new_refs, list) { |
| if (cur == cur2) |
| break; |
| if (cur2->dir == cur->dir) { |
| ret = 1; |
| break; |
| } |
| } |
| |
| /* |
| * If that did not happen, check if a previous inode |
| * did already create the dir. |
| */ |
| if (!ret) |
| ret = did_create_dir(sctx, cur->dir); |
| if (ret < 0) |
| goto out; |
| if (!ret) { |
| ret = send_create_inode(sctx, cur->dir); |
| if (ret < 0) |
| goto out; |
| cache_dir_created(sctx, cur->dir); |
| } |
| } |
| |
| if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { |
| ret = wait_for_dest_dir_move(sctx, cur, is_orphan); |
| if (ret < 0) |
| goto out; |
| if (ret == 1) { |
| can_rename = false; |
| *pending_move = 1; |
| } |
| } |
| |
| if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && |
| can_rename) { |
| ret = wait_for_parent_move(sctx, cur, is_orphan); |
| if (ret < 0) |
| goto out; |
| if (ret == 1) { |
| can_rename = false; |
| *pending_move = 1; |
| } |
| } |
| |
| /* |
| * link/move the ref to the new place. If we have an orphan |
| * inode, move it and update valid_path. If not, link or move |
| * it depending on the inode mode. |
| */ |
| if (is_orphan && can_rename) { |
| ret = send_rename(sctx, valid_path, cur->full_path); |
| if (ret < 0) |
| goto out; |
| is_orphan = 0; |
| ret = fs_path_copy(valid_path, cur->full_path); |
| if (ret < 0) |
| goto out; |
| } else if (can_rename) { |
| if (S_ISDIR(sctx->cur_inode_mode)) { |
| /* |
| * Dirs can't be linked, so move it. For moved |
| * dirs, we always have one new and one deleted |
| * ref. The deleted ref is ignored later. |
| */ |
| ret = send_rename(sctx, valid_path, |
| cur->full_path); |
| if (!ret) |
| ret = fs_path_copy(valid_path, |
| cur->full_path); |
| if (ret < 0) |
| goto out; |
| } else { |
| /* |
| * We might have previously orphanized an inode |
| * which is an ancestor of our current inode, |
| * so our reference's full path, which was |
| * computed before any such orphanizations, must |
| * be updated. |
| */ |
| if (orphanized_dir) { |
| ret = update_ref_path(sctx, cur); |
| if (ret < 0) |
| goto out; |
| } |
| ret = send_link(sctx, cur->full_path, |
| valid_path); |
| if (ret < 0) |
| goto out; |
| } |
| } |
| ret = dup_ref(cur, &check_dirs); |
| if (ret < 0) |
| goto out; |
| } |
| |
| if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { |
| /* |
| * Check if we can already rmdir the directory. If not, |
| * orphanize it. For every dir item inside that gets deleted |
| * later, we do this check again and rmdir it then if possible. |
| * See the use of check_dirs for more details. |
| */ |
| ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen); |
| if (ret < 0) |
| goto out; |
| if (ret) { |
| ret = send_rmdir(sctx, valid_path); |
| if (ret < 0) |
| goto out; |
| } else if (!is_orphan) { |
| ret = orphanize_inode(sctx, sctx->cur_ino, |
| sctx->cur_inode_gen, valid_path); |
| if (ret < 0) |
| goto out; |
| is_orphan = 1; |
| } |
| |
| list_for_each_entry(cur, &sctx->deleted_refs, list) { |
| ret = dup_ref(cur, &check_dirs); |
| if (ret < 0) |
| goto out; |
| } |
| } else if (S_ISDIR(sctx->cur_inode_mode) && |
| !list_empty(&sctx->deleted_refs)) { |
| /* |
| * We have a moved dir. Add the old parent to check_dirs |
| */ |
| cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, |
| list); |
| ret = dup_ref(cur, &check_dirs); |
| if (ret < 0) |
| goto out; |
| } else if (!S_ISDIR(sctx->cur_inode_mode)) { |
| /* |
| * We have a non dir inode. Go through all deleted refs and |
| * unlink them if they were not already overwritten by other |
| * inodes. |
| */ |
| list_for_each_entry(cur, &sctx->deleted_refs, list) { |
| ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, |
| sctx->cur_ino, sctx->cur_inode_gen, |
| cur->name, cur->name_len); |
| if (ret < 0) |
| goto out; |
| if (!ret) { |
| /* |
| * If we orphanized any ancestor before, we need |
| * to recompute the full path for deleted names, |
| * since any such path was computed before we |
| * processed any references and orphanized any |
| * ancestor inode. |
| */ |
| if (orphanized_ancestor) { |
| ret = update_ref_path(sctx, cur); |
| if (ret < 0) |
| goto out; |
| } |
| ret = send_unlink(sctx, cur->full_path); |
| if (ret < 0) |
| goto out; |
| } |
| ret = dup_ref(cur, &check_dirs); |
| if (ret < 0) |
| goto out; |
| } |
| /* |
| * If the inode is still orphan, unlink the orphan. This may |
| * happen when a previous inode did overwrite the first ref |
| * of this inode and no new refs were added for the current |
| * inode. Unlinking does not mean that the inode is deleted in |
| * all cases. There may still be links to this inode in other |
| * places. |
| */ |
| if (is_orphan) { |
| ret = send_unlink(sctx, valid_path); |
| if (ret < 0) |
| goto out; |
| } |
| } |
| |
| /* |
| * We did collect all parent dirs where cur_inode was once located. We |
| * now go through all these dirs and check if they are pending for |
| * deletion and if it's finally possible to perform the rmdir now. |
| * We also update the inode stats of the parent dirs here. |
| */ |
| list_for_each_entry(cur, &check_dirs, list) { |
| /* |
| * In case we had refs into dirs that were not processed yet, |
| * we don't need to do the utime and rmdir logic for these dirs. |
| * The dir will be processed later. |
| */ |
| if (cur->dir > sctx->cur_ino) |
| continue; |
| |
| ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); |
| if (ret < 0) |
| goto out; |
| |
| if (ret == inode_state_did_create || |
| ret == inode_state_no_change) { |
| ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen); |
| if (ret < 0) |
| goto out; |
| } else if (ret == inode_state_did_delete && |
| cur->dir != last_dir_ino_rm) { |
| ret = can_rmdir(sctx, cur->dir, cur->dir_gen); |
| if (ret < 0) |
| goto out; |
| if (ret) { |
| ret = get_cur_path(sctx, cur->dir, |
| cur->dir_gen, valid_path); |
| if (ret < 0) |
| goto out; |
| ret = send_rmdir(sctx, valid_path); |
| if (ret < 0) |
| goto out; |
| last_dir_ino_rm = cur->dir; |
| } |
| } |
| } |
| |
| ret = 0; |
| |
| out: |
| __free_recorded_refs(&check_dirs); |
| free_recorded_refs(sctx); |
| fs_path_free(valid_path); |
| return ret; |
| } |
| |
| static int rbtree_ref_comp(const void *k, const struct rb_node *node) |
| { |
| const struct recorded_ref *data = k; |
| const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node); |
| int result; |
| |
| if (data->dir > ref->dir) |
| return 1; |
| if (data->dir < ref->dir) |
| return -1; |
| if (data->dir_gen > ref->dir_gen) |
| return 1; |
| if (data->dir_gen < ref->dir_gen) |
| return -1; |
| if (data->name_len > ref->name_len) |
| return 1; |
| if (data->name_len < ref->name_len) |
| return -1; |
| result = strcmp(data->name, ref->name); |
| if (result > 0) |
| return 1; |
| if (result < 0) |
| return -1; |
| return 0; |
| } |
| |
| static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent) |
| { |
| const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node); |
| |
| return rbtree_ref_comp(entry, parent) < 0; |
| } |
| |
| static int record_ref_in_tree(struct rb_root *root, struct list_head *refs, |
| struct fs_path *name, u64 dir, u64 dir_gen, |
| struct send_ctx *sctx) |
| { |
| int ret = 0; |
| struct fs_path *path = NULL; |
| struct recorded_ref *ref = NULL; |
| |
| path = fs_path_alloc(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| ref = recorded_ref_alloc(); |
| if (!ref) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| ret = get_cur_path(sctx, dir, dir_gen, path); |
| if (ret < 0) |
| goto out; |
| ret = fs_path_add_path(path, name); |
| if (ret < 0) |
| goto out; |
| |
| ref->dir = dir; |
| ref->dir_gen = dir_gen; |
| set_ref_path(ref, path); |
| list_add_tail(&ref->list, refs); |
| rb_add(&ref->node, root, rbtree_ref_less); |
| ref->root = root; |
| out: |
| if (ret) { |
| if (path && (!ref || !ref->full_path)) |
| fs_path_free(path); |
| recorded_ref_free(ref); |
| } |
| return ret; |
| } |
| |
| static int record_new_ref_if_needed(int num, u64 dir, int index, |
| struct fs_path *name, void *ctx) |
| { |
| int ret = 0; |
| struct send_ctx *sctx = ctx; |
| struct rb_node *node = NULL; |
| struct recorded_ref data; |
| struct recorded_ref *ref; |
| u64 dir_gen; |
| |
| ret = get_inode_gen(sctx->send_root, dir, &dir_gen); |
| if (ret < 0) |
| goto out; |
| |
| data.dir = dir; |
| data.dir_gen = dir_gen; |
| set_ref_path(&data, name); |
| node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp); |
| if (node) { |
| ref = rb_entry(node, struct recorded_ref, node); |
| recorded_ref_free(ref); |
| } else { |
| ret = record_ref_in_tree(&sctx->rbtree_new_refs, |
| &sctx->new_refs, name, dir, dir_gen, |
| sctx); |
| } |
| out: |
| return ret; |
| } |
| |
| static int record_deleted_ref_if_needed(int num, u64 dir, int index, |
| struct fs_path *name, void *ctx) |
| { |
| int ret = 0; |
| struct send_ctx *sctx = ctx; |
| struct rb_node *node = NULL; |
| struct recorded_ref data; |
| struct recorded_ref *ref; |
| u64 dir_gen; |
| |
| ret = get_inode_gen(sctx->parent_root, dir, &dir_gen); |
| if (ret < 0) |
| goto out; |
| |
| data.dir = dir; |
| data.dir_gen = dir_gen; |
| set_ref_path(&data, name); |
| node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp); |
| if (node) { |
| ref = rb_entry(node, struct recorded_ref, node); |
| recorded_ref_free(ref); |
| } else { |
| ret = record_ref_in_tree(&sctx->rbtree_deleted_refs, |
| &sctx->deleted_refs, name, dir, |
| dir_gen, sctx); |
| } |
| out: |
| return ret; |
| } |
| |
| static int record_new_ref(struct send_ctx *sctx) |
| { |
| int ret; |
| |
| ret = iterate_inode_ref(sctx->send_root, sctx->left_path, |
| sctx->cmp_key, 0, record_new_ref_if_needed, sctx); |
| if (ret < 0) |
| goto out; |
| ret = 0; |
| |
| out: |
| return ret; |
| } |
| |
| static int record_deleted_ref(struct send_ctx *sctx) |
| { |
| int ret; |
| |
| ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, |
| sctx->cmp_key, 0, record_deleted_ref_if_needed, |
| sctx); |
| if (ret < 0) |
| goto out; |
| ret = 0; |
| |
| out: |
| return ret; |
| } |
| |
| static int record_changed_ref(struct send_ctx *sctx) |
| { |
| int ret = 0; |
| |
| ret = iterate_inode_ref(sctx->send_root, sctx->left_path, |
| sctx->cmp_key, 0, record_new_ref_if_needed, sctx); |
| if (ret < 0) |
| goto out; |
| ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, |
| sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx); |
| if (ret < 0) |
| goto out; |
| ret = 0; |
| |
| out: |
| return ret; |
| } |
| |
| /* |
| * Record and process all refs at once. Needed when an inode changes the |
| * generation number, which means that it was deleted and recreated. |
| */ |
| static int process_all_refs(struct send_ctx *sctx, |
| enum btrfs_compare_tree_result cmd) |
| { |
| int ret = 0; |
| int iter_ret = 0; |
| struct btrfs_root *root; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| iterate_inode_ref_t cb; |
| int pending_move = 0; |
| |
| path = alloc_path_for_send(); |
| if (!path) |
| return -ENOMEM; |
| |
| if (cmd == BTRFS_COMPARE_TREE_NEW) { |
| root = sctx->send_root; |
| cb = record_new_ref_if_needed; |
| } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { |
| root = sctx->parent_root; |
| cb = record_deleted_ref_if_needed; |
| } else { |
| btrfs_err(sctx->send_root->fs_info, |
| "Wrong command %d in process_all_refs", cmd); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| key.objectid = sctx->cmp_key->objectid; |
| key.type = BTRFS_INODE_REF_KEY; |
| key.offset = 0; |
| btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { |
| if (found_key.objectid != key.objectid || |
| (found_key.type != BTRFS_INODE_REF_KEY && |
| found_key.type != BTRFS_INODE_EXTREF_KEY)) |
| break; |
| |
| ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); |
| if (ret < 0) |
| goto out; |
| } |
| /* Catch error found during iteration */ |
| if (iter_ret < 0) { |
| ret = iter_ret; |
| goto out; |
| } |
| btrfs_release_path(path); |
| |
| /* |
| * We don't actually care about pending_move as we are simply |
| * re-creating this inode and will be rename'ing it into place once we |
| * rename the parent directory. |
| */ |
| ret = process_recorded_refs(sctx, &pending_move); |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int send_set_xattr(struct send_ctx *sctx, |
| struct fs_path *path, |
| const char *name, int name_len, |
| const char *data, int data_len) |
| { |
| int ret = 0; |
| |
| ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); |
| if (ret < 0) |
| goto out; |
| |
| TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); |
| TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); |
| TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); |
| |
| ret = send_cmd(sctx); |
| |
| tlv_put_failure: |
| out: |
| return ret; |
| } |
| |
| static int send_remove_xattr(struct send_ctx *sctx, |
| struct fs_path *path, |
| const char *name, int name_len) |
| { |
| int ret = 0; |
| |
| ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); |
| if (ret < 0) |
| goto out; |
| |
| TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); |
| TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); |
| |
| ret = send_cmd(sctx); |
| |
| tlv_put_failure: |
| out: |
| return ret; |
| } |
| |
| static int __process_new_xattr(int num, struct btrfs_key *di_key, |
| const char *name, int name_len, const char *data, |
| int data_len, void *ctx) |
| { |
| int ret; |
| struct send_ctx *sctx = ctx; |
| struct fs_path *p; |
| struct posix_acl_xattr_header dummy_acl; |
| |
| /* Capabilities are emitted by finish_inode_if_needed */ |
| if (!strncmp(name, XATTR_NAME_CAPS, name_len)) |
| return 0; |
| |
| p = fs_path_alloc(); |
| if (!p) |
| return -ENOMEM; |
| |
| /* |
| * This hack is needed because empty acls are stored as zero byte |
| * data in xattrs. Problem with that is, that receiving these zero byte |
| * acls will fail later. To fix this, we send a dummy acl list that |
| * only contains the version number and no entries. |
| */ |
| if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || |
| !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { |
| if (data_len == 0) { |
| dummy_acl.a_version = |
| cpu_to_le32(POSIX_ACL_XATTR_VERSION); |
| data = (char *)&dummy_acl; |
| data_len = sizeof(dummy_acl); |
| } |
| } |
| |
| ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); |
| if (ret < 0) |
| goto out; |
| |
| ret = send_set_xattr(sctx, p, name, name_len, data, data_len); |
| |
| out: |
| fs_path_free(p); |
| return ret; |
| } |
| |
| static int __process_deleted_xattr(int num, struct btrfs_key *di_key, |
