blob: f7ce8e8c3c3eaa0cdee680302afc768436096997 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* (Tentative) USB Audio Driver for ALSA
*
* Mixer control part
*
* Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
*
* Many codes borrowed from audio.c by
* Alan Cox (alan@lxorguk.ukuu.org.uk)
* Thomas Sailer (sailer@ife.ee.ethz.ch)
*/
/*
* TODOs, for both the mixer and the streaming interfaces:
*
* - support for UAC2 effect units
* - support for graphical equalizers
* - RANGE and MEM set commands (UAC2)
* - RANGE and MEM interrupt dispatchers (UAC2)
* - audio channel clustering (UAC2)
* - audio sample rate converter units (UAC2)
* - proper handling of clock multipliers (UAC2)
* - dispatch clock change notifications (UAC2)
* - stop PCM streams which use a clock that became invalid
* - stop PCM streams which use a clock selector that has changed
* - parse available sample rates again when clock sources changed
*/
#include <linux/bitops.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/log2.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/usb.h>
#include <linux/usb/audio.h>
#include <linux/usb/audio-v2.h>
#include <linux/usb/audio-v3.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/hwdep.h>
#include <sound/info.h>
#include <sound/tlv.h>
#include "usbaudio.h"
#include "mixer.h"
#include "helper.h"
#include "mixer_quirks.h"
#include "power.h"
#define MAX_ID_ELEMS 256
struct usb_audio_term {
int id;
int type;
int channels;
unsigned int chconfig;
int name;
};
struct usbmix_name_map;
struct mixer_build {
struct snd_usb_audio *chip;
struct usb_mixer_interface *mixer;
unsigned char *buffer;
unsigned int buflen;
DECLARE_BITMAP(unitbitmap, MAX_ID_ELEMS);
DECLARE_BITMAP(termbitmap, MAX_ID_ELEMS);
struct usb_audio_term oterm;
const struct usbmix_name_map *map;
const struct usbmix_selector_map *selector_map;
};
/*E-mu 0202/0404/0204 eXtension Unit(XU) control*/
enum {
USB_XU_CLOCK_RATE = 0xe301,
USB_XU_CLOCK_SOURCE = 0xe302,
USB_XU_DIGITAL_IO_STATUS = 0xe303,
USB_XU_DEVICE_OPTIONS = 0xe304,
USB_XU_DIRECT_MONITORING = 0xe305,
USB_XU_METERING = 0xe306
};
enum {
USB_XU_CLOCK_SOURCE_SELECTOR = 0x02, /* clock source*/
USB_XU_CLOCK_RATE_SELECTOR = 0x03, /* clock rate */
USB_XU_DIGITAL_FORMAT_SELECTOR = 0x01, /* the spdif format */
USB_XU_SOFT_LIMIT_SELECTOR = 0x03 /* soft limiter */
};
/*
* manual mapping of mixer names
* if the mixer topology is too complicated and the parsed names are
* ambiguous, add the entries in usbmixer_maps.c.
*/
#include "mixer_maps.c"
static const struct usbmix_name_map *
find_map(const struct usbmix_name_map *p, int unitid, int control)
{
if (!p)
return NULL;
for (; p->id; p++) {
if (p->id == unitid &&
(!control || !p->control || control == p->control))
return p;
}
return NULL;
}
/* get the mapped name if the unit matches */
static int
check_mapped_name(const struct usbmix_name_map *p, char *buf, int buflen)
{
int len;
if (!p || !p->name)
return 0;
buflen--;
len = strscpy(buf, p->name, buflen);
return len < 0 ? buflen : len;
}
/* ignore the error value if ignore_ctl_error flag is set */
#define filter_error(cval, err) \
((cval)->head.mixer->ignore_ctl_error ? 0 : (err))
/* check whether the control should be ignored */
static inline int
check_ignored_ctl(const struct usbmix_name_map *p)
{
if (!p || p->name || p->dB)
return 0;
return 1;
}
/* dB mapping */
static inline void check_mapped_dB(const struct usbmix_name_map *p,
struct usb_mixer_elem_info *cval)
{
if (p && p->dB) {
cval->dBmin = p->dB->min;
cval->dBmax = p->dB->max;
cval->min_mute = p->dB->min_mute;
cval->initialized = 1;
}
}
/* get the mapped selector source name */
static int check_mapped_selector_name(struct mixer_build *state, int unitid,
int index, char *buf, int buflen)
{
const struct usbmix_selector_map *p;
int len;
if (!state->selector_map)
return 0;
for (p = state->selector_map; p->id; p++) {
if (p->id == unitid && index < p->count) {
len = strscpy(buf, p->names[index], buflen);
return len < 0 ? buflen : len;
}
}
return 0;
}
/*
* find an audio control unit with the given unit id
*/
static void *find_audio_control_unit(struct mixer_build *state,
unsigned char unit)
{
/* we just parse the header */
struct uac_feature_unit_descriptor *hdr = NULL;
while ((hdr = snd_usb_find_desc(state->buffer, state->buflen, hdr,
USB_DT_CS_INTERFACE)) != NULL) {
if (hdr->bLength >= 4 &&
hdr->bDescriptorSubtype >= UAC_INPUT_TERMINAL &&
hdr->bDescriptorSubtype <= UAC3_SAMPLE_RATE_CONVERTER &&
hdr->bUnitID == unit)
return hdr;
}
return NULL;
}
/*
* copy a string with the given id
*/
static int snd_usb_copy_string_desc(struct snd_usb_audio *chip,
int index, char *buf, int maxlen)
{
int len = usb_string(chip->dev, index, buf, maxlen - 1);
if (len < 0)
return 0;
buf[len] = 0;
return len;
}
/*
* convert from the byte/word on usb descriptor to the zero-based integer
*/
static int convert_signed_value(struct usb_mixer_elem_info *cval, int val)
{
switch (cval->val_type) {
case USB_MIXER_BOOLEAN:
return !!val;
case USB_MIXER_INV_BOOLEAN:
return !val;
case USB_MIXER_U8:
val &= 0xff;
break;
case USB_MIXER_S8:
val &= 0xff;
if (val >= 0x80)
val -= 0x100;
break;
case USB_MIXER_U16:
val &= 0xffff;
break;
case USB_MIXER_S16:
val &= 0xffff;
if (val >= 0x8000)
val -= 0x10000;
break;
}
return val;
}
/*
* convert from the zero-based int to the byte/word for usb descriptor
*/
static int convert_bytes_value(struct usb_mixer_elem_info *cval, int val)
{
switch (cval->val_type) {
case USB_MIXER_BOOLEAN:
return !!val;
case USB_MIXER_INV_BOOLEAN:
return !val;
case USB_MIXER_S8:
case USB_MIXER_U8:
return val & 0xff;
case USB_MIXER_S16:
case USB_MIXER_U16:
return val & 0xffff;
}
return 0; /* not reached */
}
static int get_relative_value(struct usb_mixer_elem_info *cval, int val)
{
if (!cval->res)
cval->res = 1;
if (val < cval->min)
return 0;
else if (val >= cval->max)
return DIV_ROUND_UP(cval->max - cval->min, cval->res);
else
return (val - cval->min) / cval->res;
}
static int get_abs_value(struct usb_mixer_elem_info *cval, int val)
{
if (val < 0)
return cval->min;
if (!cval->res)
cval->res = 1;
val *= cval->res;
val += cval->min;
if (val > cval->max)
return cval->max;
return val;
}
static int uac2_ctl_value_size(int val_type)
{
switch (val_type) {
case USB_MIXER_S32:
case USB_MIXER_U32:
return 4;
case USB_MIXER_S16:
case USB_MIXER_U16:
return 2;
default:
return 1;
}