| const char *name, int name_len, |
| const char *data, int data_len, void *ctx) |
| { |
| int ret; |
| struct send_ctx *sctx = ctx; |
| struct fs_path *p; |
| |
| p = fs_path_alloc(); |
| if (!p) |
| return -ENOMEM; |
| |
| ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); |
| if (ret < 0) |
| goto out; |
| |
| ret = send_remove_xattr(sctx, p, name, name_len); |
| |
| out: |
| fs_path_free(p); |
| return ret; |
| } |
| |
| static int process_new_xattr(struct send_ctx *sctx) |
| { |
| int ret = 0; |
| |
| ret = iterate_dir_item(sctx->send_root, sctx->left_path, |
| __process_new_xattr, sctx); |
| |
| return ret; |
| } |
| |
| static int process_deleted_xattr(struct send_ctx *sctx) |
| { |
| return iterate_dir_item(sctx->parent_root, sctx->right_path, |
| __process_deleted_xattr, sctx); |
| } |
| |
| struct find_xattr_ctx { |
| const char *name; |
| int name_len; |
| int found_idx; |
| char *found_data; |
| int found_data_len; |
| }; |
| |
| static int __find_xattr(int num, struct btrfs_key *di_key, const char *name, |
| int name_len, const char *data, int data_len, void *vctx) |
| { |
| struct find_xattr_ctx *ctx = vctx; |
| |
| if (name_len == ctx->name_len && |
| strncmp(name, ctx->name, name_len) == 0) { |
| ctx->found_idx = num; |
| ctx->found_data_len = data_len; |
| ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); |
| if (!ctx->found_data) |
| return -ENOMEM; |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int find_xattr(struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_key *key, |
| const char *name, int name_len, |
| char **data, int *data_len) |
| { |
| int ret; |
| struct find_xattr_ctx ctx; |
| |
| ctx.name = name; |
| ctx.name_len = name_len; |
| ctx.found_idx = -1; |
| ctx.found_data = NULL; |
| ctx.found_data_len = 0; |
| |
| ret = iterate_dir_item(root, path, __find_xattr, &ctx); |
| if (ret < 0) |
| return ret; |
| |
| if (ctx.found_idx == -1) |
| return -ENOENT; |
| if (data) { |
| *data = ctx.found_data; |
| *data_len = ctx.found_data_len; |
| } else { |
| kfree(ctx.found_data); |
| } |
| return ctx.found_idx; |
| } |
| |
| |
| static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, |
| const char *name, int name_len, |
| const char *data, int data_len, |
| void *ctx) |
| { |
| int ret; |
| struct send_ctx *sctx = ctx; |
| char *found_data = NULL; |
| int found_data_len = 0; |
| |
| ret = find_xattr(sctx->parent_root, sctx->right_path, |
| sctx->cmp_key, name, name_len, &found_data, |
| &found_data_len); |
| if (ret == -ENOENT) { |
| ret = __process_new_xattr(num, di_key, name, name_len, data, |
| data_len, ctx); |
| } else if (ret >= 0) { |
| if (data_len != found_data_len || |
| memcmp(data, found_data, data_len)) { |
| ret = __process_new_xattr(num, di_key, name, name_len, |
| data, data_len, ctx); |
| } else { |
| ret = 0; |
| } |
| } |
| |
| kfree(found_data); |
| return ret; |
| } |
| |
| static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, |
| const char *name, int name_len, |
| const char *data, int data_len, |
| void *ctx) |
| { |
| int ret; |
| struct send_ctx *sctx = ctx; |
| |
| ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, |
| name, name_len, NULL, NULL); |
| if (ret == -ENOENT) |
| ret = __process_deleted_xattr(num, di_key, name, name_len, data, |
| data_len, ctx); |
| else if (ret >= 0) |
| ret = 0; |
| |
| return ret; |
| } |
| |
| static int process_changed_xattr(struct send_ctx *sctx) |
| { |
| int ret = 0; |
| |
| ret = iterate_dir_item(sctx->send_root, sctx->left_path, |
| __process_changed_new_xattr, sctx); |
| if (ret < 0) |
| goto out; |
| ret = iterate_dir_item(sctx->parent_root, sctx->right_path, |
| __process_changed_deleted_xattr, sctx); |
| |
| out: |
| return ret; |
| } |
| |
| static int process_all_new_xattrs(struct send_ctx *sctx) |
| { |
| int ret = 0; |
| int iter_ret = 0; |
| struct btrfs_root *root; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| |
| path = alloc_path_for_send(); |
| if (!path) |
| return -ENOMEM; |
| |
| root = sctx->send_root; |
| |
| key.objectid = sctx->cmp_key->objectid; |
| key.type = BTRFS_XATTR_ITEM_KEY; |
| key.offset = 0; |
| btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { |
| if (found_key.objectid != key.objectid || |
| found_key.type != key.type) { |
| ret = 0; |
| break; |
| } |
| |
| ret = iterate_dir_item(root, path, __process_new_xattr, sctx); |
| if (ret < 0) |
| break; |
| } |
| /* Catch error found during iteration */ |
| if (iter_ret < 0) |
| ret = iter_ret; |
| |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int send_verity(struct send_ctx *sctx, struct fs_path *path, |
| struct fsverity_descriptor *desc) |
| { |
| int ret; |
| |
| ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY); |
| if (ret < 0) |
| goto out; |
| |
| TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); |
| TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM, |
| le8_to_cpu(desc->hash_algorithm)); |
| TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE, |
| 1U << le8_to_cpu(desc->log_blocksize)); |
| TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt, |
| le8_to_cpu(desc->salt_size)); |
| TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature, |
| le32_to_cpu(desc->sig_size)); |
| |
| ret = send_cmd(sctx); |
| |
| tlv_put_failure: |
| out: |
| return ret; |
| } |
| |
| static int process_verity(struct send_ctx *sctx) |
| { |
| int ret = 0; |
| struct inode *inode; |
| struct fs_path *p; |
| |
| inode = btrfs_iget(sctx->cur_ino, sctx->send_root); |
| if (IS_ERR(inode)) |
| return PTR_ERR(inode); |
| |
| ret = btrfs_get_verity_descriptor(inode, NULL, 0); |
| if (ret < 0) |
| goto iput; |
| |
| if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) { |
| ret = -EMSGSIZE; |
| goto iput; |
| } |
| if (!sctx->verity_descriptor) { |
| sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE, |
| GFP_KERNEL); |
| if (!sctx->verity_descriptor) { |
| ret = -ENOMEM; |
| goto iput; |
| } |
| } |
| |
| ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret); |
| if (ret < 0) |
| goto iput; |
| |
| p = fs_path_alloc(); |
| if (!p) { |
| ret = -ENOMEM; |
| goto iput; |
| } |
| ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); |
| if (ret < 0) |
| goto free_path; |
| |
| ret = send_verity(sctx, p, sctx->verity_descriptor); |
| if (ret < 0) |
| goto free_path; |
| |
| free_path: |
| fs_path_free(p); |
| iput: |
| iput(inode); |
| return ret; |
| } |
| |
| static inline u64 max_send_read_size(const struct send_ctx *sctx) |
| { |
| return sctx->send_max_size - SZ_16K; |
| } |
| |
| static int put_data_header(struct send_ctx *sctx, u32 len) |
| { |
| if (WARN_ON_ONCE(sctx->put_data)) |
| return -EINVAL; |
| sctx->put_data = true; |
| if (sctx->proto >= 2) { |
| /* |
| * Since v2, the data attribute header doesn't include a length, |
| * it is implicitly to the end of the command. |
| */ |
| if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len) |
| return -EOVERFLOW; |
| put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size); |
| sctx->send_size += sizeof(__le16); |
| } else { |
| struct btrfs_tlv_header *hdr; |
| |
| if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len) |
| return -EOVERFLOW; |
| hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size); |
| put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type); |
| put_unaligned_le16(len, &hdr->tlv_len); |
| sctx->send_size += sizeof(*hdr); |
| } |
| return 0; |
| } |
| |
| static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len) |
| { |
| struct btrfs_root *root = sctx->send_root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct folio *folio; |
| pgoff_t index = offset >> PAGE_SHIFT; |
| pgoff_t last_index; |
| unsigned pg_offset = offset_in_page(offset); |
| struct address_space *mapping = sctx->cur_inode->i_mapping; |
| int ret; |
| |
| ret = put_data_header(sctx, len); |
| if (ret) |
| return ret; |
| |
| last_index = (offset + len - 1) >> PAGE_SHIFT; |
| |
| while (index <= last_index) { |
| unsigned cur_len = min_t(unsigned, len, |
| PAGE_SIZE - pg_offset); |
| |
| folio = filemap_lock_folio(mapping, index); |
| if (IS_ERR(folio)) { |
| page_cache_sync_readahead(mapping, |
| &sctx->ra, NULL, index, |
| last_index + 1 - index); |
| |
| folio = filemap_grab_folio(mapping, index); |
| if (IS_ERR(folio)) { |
| ret = PTR_ERR(folio); |
| break; |
| } |
| } |
| |
| WARN_ON(folio_order(folio)); |
| |
| if (folio_test_readahead(folio)) |
| page_cache_async_readahead(mapping, &sctx->ra, NULL, folio, |
| last_index + 1 - index); |
| |
| if (!folio_test_uptodate(folio)) { |
| btrfs_read_folio(NULL, folio); |
| folio_lock(folio); |
| if (!folio_test_uptodate(folio)) { |
| folio_unlock(folio); |
| btrfs_err(fs_info, |
| "send: IO error at offset %llu for inode %llu root %llu", |
| folio_pos(folio), sctx->cur_ino, |
| btrfs_root_id(sctx->send_root)); |
| folio_put(folio); |
| ret = -EIO; |
| break; |
| } |
| } |
| |
| memcpy_from_folio(sctx->send_buf + sctx->send_size, folio, |
| pg_offset, cur_len); |
| folio_unlock(folio); |
| folio_put(folio); |
| index++; |
| pg_offset = 0; |
| len -= cur_len; |
| sctx->send_size += cur_len; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Read some bytes from the current inode/file and send a write command to |
| * user space. |
| */ |
| static int send_write(struct send_ctx *sctx, u64 offset, u32 len) |
| { |
| struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; |
| int ret = 0; |
| struct fs_path *p; |
| |
| p = fs_path_alloc(); |
| if (!p) |
| return -ENOMEM; |
| |
| btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); |
| |
| ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); |
| if (ret < 0) |
| goto out; |
| |
| ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); |
| if (ret < 0) |
| goto out; |
| |
| TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); |
| TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); |
| ret = put_file_data(sctx, offset, len); |
| if (ret < 0) |
| goto out; |
| |
| ret = send_cmd(sctx); |
| |
| tlv_put_failure: |
| out: |
| fs_path_free(p); |
| return ret; |
| } |
| |
| /* |
| * Send a clone command to user space. |
| */ |
| static int send_clone(struct send_ctx *sctx, |
| u64 offset, u32 len, |
| struct clone_root *clone_root) |
| { |
| int ret = 0; |
| struct fs_path *p; |
| u64 gen; |
| |
| btrfs_debug(sctx->send_root->fs_info, |
| "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", |
| offset, len, btrfs_root_id(clone_root->root), |
| clone_root->ino, clone_root->offset); |
| |
| p = fs_path_alloc(); |
| if (!p) |
| return -ENOMEM; |
| |
| ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); |
| if (ret < 0) |
| goto out; |
| |
| ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); |
| if (ret < 0) |
| goto out; |
| |
| TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); |
| TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); |
| TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); |
| |
| if (clone_root->root == sctx->send_root) { |
| ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen); |
| if (ret < 0) |
| goto out; |
| ret = get_cur_path(sctx, clone_root->ino, gen, p); |
| } else { |
| ret = get_inode_path(clone_root->root, clone_root->ino, p); |
| } |
| if (ret < 0) |
| goto out; |
| |
| /* |
| * If the parent we're using has a received_uuid set then use that as |
| * our clone source as that is what we will look for when doing a |
| * receive. |
| * |
| * This covers the case that we create a snapshot off of a received |
| * subvolume and then use that as the parent and try to receive on a |
| * different host. |
| */ |
| if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) |
| TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, |
| clone_root->root->root_item.received_uuid); |
| else |
| TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, |
| clone_root->root->root_item.uuid); |
| TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, |
| btrfs_root_ctransid(&clone_root->root->root_item)); |
| TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); |
| TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, |
| clone_root->offset); |
| |
| ret = send_cmd(sctx); |
| |
| tlv_put_failure: |
| out: |
| fs_path_free(p); |
| return ret; |
| } |
| |
| /* |
| * Send an update extent command to user space. |
| */ |
| static int send_update_extent(struct send_ctx *sctx, |
| u64 offset, u32 len) |
| { |
| int ret = 0; |
| struct fs_path *p; |
| |
| p = fs_path_alloc(); |
| if (!p) |
| return -ENOMEM; |
| |
| ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); |
| if (ret < 0) |
| goto out; |
| |
| ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); |
| if (ret < 0) |
| goto out; |
| |
| TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); |
| TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); |
| TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); |
| |
| ret = send_cmd(sctx); |
| |
| tlv_put_failure: |
| out: |
| fs_path_free(p); |
| return ret; |
| } |
| |
| static int send_hole(struct send_ctx *sctx, u64 end) |
| { |
| struct fs_path *p = NULL; |
| u64 read_size = max_send_read_size(sctx); |
| u64 offset = sctx->cur_inode_last_extent; |
| int ret = 0; |
| |
| /* |
| * A hole that starts at EOF or beyond it. Since we do not yet support |
| * fallocate (for extent preallocation and hole punching), sending a |
| * write of zeroes starting at EOF or beyond would later require issuing |
| * a truncate operation which would undo the write and achieve nothing. |
| */ |
| if (offset >= sctx->cur_inode_size) |
| return 0; |
| |
| /* |
| * Don't go beyond the inode's i_size due to prealloc extents that start |
| * after the i_size. |
| */ |
| end = min_t(u64, end, sctx->cur_inode_size); |
| |
| if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) |
| return send_update_extent(sctx, offset, end - offset); |
| |
| p = fs_path_alloc(); |
| if (!p) |
| return -ENOMEM; |
| ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); |
| if (ret < 0) |
| goto tlv_put_failure; |
| while (offset < end) { |
| u64 len = min(end - offset, read_size); |
| |
| ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); |
| if (ret < 0) |
| break; |
| TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); |
| TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); |
| ret = put_data_header(sctx, len); |
| if (ret < 0) |
| break; |
| memset(sctx->send_buf + sctx->send_size, 0, len); |
| sctx->send_size += len; |
| ret = send_cmd(sctx); |
| if (ret < 0) |
| break; |
| offset += len; |
| } |
| sctx->cur_inode_next_write_offset = offset; |
| tlv_put_failure: |
| fs_path_free(p); |
| return ret; |
| } |
| |
| static int send_encoded_inline_extent(struct send_ctx *sctx, |
| struct btrfs_path *path, u64 offset, |
| u64 len) |
| { |
| struct btrfs_root *root = sctx->send_root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct inode *inode; |
| struct fs_path *fspath; |
| struct extent_buffer *leaf = path->nodes[0]; |
| struct btrfs_key key; |
| struct btrfs_file_extent_item *ei; |
| u64 ram_bytes; |
| size_t inline_size; |
| int ret; |
| |
| inode = btrfs_iget(sctx->cur_ino, root); |
| if (IS_ERR(inode)) |
| return PTR_ERR(inode); |
| |
| fspath = fs_path_alloc(); |
| if (!fspath) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); |
| if (ret < 0) |
| goto out; |
| |
| ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); |
| if (ret < 0) |
| goto out; |
| |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); |
| ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei); |
| inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); |
| |
| TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); |
| TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); |
| TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, |
| min(key.offset + ram_bytes - offset, len)); |
| TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes); |
| TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset); |
| ret = btrfs_encoded_io_compression_from_extent(fs_info, |
| btrfs_file_extent_compression(leaf, ei)); |
| if (ret < 0) |
| goto out; |
| TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); |
| |
| ret = put_data_header(sctx, inline_size); |
| if (ret < 0) |
| goto out; |
| read_extent_buffer(leaf, sctx->send_buf + sctx->send_size, |
| btrfs_file_extent_inline_start(ei), inline_size); |
| sctx->send_size += inline_size; |
| |
| ret = send_cmd(sctx); |
| |
| tlv_put_failure: |
| out: |
| fs_path_free(fspath); |
| iput(inode); |
| return ret; |
| } |
| |
| static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path, |
| u64 offset, u64 len) |
| { |
| struct btrfs_root *root = sctx->send_root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct inode *inode; |
| struct fs_path *fspath; |
| struct extent_buffer *leaf = path->nodes[0]; |
| struct btrfs_key key; |
| struct btrfs_file_extent_item *ei; |
| u64 disk_bytenr, disk_num_bytes; |
| u32 data_offset; |
| struct btrfs_cmd_header *hdr; |
| u32 crc; |
| int ret; |
| |
| inode = btrfs_iget(sctx->cur_ino, root); |
| if (IS_ERR(inode)) |
| return PTR_ERR(inode); |
| |
| fspath = fs_path_alloc(); |
| if (!fspath) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); |
| if (ret < 0) |
| goto out; |
| |
| ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); |
| if (ret < 0) |
| goto out; |
| |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); |
| disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); |
| disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei); |
| |
| TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); |
| TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); |
| TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, |
| min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset, |
| len)); |
| TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, |
| btrfs_file_extent_ram_bytes(leaf, ei)); |
| TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, |
| offset - key.offset + btrfs_file_extent_offset(leaf, ei)); |
| ret = btrfs_encoded_io_compression_from_extent(fs_info, |
| btrfs_file_extent_compression(leaf, ei)); |
| if (ret < 0) |
| goto out; |
| TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); |
| TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0); |
| |
| ret = put_data_header(sctx, disk_num_bytes); |
| if (ret < 0) |
| goto out; |
| |
| /* |
| * We want to do I/O directly into the send buffer, so get the next page |
| * boundary in the send buffer. This means that there may be a gap |
| * between the beginning of the command and the file data. |
| */ |
| data_offset = PAGE_ALIGN(sctx->send_size); |
| if (data_offset > sctx->send_max_size || |
| sctx->send_max_size - data_offset < disk_num_bytes) { |
| ret = -EOVERFLOW; |
| goto out; |
| } |
| |
| /* |
| * Note that send_buf is a mapping of send_buf_pages, so this is really |
| * reading into send_buf. |
| */ |
| ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset, |
| disk_bytenr, disk_num_bytes, |
| sctx->send_buf_pages + |
| (data_offset >> PAGE_SHIFT)); |
| if (ret) |
| goto out; |
| |
| hdr = (struct btrfs_cmd_header *)sctx->send_buf; |
| hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr)); |
| hdr->crc = 0; |
| crc = crc32c(0, sctx->send_buf, sctx->send_size); |
| crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes); |
| hdr->crc = cpu_to_le32(crc); |
| |
| ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, |
| &sctx->send_off); |
| if (!ret) { |
| ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset, |
| disk_num_bytes, &sctx->send_off); |
| } |
| sctx->send_size = 0; |
| sctx->put_data = false; |
| |
| tlv_put_failure: |
| out: |
| fs_path_free(fspath); |
| iput(inode); |
| return ret; |
| } |
| |
| static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path, |
| const u64 offset, const u64 len) |
| { |
| const u64 end = offset + len; |
| struct extent_buffer *leaf = path->nodes[0]; |
| struct btrfs_file_extent_item *ei; |
| u64 read_size = max_send_read_size(sctx); |
| u64 sent = 0; |
| |
| if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) |
| return send_update_extent(sctx, offset, len); |
| |
| ei = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_file_extent_item); |
| if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) && |
| btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { |
| bool is_inline = (btrfs_file_extent_type(leaf, ei) == |
| BTRFS_FILE_EXTENT_INLINE); |
| |
| /* |
| * Send the compressed extent unless the compressed data is |
| * larger than the decompressed data. This can happen if we're |
| * not sending the entire extent, either because it has been |
| * partially overwritten/truncated or because this is a part of |
| * the extent that we couldn't clone in clone_range(). |
| */ |
| if (is_inline && |
| btrfs_file_extent_inline_item_len(leaf, |
| path->slots[0]) <= len) { |
| return send_encoded_inline_extent(sctx, path, offset, |
| len); |
| } else if (!is_inline && |
| btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) { |
| return send_encoded_extent(sctx, path, offset, len); |
| } |
| } |
| |
| if (sctx->cur_inode == NULL) { |
| struct btrfs_root *root = sctx->send_root; |
| |
| sctx->cur_inode = btrfs_iget(sctx->cur_ino, root); |
| if (IS_ERR(sctx->cur_inode)) { |
| int err = PTR_ERR(sctx->cur_inode); |
| |
| sctx->cur_inode = NULL; |
| return err; |
| } |
| memset(&sctx->ra, 0, sizeof(struct file_ra_state)); |
| file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping); |
| |
| /* |
| * It's very likely there are no pages from this inode in the page |
| * cache, so after reading extents and sending their data, we clean |
| * the page cache to avoid trashing the page cache (adding pressure |
| * to the page cache and forcing eviction of other data more useful |
| * for applications). |
| * |
| * We decide if we should clean the page cache simply by checking |
| * if the inode's mapping nrpages is 0 when we first open it, and |
| * not by using something like filemap_range_has_page() before |
| * reading an extent because when we ask the readahead code to |
| * read a given file range, it may (and almost always does) read |
| * pages from beyond that range (see the documentation for |
| * page_cache_sync_readahead()), so it would not be reliable, |
| * because after reading the first extent future calls to |
| * filemap_range_has_page() would return true because the readahead |
| * on the previous extent resulted in reading pages of the current |
| * extent as well. |
| */ |
| sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0); |
| sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE); |
| } |
| |
| while (sent < len) { |
| u64 size = min(len - sent, read_size); |
| int ret; |
| |
| ret = send_write(sctx, offset + sent, size); |
| if (ret < 0) |
| return ret; |
| sent += size; |
| } |
| |
| if (sctx->clean_page_cache && PAGE_ALIGNED(end)) { |
| /* |
| * Always operate only on ranges that are a multiple of the page |
| * size. This is not only to prevent zeroing parts of a page in |
| * the case of subpage sector size, but also to guarantee we evict |
| * pages, as passing a range that is smaller than page size does |
| * not evict the respective page (only zeroes part of its content). |
| * |
| * Always start from the end offset of the last range cleared. |
| * This is because the readahead code may (and very often does) |
| * reads pages beyond the range we request for readahead. So if |
| * we have an extent layout like this: |
| * |
| * [ extent A ] [ extent B ] [ extent C ] |
| * |
| * When we ask page_cache_sync_readahead() to read extent A, it |
| * may also trigger reads for pages of extent B. If we are doing |
| * an incremental send and extent B has not changed between the |
| * parent and send snapshots, some or all of its pages may end |
| * up being read and placed in the page cache. So when truncating |
| * the page cache we always start from the end offset of the |
| * previously processed extent up to the end of the current |
| * extent. |
| */ |
| truncate_inode_pages_range(&sctx->cur_inode->i_data, |
| sctx->page_cache_clear_start, |
| end - 1); |
| sctx->page_cache_clear_start = end; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Search for a capability xattr related to sctx->cur_ino. If the capability is |
| * found, call send_set_xattr function to emit it. |
| * |
| * Return 0 if there isn't a capability, or when the capability was emitted |
| * successfully, or < 0 if an error occurred. |
| */ |
| static int send_capabilities(struct send_ctx *sctx) |
| { |
| struct fs_path *fspath = NULL; |
| struct btrfs_path *path; |
| struct btrfs_dir_item *di; |
| struct extent_buffer *leaf; |
| unsigned long data_ptr; |
| char *buf = NULL; |
| int buf_len; |
| int ret = 0; |
| |
| path = alloc_path_for_send(); |
| if (!path) |
| return -ENOMEM; |
| |
| di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino, |
| XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0); |
| if (!di) { |
| /* There is no xattr for this inode */ |
| goto out; |
| } else if (IS_ERR(di)) { |
| ret = PTR_ERR(di); |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| buf_len = btrfs_dir_data_len(leaf, di); |
| |
| fspath = fs_path_alloc(); |
| buf = kmalloc(buf_len, GFP_KERNEL); |
| if (!fspath || !buf) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); |
| if (ret < 0) |
| goto out; |
| |
| data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di); |
| read_extent_buffer(leaf, buf, data_ptr, buf_len); |
| |
| ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS, |
| strlen(XATTR_NAME_CAPS), buf, buf_len); |
| out: |
| kfree(buf); |
| fs_path_free(fspath); |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path, |
| struct clone_root *clone_root, const u64 disk_byte, |
| u64 data_offset, u64 offset, u64 len) |
| { |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| int ret; |
| struct btrfs_inode_info info; |
| u64 clone_src_i_size = 0; |
| |
| /* |
| * Prevent cloning from a zero offset with a length matching the sector |
| * size because in some scenarios this will make the receiver fail. |
| * |
| * For example, if in the source filesystem the extent at offset 0 |
| * has a length of sectorsize and it was written using direct IO, then |
| * it can never be an inline extent (even if compression is enabled). |
| * Then this extent can be cloned in the original filesystem to a non |
| * zero file offset, but it may not be possible to clone in the |
| * destination filesystem because it can be inlined due to compression |
| * on the destination filesystem (as the receiver's write operations are |
| * always done using buffered IO). The same happens when the original |
| * filesystem does not have compression enabled but the destination |
| * filesystem has. |
| */ |
| if (clone_root->offset == 0 && |
| len == sctx->send_root->fs_info->sectorsize) |
| return send_extent_data(sctx, dst_path, offset, len); |
| |
| path = alloc_path_for_send(); |
| if (!path) |
| return -ENOMEM; |
| |
| /* |
| * There are inodes that have extents that lie behind its i_size. Don't |
| * accept clones from these extents. |
| */ |
| ret = get_inode_info(clone_root->root, clone_root->ino, &info); |
| btrfs_release_path(path); |
| if (ret < 0) |
| goto out; |
| clone_src_i_size = info.size; |
| |
| /* |
| * We can't send a clone operation for the entire range if we find |
| * extent items in the respective range in the source file that |
| * refer to different extents or if we find holes. |
| * So check for that and do a mix of clone and regular write/copy |
| * operations if needed. |
| * |
| * Example: |
| * |
| * mkfs.btrfs -f /dev/sda |
| * mount /dev/sda /mnt |
| * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo |
| * cp --reflink=always /mnt/foo /mnt/bar |
| * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo |
| * btrfs subvolume snapshot -r /mnt /mnt/snap |
| * |
| * If when we send the snapshot and we are processing file bar (which |
| * has a higher inode number than foo) we blindly send a clone operation |
| * for the [0, 100K[ range from foo to bar, the receiver ends up getting |
| * a file bar that matches the content of file foo - iow, doesn't match |
| * the content from bar in the original filesystem. |
| */ |
| key.objectid = clone_root->ino; |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| key.offset = clone_root->offset; |
| ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| if (ret > 0 && path->slots[0] > 0) { |
| btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); |
| if (key.objectid == clone_root->ino && |
| key.type == BTRFS_EXTENT_DATA_KEY) |
| path->slots[0]--; |
| } |
| |
| while (true) { |
| struct extent_buffer *leaf = path->nodes[0]; |
| int slot = path->slots[0]; |
| struct btrfs_file_extent_item *ei; |
| u8 type; |
| u64 ext_len; |
| u64 clone_len; |
| u64 clone_data_offset; |
| bool crossed_src_i_size = false; |
| |
| if (slot >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(clone_root->root, path); |