return 0; /* unreachable */
}
/*
* retrieve a mixer value
*/
static inline int mixer_ctrl_intf(struct usb_mixer_interface *mixer)
{
return get_iface_desc(mixer->hostif)->bInterfaceNumber;
}
static int get_ctl_value_v1(struct usb_mixer_elem_info *cval, int request,
int validx, int *value_ret)
{
struct snd_usb_audio *chip = cval->head.mixer->chip;
unsigned char buf[2];
int val_len = cval->val_type >= USB_MIXER_S16 ? 2 : 1;
int timeout = 10;
int idx = 0, err;
err = snd_usb_lock_shutdown(chip);
if (err < 0)
return -EIO;
while (timeout-- > 0) {
idx = mixer_ctrl_intf(cval->head.mixer) | (cval->head.id << 8);
err = snd_usb_ctl_msg(chip->dev, usb_rcvctrlpipe(chip->dev, 0), request,
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
validx, idx, buf, val_len);
if (err >= val_len) {
*value_ret = convert_signed_value(cval, snd_usb_combine_bytes(buf, val_len));
err = 0;
goto out;
} else if (err == -ETIMEDOUT) {
goto out;
}
}
usb_audio_dbg(chip,
"cannot get ctl value: req = %#x, wValue = %#x, wIndex = %#x, type = %d\n",
request, validx, idx, cval->val_type);
err = -EINVAL;
out:
snd_usb_unlock_shutdown(chip);
return err;
}
static int get_ctl_value_v2(struct usb_mixer_elem_info *cval, int request,
int validx, int *value_ret)
{
struct snd_usb_audio *chip = cval->head.mixer->chip;
/* enough space for one range */
unsigned char buf[sizeof(__u16) + 3 * sizeof(__u32)];
unsigned char *val;
int idx = 0, ret, val_size, size;
__u8 bRequest;
val_size = uac2_ctl_value_size(cval->val_type);
if (request == UAC_GET_CUR) {
bRequest = UAC2_CS_CUR;
size = val_size;
} else {
bRequest = UAC2_CS_RANGE;
size = sizeof(__u16) + 3 * val_size;
}
memset(buf, 0, sizeof(buf));
if (snd_usb_lock_shutdown(chip))
return -EIO;
idx = mixer_ctrl_intf(cval->head.mixer) | (cval->head.id << 8);
ret = snd_usb_ctl_msg(chip->dev, usb_rcvctrlpipe(chip->dev, 0), bRequest,
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
validx, idx, buf, size);
snd_usb_unlock_shutdown(chip);
if (ret < 0) {
usb_audio_dbg(chip,
"cannot get ctl value: req = %#x, wValue = %#x, wIndex = %#x, type = %d\n",
request, validx, idx, cval->val_type);
return ret;
}
/* FIXME: how should we handle multiple triplets here? */
switch (request) {
case UAC_GET_CUR:
val = buf;
break;
case UAC_GET_MIN:
val = buf + sizeof(__u16);
break;
case UAC_GET_MAX:
val = buf + sizeof(__u16) + val_size;
break;
case UAC_GET_RES:
val = buf + sizeof(__u16) + val_size * 2;
break;
default:
return -EINVAL;
}
*value_ret = convert_signed_value(cval,
snd_usb_combine_bytes(val, val_size));
return 0;
}
static int get_ctl_value(struct usb_mixer_elem_info *cval, int request,
int validx, int *value_ret)
{
validx += cval->idx_off;
return (cval->head.mixer->protocol == UAC_VERSION_1) ?
get_ctl_value_v1(cval, request, validx, value_ret) :
get_ctl_value_v2(cval, request, validx, value_ret);
}
static int get_cur_ctl_value(struct usb_mixer_elem_info *cval,
int validx, int *value)
{
return get_ctl_value(cval, UAC_GET_CUR, validx, value);
}
/* channel = 0: master, 1 = first channel */
static inline int get_cur_mix_raw(struct usb_mixer_elem_info *cval,
int channel, int *value)
{
return get_ctl_value(cval, UAC_GET_CUR,
(cval->control << 8) | channel,
value);
}
int snd_usb_get_cur_mix_value(struct usb_mixer_elem_info *cval,
int channel, int index, int *value)
{
int err;
if (cval->cached & BIT(channel)) {
*value = cval->cache_val[index];
return 0;
}
err = get_cur_mix_raw(cval, channel, value);
if (err < 0) {
if (!cval->head.mixer->ignore_ctl_error)
usb_audio_dbg(cval->head.mixer->chip,
"cannot get current value for control %d ch %d: err = %d\n",
cval->control, channel, err);
return err;
}
cval->cached |= BIT(channel);
cval->cache_val[index] = *value;
return 0;
}
/*
* set a mixer value
*/
int snd_usb_mixer_set_ctl_value(struct usb_mixer_elem_info *cval,
int request, int validx, int value_set)
{
struct snd_usb_audio *chip = cval->head.mixer->chip;
unsigned char buf[4];
int idx = 0, val_len, err, timeout = 10;
validx += cval->idx_off;
if (cval->head.mixer->protocol == UAC_VERSION_1) {
val_len = cval->val_type >= USB_MIXER_S16 ? 2 : 1;
} else { /* UAC_VERSION_2/3 */
val_len = uac2_ctl_value_size(cval->val_type);
/* FIXME */
if (request != UAC_SET_CUR) {
usb_audio_dbg(chip, "RANGE setting not yet supported\n");
return -EINVAL;
}
request = UAC2_CS_CUR;
}
value_set = convert_bytes_value(cval, value_set);
buf[0] = value_set & 0xff;
buf[1] = (value_set >> 8) & 0xff;
buf[2] = (value_set >> 16) & 0xff;
buf[3] = (value_set >> 24) & 0xff;
err = snd_usb_lock_shutdown(chip);
if (err < 0)
return -EIO;
while (timeout-- > 0) {
idx = mixer_ctrl_intf(cval->head.mixer) | (cval->head.id << 8);
err = snd_usb_ctl_msg(chip->dev,
usb_sndctrlpipe(chip->dev, 0), request,
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
validx, idx, buf, val_len);
if (err >= 0) {
err = 0;
goto out;
} else if (err == -ETIMEDOUT) {
goto out;
}
}
usb_audio_dbg(chip, "cannot set ctl value: req = %#x, wValue = %#x, wIndex = %#x, type = %d, data = %#x/%#x\n",
request, validx, idx, cval->val_type, buf[0], buf[1]);
err = -EINVAL;
out:
snd_usb_unlock_shutdown(chip);
return err;
}
static int set_cur_ctl_value(struct usb_mixer_elem_info *cval,
int validx, int value)
{
return snd_usb_mixer_set_ctl_value(cval, UAC_SET_CUR, validx, value);
}
int snd_usb_set_cur_mix_value(struct usb_mixer_elem_info *cval, int channel,
int index, int value)
{
int err;
unsigned int read_only = (channel == 0) ?
cval->master_readonly :
cval->ch_readonly & BIT(channel - 1);
if (read_only) {
usb_audio_dbg(cval->head.mixer->chip,
"%s(): channel %d of control %d is read_only\n",
__func__, channel, cval->control);
return 0;
}
err = snd_usb_mixer_set_ctl_value(cval,
UAC_SET_CUR, (cval->control << 8) | channel,
value);
if (err < 0)
return err;
cval->cached |= BIT(channel);
cval->cache_val[index] = value;
return 0;
}
/*
* TLV callback for mixer volume controls
*/
int snd_usb_mixer_vol_tlv(struct snd_kcontrol *kcontrol, int op_flag,
unsigned int size, unsigned int __user *_tlv)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
DECLARE_TLV_DB_MINMAX(scale, 0, 0);
if (size < sizeof(scale))
return -ENOMEM;
if (cval->min_mute)
scale[0] = SNDRV_CTL_TLVT_DB_MINMAX_MUTE;
scale[2] = cval->dBmin;
scale[3] = cval->dBmax;
if (copy_to_user(_tlv, scale, sizeof(scale)))
return -EFAULT;
return 0;
}
/*
* parser routines begin here...