| if (ret < 0) |
| goto out; |
| else if (ret > 0) |
| break; |
| continue; |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| |
| /* |
| * We might have an implicit trailing hole (NO_HOLES feature |
| * enabled). We deal with it after leaving this loop. |
| */ |
| if (key.objectid != clone_root->ino || |
| key.type != BTRFS_EXTENT_DATA_KEY) |
| break; |
| |
| ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); |
| type = btrfs_file_extent_type(leaf, ei); |
| if (type == BTRFS_FILE_EXTENT_INLINE) { |
| ext_len = btrfs_file_extent_ram_bytes(leaf, ei); |
| ext_len = PAGE_ALIGN(ext_len); |
| } else { |
| ext_len = btrfs_file_extent_num_bytes(leaf, ei); |
| } |
| |
| if (key.offset + ext_len <= clone_root->offset) |
| goto next; |
| |
| if (key.offset > clone_root->offset) { |
| /* Implicit hole, NO_HOLES feature enabled. */ |
| u64 hole_len = key.offset - clone_root->offset; |
| |
| if (hole_len > len) |
| hole_len = len; |
| ret = send_extent_data(sctx, dst_path, offset, |
| hole_len); |
| if (ret < 0) |
| goto out; |
| |
| len -= hole_len; |
| if (len == 0) |
| break; |
| offset += hole_len; |
| clone_root->offset += hole_len; |
| data_offset += hole_len; |
| } |
| |
| if (key.offset >= clone_root->offset + len) |
| break; |
| |
| if (key.offset >= clone_src_i_size) |
| break; |
| |
| if (key.offset + ext_len > clone_src_i_size) { |
| ext_len = clone_src_i_size - key.offset; |
| crossed_src_i_size = true; |
| } |
| |
| clone_data_offset = btrfs_file_extent_offset(leaf, ei); |
| if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { |
| clone_root->offset = key.offset; |
| if (clone_data_offset < data_offset && |
| clone_data_offset + ext_len > data_offset) { |
| u64 extent_offset; |
| |
| extent_offset = data_offset - clone_data_offset; |
| ext_len -= extent_offset; |
| clone_data_offset += extent_offset; |
| clone_root->offset += extent_offset; |
| } |
| } |
| |
| clone_len = min_t(u64, ext_len, len); |
| |
| if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && |
| clone_data_offset == data_offset) { |
| const u64 src_end = clone_root->offset + clone_len; |
| const u64 sectorsize = SZ_64K; |
| |
| /* |
| * We can't clone the last block, when its size is not |
| * sector size aligned, into the middle of a file. If we |
| * do so, the receiver will get a failure (-EINVAL) when |
| * trying to clone or will silently corrupt the data in |
| * the destination file if it's on a kernel without the |
| * fix introduced by commit ac765f83f1397646 |
| * ("Btrfs: fix data corruption due to cloning of eof |
| * block). |
| * |
| * So issue a clone of the aligned down range plus a |
| * regular write for the eof block, if we hit that case. |
| * |
| * Also, we use the maximum possible sector size, 64K, |
| * because we don't know what's the sector size of the |
| * filesystem that receives the stream, so we have to |
| * assume the largest possible sector size. |
| */ |
| if (src_end == clone_src_i_size && |
| !IS_ALIGNED(src_end, sectorsize) && |
| offset + clone_len < sctx->cur_inode_size) { |
| u64 slen; |
| |
| slen = ALIGN_DOWN(src_end - clone_root->offset, |
| sectorsize); |
| if (slen > 0) { |
| ret = send_clone(sctx, offset, slen, |
| clone_root); |
| if (ret < 0) |
| goto out; |
| } |
| ret = send_extent_data(sctx, dst_path, |
| offset + slen, |
| clone_len - slen); |
| } else { |
| ret = send_clone(sctx, offset, clone_len, |
| clone_root); |
| } |
| } else if (crossed_src_i_size && clone_len < len) { |
| /* |
| * If we are at i_size of the clone source inode and we |
| * can not clone from it, terminate the loop. This is |
| * to avoid sending two write operations, one with a |
| * length matching clone_len and the final one after |
| * this loop with a length of len - clone_len. |
| * |
| * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED |
| * was passed to the send ioctl), this helps avoid |
| * sending an encoded write for an offset that is not |
| * sector size aligned, in case the i_size of the source |
| * inode is not sector size aligned. That will make the |
| * receiver fallback to decompression of the data and |
| * writing it using regular buffered IO, therefore while |
| * not incorrect, it's not optimal due decompression and |
| * possible re-compression at the receiver. |
| */ |
| break; |
| } else { |
| ret = send_extent_data(sctx, dst_path, offset, |
| clone_len); |
| } |
| |
| if (ret < 0) |
| goto out; |
| |
| len -= clone_len; |
| if (len == 0) |
| break; |
| offset += clone_len; |
| clone_root->offset += clone_len; |
| |
| /* |
| * If we are cloning from the file we are currently processing, |
| * and using the send root as the clone root, we must stop once |
| * the current clone offset reaches the current eof of the file |
| * at the receiver, otherwise we would issue an invalid clone |
| * operation (source range going beyond eof) and cause the |
| * receiver to fail. So if we reach the current eof, bail out |
| * and fallback to a regular write. |
| */ |
| if (clone_root->root == sctx->send_root && |
| clone_root->ino == sctx->cur_ino && |
| clone_root->offset >= sctx->cur_inode_next_write_offset) |
| break; |
| |
| data_offset += clone_len; |
| next: |
| path->slots[0]++; |
| } |
| |
| if (len > 0) |
| ret = send_extent_data(sctx, dst_path, offset, len); |
| else |
| ret = 0; |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int send_write_or_clone(struct send_ctx *sctx, |
| struct btrfs_path *path, |
| struct btrfs_key *key, |
| struct clone_root *clone_root) |
| { |
| int ret = 0; |
| u64 offset = key->offset; |
| u64 end; |
| u64 bs = sctx->send_root->fs_info->sectorsize; |
| |
| end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size); |
| if (offset >= end) |
| return 0; |
| |
| if (clone_root && IS_ALIGNED(end, bs)) { |
| struct btrfs_file_extent_item *ei; |
| u64 disk_byte; |
| u64 data_offset; |
| |
| ei = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_file_extent_item); |
| disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); |
| data_offset = btrfs_file_extent_offset(path->nodes[0], ei); |
| ret = clone_range(sctx, path, clone_root, disk_byte, |
| data_offset, offset, end - offset); |
| } else { |
| ret = send_extent_data(sctx, path, offset, end - offset); |
| } |
| sctx->cur_inode_next_write_offset = end; |
| return ret; |
| } |
| |
| static int is_extent_unchanged(struct send_ctx *sctx, |
| struct btrfs_path *left_path, |
| struct btrfs_key *ekey) |
| { |
| int ret = 0; |
| struct btrfs_key key; |
| struct btrfs_path *path = NULL; |
| struct extent_buffer *eb; |
| int slot; |
| struct btrfs_key found_key; |
| struct btrfs_file_extent_item *ei; |
| u64 left_disknr; |
| u64 right_disknr; |
| u64 left_offset; |
| u64 right_offset; |
| u64 left_offset_fixed; |
| u64 left_len; |
| u64 right_len; |
| u64 left_gen; |
| u64 right_gen; |
| u8 left_type; |
| u8 right_type; |
| |
| path = alloc_path_for_send(); |
| if (!path) |
| return -ENOMEM; |
| |
| eb = left_path->nodes[0]; |
| slot = left_path->slots[0]; |
| ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); |
| left_type = btrfs_file_extent_type(eb, ei); |
| |
| if (left_type != BTRFS_FILE_EXTENT_REG) { |
| ret = 0; |
| goto out; |
| } |
| left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); |
| left_len = btrfs_file_extent_num_bytes(eb, ei); |
| left_offset = btrfs_file_extent_offset(eb, ei); |
| left_gen = btrfs_file_extent_generation(eb, ei); |
| |
| /* |
| * Following comments will refer to these graphics. L is the left |
| * extents which we are checking at the moment. 1-8 are the right |
| * extents that we iterate. |
| * |
| * |-----L-----| |
| * |-1-|-2a-|-3-|-4-|-5-|-6-| |
| * |
| * |-----L-----| |
| * |--1--|-2b-|...(same as above) |
| * |
| * Alternative situation. Happens on files where extents got split. |
| * |-----L-----| |
| * |-----------7-----------|-6-| |
| * |
| * Alternative situation. Happens on files which got larger. |
| * |-----L-----| |
| * |-8-| |
| * Nothing follows after 8. |
| */ |
| |
| key.objectid = ekey->objectid; |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| key.offset = ekey->offset; |
| ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| if (ret) { |
| ret = 0; |
| goto out; |
| } |
| |
| /* |
| * Handle special case where the right side has no extents at all. |
| */ |
| eb = path->nodes[0]; |
| slot = path->slots[0]; |
| btrfs_item_key_to_cpu(eb, &found_key, slot); |
| if (found_key.objectid != key.objectid || |
| found_key.type != key.type) { |
| /* If we're a hole then just pretend nothing changed */ |
| ret = (left_disknr) ? 0 : 1; |
| goto out; |
| } |
| |
| /* |
| * We're now on 2a, 2b or 7. |
| */ |
| key = found_key; |
| while (key.offset < ekey->offset + left_len) { |
| ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); |
| right_type = btrfs_file_extent_type(eb, ei); |
| if (right_type != BTRFS_FILE_EXTENT_REG && |
| right_type != BTRFS_FILE_EXTENT_INLINE) { |
| ret = 0; |
| goto out; |
| } |
| |
| if (right_type == BTRFS_FILE_EXTENT_INLINE) { |
| right_len = btrfs_file_extent_ram_bytes(eb, ei); |
| right_len = PAGE_ALIGN(right_len); |
| } else { |
| right_len = btrfs_file_extent_num_bytes(eb, ei); |
| } |
| |
| /* |
| * Are we at extent 8? If yes, we know the extent is changed. |
| * This may only happen on the first iteration. |
| */ |
| if (found_key.offset + right_len <= ekey->offset) { |
| /* If we're a hole just pretend nothing changed */ |
| ret = (left_disknr) ? 0 : 1; |
| goto out; |
| } |
| |
| /* |
| * We just wanted to see if when we have an inline extent, what |
| * follows it is a regular extent (wanted to check the above |
| * condition for inline extents too). This should normally not |
| * happen but it's possible for example when we have an inline |
| * compressed extent representing data with a size matching |
| * the page size (currently the same as sector size). |
| */ |
| if (right_type == BTRFS_FILE_EXTENT_INLINE) { |
| ret = 0; |
| goto out; |
| } |
| |
| right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); |
| right_offset = btrfs_file_extent_offset(eb, ei); |
| right_gen = btrfs_file_extent_generation(eb, ei); |
| |
| left_offset_fixed = left_offset; |
| if (key.offset < ekey->offset) { |
| /* Fix the right offset for 2a and 7. */ |
| right_offset += ekey->offset - key.offset; |
| } else { |
| /* Fix the left offset for all behind 2a and 2b */ |
| left_offset_fixed += key.offset - ekey->offset; |
| } |
| |
| /* |
| * Check if we have the same extent. |
| */ |
| if (left_disknr != right_disknr || |
| left_offset_fixed != right_offset || |
| left_gen != right_gen) { |
| ret = 0; |
| goto out; |
| } |
| |
| /* |
| * Go to the next extent. |
| */ |
| ret = btrfs_next_item(sctx->parent_root, path); |
| if (ret < 0) |
| goto out; |
| if (!ret) { |
| eb = path->nodes[0]; |
| slot = path->slots[0]; |
| btrfs_item_key_to_cpu(eb, &found_key, slot); |
| } |
| if (ret || found_key.objectid != key.objectid || |
| found_key.type != key.type) { |
| key.offset += right_len; |
| break; |
| } |
| if (found_key.offset != key.offset + right_len) { |
| ret = 0; |
| goto out; |
| } |
| key = found_key; |
| } |
| |
| /* |
| * We're now behind the left extent (treat as unchanged) or at the end |
| * of the right side (treat as changed). |
| */ |
| if (key.offset >= ekey->offset + left_len) |
| ret = 1; |
| else |
| ret = 0; |
| |
| |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int get_last_extent(struct send_ctx *sctx, u64 offset) |
| { |
| struct btrfs_path *path; |
| struct btrfs_root *root = sctx->send_root; |
| struct btrfs_key key; |
| int ret; |
| |
| path = alloc_path_for_send(); |
| if (!path) |
| return -ENOMEM; |
| |
| sctx->cur_inode_last_extent = 0; |
| |
| key.objectid = sctx->cur_ino; |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| key.offset = offset; |
| ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); |
| if (ret < 0) |
| goto out; |
| ret = 0; |
| btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) |
| goto out; |
| |
| sctx->cur_inode_last_extent = btrfs_file_extent_end(path); |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int range_is_hole_in_parent(struct send_ctx *sctx, |
| const u64 start, |
| const u64 end) |
| { |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| struct btrfs_root *root = sctx->parent_root; |
| u64 search_start = start; |
| int ret; |
| |
| path = alloc_path_for_send(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = sctx->cur_ino; |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| key.offset = search_start; |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| if (ret > 0 && path->slots[0] > 0) |
| path->slots[0]--; |
| |
| while (search_start < end) { |
| struct extent_buffer *leaf = path->nodes[0]; |
| int slot = path->slots[0]; |
| struct btrfs_file_extent_item *fi; |
| u64 extent_end; |
| |
| if (slot >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| goto out; |
| else if (ret > 0) |
| break; |
| continue; |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| if (key.objectid < sctx->cur_ino || |
| key.type < BTRFS_EXTENT_DATA_KEY) |
| goto next; |
| if (key.objectid > sctx->cur_ino || |
| key.type > BTRFS_EXTENT_DATA_KEY || |
| key.offset >= end) |
| break; |
| |
| fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); |
| extent_end = btrfs_file_extent_end(path); |
| if (extent_end <= start) |
| goto next; |
| if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { |
| search_start = extent_end; |
| goto next; |
| } |
| ret = 0; |
| goto out; |
| next: |
| path->slots[0]++; |
| } |
| ret = 1; |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, |
| struct btrfs_key *key) |
| { |
| int ret = 0; |
| |
| if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) |
| return 0; |
| |
| /* |
| * Get last extent's end offset (exclusive) if we haven't determined it |
| * yet (we're processing the first file extent item that is new), or if |
| * we're at the first slot of a leaf and the last extent's end is less |
| * than the current extent's offset, because we might have skipped |
| * entire leaves that contained only file extent items for our current |
| * inode. These leaves have a generation number smaller (older) than the |
| * one in the current leaf and the leaf our last extent came from, and |
| * are located between these 2 leaves. |
| */ |
| if ((sctx->cur_inode_last_extent == (u64)-1) || |
| (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) { |
| ret = get_last_extent(sctx, key->offset - 1); |
| if (ret) |
| return ret; |
| } |
| |
| if (sctx->cur_inode_last_extent < key->offset) { |
| ret = range_is_hole_in_parent(sctx, |
| sctx->cur_inode_last_extent, |
| key->offset); |
| if (ret < 0) |
| return ret; |
| else if (ret == 0) |
| ret = send_hole(sctx, key->offset); |
| else |
| ret = 0; |
| } |
| sctx->cur_inode_last_extent = btrfs_file_extent_end(path); |
| return ret; |
| } |
| |
| static int process_extent(struct send_ctx *sctx, |
| struct btrfs_path *path, |
| struct btrfs_key *key) |
| { |
| struct clone_root *found_clone = NULL; |
| int ret = 0; |
| |
| if (S_ISLNK(sctx->cur_inode_mode)) |
| return 0; |
| |
| if (sctx->parent_root && !sctx->cur_inode_new) { |
| ret = is_extent_unchanged(sctx, path, key); |
| if (ret < 0) |
| goto out; |
| if (ret) { |
| ret = 0; |
| goto out_hole; |
| } |
| } else { |
| struct btrfs_file_extent_item *ei; |
| u8 type; |
| |
| ei = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_file_extent_item); |
| type = btrfs_file_extent_type(path->nodes[0], ei); |
| if (type == BTRFS_FILE_EXTENT_PREALLOC || |
| type == BTRFS_FILE_EXTENT_REG) { |
| /* |
| * The send spec does not have a prealloc command yet, |
| * so just leave a hole for prealloc'ed extents until |
| * we have enough commands queued up to justify rev'ing |
| * the send spec. |
| */ |
| if (type == BTRFS_FILE_EXTENT_PREALLOC) { |
| ret = 0; |
| goto out; |
| } |
| |
| /* Have a hole, just skip it. */ |
| if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { |
| ret = 0; |
| goto out; |
| } |
| } |
| } |
| |
| ret = find_extent_clone(sctx, path, key->objectid, key->offset, |
| sctx->cur_inode_size, &found_clone); |
| if (ret != -ENOENT && ret < 0) |
| goto out; |
| |
| ret = send_write_or_clone(sctx, path, key, found_clone); |
| if (ret) |
| goto out; |
| out_hole: |
| ret = maybe_send_hole(sctx, path, key); |
| out: |
| return ret; |
| } |
| |
| static int process_all_extents(struct send_ctx *sctx) |
| { |
| int ret = 0; |
| int iter_ret = 0; |
| struct btrfs_root *root; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| |
| root = sctx->send_root; |
| path = alloc_path_for_send(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = sctx->cmp_key->objectid; |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| key.offset = 0; |
| btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { |
| if (found_key.objectid != key.objectid || |
| found_key.type != key.type) { |
| ret = 0; |
| break; |
| } |
| |
| ret = process_extent(sctx, path, &found_key); |
| if (ret < 0) |
| break; |
| } |
| /* Catch error found during iteration */ |
| if (iter_ret < 0) |
| ret = iter_ret; |
| |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, |
| int *pending_move, |
| int *refs_processed) |
| { |
| int ret = 0; |
| |
| if (sctx->cur_ino == 0) |
| goto out; |
| if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && |
| sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) |
| goto out; |
| if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) |
| goto out; |
| |
| ret = process_recorded_refs(sctx, pending_move); |
| if (ret < 0) |
| goto out; |
| |
| *refs_processed = 1; |
| out: |
| return ret; |
| } |
| |
| static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) |
| { |
| int ret = 0; |
| struct btrfs_inode_info info; |
| u64 left_mode; |
| u64 left_uid; |
| u64 left_gid; |
| u64 left_fileattr; |
| u64 right_mode; |
| u64 right_uid; |
| u64 right_gid; |
| u64 right_fileattr; |
| int need_chmod = 0; |
| int need_chown = 0; |
| bool need_fileattr = false; |
| int need_truncate = 1; |
| int pending_move = 0; |
| int refs_processed = 0; |
| |
| if (sctx->ignore_cur_inode) |
| return 0; |
| |
| ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, |
| &refs_processed); |
| if (ret < 0) |
| goto out; |
| |
| /* |
| * We have processed the refs and thus need to advance send_progress. |
| * Now, calls to get_cur_xxx will take the updated refs of the current |
| * inode into account. |
| * |
| * On the other hand, if our current inode is a directory and couldn't |
| * be moved/renamed because its parent was renamed/moved too and it has |
| * a higher inode number, we can only move/rename our current inode |
| * after we moved/renamed its parent. Therefore in this case operate on |
| * the old path (pre move/rename) of our current inode, and the |
| * move/rename will be performed later. |
| */ |
| if (refs_processed && !pending_move) |
| sctx->send_progress = sctx->cur_ino + 1; |
| |
| if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) |
| goto out; |
| if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) |
| goto out; |
| ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info); |
| if (ret < 0) |
| goto out; |
| left_mode = info.mode; |
| left_uid = info.uid; |
| left_gid = info.gid; |
| left_fileattr = info.fileattr; |
| |
| if (!sctx->parent_root || sctx->cur_inode_new) { |
| need_chown = 1; |
| if (!S_ISLNK(sctx->cur_inode_mode)) |
| need_chmod = 1; |
| if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) |
| need_truncate = 0; |
| } else { |
| u64 old_size; |
| |
| ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info); |
| if (ret < 0) |
| goto out; |
| old_size = info.size; |
| right_mode = info.mode; |
| right_uid = info.uid; |
| right_gid = info.gid; |
| right_fileattr = info.fileattr; |
| |
| if (left_uid != right_uid || left_gid != right_gid) |
| need_chown = 1; |
| if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) |
| need_chmod = 1; |
| if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr) |
| need_fileattr = true; |
| if ((old_size == sctx->cur_inode_size) || |
| (sctx->cur_inode_size > old_size && |
| sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) |
| need_truncate = 0; |
| } |
| |
| if (S_ISREG(sctx->cur_inode_mode)) { |
| if (need_send_hole(sctx)) { |
| if (sctx->cur_inode_last_extent == (u64)-1 || |
| sctx->cur_inode_last_extent < |
| sctx->cur_inode_size) { |
| ret = get_last_extent(sctx, (u64)-1); |
| if (ret) |
| goto out; |
| } |
| if (sctx->cur_inode_last_extent < sctx->cur_inode_size) { |
| ret = range_is_hole_in_parent(sctx, |
| sctx->cur_inode_last_extent, |
| sctx->cur_inode_size); |
| if (ret < 0) { |
| goto out; |
| } else if (ret == 0) { |
| ret = send_hole(sctx, sctx->cur_inode_size); |
| if (ret < 0) |
| goto out; |
| } else { |
| /* Range is already a hole, skip. */ |
| ret = 0; |
| } |
| } |
| } |
| if (need_truncate) { |
| ret = send_truncate(sctx, sctx->cur_ino, |
| sctx->cur_inode_gen, |
| sctx->cur_inode_size); |
| if (ret < 0) |
| goto out; |
| } |
| } |
| |
| if (need_chown) { |
| ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, |
| left_uid, left_gid); |
| if (ret < 0) |
| goto out; |
| } |
| if (need_chmod) { |
| ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, |
| left_mode); |
| if (ret < 0) |
| goto out; |
| } |
| if (need_fileattr) { |
| ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen, |
| left_fileattr); |
| if (ret < 0) |
| goto out; |
| } |
| |
| if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY) |
| && sctx->cur_inode_needs_verity) { |
| ret = process_verity(sctx); |
| if (ret < 0) |
| goto out; |
| } |
| |
| ret = send_capabilities(sctx); |
| if (ret < 0) |
| goto out; |
| |
| /* |
| * If other directory inodes depended on our current directory |
| * inode's move/rename, now do their move/rename operations. |
| */ |
| if (!is_waiting_for_move(sctx, sctx->cur_ino)) { |
| ret = apply_children_dir_moves(sctx); |
| if (ret) |
| goto out; |
| /* |
| * Need to send that every time, no matter if it actually |
| * changed between the two trees as we have done changes to |
| * the inode before. If our inode is a directory and it's |
| * waiting to be moved/renamed, we will send its utimes when |
| * it's moved/renamed, therefore we don't need to do it here. |
| */ |
| sctx->send_progress = sctx->cur_ino + 1; |
| |
| /* |
| * If the current inode is a non-empty directory, delay issuing |
| * the utimes command for it, as it's very likely we have inodes |
| * with an higher number inside it. We want to issue the utimes |
| * command only after adding all dentries to it. |
| */ |
| if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0) |
| ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); |
| else |
| ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); |
| |
| if (ret < 0) |
| goto out; |
| } |
| |
| out: |
| if (!ret) |
| ret = trim_dir_utimes_cache(sctx); |
| |
| return ret; |
| } |
| |
| static void close_current_inode(struct send_ctx *sctx) |
| { |
| u64 i_size; |
| |
| if (sctx->cur_inode == NULL) |
| return; |
| |
| i_size = i_size_read(sctx->cur_inode); |
| |
| /* |
| * If we are doing an incremental send, we may have extents between the |
| * last processed extent and the i_size that have not been processed |
| * because they haven't changed but we may have read some of their pages |
| * through readahead, see the comments at send_extent_data(). |
| */ |
| if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size) |
| truncate_inode_pages_range(&sctx->cur_inode->i_data, |
| sctx->page_cache_clear_start, |
| round_up(i_size, PAGE_SIZE) - 1); |
| |
| iput(sctx->cur_inode); |
| sctx->cur_inode = NULL; |
| } |
| |
| static int changed_inode(struct send_ctx *sctx, |
| enum btrfs_compare_tree_result result) |
| { |
| int ret = 0; |
| struct btrfs_key *key = sctx->cmp_key; |
| struct btrfs_inode_item *left_ii = NULL; |
| struct btrfs_inode_item *right_ii = NULL; |
| u64 left_gen = 0; |
| u64 right_gen = 0; |
| |
| close_current_inode(sctx); |
| |
| sctx->cur_ino = key->objectid; |
| sctx->cur_inode_new_gen = false; |
| sctx->cur_inode_last_extent = (u64)-1; |
| sctx->cur_inode_next_write_offset = 0; |
| sctx->ignore_cur_inode = false; |
| |
| /* |
| * Set send_progress to current inode. This will tell all get_cur_xxx |
| * functions that the current inode's refs are not updated yet. Later, |
| * when process_recorded_refs is finished, it is set to cur_ino + 1. |
| */ |
| sctx->send_progress = sctx->cur_ino; |
| |
| if (result == BTRFS_COMPARE_TREE_NEW || |
| result == BTRFS_COMPARE_TREE_CHANGED) { |
| left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], |
| sctx->left_path->slots[0], |
| struct btrfs_inode_item); |
| left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], |
| left_ii); |
| } else { |
| right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], |
| sctx->right_path->slots[0], |
| struct btrfs_inode_item); |
| right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], |
| right_ii); |
| } |
| if (result == BTRFS_COMPARE_TREE_CHANGED) { |
| right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], |
| sctx->right_path->slots[0], |
| struct btrfs_inode_item); |
| |
| right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], |
| right_ii); |
| |
| /* |
| * The cur_ino = root dir case is special here. We can't treat |
| * the inode as deleted+reused because it would generate a |
| * stream that tries to delete/mkdir the root dir. |
| */ |
| if (left_gen != right_gen && |
| sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) |
| sctx->cur_inode_new_gen = true; |
| } |
| |
| /* |
| * Normally we do not find inodes with a link count of zero (orphans) |
| * because the most common case is to create a snapshot and use it |
| * for a send operation. However other less common use cases involve |
| * using a subvolume and send it after turning it to RO mode just |
| * after deleting all hard links of a file while holding an open |
| * file descriptor against it or turning a RO snapshot into RW mode, |
| * keep an open file descriptor against a file, delete it and then |
| * turn the snapshot back to RO mode before using it for a send |
| * operation. The former is what the receiver operation does. |
| * Therefore, if we want to send these snapshots soon after they're |
| * received, we need to handle orphan inodes as well. Moreover, orphans |
| * can appear not only in the send snapshot but also in the parent |
| * snapshot. Here are several cases: |
| * |
| * Case 1: BTRFS_COMPARE_TREE_NEW |
| * | send snapshot | action |
| * -------------------------------- |
| * nlink | 0 | ignore |
| * |
| * Case 2: BTRFS_COMPARE_TREE_DELETED |
| * | parent snapshot | action |
| * ---------------------------------- |
| * nlink | 0 | as usual |
| * Note: No unlinks will be sent because there're no paths for it. |
| * |
| * Case 3: BTRFS_COMPARE_TREE_CHANGED |
| * | | parent snapshot | send snapshot | action |
| * ----------------------------------------------------------------------- |
| * subcase 1 | nlink | 0 | 0 | ignore |
| * subcase 2 | nlink | >0 | 0 | new_gen(deletion) |
| * subcase 3 | nlink | 0 | >0 | new_gen(creation) |
| * |
| */ |
| if (result == BTRFS_COMPARE_TREE_NEW) { |
| if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) { |
| sctx->ignore_cur_inode = true; |
| goto out; |
| } |
| sctx->cur_inode_gen = left_gen; |
| sctx->cur_inode_new = true; |
| sctx->cur_inode_deleted = false; |
| sctx->cur_inode_size = btrfs_inode_size( |
| sctx->left_path->nodes[0], left_ii); |
| sctx->cur_inode_mode = btrfs_inode_mode( |
| sctx->left_path->nodes[0], left_ii); |
| sctx->cur_inode_rdev = btrfs_inode_rdev( |
| sctx->left_path->nodes[0], left_ii); |
| if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) |
| ret = send_create_inode_if_needed(sctx); |
| } else if (result == BTRFS_COMPARE_TREE_DELETED) { |
| sctx->cur_inode_gen = right_gen; |
| sctx->cur_inode_new = false; |
| sctx->cur_inode_deleted = true; |
| sctx->cur_inode_size = btrfs_inode_size( |
| sctx->right_path->nodes[0], right_ii); |
| sctx->cur_inode_mode = btrfs_inode_mode( |
| sctx->right_path->nodes[0], right_ii); |
| } else if (result == BTRFS_COMPARE_TREE_CHANGED) { |
| u32 new_nlinks, old_nlinks; |
| |
| new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); |
| old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii); |
| if (new_nlinks == 0 && old_nlinks == 0) { |
| sctx->ignore_cur_inode = true; |
| goto out; |
| } else if (new_nlinks == 0 || old_nlinks == 0) { |
| sctx->cur_inode_new_gen = 1; |
| } |
| /* |
| * We need to do some special handling in case the inode was |
| * reported as changed with a changed generation number. This |
| * means that the original inode was deleted and new inode |
| * reused the same inum. So we have to treat the old inode as |
| * deleted and the new one as new. |
| */ |
| if (sctx->cur_inode_new_gen) { |
| /* |
| * First, process the inode as if it was deleted. |
| */ |