*/
static int parse_audio_unit(struct mixer_build *state, int unitid);
/*
* check if the input/output channel routing is enabled on the given bitmap.
* used for mixer unit parser
*/
static int check_matrix_bitmap(unsigned char *bmap,
int ich, int och, int num_outs)
{
int idx = ich * num_outs + och;
return bmap[idx >> 3] & (0x80 >> (idx & 7));
}
/*
* add an alsa control element
* search and increment the index until an empty slot is found.
*
* if failed, give up and free the control instance.
*/
int snd_usb_mixer_add_list(struct usb_mixer_elem_list *list,
struct snd_kcontrol *kctl,
bool is_std_info)
{
struct usb_mixer_interface *mixer = list->mixer;
int err;
while (snd_ctl_find_id(mixer->chip->card, &kctl->id))
kctl->id.index++;
err = snd_ctl_add(mixer->chip->card, kctl);
if (err < 0) {
usb_audio_dbg(mixer->chip, "cannot add control (err = %d)\n",
err);
return err;
}
list->kctl = kctl;
list->is_std_info = is_std_info;
list->next_id_elem = mixer->id_elems[list->id];
mixer->id_elems[list->id] = list;
return 0;
}
/*
* get a terminal name string
*/
static struct iterm_name_combo {
int type;
char *name;
} iterm_names[] = {
{ 0x0300, "Output" },
{ 0x0301, "Speaker" },
{ 0x0302, "Headphone" },
{ 0x0303, "HMD Audio" },
{ 0x0304, "Desktop Speaker" },
{ 0x0305, "Room Speaker" },
{ 0x0306, "Com Speaker" },
{ 0x0307, "LFE" },
{ 0x0600, "External In" },
{ 0x0601, "Analog In" },
{ 0x0602, "Digital In" },
{ 0x0603, "Line" },
{ 0x0604, "Legacy In" },
{ 0x0605, "IEC958 In" },
{ 0x0606, "1394 DA Stream" },
{ 0x0607, "1394 DV Stream" },
{ 0x0700, "Embedded" },
{ 0x0701, "Noise Source" },
{ 0x0702, "Equalization Noise" },
{ 0x0703, "CD" },
{ 0x0704, "DAT" },
{ 0x0705, "DCC" },
{ 0x0706, "MiniDisk" },
{ 0x0707, "Analog Tape" },
{ 0x0708, "Phonograph" },
{ 0x0709, "VCR Audio" },
{ 0x070a, "Video Disk Audio" },
{ 0x070b, "DVD Audio" },
{ 0x070c, "TV Tuner Audio" },
{ 0x070d, "Satellite Rec Audio" },
{ 0x070e, "Cable Tuner Audio" },
{ 0x070f, "DSS Audio" },
{ 0x0710, "Radio Receiver" },
{ 0x0711, "Radio Transmitter" },
{ 0x0712, "Multi-Track Recorder" },
{ 0x0713, "Synthesizer" },
{ 0 },
};
static int get_term_name(struct snd_usb_audio *chip, struct usb_audio_term *iterm,
unsigned char *name, int maxlen, int term_only)
{
struct iterm_name_combo *names;
int len;
if (iterm->name) {
len = snd_usb_copy_string_desc(chip, iterm->name,
name, maxlen);
if (len)
return len;
}
/* virtual type - not a real terminal */
if (iterm->type >> 16) {
if (term_only)
return 0;
switch (iterm->type >> 16) {
case UAC3_SELECTOR_UNIT:
strcpy(name, "Selector");
return 8;
case UAC3_PROCESSING_UNIT:
strcpy(name, "Process Unit");
return 12;
case UAC3_EXTENSION_UNIT:
strcpy(name, "Ext Unit");
return 8;
case UAC3_MIXER_UNIT:
strcpy(name, "Mixer");
return 5;
default:
return sprintf(name, "Unit %d", iterm->id);
}
}
switch (iterm->type & 0xff00) {
case 0x0100:
strcpy(name, "PCM");
return 3;
case 0x0200:
strcpy(name, "Mic");
return 3;
case 0x0400:
strcpy(name, "Headset");
return 7;
case 0x0500:
strcpy(name, "Phone");
return 5;
}
for (names = iterm_names; names->type; names++) {
if (names->type == iterm->type) {
strcpy(name, names->name);
return strlen(names->name);
}
}
return 0;
}
/*
* Get logical cluster information for UAC3 devices.
*/
static int get_cluster_channels_v3(struct mixer_build *state, unsigned int cluster_id)
{
struct uac3_cluster_header_descriptor c_header;
int err;
err = snd_usb_ctl_msg(state->chip->dev,
usb_rcvctrlpipe(state->chip->dev, 0),
UAC3_CS_REQ_HIGH_CAPABILITY_DESCRIPTOR,
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
cluster_id,
snd_usb_ctrl_intf(state->chip),
&c_header, sizeof(c_header));
if (err < 0)
goto error;
if (err != sizeof(c_header)) {
err = -EIO;
goto error;
}
return c_header.bNrChannels;
error:
usb_audio_err(state->chip, "cannot request logical cluster ID: %d (err: %d)\n", cluster_id, err);
return err;
}
/*
* Get number of channels for a Mixer Unit.