| if (old_nlinks > 0) { |
| sctx->cur_inode_gen = right_gen; |
| sctx->cur_inode_new = false; |
| sctx->cur_inode_deleted = true; |
| sctx->cur_inode_size = btrfs_inode_size( |
| sctx->right_path->nodes[0], right_ii); |
| sctx->cur_inode_mode = btrfs_inode_mode( |
| sctx->right_path->nodes[0], right_ii); |
| ret = process_all_refs(sctx, |
| BTRFS_COMPARE_TREE_DELETED); |
| if (ret < 0) |
| goto out; |
| } |
| |
| /* |
| * Now process the inode as if it was new. |
| */ |
| if (new_nlinks > 0) { |
| sctx->cur_inode_gen = left_gen; |
| sctx->cur_inode_new = true; |
| sctx->cur_inode_deleted = false; |
| sctx->cur_inode_size = btrfs_inode_size( |
| sctx->left_path->nodes[0], |
| left_ii); |
| sctx->cur_inode_mode = btrfs_inode_mode( |
| sctx->left_path->nodes[0], |
| left_ii); |
| sctx->cur_inode_rdev = btrfs_inode_rdev( |
| sctx->left_path->nodes[0], |
| left_ii); |
| ret = send_create_inode_if_needed(sctx); |
| if (ret < 0) |
| goto out; |
| |
| ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); |
| if (ret < 0) |
| goto out; |
| /* |
| * Advance send_progress now as we did not get |
| * into process_recorded_refs_if_needed in the |
| * new_gen case. |
| */ |
| sctx->send_progress = sctx->cur_ino + 1; |
| |
| /* |
| * Now process all extents and xattrs of the |
| * inode as if they were all new. |
| */ |
| ret = process_all_extents(sctx); |
| if (ret < 0) |
| goto out; |
| ret = process_all_new_xattrs(sctx); |
| if (ret < 0) |
| goto out; |
| } |
| } else { |
| sctx->cur_inode_gen = left_gen; |
| sctx->cur_inode_new = false; |
| sctx->cur_inode_new_gen = false; |
| sctx->cur_inode_deleted = false; |
| sctx->cur_inode_size = btrfs_inode_size( |
| sctx->left_path->nodes[0], left_ii); |
| sctx->cur_inode_mode = btrfs_inode_mode( |
| sctx->left_path->nodes[0], left_ii); |
| } |
| } |
| |
| out: |
| return ret; |
| } |
| |
| /* |
| * We have to process new refs before deleted refs, but compare_trees gives us |
| * the new and deleted refs mixed. To fix this, we record the new/deleted refs |
| * first and later process them in process_recorded_refs. |
| * For the cur_inode_new_gen case, we skip recording completely because |
| * changed_inode did already initiate processing of refs. The reason for this is |
| * that in this case, compare_tree actually compares the refs of 2 different |
| * inodes. To fix this, process_all_refs is used in changed_inode to handle all |
| * refs of the right tree as deleted and all refs of the left tree as new. |
| */ |
| static int changed_ref(struct send_ctx *sctx, |
| enum btrfs_compare_tree_result result) |
| { |
| int ret = 0; |
| |
| if (sctx->cur_ino != sctx->cmp_key->objectid) { |
| inconsistent_snapshot_error(sctx, result, "reference"); |
| return -EIO; |
| } |
| |
| if (!sctx->cur_inode_new_gen && |
| sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { |
| if (result == BTRFS_COMPARE_TREE_NEW) |
| ret = record_new_ref(sctx); |
| else if (result == BTRFS_COMPARE_TREE_DELETED) |
| ret = record_deleted_ref(sctx); |
| else if (result == BTRFS_COMPARE_TREE_CHANGED) |
| ret = record_changed_ref(sctx); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Process new/deleted/changed xattrs. We skip processing in the |
| * cur_inode_new_gen case because changed_inode did already initiate processing |
| * of xattrs. The reason is the same as in changed_ref |
| */ |
| static int changed_xattr(struct send_ctx *sctx, |
| enum btrfs_compare_tree_result result) |
| { |
| int ret = 0; |
| |
| if (sctx->cur_ino != sctx->cmp_key->objectid) { |
| inconsistent_snapshot_error(sctx, result, "xattr"); |
| return -EIO; |
| } |
| |
| if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { |
| if (result == BTRFS_COMPARE_TREE_NEW) |
| ret = process_new_xattr(sctx); |
| else if (result == BTRFS_COMPARE_TREE_DELETED) |
| ret = process_deleted_xattr(sctx); |
| else if (result == BTRFS_COMPARE_TREE_CHANGED) |
| ret = process_changed_xattr(sctx); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Process new/deleted/changed extents. We skip processing in the |
| * cur_inode_new_gen case because changed_inode did already initiate processing |
| * of extents. The reason is the same as in changed_ref |
| */ |
| static int changed_extent(struct send_ctx *sctx, |
| enum btrfs_compare_tree_result result) |
| { |
| int ret = 0; |
| |
| /* |
| * We have found an extent item that changed without the inode item |
| * having changed. This can happen either after relocation (where the |
| * disk_bytenr of an extent item is replaced at |
| * relocation.c:replace_file_extents()) or after deduplication into a |
| * file in both the parent and send snapshots (where an extent item can |
| * get modified or replaced with a new one). Note that deduplication |
| * updates the inode item, but it only changes the iversion (sequence |
| * field in the inode item) of the inode, so if a file is deduplicated |
| * the same amount of times in both the parent and send snapshots, its |
| * iversion becomes the same in both snapshots, whence the inode item is |
| * the same on both snapshots. |
| */ |
| if (sctx->cur_ino != sctx->cmp_key->objectid) |
| return 0; |
| |
| if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { |
| if (result != BTRFS_COMPARE_TREE_DELETED) |
| ret = process_extent(sctx, sctx->left_path, |
| sctx->cmp_key); |
| } |
| |
| return ret; |
| } |
| |
| static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result) |
| { |
| int ret = 0; |
| |
| if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { |
| if (result == BTRFS_COMPARE_TREE_NEW) |
| sctx->cur_inode_needs_verity = true; |
| } |
| return ret; |
| } |
| |
| static int dir_changed(struct send_ctx *sctx, u64 dir) |
| { |
| u64 orig_gen, new_gen; |
| int ret; |
| |
| ret = get_inode_gen(sctx->send_root, dir, &new_gen); |
| if (ret) |
| return ret; |
| |
| ret = get_inode_gen(sctx->parent_root, dir, &orig_gen); |
| if (ret) |
| return ret; |
| |
| return (orig_gen != new_gen) ? 1 : 0; |
| } |
| |
| static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, |
| struct btrfs_key *key) |
| { |
| struct btrfs_inode_extref *extref; |
| struct extent_buffer *leaf; |
| u64 dirid = 0, last_dirid = 0; |
| unsigned long ptr; |
| u32 item_size; |
| u32 cur_offset = 0; |
| int ref_name_len; |
| int ret = 0; |
| |
| /* Easy case, just check this one dirid */ |
| if (key->type == BTRFS_INODE_REF_KEY) { |
| dirid = key->offset; |
| |
| ret = dir_changed(sctx, dirid); |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| item_size = btrfs_item_size(leaf, path->slots[0]); |
| ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); |
| while (cur_offset < item_size) { |
| extref = (struct btrfs_inode_extref *)(ptr + |
| cur_offset); |
| dirid = btrfs_inode_extref_parent(leaf, extref); |
| ref_name_len = btrfs_inode_extref_name_len(leaf, extref); |
| cur_offset += ref_name_len + sizeof(*extref); |
| if (dirid == last_dirid) |
| continue; |
| ret = dir_changed(sctx, dirid); |
| if (ret) |
| break; |
| last_dirid = dirid; |
| } |
| out: |
| return ret; |
| } |
| |
| /* |
| * Updates compare related fields in sctx and simply forwards to the actual |
| * changed_xxx functions. |
| */ |
| static int changed_cb(struct btrfs_path *left_path, |
| struct btrfs_path *right_path, |
| struct btrfs_key *key, |
| enum btrfs_compare_tree_result result, |
| struct send_ctx *sctx) |
| { |
| int ret = 0; |
| |
| /* |
| * We can not hold the commit root semaphore here. This is because in |
| * the case of sending and receiving to the same filesystem, using a |
| * pipe, could result in a deadlock: |
| * |
| * 1) The task running send blocks on the pipe because it's full; |
| * |
| * 2) The task running receive, which is the only consumer of the pipe, |
| * is waiting for a transaction commit (for example due to a space |
| * reservation when doing a write or triggering a transaction commit |
| * when creating a subvolume); |
| * |
| * 3) The transaction is waiting to write lock the commit root semaphore, |
| * but can not acquire it since it's being held at 1). |
| * |
| * Down this call chain we write to the pipe through kernel_write(). |
| * The same type of problem can also happen when sending to a file that |
| * is stored in the same filesystem - when reserving space for a write |
| * into the file, we can trigger a transaction commit. |
| * |
| * Our caller has supplied us with clones of leaves from the send and |
| * parent roots, so we're safe here from a concurrent relocation and |
| * further reallocation of metadata extents while we are here. Below we |
| * also assert that the leaves are clones. |
| */ |
| lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem); |
| |
| /* |
| * We always have a send root, so left_path is never NULL. We will not |
| * have a leaf when we have reached the end of the send root but have |
| * not yet reached the end of the parent root. |
| */ |
| if (left_path->nodes[0]) |
| ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, |
| &left_path->nodes[0]->bflags)); |
| /* |
| * When doing a full send we don't have a parent root, so right_path is |
| * NULL. When doing an incremental send, we may have reached the end of |
| * the parent root already, so we don't have a leaf at right_path. |
| */ |
| if (right_path && right_path->nodes[0]) |
| ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, |
| &right_path->nodes[0]->bflags)); |
| |
| if (result == BTRFS_COMPARE_TREE_SAME) { |
| if (key->type == BTRFS_INODE_REF_KEY || |
| key->type == BTRFS_INODE_EXTREF_KEY) { |
| ret = compare_refs(sctx, left_path, key); |
| if (!ret) |
| return 0; |
| if (ret < 0) |
| return ret; |
| } else if (key->type == BTRFS_EXTENT_DATA_KEY) { |
| return maybe_send_hole(sctx, left_path, key); |
| } else { |
| return 0; |
| } |
| result = BTRFS_COMPARE_TREE_CHANGED; |
| ret = 0; |
| } |
| |
| sctx->left_path = left_path; |
| sctx->right_path = right_path; |
| sctx->cmp_key = key; |
| |
| ret = finish_inode_if_needed(sctx, 0); |
| if (ret < 0) |
| goto out; |
| |
| /* Ignore non-FS objects */ |
| if (key->objectid == BTRFS_FREE_INO_OBJECTID || |
| key->objectid == BTRFS_FREE_SPACE_OBJECTID) |
| goto out; |
| |
| if (key->type == BTRFS_INODE_ITEM_KEY) { |
| ret = changed_inode(sctx, result); |
| } else if (!sctx->ignore_cur_inode) { |
| if (key->type == BTRFS_INODE_REF_KEY || |
| key->type == BTRFS_INODE_EXTREF_KEY) |
| ret = changed_ref(sctx, result); |
| else if (key->type == BTRFS_XATTR_ITEM_KEY) |
| ret = changed_xattr(sctx, result); |
| else if (key->type == BTRFS_EXTENT_DATA_KEY) |
| ret = changed_extent(sctx, result); |
| else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY && |
| key->offset == 0) |
| ret = changed_verity(sctx, result); |
| } |
| |
| out: |
| return ret; |
| } |
| |
| static int search_key_again(const struct send_ctx *sctx, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| const struct btrfs_key *key) |
| { |
| int ret; |
| |
| if (!path->need_commit_sem) |
| lockdep_assert_held_read(&root->fs_info->commit_root_sem); |
| |
| /* |
| * Roots used for send operations are readonly and no one can add, |
| * update or remove keys from them, so we should be able to find our |
| * key again. The only exception is deduplication, which can operate on |
| * readonly roots and add, update or remove keys to/from them - but at |
| * the moment we don't allow it to run in parallel with send. |
| */ |
| ret = btrfs_search_slot(NULL, root, key, path, 0, 0); |
| ASSERT(ret <= 0); |
| if (ret > 0) { |
| btrfs_print_tree(path->nodes[path->lowest_level], false); |
| btrfs_err(root->fs_info, |
| "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d", |
| key->objectid, key->type, key->offset, |
| (root == sctx->parent_root ? "parent" : "send"), |
| btrfs_root_id(root), path->lowest_level, |
| path->slots[path->lowest_level]); |
| return -EUCLEAN; |
| } |
| |
| return ret; |
| } |
| |
| static int full_send_tree(struct send_ctx *sctx) |
| { |
| int ret; |
| struct btrfs_root *send_root = sctx->send_root; |
| struct btrfs_key key; |
| struct btrfs_fs_info *fs_info = send_root->fs_info; |
| struct btrfs_path *path; |
| |
| path = alloc_path_for_send(); |
| if (!path) |
| return -ENOMEM; |
| path->reada = READA_FORWARD_ALWAYS; |
| |
| key.objectid = BTRFS_FIRST_FREE_OBJECTID; |
| key.type = BTRFS_INODE_ITEM_KEY; |
| key.offset = 0; |
| |
| down_read(&fs_info->commit_root_sem); |
| sctx->last_reloc_trans = fs_info->last_reloc_trans; |
| up_read(&fs_info->commit_root_sem); |
| |
| ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); |
| if (ret < 0) |
| goto out; |
| if (ret) |
| goto out_finish; |
| |
| while (1) { |
| btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| |
| ret = changed_cb(path, NULL, &key, |
| BTRFS_COMPARE_TREE_NEW, sctx); |
| if (ret < 0) |
| goto out; |
| |
| down_read(&fs_info->commit_root_sem); |
| if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { |
| sctx->last_reloc_trans = fs_info->last_reloc_trans; |
| up_read(&fs_info->commit_root_sem); |
| /* |
| * A transaction used for relocating a block group was |
| * committed or is about to finish its commit. Release |
| * our path (leaf) and restart the search, so that we |
| * avoid operating on any file extent items that are |
| * stale, with a disk_bytenr that reflects a pre |
| * relocation value. This way we avoid as much as |
| * possible to fallback to regular writes when checking |
| * if we can clone file ranges. |
| */ |
| btrfs_release_path(path); |
| ret = search_key_again(sctx, send_root, path, &key); |
| if (ret < 0) |
| goto out; |
| } else { |
| up_read(&fs_info->commit_root_sem); |
| } |
| |
| ret = btrfs_next_item(send_root, path); |
| if (ret < 0) |
| goto out; |
| if (ret) { |
| ret = 0; |
| break; |
| } |
| } |
| |
| out_finish: |
| ret = finish_inode_if_needed(sctx, 1); |
| |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int replace_node_with_clone(struct btrfs_path *path, int level) |
| { |
| struct extent_buffer *clone; |
| |
| clone = btrfs_clone_extent_buffer(path->nodes[level]); |
| if (!clone) |
| return -ENOMEM; |
| |
| free_extent_buffer(path->nodes[level]); |
| path->nodes[level] = clone; |
| |
| return 0; |
| } |
| |
| static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen) |
| { |
| struct extent_buffer *eb; |
| struct extent_buffer *parent = path->nodes[*level]; |
| int slot = path->slots[*level]; |
| const int nritems = btrfs_header_nritems(parent); |
| u64 reada_max; |
| u64 reada_done = 0; |
| |
| lockdep_assert_held_read(&parent->fs_info->commit_root_sem); |
| ASSERT(*level != 0); |
| |
| eb = btrfs_read_node_slot(parent, slot); |
| if (IS_ERR(eb)) |
| return PTR_ERR(eb); |
| |
| /* |
| * Trigger readahead for the next leaves we will process, so that it is |
| * very likely that when we need them they are already in memory and we |
| * will not block on disk IO. For nodes we only do readahead for one, |
| * since the time window between processing nodes is typically larger. |
| */ |
| reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize); |
| |
| for (slot++; slot < nritems && reada_done < reada_max; slot++) { |
| if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) { |
| btrfs_readahead_node_child(parent, slot); |
| reada_done += eb->fs_info->nodesize; |
| } |
| } |
| |
| path->nodes[*level - 1] = eb; |
| path->slots[*level - 1] = 0; |
| (*level)--; |
| |
| if (*level == 0) |
| return replace_node_with_clone(path, 0); |
| |
| return 0; |
| } |
| |
| static int tree_move_next_or_upnext(struct btrfs_path *path, |
| int *level, int root_level) |
| { |
| int ret = 0; |
| int nritems; |
| nritems = btrfs_header_nritems(path->nodes[*level]); |
| |
| path->slots[*level]++; |
| |
| while (path->slots[*level] >= nritems) { |
| if (*level == root_level) { |
| path->slots[*level] = nritems - 1; |
| return -1; |
| } |
| |
| /* move upnext */ |
| path->slots[*level] = 0; |
| free_extent_buffer(path->nodes[*level]); |
| path->nodes[*level] = NULL; |
| (*level)++; |
| path->slots[*level]++; |
| |
| nritems = btrfs_header_nritems(path->nodes[*level]); |
| ret = 1; |
| } |
| return ret; |
| } |
| |
| /* |
| * Returns 1 if it had to move up and next. 0 is returned if it moved only next |
| * or down. |
| */ |
| static int tree_advance(struct btrfs_path *path, |
| int *level, int root_level, |
| int allow_down, |
| struct btrfs_key *key, |
| u64 reada_min_gen) |
| { |
| int ret; |
| |
| if (*level == 0 || !allow_down) { |
| ret = tree_move_next_or_upnext(path, level, root_level); |
| } else { |
| ret = tree_move_down(path, level, reada_min_gen); |
| } |
| |
| /* |
| * Even if we have reached the end of a tree, ret is -1, update the key |
| * anyway, so that in case we need to restart due to a block group |
| * relocation, we can assert that the last key of the root node still |
| * exists in the tree. |
| */ |
| if (*level == 0) |
| btrfs_item_key_to_cpu(path->nodes[*level], key, |
| path->slots[*level]); |
| else |
| btrfs_node_key_to_cpu(path->nodes[*level], key, |
| path->slots[*level]); |
| |
| return ret; |
| } |
| |
| static int tree_compare_item(struct btrfs_path *left_path, |
| struct btrfs_path *right_path, |
| char *tmp_buf) |
| { |
| int cmp; |
| int len1, len2; |
| unsigned long off1, off2; |
| |
| len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]); |
| len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]); |
| if (len1 != len2) |
| return 1; |
| |
| off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); |
| off2 = btrfs_item_ptr_offset(right_path->nodes[0], |
| right_path->slots[0]); |
| |
| read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); |
| |
| cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); |
| if (cmp) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * A transaction used for relocating a block group was committed or is about to |
| * finish its commit. Release our paths and restart the search, so that we are |
| * not using stale extent buffers: |
| * |
| * 1) For levels > 0, we are only holding references of extent buffers, without |
| * any locks on them, which does not prevent them from having been relocated |
| * and reallocated after the last time we released the commit root semaphore. |
| * The exception are the root nodes, for which we always have a clone, see |
| * the comment at btrfs_compare_trees(); |
| * |
| * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so |
| * we are safe from the concurrent relocation and reallocation. However they |
| * can have file extent items with a pre relocation disk_bytenr value, so we |
| * restart the start from the current commit roots and clone the new leaves so |
| * that we get the post relocation disk_bytenr values. Not doing so, could |
| * make us clone the wrong data in case there are new extents using the old |
| * disk_bytenr that happen to be shared. |
| */ |
| static int restart_after_relocation(struct btrfs_path *left_path, |
| struct btrfs_path *right_path, |
| const struct btrfs_key *left_key, |
| const struct btrfs_key *right_key, |
| int left_level, |
| int right_level, |
| const struct send_ctx *sctx) |
| { |
| int root_level; |
| int ret; |
| |
| lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem); |
| |
| btrfs_release_path(left_path); |
| btrfs_release_path(right_path); |
| |
| /* |
| * Since keys can not be added or removed to/from our roots because they |
| * are readonly and we do not allow deduplication to run in parallel |
| * (which can add, remove or change keys), the layout of the trees should |
| * not change. |
| */ |
| left_path->lowest_level = left_level; |
| ret = search_key_again(sctx, sctx->send_root, left_path, left_key); |
| if (ret < 0) |
| return ret; |
| |
| right_path->lowest_level = right_level; |
| ret = search_key_again(sctx, sctx->parent_root, right_path, right_key); |
| if (ret < 0) |
| return ret; |
| |
| /* |
| * If the lowest level nodes are leaves, clone them so that they can be |
| * safely used by changed_cb() while not under the protection of the |
| * commit root semaphore, even if relocation and reallocation happens in |
| * parallel. |
| */ |
| if (left_level == 0) { |
| ret = replace_node_with_clone(left_path, 0); |
| if (ret < 0) |
| return ret; |
| } |
| |
| if (right_level == 0) { |
| ret = replace_node_with_clone(right_path, 0); |
| if (ret < 0) |
| return ret; |
| } |
| |
| /* |
| * Now clone the root nodes (unless they happen to be the leaves we have |
| * already cloned). This is to protect against concurrent snapshotting of |
| * the send and parent roots (see the comment at btrfs_compare_trees()). |
| */ |
| root_level = btrfs_header_level(sctx->send_root->commit_root); |
| if (root_level > 0) { |
| ret = replace_node_with_clone(left_path, root_level); |
| if (ret < 0) |
| return ret; |
| } |
| |
| root_level = btrfs_header_level(sctx->parent_root->commit_root); |
| if (root_level > 0) { |
| ret = replace_node_with_clone(right_path, root_level); |
| if (ret < 0) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * This function compares two trees and calls the provided callback for |
| * every changed/new/deleted item it finds. |
| * If shared tree blocks are encountered, whole subtrees are skipped, making |
| * the compare pretty fast on snapshotted subvolumes. |
| * |
| * This currently works on commit roots only. As commit roots are read only, |
| * we don't do any locking. The commit roots are protected with transactions. |
| * Transactions are ended and rejoined when a commit is tried in between. |
| * |
| * This function checks for modifications done to the trees while comparing. |
| * If it detects a change, it aborts immediately. |
| */ |
| static int btrfs_compare_trees(struct btrfs_root *left_root, |
| struct btrfs_root *right_root, struct send_ctx *sctx) |
| { |
| struct btrfs_fs_info *fs_info = left_root->fs_info; |
| int ret; |
| int cmp; |
| struct btrfs_path *left_path = NULL; |
| struct btrfs_path *right_path = NULL; |
| struct btrfs_key left_key; |
| struct btrfs_key right_key; |
| char *tmp_buf = NULL; |
| int left_root_level; |
| int right_root_level; |
| int left_level; |
| int right_level; |
| int left_end_reached = 0; |
| int right_end_reached = 0; |
| int advance_left = 0; |
| int advance_right = 0; |
| u64 left_blockptr; |
| u64 right_blockptr; |
| u64 left_gen; |
| u64 right_gen; |
| u64 reada_min_gen; |
| |
| left_path = btrfs_alloc_path(); |
| if (!left_path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| right_path = btrfs_alloc_path(); |
| if (!right_path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); |
| if (!tmp_buf) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| left_path->search_commit_root = 1; |
| left_path->skip_locking = 1; |
| right_path->search_commit_root = 1; |
| right_path->skip_locking = 1; |
| |
| /* |
| * Strategy: Go to the first items of both trees. Then do |
| * |
| * If both trees are at level 0 |
| * Compare keys of current items |
| * If left < right treat left item as new, advance left tree |
| * and repeat |
| * If left > right treat right item as deleted, advance right tree |
| * and repeat |
| * If left == right do deep compare of items, treat as changed if |
| * needed, advance both trees and repeat |
| * If both trees are at the same level but not at level 0 |
| * Compare keys of current nodes/leafs |
| * If left < right advance left tree and repeat |
| * If left > right advance right tree and repeat |
| * If left == right compare blockptrs of the next nodes/leafs |
| * If they match advance both trees but stay at the same level |
| * and repeat |
| * If they don't match advance both trees while allowing to go |
| * deeper and repeat |
| * If tree levels are different |
| * Advance the tree that needs it and repeat |
| * |
| * Advancing a tree means: |
| * If we are at level 0, try to go to the next slot. If that's not |
| * possible, go one level up and repeat. Stop when we found a level |
| * where we could go to the next slot. We may at this point be on a |
| * node or a leaf. |
| * |
| * If we are not at level 0 and not on shared tree blocks, go one |
| * level deeper. |
| * |
| * If we are not at level 0 and on shared tree blocks, go one slot to |
| * the right if possible or go up and right. |
| */ |
| |
| down_read(&fs_info->commit_root_sem); |
| left_level = btrfs_header_level(left_root->commit_root); |
| left_root_level = left_level; |
| /* |
| * We clone the root node of the send and parent roots to prevent races |
| * with snapshot creation of these roots. Snapshot creation COWs the |
| * root node of a tree, so after the transaction is committed the old |
| * extent can be reallocated while this send operation is still ongoing. |
| * So we clone them, under the commit root semaphore, to be race free. |
| */ |
| left_path->nodes[left_level] = |
| btrfs_clone_extent_buffer(left_root->commit_root); |
| if (!left_path->nodes[left_level]) { |
| ret = -ENOMEM; |
| goto out_unlock; |
| } |
| |
| right_level = btrfs_header_level(right_root->commit_root); |
| right_root_level = right_level; |
| right_path->nodes[right_level] = |
| btrfs_clone_extent_buffer(right_root->commit_root); |
| if (!right_path->nodes[right_level]) { |
| ret = -ENOMEM; |
| goto out_unlock; |
| } |
| /* |
| * Our right root is the parent root, while the left root is the "send" |
| * root. We know that all new nodes/leaves in the left root must have |
| * a generation greater than the right root's generation, so we trigger |
| * readahead for those nodes and leaves of the left root, as we know we |
| * will need to read them at some point. |
| */ |
| reada_min_gen = btrfs_header_generation(right_root->commit_root); |
| |
| if (left_level == 0) |
| btrfs_item_key_to_cpu(left_path->nodes[left_level], |
| &left_key, left_path->slots[left_level]); |
| else |
| btrfs_node_key_to_cpu(left_path->nodes[left_level], |
| &left_key, left_path->slots[left_level]); |
| if (right_level == 0) |
| btrfs_item_key_to_cpu(right_path->nodes[right_level], |
| &right_key, right_path->slots[right_level]); |
| else |
| btrfs_node_key_to_cpu(right_path->nodes[right_level], |
| &right_key, right_path->slots[right_level]); |
| |
| sctx->last_reloc_trans = fs_info->last_reloc_trans; |
| |
| while (1) { |
| if (need_resched() || |
| rwsem_is_contended(&fs_info->commit_root_sem)) { |
| up_read(&fs_info->commit_root_sem); |
| cond_resched(); |
| down_read(&fs_info->commit_root_sem); |
| } |
| |
| if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { |
| ret = restart_after_relocation(left_path, right_path, |
| &left_key, &right_key, |
| left_level, right_level, |
| sctx); |
| if (ret < 0) |
| goto out_unlock; |
| sctx->last_reloc_trans = fs_info->last_reloc_trans; |
| } |
| |
| if (advance_left && !left_end_reached) { |
| ret = tree_advance(left_path, &left_level, |
| left_root_level, |
| advance_left != ADVANCE_ONLY_NEXT, |
| &left_key, reada_min_gen); |
| if (ret == -1) |
| left_end_reached = ADVANCE; |
| else if (ret < 0) |
| goto out_unlock; |
| advance_left = 0; |
| } |
| if (advance_right && !right_end_reached) { |
| ret = tree_advance(right_path, &right_level, |
| right_root_level, |
| advance_right != ADVANCE_ONLY_NEXT, |
| &right_key, reada_min_gen); |
| if (ret == -1) |
| right_end_reached = ADVANCE; |
| else if (ret < 0) |
| goto out_unlock; |
| advance_right = 0; |
| } |
| |
| if (left_end_reached && right_end_reached) { |
| ret = 0; |
| goto out_unlock; |
| } else if (left_end_reached) { |
| if (right_level == 0) { |
| up_read(&fs_info->commit_root_sem); |
| ret = changed_cb(left_path, right_path, |
| &right_key, |
| BTRFS_COMPARE_TREE_DELETED, |
| sctx); |
| if (ret < 0) |
| goto out; |
| down_read(&fs_info->commit_root_sem); |
| } |
| advance_right = ADVANCE; |
| continue; |
| } else if (right_end_reached) { |
| if (left_level == 0) { |
| up_read(&fs_info->commit_root_sem); |
| ret = changed_cb(left_path, right_path, |
| &left_key, |
| BTRFS_COMPARE_TREE_NEW, |
| sctx); |
| if (ret < 0) |
| goto out; |
| down_read(&fs_info->commit_root_sem); |
| } |
| advance_left = ADVANCE; |
| continue; |
| } |
| |
| if (left_level == 0 && right_level == 0) { |
| up_read(&fs_info->commit_root_sem); |
| cmp = btrfs_comp_cpu_keys(&left_key, &right_key); |
| if (cmp < 0) { |
| ret = changed_cb(left_path, right_path, |
| &left_key, |
| BTRFS_COMPARE_TREE_NEW, |
| sctx); |
| advance_left = ADVANCE; |
| } else if (cmp > 0) { |
| ret = changed_cb(left_path, right_path, |
| &right_key, |
| BTRFS_COMPARE_TREE_DELETED, |
| sctx); |
| advance_right = ADVANCE; |
| } else { |
| enum btrfs_compare_tree_result result; |
| |
| WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); |
| ret = tree_compare_item(left_path, right_path, |
| tmp_buf); |
| if (ret) |
| result = BTRFS_COMPARE_TREE_CHANGED; |
| else |
| result = BTRFS_COMPARE_TREE_SAME; |
| ret = changed_cb(left_path, right_path, |
| &left_key, result, sctx); |
| advance_left = ADVANCE; |
| advance_right = ADVANCE; |
| } |
| |
| if (ret < 0) |
| goto out; |
| down_read(&fs_info->commit_root_sem); |
| } else if (left_level == right_level) { |