*/
static int uac_mixer_unit_get_channels(struct mixer_build *state,
struct uac_mixer_unit_descriptor *desc)
{
int mu_channels;
switch (state->mixer->protocol) {
case UAC_VERSION_1:
case UAC_VERSION_2:
default:
if (desc->bLength < sizeof(*desc) + desc->bNrInPins + 1)
return 0; /* no bmControls -> skip */
mu_channels = uac_mixer_unit_bNrChannels(desc);
break;
case UAC_VERSION_3:
mu_channels = get_cluster_channels_v3(state,
uac3_mixer_unit_wClusterDescrID(desc));
break;
}
return mu_channels;
}
/*
* Parse Input Terminal Unit
*/
static int __check_input_term(struct mixer_build *state, int id,
struct usb_audio_term *term);
static int parse_term_uac1_iterm_unit(struct mixer_build *state,
struct usb_audio_term *term,
void *p1, int id)
{
struct uac_input_terminal_descriptor *d = p1;
term->type = le16_to_cpu(d->wTerminalType);
term->channels = d->bNrChannels;
term->chconfig = le16_to_cpu(d->wChannelConfig);
term->name = d->iTerminal;
return 0;
}
static int parse_term_uac2_iterm_unit(struct mixer_build *state,
struct usb_audio_term *term,
void *p1, int id)
{
struct uac2_input_terminal_descriptor *d = p1;
int err;
/* call recursively to verify the referenced clock entity */
err = __check_input_term(state, d->bCSourceID, term);
if (err < 0)
return err;
/* save input term properties after recursion,
* to ensure they are not overriden by the recursion calls
*/
term->id = id;
term->type = le16_to_cpu(d->wTerminalType);
term->channels = d->bNrChannels;
term->chconfig = le32_to_cpu(d->bmChannelConfig);
term->name = d->iTerminal;
return 0;
}
static int parse_term_uac3_iterm_unit(struct mixer_build *state,
struct usb_audio_term *term,
void *p1, int id)
{
struct uac3_input_terminal_descriptor *d = p1;
int err;
/* call recursively to verify the referenced clock entity */
err = __check_input_term(state, d->bCSourceID, term);
if (err < 0)
return err;
/* save input term properties after recursion,
* to ensure they are not overriden by the recursion calls
*/
term->id = id;
term->type = le16_to_cpu(d->wTerminalType);
err = get_cluster_channels_v3(state, le16_to_cpu(d->wClusterDescrID));
if (err < 0)
return err;
term->channels = err;
/* REVISIT: UAC3 IT doesn't have channels cfg */
term->chconfig = 0;
term->name = le16_to_cpu(d->wTerminalDescrStr);
return 0;
}
static int parse_term_mixer_unit(struct mixer_build *state,
struct usb_audio_term *term,
void *p1, int id)
{
struct uac_mixer_unit_descriptor *d = p1;
int protocol = state->mixer->protocol;
int err;
err = uac_mixer_unit_get_channels(state, d);
if (err <= 0)
return err;
term->type = UAC3_MIXER_UNIT << 16; /* virtual type */
term->channels = err;
if (protocol != UAC_VERSION_3) {
term->chconfig = uac_mixer_unit_wChannelConfig(d, protocol);
term->name = uac_mixer_unit_iMixer(d);
}
return 0;
}
static int parse_term_selector_unit(struct mixer_build *state,
struct usb_audio_term *term,
void *p1, int id)
{
struct uac_selector_unit_descriptor *d = p1;
int err;
/* call recursively to retrieve the channel info */
err = __check_input_term(state, d->baSourceID[0], term);
if (err < 0)
return err;
term->type = UAC3_SELECTOR_UNIT << 16; /* virtual type */
term->id = id;
if (state->mixer->protocol != UAC_VERSION_3)
term->name = uac_selector_unit_iSelector(d);
return 0;
}
static int parse_term_proc_unit(struct mixer_build *state,
struct usb_audio_term *term,
void *p1, int id, int vtype)
{
struct uac_processing_unit_descriptor *d = p1;
int protocol = state->mixer->protocol;
int err;
if (d->bNrInPins) {
/* call recursively to retrieve the channel info */
err = __check_input_term(state, d->baSourceID[0], term);
if (err < 0)
return err;
}
term->type = vtype << 16; /* virtual type */
term->id = id;
if (protocol == UAC_VERSION_3)
return 0;
if (!term->channels) {
term->channels = uac_processing_unit_bNrChannels(d);
term->chconfig = uac_processing_unit_wChannelConfig(d, protocol);
}
term->name = uac_processing_unit_iProcessing(d, protocol);
return 0;
}
static int parse_term_effect_unit(struct mixer_build *state,
struct usb_audio_term *term,
void *p1, int id)
{
struct uac2_effect_unit_descriptor *d = p1;
int err;
err = __check_input_term(state, d->bSourceID, term);
if (err < 0)
return err;
term->type = UAC3_EFFECT_UNIT << 16; /* virtual type */
term->id = id;
return 0;
}
static int parse_term_uac2_clock_source(struct mixer_build *state,
struct usb_audio_term *term,
void *p1, int id)
{
struct uac_clock_source_descriptor *d = p1;
term->type = UAC3_CLOCK_SOURCE << 16; /* virtual type */
term->id = id;
term->name = d->iClockSource;
return 0;
}
static int parse_term_uac3_clock_source(struct mixer_build *state,
struct usb_audio_term *term,
void *p1, int id)
{
struct uac3_clock_source_descriptor *d = p1;
term->type = UAC3_CLOCK_SOURCE << 16; /* virtual type */
term->id = id;
term->name = le16_to_cpu(d->wClockSourceStr);
return 0;
}
#define PTYPE(a, b) ((a) << 8 | (b))
/*
* parse the source unit recursively until it reaches to a terminal
* or a branched unit.
*/
static int __check_input_term(struct mixer_build *state, int id,
struct usb_audio_term *term)
{
int protocol = state->mixer->protocol;
void *p1;
unsigned char *hdr;
for (;;) {
/* a loop in the terminal chain? */
if (test_and_set_bit(id, state->termbitmap))
return -EINVAL;
p1 = find_audio_control_unit(state, id);
if (!p1)
break;
if (!snd_usb_validate_audio_desc(p1, protocol))
break; /* bad descriptor */
hdr = p1;
term->id = id;
switch (PTYPE(protocol, hdr[2])) {
case PTYPE(UAC_VERSION_1, UAC_FEATURE_UNIT):
case PTYPE(UAC_VERSION_2, UAC_FEATURE_UNIT):
case PTYPE(UAC_VERSION_3, UAC3_FEATURE_UNIT): {
/* the header is the same for all versions */
struct uac_feature_unit_descriptor *d = p1;
id = d->bSourceID;
break; /* continue to parse */
}
case PTYPE(UAC_VERSION_1, UAC_INPUT_TERMINAL):
return parse_term_uac1_iterm_unit(state, term, p1, id);
case PTYPE(UAC_VERSION_2, UAC_INPUT_TERMINAL):
return parse_term_uac2_iterm_unit(state, term, p1, id);
case PTYPE(UAC_VERSION_3, UAC_INPUT_TERMINAL):
return parse_term_uac3_iterm_unit(state, term, p1, id);
case PTYPE(UAC_VERSION_1, UAC_MIXER_UNIT):
case PTYPE(UAC_VERSION_2, UAC_MIXER_UNIT):
case PTYPE(UAC_VERSION_3, UAC3_MIXER_UNIT):
return parse_term_mixer_unit(state, term, p1, id);
case PTYPE(UAC_VERSION_1, UAC_SELECTOR_UNIT):
case PTYPE(UAC_VERSION_2, UAC_SELECTOR_UNIT):
case PTYPE(UAC_VERSION_2, UAC2_CLOCK_SELECTOR):
case PTYPE(UAC_VERSION_3, UAC3_SELECTOR_UNIT):
case PTYPE(UAC_VERSION_3, UAC3_CLOCK_SELECTOR):
return parse_term_selector_unit(state, term, p1, id);
case PTYPE(UAC_VERSION_1, UAC1_PROCESSING_UNIT):
case PTYPE(UAC_VERSION_2, UAC2_PROCESSING_UNIT_V2):
case PTYPE(UAC_VERSION_3, UAC3_PROCESSING_UNIT):
return parse_term_proc_unit(state, term, p1, id,
UAC3_PROCESSING_UNIT);
case PTYPE(UAC_VERSION_2, UAC2_EFFECT_UNIT):
case PTYPE(UAC_VERSION_3, UAC3_EFFECT_UNIT):
return parse_term_effect_unit(state, term, p1, id);
case PTYPE(UAC_VERSION_1, UAC1_EXTENSION_UNIT):
case PTYPE(UAC_VERSION_2, UAC2_EXTENSION_UNIT_V2):
case PTYPE(UAC_VERSION_3, UAC3_EXTENSION_UNIT):
return parse_term_proc_unit(state, term, p1, id,
UAC3_EXTENSION_UNIT);
case PTYPE(UAC_VERSION_2, UAC2_CLOCK_SOURCE):
return parse_term_uac2_clock_source(state, term, p1, id);
case PTYPE(UAC_VERSION_3, UAC3_CLOCK_SOURCE):
return parse_term_uac3_clock_source(state, term, p1, id);
default:
return -ENODEV;
}
}
return -ENODEV;
}
static int check_input_term(struct mixer_build *state, int id,
struct usb_audio_term *term)
{
memset(term, 0, sizeof(*term));
memset(state->termbitmap, 0, sizeof(state->termbitmap));
return __check_input_term(state, id, term);
}
/*
* Feature Unit
*/
/* feature unit control information */
struct usb_feature_control_info {
int control;
const char *name;
int type; /* data type for uac1 */
int type_uac2; /* data type for uac2 if different from uac1, else -1 */
};
static const struct usb_feature_control_info audio_feature_info[] = {
{ UAC_FU_MUTE, "Mute", USB_MIXER_INV_BOOLEAN, -1 },
{ UAC_FU_VOLUME, "Volume", USB_MIXER_S16, -1 },
{ UAC_FU_BASS, "Tone Control - Bass", USB_MIXER_S8, -1 },
{ UAC_FU_MID, "Tone Control - Mid", USB_MIXER_S8, -1 },
{ UAC_FU_TREBLE, "Tone Control - Treble", USB_MIXER_S8, -1 },
{ UAC_FU_GRAPHIC_EQUALIZER, "Graphic Equalizer", USB_MIXER_S8, -1 }, /* FIXME: not implemented yet */
{ UAC_FU_AUTOMATIC_GAIN, "Auto Gain Control", USB_MIXER_BOOLEAN, -1 },
{ UAC_FU_DELAY, "Delay Control", USB_MIXER_U16, USB_MIXER_U32 },
{ UAC_FU_BASS_BOOST, "Bass Boost", USB_MIXER_BOOLEAN, -1 },
{ UAC_FU_LOUDNESS, "Loudness", USB_MIXER_BOOLEAN, -1 },
/* UAC2 specific */
{ UAC2_FU_INPUT_GAIN, "Input Gain Control", USB_MIXER_S16, -1 },
{ UAC2_FU_INPUT_GAIN_PAD, "Input Gain Pad Control", USB_MIXER_S16, -1 },
{ UAC2_FU_PHASE_INVERTER, "Phase Inverter Control", USB_MIXER_BOOLEAN, -1 },
};
static void usb_mixer_elem_info_free(struct usb_mixer_elem_info *cval)
{
kfree(cval);
}
/* private_free callback */
void snd_usb_mixer_elem_free(struct snd_kcontrol *kctl)
{
usb_mixer_elem_info_free(kctl->private_data);
kctl->private_data = NULL;
}
/*
* interface to ALSA control for feature/mixer units
*/
/* volume control quirks */
static void volume_control_quirks(struct usb_mixer_elem_info *cval,
struct snd_kcontrol *kctl)
{
struct snd_usb_audio *chip = cval->head.mixer->chip;
switch (chip->usb_id) {
case USB_ID(0x0763, 0x2030): /* M-Audio Fast Track C400 */
case USB_ID(0x0763, 0x2031): /* M-Audio Fast Track C600 */
if (strcmp(kctl->id.name, "Effect Duration") == 0) {
cval->min = 0x0000;
cval->max = 0xffff;
cval->res = 0x00e6;
break;
}
if (strcmp(kctl->id.name, "Effect Volume") == 0 ||
strcmp(kctl->id.name, "Effect Feedback Volume") == 0) {
cval->min = 0x00;
cval->max = 0xff;
break;
}
if (strstr(kctl->id.name, "Effect Return") != NULL) {
cval->min = 0xb706;
cval->max = 0xff7b;
cval->res = 0x0073;
break;
}
if ((strstr(kctl->id.name, "Playback Volume") != NULL) ||
(strstr(kctl->id.name, "Effect Send") != NULL)) {
cval->min = 0xb5fb; /* -73 dB = 0xb6ff */
cval->max = 0xfcfe;
cval->res = 0x0073;
}
break;
case USB_ID(0x0763, 0x2081): /* M-Audio Fast Track Ultra 8R */
case USB_ID(0x0763, 0x2080): /* M-Audio Fast Track Ultra */
if (strcmp(kctl->id.name, "Effect Duration") == 0) {
usb_audio_info(chip,
"set quirk for FTU Effect Duration\n");
cval->min = 0x0000;
cval->max = 0x7f00;
cval->res = 0x0100;
break;
}
if (strcmp(kctl->id.name, "Effect Volume") == 0 ||
strcmp(kctl->id.name, "Effect Feedback Volume") == 0) {
usb_audio_info(chip,
"set quirks for FTU Effect Feedback/Volume\n");
cval->min = 0x00;
cval->max = 0x7f;
break;
}
break;
case USB_ID(0x0d8c, 0x0103):
if (!strcmp(kctl->id.name, "PCM Playback Volume")) {
usb_audio_info(chip,
"set volume quirk for CM102-A+/102S+\n");
cval->min = -256;
}
break;
case USB_ID(0x0471, 0x0101):
case USB_ID(0x0471, 0x0104):
case USB_ID(0x0471, 0x0105):
case USB_ID(0x0672, 0x1041):
/* quirk for UDA1321/N101.
* note that detection between firmware 2.1.1.7 (N101)
* and later 2.1.1.21 is not very clear from datasheets.
* I hope that the min value is -15360 for newer firmware --jk
*/
if (!strcmp(kctl->id.name, "PCM Playback Volume") &&
cval->min == -15616) {
usb_audio_info(chip,
"set volume quirk for UDA1321/N101 chip\n");
cval->max = -256;
}
break;
case USB_ID(0x046d, 0x09a4):
if (!strcmp(kctl->id.name, "Mic Capture Volume")) {
usb_audio_info(chip,
"set volume quirk for QuickCam E3500\n");
cval->min = 6080;
cval->max = 8768;
cval->res = 192;
}
break;
case USB_ID(0x046d, 0x0807): /* Logitech Webcam C500 */
case USB_ID(0x046d, 0x0808):
case USB_ID(0x046d, 0x0809):
case USB_ID(0x046d, 0x0819): /* Logitech Webcam C210 */
case USB_ID(0x046d, 0x081b): /* HD Webcam c310 */
case USB_ID(0x046d, 0x081d): /* HD Webcam c510 */
case USB_ID(0x046d, 0x0825): /* HD Webcam c270 */
case USB_ID(0x046d, 0x0826): /* HD Webcam c525 */
case USB_ID(0x046d, 0x08ca): /* Logitech Quickcam Fusion */
case USB_ID(0x046d, 0x0991):
case USB_ID(0x046d, 0x09a2): /* QuickCam Communicate Deluxe/S7500 */
/* Most audio usb devices lie about volume resolution.
* Most Logitech webcams have res = 384.