| cmp = btrfs_comp_cpu_keys(&left_key, &right_key); |
| if (cmp < 0) { |
| advance_left = ADVANCE; |
| } else if (cmp > 0) { |
| advance_right = ADVANCE; |
| } else { |
| left_blockptr = btrfs_node_blockptr( |
| left_path->nodes[left_level], |
| left_path->slots[left_level]); |
| right_blockptr = btrfs_node_blockptr( |
| right_path->nodes[right_level], |
| right_path->slots[right_level]); |
| left_gen = btrfs_node_ptr_generation( |
| left_path->nodes[left_level], |
| left_path->slots[left_level]); |
| right_gen = btrfs_node_ptr_generation( |
| right_path->nodes[right_level], |
| right_path->slots[right_level]); |
| if (left_blockptr == right_blockptr && |
| left_gen == right_gen) { |
| /* |
| * As we're on a shared block, don't |
| * allow to go deeper. |
| */ |
| advance_left = ADVANCE_ONLY_NEXT; |
| advance_right = ADVANCE_ONLY_NEXT; |
| } else { |
| advance_left = ADVANCE; |
| advance_right = ADVANCE; |
| } |
| } |
| } else if (left_level < right_level) { |
| advance_right = ADVANCE; |
| } else { |
| advance_left = ADVANCE; |
| } |
| } |
| |
| out_unlock: |
| up_read(&fs_info->commit_root_sem); |
| out: |
| btrfs_free_path(left_path); |
| btrfs_free_path(right_path); |
| kvfree(tmp_buf); |
| return ret; |
| } |
| |
| static int send_subvol(struct send_ctx *sctx) |
| { |
| int ret; |
| |
| if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { |
| ret = send_header(sctx); |
| if (ret < 0) |
| goto out; |
| } |
| |
| ret = send_subvol_begin(sctx); |
| if (ret < 0) |
| goto out; |
| |
| if (sctx->parent_root) { |
| ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx); |
| if (ret < 0) |
| goto out; |
| ret = finish_inode_if_needed(sctx, 1); |
| if (ret < 0) |
| goto out; |
| } else { |
| ret = full_send_tree(sctx); |
| if (ret < 0) |
| goto out; |
| } |
| |
| out: |
| free_recorded_refs(sctx); |
| return ret; |
| } |
| |
| /* |
| * If orphan cleanup did remove any orphans from a root, it means the tree |
| * was modified and therefore the commit root is not the same as the current |
| * root anymore. This is a problem, because send uses the commit root and |
| * therefore can see inode items that don't exist in the current root anymore, |
| * and for example make calls to btrfs_iget, which will do tree lookups based |
| * on the current root and not on the commit root. Those lookups will fail, |
| * returning a -ESTALE error, and making send fail with that error. So make |
| * sure a send does not see any orphans we have just removed, and that it will |
| * see the same inodes regardless of whether a transaction commit happened |
| * before it started (meaning that the commit root will be the same as the |
| * current root) or not. |
| */ |
| static int ensure_commit_roots_uptodate(struct send_ctx *sctx) |
| { |
| struct btrfs_root *root = sctx->parent_root; |
| |
| if (root && root->node != root->commit_root) |
| return btrfs_commit_current_transaction(root); |
| |
| for (int i = 0; i < sctx->clone_roots_cnt; i++) { |
| root = sctx->clone_roots[i].root; |
| if (root->node != root->commit_root) |
| return btrfs_commit_current_transaction(root); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Make sure any existing dellaloc is flushed for any root used by a send |
| * operation so that we do not miss any data and we do not race with writeback |
| * finishing and changing a tree while send is using the tree. This could |
| * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and |
| * a send operation then uses the subvolume. |
| * After flushing delalloc ensure_commit_roots_uptodate() must be called. |
| */ |
| static int flush_delalloc_roots(struct send_ctx *sctx) |
| { |
| struct btrfs_root *root = sctx->parent_root; |
| int ret; |
| int i; |
| |
| if (root) { |
| ret = btrfs_start_delalloc_snapshot(root, false); |
| if (ret) |
| return ret; |
| btrfs_wait_ordered_extents(root, U64_MAX, NULL); |
| } |
| |
| for (i = 0; i < sctx->clone_roots_cnt; i++) { |
| root = sctx->clone_roots[i].root; |
| ret = btrfs_start_delalloc_snapshot(root, false); |
| if (ret) |
| return ret; |
| btrfs_wait_ordered_extents(root, U64_MAX, NULL); |
| } |
| |
| return 0; |
| } |
| |
| static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) |
| { |
| spin_lock(&root->root_item_lock); |
| root->send_in_progress--; |
| /* |
| * Not much left to do, we don't know why it's unbalanced and |
| * can't blindly reset it to 0. |
| */ |
| if (root->send_in_progress < 0) |
| btrfs_err(root->fs_info, |
| "send_in_progress unbalanced %d root %llu", |
| root->send_in_progress, btrfs_root_id(root)); |
| spin_unlock(&root->root_item_lock); |
| } |
| |
| static void dedupe_in_progress_warn(const struct btrfs_root *root) |
| { |
| btrfs_warn_rl(root->fs_info, |
| "cannot use root %llu for send while deduplications on it are in progress (%d in progress)", |
| btrfs_root_id(root), root->dedupe_in_progress); |
| } |
| |
| long btrfs_ioctl_send(struct btrfs_inode *inode, const struct btrfs_ioctl_send_args *arg) |
| { |
| int ret = 0; |
| struct btrfs_root *send_root = inode->root; |
| struct btrfs_fs_info *fs_info = send_root->fs_info; |
| struct btrfs_root *clone_root; |
| struct send_ctx *sctx = NULL; |
| u32 i; |
| u64 *clone_sources_tmp = NULL; |
| int clone_sources_to_rollback = 0; |
| size_t alloc_size; |
| int sort_clone_roots = 0; |
| struct btrfs_lru_cache_entry *entry; |
| struct btrfs_lru_cache_entry *tmp; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| /* |
| * The subvolume must remain read-only during send, protect against |
| * making it RW. This also protects against deletion. |
| */ |
| spin_lock(&send_root->root_item_lock); |
| if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) { |
| dedupe_in_progress_warn(send_root); |
| spin_unlock(&send_root->root_item_lock); |
| return -EAGAIN; |
| } |
| send_root->send_in_progress++; |
| spin_unlock(&send_root->root_item_lock); |
| |
| /* |
| * Userspace tools do the checks and warn the user if it's |
| * not RO. |
| */ |
| if (!btrfs_root_readonly(send_root)) { |
| ret = -EPERM; |
| goto out; |
| } |
| |
| /* |
| * Check that we don't overflow at later allocations, we request |
| * clone_sources_count + 1 items, and compare to unsigned long inside |
| * access_ok. Also set an upper limit for allocation size so this can't |
| * easily exhaust memory. Max number of clone sources is about 200K. |
| */ |
| if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { |
| ret = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); |
| if (!sctx) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| INIT_LIST_HEAD(&sctx->new_refs); |
| INIT_LIST_HEAD(&sctx->deleted_refs); |
| |
| btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE); |
| btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE); |
| btrfs_lru_cache_init(&sctx->dir_created_cache, |
| SEND_MAX_DIR_CREATED_CACHE_SIZE); |
| /* |
| * This cache is periodically trimmed to a fixed size elsewhere, see |
| * cache_dir_utimes() and trim_dir_utimes_cache(). |
| */ |
| btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0); |
| |
| sctx->pending_dir_moves = RB_ROOT; |
| sctx->waiting_dir_moves = RB_ROOT; |
| sctx->orphan_dirs = RB_ROOT; |
| sctx->rbtree_new_refs = RB_ROOT; |
| sctx->rbtree_deleted_refs = RB_ROOT; |
| |
| sctx->flags = arg->flags; |
| |
| if (arg->flags & BTRFS_SEND_FLAG_VERSION) { |
| if (arg->version > BTRFS_SEND_STREAM_VERSION) { |
| ret = -EPROTO; |
| goto out; |
| } |
| /* Zero means "use the highest version" */ |
| sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION; |
| } else { |
| sctx->proto = 1; |
| } |
| if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| sctx->send_filp = fget(arg->send_fd); |
| if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) { |
| ret = -EBADF; |
| goto out; |
| } |
| |
| sctx->send_root = send_root; |
| /* |
| * Unlikely but possible, if the subvolume is marked for deletion but |
| * is slow to remove the directory entry, send can still be started |
| */ |
| if (btrfs_root_dead(sctx->send_root)) { |
| ret = -EPERM; |
| goto out; |
| } |
| |
| sctx->clone_roots_cnt = arg->clone_sources_count; |
| |
| if (sctx->proto >= 2) { |
| u32 send_buf_num_pages; |
| |
| sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2; |
| sctx->send_buf = vmalloc(sctx->send_max_size); |
| if (!sctx->send_buf) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT; |
| sctx->send_buf_pages = kcalloc(send_buf_num_pages, |
| sizeof(*sctx->send_buf_pages), |
| GFP_KERNEL); |
| if (!sctx->send_buf_pages) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| for (i = 0; i < send_buf_num_pages; i++) { |
| sctx->send_buf_pages[i] = |
| vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT)); |
| } |
| } else { |
| sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1; |
| sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); |
| } |
| if (!sctx->send_buf) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1, |
| sizeof(*sctx->clone_roots), |
| GFP_KERNEL); |
| if (!sctx->clone_roots) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| alloc_size = array_size(sizeof(*arg->clone_sources), |
| arg->clone_sources_count); |
| |
| if (arg->clone_sources_count) { |
| clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); |
| if (!clone_sources_tmp) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| ret = copy_from_user(clone_sources_tmp, arg->clone_sources, |
| alloc_size); |
| if (ret) { |
| ret = -EFAULT; |
| goto out; |
| } |
| |
| for (i = 0; i < arg->clone_sources_count; i++) { |
| clone_root = btrfs_get_fs_root(fs_info, |
| clone_sources_tmp[i], true); |
| if (IS_ERR(clone_root)) { |
| ret = PTR_ERR(clone_root); |
| goto out; |
| } |
| spin_lock(&clone_root->root_item_lock); |
| if (!btrfs_root_readonly(clone_root) || |
| btrfs_root_dead(clone_root)) { |
| spin_unlock(&clone_root->root_item_lock); |
| btrfs_put_root(clone_root); |
| ret = -EPERM; |
| goto out; |
| } |
| if (clone_root->dedupe_in_progress) { |
| dedupe_in_progress_warn(clone_root); |
| spin_unlock(&clone_root->root_item_lock); |
| btrfs_put_root(clone_root); |
| ret = -EAGAIN; |
| goto out; |
| } |
| clone_root->send_in_progress++; |
| spin_unlock(&clone_root->root_item_lock); |
| |
| sctx->clone_roots[i].root = clone_root; |
| clone_sources_to_rollback = i + 1; |
| } |
| kvfree(clone_sources_tmp); |
| clone_sources_tmp = NULL; |
| } |
| |
| if (arg->parent_root) { |
| sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root, |
| true); |
| if (IS_ERR(sctx->parent_root)) { |
| ret = PTR_ERR(sctx->parent_root); |
| goto out; |
| } |
| |
| spin_lock(&sctx->parent_root->root_item_lock); |
| sctx->parent_root->send_in_progress++; |
| if (!btrfs_root_readonly(sctx->parent_root) || |
| btrfs_root_dead(sctx->parent_root)) { |
| spin_unlock(&sctx->parent_root->root_item_lock); |
| ret = -EPERM; |
| goto out; |
| } |
| if (sctx->parent_root->dedupe_in_progress) { |
| dedupe_in_progress_warn(sctx->parent_root); |
| spin_unlock(&sctx->parent_root->root_item_lock); |
| ret = -EAGAIN; |
| goto out; |
| } |
| spin_unlock(&sctx->parent_root->root_item_lock); |
| } |
| |
| /* |
| * Clones from send_root are allowed, but only if the clone source |
| * is behind the current send position. This is checked while searching |
| * for possible clone sources. |
| */ |
| sctx->clone_roots[sctx->clone_roots_cnt++].root = |
| btrfs_grab_root(sctx->send_root); |
| |
| /* We do a bsearch later */ |
| sort(sctx->clone_roots, sctx->clone_roots_cnt, |
| sizeof(*sctx->clone_roots), __clone_root_cmp_sort, |
| NULL); |
| sort_clone_roots = 1; |
| |
| ret = flush_delalloc_roots(sctx); |
| if (ret) |
| goto out; |
| |
| ret = ensure_commit_roots_uptodate(sctx); |
| if (ret) |
| goto out; |
| |
| ret = send_subvol(sctx); |
| if (ret < 0) |
| goto out; |
| |
| btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) { |
| ret = send_utimes(sctx, entry->key, entry->gen); |
| if (ret < 0) |
| goto out; |
| btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry); |
| } |
| |
| if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { |
| ret = begin_cmd(sctx, BTRFS_SEND_C_END); |
| if (ret < 0) |
| goto out; |
| ret = send_cmd(sctx); |
| if (ret < 0) |
| goto out; |
| } |
| |
| out: |
| WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); |
| while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { |
| struct rb_node *n; |
| struct pending_dir_move *pm; |
| |
| n = rb_first(&sctx->pending_dir_moves); |
| pm = rb_entry(n, struct pending_dir_move, node); |
| while (!list_empty(&pm->list)) { |
| struct pending_dir_move *pm2; |
| |
| pm2 = list_first_entry(&pm->list, |
| struct pending_dir_move, list); |
| free_pending_move(sctx, pm2); |
| } |
| free_pending_move(sctx, pm); |
| } |
| |
| WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); |
| while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { |
| struct rb_node *n; |
| struct waiting_dir_move *dm; |
| |
| n = rb_first(&sctx->waiting_dir_moves); |
| dm = rb_entry(n, struct waiting_dir_move, node); |
| rb_erase(&dm->node, &sctx->waiting_dir_moves); |
| kfree(dm); |
| } |
| |
| WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); |
| while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { |
| struct rb_node *n; |
| struct orphan_dir_info *odi; |
| |
| n = rb_first(&sctx->orphan_dirs); |
| odi = rb_entry(n, struct orphan_dir_info, node); |
| free_orphan_dir_info(sctx, odi); |
| } |
| |
| if (sort_clone_roots) { |
| for (i = 0; i < sctx->clone_roots_cnt; i++) { |
| btrfs_root_dec_send_in_progress( |
| sctx->clone_roots[i].root); |
| btrfs_put_root(sctx->clone_roots[i].root); |
| } |
| } else { |
| for (i = 0; sctx && i < clone_sources_to_rollback; i++) { |
| btrfs_root_dec_send_in_progress( |
| sctx->clone_roots[i].root); |
| btrfs_put_root(sctx->clone_roots[i].root); |
| } |
| |
| btrfs_root_dec_send_in_progress(send_root); |
| } |
| if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) { |
| btrfs_root_dec_send_in_progress(sctx->parent_root); |
| btrfs_put_root(sctx->parent_root); |
| } |
| |
| kvfree(clone_sources_tmp); |
| |
| if (sctx) { |
| if (sctx->send_filp) |
| fput(sctx->send_filp); |
| |
| kvfree(sctx->clone_roots); |
| kfree(sctx->send_buf_pages); |
| kvfree(sctx->send_buf); |
| kvfree(sctx->verity_descriptor); |
| |
| close_current_inode(sctx); |
| |
| btrfs_lru_cache_clear(&sctx->name_cache); |
| btrfs_lru_cache_clear(&sctx->backref_cache); |
| btrfs_lru_cache_clear(&sctx->dir_created_cache); |
| btrfs_lru_cache_clear(&sctx->dir_utimes_cache); |
| |
| kfree(sctx); |
| } |
| |
| return ret; |
| } |