* Probably there is some logitech magic behind this number --fishor
*/
if (!strcmp(kctl->id.name, "Mic Capture Volume")) {
usb_audio_info(chip,
"set resolution quirk: cval->res = 384\n");
cval->res = 384;
}
break;
case USB_ID(0x0495, 0x3042): /* ESS Technology Asus USB DAC */
if ((strstr(kctl->id.name, "Playback Volume") != NULL) ||
strstr(kctl->id.name, "Capture Volume") != NULL) {
cval->min >>= 8;
cval->max = 0;
cval->res = 1;
}
break;
case USB_ID(0x1224, 0x2a25): /* Jieli Technology USB PHY 2.0 */
if (!strcmp(kctl->id.name, "Mic Capture Volume")) {
usb_audio_info(chip,
"set resolution quirk: cval->res = 16\n");
cval->res = 16;
}
break;
case USB_ID(0x1bcf, 0x2283): /* NexiGo N930AF FHD Webcam */
if (!strcmp(kctl->id.name, "Mic Capture Volume")) {
usb_audio_info(chip,
"set resolution quirk: cval->res = 16\n");
cval->res = 16;
}
break;
case USB_ID(0x1bcf, 0x2281): /* HD Webcam */
if (!strcmp(kctl->id.name, "Mic Capture Volume")) {
usb_audio_info(chip,
"set resolution quirk: cval->res = 16\n");
cval->res = 16;
}
break;
}
}
/* forcibly initialize the current mixer value; if GET_CUR fails, set to
* the minimum as default
*/
static void init_cur_mix_raw(struct usb_mixer_elem_info *cval, int ch, int idx)
{
int val, err;
err = snd_usb_get_cur_mix_value(cval, ch, idx, &val);
if (!err)
return;
if (!cval->head.mixer->ignore_ctl_error)
usb_audio_warn(cval->head.mixer->chip,
"%d:%d: failed to get current value for ch %d (%d)\n",
cval->head.id, mixer_ctrl_intf(cval->head.mixer),
ch, err);
snd_usb_set_cur_mix_value(cval, ch, idx, cval->min);
}
/*
* retrieve the minimum and maximum values for the specified control
*/
static int get_min_max_with_quirks(struct usb_mixer_elem_info *cval,
int default_min, struct snd_kcontrol *kctl)
{
int i, idx;
/* for failsafe */
cval->min = default_min;
cval->max = cval->min + 1;
cval->res = 1;
cval->dBmin = cval->dBmax = 0;
if (cval->val_type == USB_MIXER_BOOLEAN ||
cval->val_type == USB_MIXER_INV_BOOLEAN) {
cval->initialized = 1;
} else {
int minchn = 0;
if (cval->cmask) {
for (i = 0; i < MAX_CHANNELS; i++)
if (cval->cmask & BIT(i)) {
minchn = i + 1;
break;
}
}
if (get_ctl_value(cval, UAC_GET_MAX, (cval->control << 8) | minchn, &cval->max) < 0 ||
get_ctl_value(cval, UAC_GET_MIN, (cval->control << 8) | minchn, &cval->min) < 0) {
usb_audio_err(cval->head.mixer->chip,
"%d:%d: cannot get min/max values for control %d (id %d)\n",
cval->head.id, mixer_ctrl_intf(cval->head.mixer),
cval->control, cval->head.id);
return -EINVAL;
}
if (get_ctl_value(cval, UAC_GET_RES,
(cval->control << 8) | minchn,
&cval->res) < 0) {
cval->res = 1;
} else if (cval->head.mixer->protocol == UAC_VERSION_1) {
int last_valid_res = cval->res;
while (cval->res > 1) {
if (snd_usb_mixer_set_ctl_value(cval, UAC_SET_RES,
(cval->control << 8) | minchn,
cval->res / 2) < 0)
break;
cval->res /= 2;
}
if (get_ctl_value(cval, UAC_GET_RES,
(cval->control << 8) | minchn, &cval->res) < 0)
cval->res = last_valid_res;
}
if (cval->res == 0)
cval->res = 1;
/* Additional checks for the proper resolution
*
* Some devices report smaller resolutions than actually
* reacting. They don't return errors but simply clip
* to the lower aligned value.
*/
if (cval->min + cval->res < cval->max) {
int last_valid_res = cval->res;
int saved, test, check;
if (get_cur_mix_raw(cval, minchn, &saved) < 0)
goto no_res_check;
for (;;) {
test = saved;
if (test < cval->max)
test += cval->res;
else
test -= cval->res;
if (test < cval->min || test > cval->max ||
snd_usb_set_cur_mix_value(cval, minchn, 0, test) ||
get_cur_mix_raw(cval, minchn, &check)) {
cval->res = last_valid_res;
break;
}
if (test == check)
break;
cval->res *= 2;
}
snd_usb_set_cur_mix_value(cval, minchn, 0, saved);
}
no_res_check:
cval->initialized = 1;
}
if (kctl)
volume_control_quirks(cval, kctl);
/* USB descriptions contain the dB scale in 1/256 dB unit
* while ALSA TLV contains in 1/100 dB unit
*/
cval->dBmin = (convert_signed_value(cval, cval->min) * 100) / 256;
cval->dBmax = (convert_signed_value(cval, cval->max) * 100) / 256;
if (cval->dBmin > cval->dBmax) {
/* something is wrong; assume it's either from/to 0dB */
if (cval->dBmin < 0)
cval->dBmax = 0;
else if (cval->dBmin > 0)
cval->dBmin = 0;
if (cval->dBmin > cval->dBmax) {
/* totally crap, return an error */
return -EINVAL;
}
} else {
/* if the max volume is too low, it's likely a bogus range;
* here we use -96dB as the threshold
*/
if (cval->dBmax <= -9600) {
usb_audio_info(cval->head.mixer->chip,
"%d:%d: bogus dB values (%d/%d), disabling dB reporting\n",
cval->head.id, mixer_ctrl_intf(cval->head.mixer),
cval->dBmin, cval->dBmax);
cval->dBmin = cval->dBmax = 0;
}
}
/* initialize all elements */
if (!cval->cmask) {
init_cur_mix_raw(cval, 0, 0);
} else {
idx = 0;
for (i = 0; i < MAX_CHANNELS; i++) {
if (cval->cmask & BIT(i)) {
init_cur_mix_raw(cval, i + 1, idx);
idx++;
}
}
}
return 0;
}
#define get_min_max(cval, def) get_min_max_with_quirks(cval, def, NULL)
/* get a feature/mixer unit info */
static int mixer_ctl_feature_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
if (cval->val_type == USB_MIXER_BOOLEAN ||
cval->val_type == USB_MIXER_INV_BOOLEAN)
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
else
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = cval->channels;
if (cval->val_type == USB_MIXER_BOOLEAN ||
cval->val_type == USB_MIXER_INV_BOOLEAN) {
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
} else {
if (!cval->initialized) {
get_min_max_with_quirks(cval, 0, kcontrol);
if (cval->initialized && cval->dBmin >= cval->dBmax) {
kcontrol->vd[0].access &=
~(SNDRV_CTL_ELEM_ACCESS_TLV_READ |
SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK);
snd_ctl_notify(cval->head.mixer->chip->card,
SNDRV_CTL_EVENT_MASK_INFO,
&kcontrol->id);
}
}
uinfo->value.integer.min = 0;
uinfo->value.integer.max =
DIV_ROUND_UP(cval->max - cval->min, cval->res);
}
return 0;
}
/* get the current value from feature/mixer unit */
static int mixer_ctl_feature_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
int c, cnt, val, err;
ucontrol->value.integer.value[0] = cval->min;
if (cval->cmask) {
cnt = 0;
for (c = 0; c < MAX_CHANNELS; c++) {
if (!(cval->cmask & BIT(c)))
continue;
err = snd_usb_get_cur_mix_value(cval, c + 1, cnt, &val);
if (err < 0)
return filter_error(cval, err);
val = get_relative_value(cval, val);
ucontrol->value.integer.value[cnt] = val;
cnt++;
}
return 0;
} else {
/* master channel */
err = snd_usb_get_cur_mix_value(cval, 0, 0, &val);
if (err < 0)
return filter_error(cval, err);
val = get_relative_value(cval, val);
ucontrol->value.integer.value[0] = val;
}
return 0;
}
/* put the current value to feature/mixer unit */
static int mixer_ctl_feature_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
int c, cnt, val, oval, err;
int changed = 0;
if (cval->cmask) {
cnt = 0;
for (c = 0; c < MAX_CHANNELS; c++) {
if (!(cval->cmask & BIT(c)))
continue;
err = snd_usb_get_cur_mix_value(cval, c + 1, cnt, &oval);
if (err < 0)
return filter_error(cval, err);
val = ucontrol->value.integer.value[cnt];
val = get_abs_value(cval, val);
if (oval != val) {
snd_usb_set_cur_mix_value(cval, c + 1, cnt, val);
changed = 1;
}
cnt++;
}
} else {
/* master channel */
err = snd_usb_get_cur_mix_value(cval, 0, 0, &oval);
if (err < 0)
return filter_error(cval, err);
val = ucontrol->value.integer.value[0];
val = get_abs_value(cval, val);
if (val != oval) {
snd_usb_set_cur_mix_value(cval, 0, 0, val);
changed = 1;
}
}
return changed;
}
/* get the boolean value from the master channel of a UAC control */
static int mixer_ctl_master_bool_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
int val, err;
err = snd_usb_get_cur_mix_value(cval, 0, 0, &val);
if (err < 0)
return filter_error(cval, err);
val = (val != 0);
ucontrol->value.integer.value[0] = val;
return 0;
}
static int get_connector_value(struct usb_mixer_elem_info *cval,
char *name, int *val)
{
struct snd_usb_audio *chip = cval->head.mixer->chip;
int idx = 0, validx, ret;
validx = cval->control << 8 | 0;
ret = snd_usb_lock_shutdown(chip) ? -EIO : 0;
if (ret)
goto error;
idx = mixer_ctrl_intf(cval->head.mixer) | (cval->head.id << 8);
if (cval->head.mixer->protocol == UAC_VERSION_2) {
struct uac2_connectors_ctl_blk uac2_conn;
ret = snd_usb_ctl_msg(chip->dev, usb_rcvctrlpipe(chip->dev, 0), UAC2_CS_CUR,
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
validx, idx, &uac2_conn, sizeof(uac2_conn));
if (val)
*val = !!uac2_conn.bNrChannels;
} else { /* UAC_VERSION_3 */
struct uac3_insertion_ctl_blk uac3_conn;
ret = snd_usb_ctl_msg(chip->dev, usb_rcvctrlpipe(chip->dev, 0), UAC2_CS_CUR,
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
validx, idx, &uac3_conn, sizeof(uac3_conn));
if (val)
*val = !!uac3_conn.bmConInserted;
}
snd_usb_unlock_shutdown(chip);
if (ret < 0) {
if (name && strstr(name, "Speaker")) {
if (val)
*val = 1;
return 0;
}
error:
usb_audio_err(chip,
"cannot get connectors status: req = %#x, wValue = %#x, wIndex = %#x, type = %d\n",
UAC_GET_CUR, validx, idx, cval->val_type);
if (val)
*val = 0;
return filter_error(cval, ret);
}
return ret;
}
/* get the connectors status and report it as boolean type */
static int mixer_ctl_connector_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
int ret, val;
ret = get_connector_value(cval, kcontrol->id.name, &val);
if (ret < 0)
return ret;
ucontrol->value.integer.value[0] = val;
return 0;
}
static const struct snd_kcontrol_new usb_feature_unit_ctl = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "", /* will be filled later manually */
.info = mixer_ctl_feature_info,
.get = mixer_ctl_feature_get,
.put = mixer_ctl_feature_put,
};
/* the read-only variant */
static const struct snd_kcontrol_new usb_feature_unit_ctl_ro = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "", /* will be filled later manually */
.info = mixer_ctl_feature_info,
.get = mixer_ctl_feature_get,
.put = NULL,
};
/*
* A control which shows the boolean value from reading a UAC control on
* the master channel.
*/
static const struct snd_kcontrol_new usb_bool_master_control_ctl_ro = {
.iface = SNDRV_CTL_ELEM_IFACE_CARD,
.name = "", /* will be filled later manually */
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.info = snd_ctl_boolean_mono_info,
.get = mixer_ctl_master_bool_get,
.put = NULL,
};
static const struct snd_kcontrol_new usb_connector_ctl_ro = {
.iface = SNDRV_CTL_ELEM_IFACE_CARD,
.name = "", /* will be filled later manually */
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.info = snd_ctl_boolean_mono_info,
.get = mixer_ctl_connector_get,
.put = NULL,
};
/*
* This symbol is exported in order to allow the mixer quirks to
* hook up to the standard feature unit control mechanism
*/
const struct snd_kcontrol_new *snd_usb_feature_unit_ctl = &usb_feature_unit_ctl;
/*
* build a feature control
*/
static size_t append_ctl_name(struct snd_kcontrol *kctl, const char *str)
{
return strlcat(kctl->id.name, str, sizeof(kctl->id.name));
}
/*
* A lot of headsets/headphones have a "Speaker" mixer. Make sure we
* rename it to "Headphone". We determine if something is a headphone
* similar to how udev determines form factor.
*/
static void check_no_speaker_on_headset(struct snd_kcontrol *kctl,
struct snd_card *card)
{
static const char * const names_to_check[] = {
"Headset", "headset", "Headphone", "headphone", NULL};
const char * const *s;
bool found = false;
if (strcmp("Speaker", kctl->id.name))
return;
for (s = names_to_check; *s; s++)
if (strstr(card->shortname, *s)) {
found = true;
break;
}
if (!found)
return;
snd_ctl_rename(card, kctl, "Headphone");
}
static const struct usb_feature_control_info *get_feature_control_info(int control)
{
int i;
for (i = 0; i < ARRAY_SIZE(audio_feature_info); ++i) {
if (audio_feature_info[i].control == control)
return &audio_feature_info[i];
}
return NULL;
}
static void __build_feature_ctl(struct usb_mixer_interface *mixer,
const struct usbmix_name_map *imap,
unsigned int ctl_mask, int control,
struct usb_audio_term *iterm,
struct usb_audio_term *oterm,
int unitid, int nameid, int readonly_mask)
{
const struct usb_feature_control_info *ctl_info;
unsigned int len = 0;
int mapped_name = 0;
struct snd_kcontrol *kctl;
struct usb_mixer_elem_info *cval;
const struct usbmix_name_map *map;
unsigned int range;
if (control == UAC_FU_GRAPHIC_EQUALIZER) {
/* FIXME: not supported yet */
return;
}
map = find_map(imap, unitid, control);
if (check_ignored_ctl(map))
return;
cval = kzalloc(sizeof(*cval), GFP_KERNEL);
if (!cval)
return;
snd_usb_mixer_elem_init_std(&cval->head, mixer, unitid);
cval->control = control;
cval->cmask = ctl_mask;
ctl_info = get_feature_control_info(control);
if (!ctl_info) {
usb_mixer_elem_info_free(cval);
return;
}
if (mixer->protocol == UAC_VERSION_1)
cval->val_type = ctl_info->type;
else /* UAC_VERSION_2 */
cval->val_type = ctl_info->type_uac2 >= 0 ?
ctl_info->type_uac2 : ctl_info->type;
if (ctl_mask == 0) {
cval->channels = 1; /* master channel */
cval->master_readonly = readonly_mask;
} else {
int i, c = 0;
for (i = 0; i < 16; i++)
if (ctl_mask & BIT(i))
c++;
cval->channels = c;
cval->ch_readonly = readonly_mask;
}
/*
* If all channels in the mask are marked read-only, make the control
* read-only. snd_usb_set_cur_mix_value() will check the mask again and won't
* issue write commands to read-only channels.
*/
if (cval->channels == readonly_mask)
kctl = snd_ctl_new1(&usb_feature_unit_ctl_ro, cval);
else
kctl = snd_ctl_new1(&usb_feature_unit_ctl, cval);
if (!kctl) {
usb_audio_err(mixer->chip, "cannot malloc kcontrol\n");
usb_mixer_elem_info_free(cval);
return;
}
kctl->private_free = snd_usb_mixer_elem_free;
len = check_mapped_name(map, kctl->id.name, sizeof(kctl->id.name));
mapped_name = len != 0;
if (!len && nameid)
len = snd_usb_copy_string_desc(mixer->chip, nameid,
kctl->id.name, sizeof(kctl->id.name));
switch (control) {
case UAC_FU_MUTE:
case UAC_FU_VOLUME:
/*
* determine the control name. the rule is:
* - if a name id is given in descriptor, use it.
* - if the connected input can be determined, then use the name
* of terminal type.
* - if the connected output can be determined, use it.
* - otherwise, anonymous name.
*/
if (!len) {
if (iterm)
len = get_term_name(mixer->chip, iterm,
kctl->id.name,
sizeof(kctl->id.name), 1);
if (!len && oterm)
len = get_term_name(mixer->chip, oterm,
kctl->id.name,
sizeof(kctl->id.name), 1);
if (!len)
snprintf(kctl->id.name, sizeof(kctl->id.name),
"Feature %d", unitid);
}
if (!mapped_name)
check_no_speaker_on_headset(kctl, mixer->chip->card);
/*
* determine the stream direction:
* if the connected output is USB stream, then it's likely a
* capture stream. otherwise it should be playback (hopefully :)
*/
if (!mapped_name && oterm && !(oterm->type >> 16)) {
if ((oterm->type & 0xff00) == 0x0100)
append_ctl_name(kctl, " Capture");
else
append_ctl_name(kctl, " Playback");
}
append_ctl_name(kctl, control == UAC_FU_MUTE ?
" Switch" : " Volume");
break;
default:
if (!len)
strscpy(kctl->id.name, audio_feature_info[control-1].name,
sizeof(kctl->id.name));
break;
}
/* get min/max values */
get_min_max_with_quirks(cval, 0, kctl);
/* skip a bogus volume range */
if (cval->max <= cval->min) {
usb_audio_dbg(mixer->chip,
"[%d] FU [%s] skipped due to invalid volume\n",
cval->head.id, kctl->id.name);
snd_ctl_free_one(kctl);
return;
}
if (control == UAC_FU_VOLUME) {
check_mapped_dB(map, cval);
if (cval->dBmin < cval->dBmax || !cval->initialized) {
kctl->tlv.c = snd_usb_mixer_vol_tlv;
kctl->vd[0].access |=
SNDRV_CTL_ELEM_ACCESS_TLV_READ |
SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
}
}
snd_usb_mixer_fu_apply_quirk(mixer, cval, unitid, kctl);
range = (cval->max - cval->min) / cval->res;
/*
* Are there devices with volume range more than 255? I use a bit more
* to be sure. 384 is a resolution magic number found on Logitech
* devices. It will definitively catch all buggy Logitech devices.
*/
if (range > 384) {
usb_audio_warn(mixer->chip,
"Warning! Unlikely big volume range (=%u), cval->res is probably wrong.",
range);
usb_audio_warn(mixer->chip,
"[%d] FU [%s] ch = %d, val = %d/%d/%d",
cval->head.id, kctl->id.name, cval->channels,
cval->min, cval->max, cval->res);
}
usb_audio_dbg(mixer->chip, "[%d] FU [%s] ch = %d, val = %d/%d/%d\n",
cval->head.id, kctl->id.name, cval->channels,
cval->min, cval->max, cval->res);
snd_usb_mixer_add_control(&cval->head, kctl);
}
static void build_feature_ctl(struct mixer_build *state, void *raw_desc,
unsigned int ctl_mask, int control,
struct usb_audio_term *iterm, int unitid,
int readonly_mask)
{
struct uac_feature_unit_descriptor *desc = raw_desc;
int nameid = uac_feature_unit_iFeature(desc);
__build_feature_ctl(state->mixer, state->map, ctl_mask, control,
iterm, &state->oterm, unitid, nameid, readonly_mask);
}
static void build_feature_ctl_badd(struct usb_mixer_interface *mixer,
unsigned int ctl_mask, int control, int unitid,
const struct usbmix_name_map *badd_map)
{
__build_feature_ctl(mixer, badd_map, ctl_mask, control,
NULL, NULL, unitid, 0, 0);
}
static void get_connector_control_name(struct usb_mixer_interface *mixer,
struct usb_audio_term *term,
bool is_input, char *name, int name_size)
{
int name_len = get_term_name(mixer->chip, term, name, name_size, 0);
if (name_len == 0)
strscpy(name, "Unknown", name_size);
/*
* sound/core/ctljack.c has a convention of naming jack controls
* by ending in " Jack". Make it slightly more useful by
* indicating Input or Output after the terminal name.
*/
if (is_input)
strlcat(name, " - Input Jack", name_size);
else
strlcat(name, " - Output Jack", name_size);
}
/* get connector value to "wake up" the USB audio */
static int connector_mixer_resume(struct usb_mixer_elem_list *list)
{
struct usb_mixer_elem_info *cval = mixer_elem_list_to_info(list);
get_connector_value(cval, NULL, NULL);
return 0;
}
/* Build a mixer control for a UAC connector control (jack-detect) */
static void build_connector_control(struct usb_mixer_interface *mixer,
const struct usbmix_name_map *imap,
struct usb_audio_term *term, bool is_input)
{
struct snd_kcontrol *kctl;
struct usb_mixer_elem_info *cval;
const struct usbmix_name_map *map;
map = find_map(imap, term->id, 0);
if (check_ignored_ctl(map))
return;
cval = kzalloc(sizeof(*cval), GFP_KERNEL);
if (!cval)
return;
snd_usb_mixer_elem_init_std(&cval->head, mixer, term->id);
/* set up a specific resume callback */
cval->head.resume = connector_mixer_resume;
/*
* UAC2: The first byte from reading the UAC2_TE_CONNECTOR control returns the
* number of channels connected.
*
* UAC3: The first byte specifies size of bitmap for the inserted controls. The
* following byte(s) specifies which connectors are inserted.
*
* This boolean ctl will simply report if any channels are connected
* or not.
*/
if (mixer->protocol == UAC_VERSION_2)
cval->control = UAC2_TE_CONNECTOR;
else /* UAC_VERSION_3 */
cval->control = UAC3_TE_INSERTION;
cval->val_type = USB_MIXER_BOOLEAN;
cval->channels = 1; /* report true if any channel is connected */
cval->min = 0;
cval->max = 1;
kctl = snd_ctl_new1(&usb_connector_ctl_ro, cval);
if (!kctl) {
usb_audio_err(mixer->chip, "cannot malloc kcontrol\n");
usb_mixer_elem_info_free(cval);
return;
}
if (check_mapped_name(map, kctl->id.name, sizeof(kctl->id.name)))
strlcat(kctl->id.name, " Jack", sizeof(kctl->id.name));
else
get_connector_control_name(mixer, term, is_input, kctl->id.name,
sizeof(kctl->id.name));
kctl->private_free = snd_usb_mixer_elem_free;
snd_usb_mixer_add_control(&cval->head, kctl);
}
static int parse_clock_source_unit(struct mixer_build *state, int unitid,
void *_ftr)
{
struct uac_clock_source_descriptor *hdr = _ftr;
struct usb_mixer_elem_info *cval;
struct snd_kcontrol *kctl;
int ret;
if (state->mixer->protocol != UAC_VERSION_2)
return -EINVAL;
/*
* The only property of this unit we are interested in is the
* clock source validity. If that isn't readable, just bail out.
*/
if (!uac_v2v3_control_is_readable(hdr->bmControls,
UAC2_CS_CONTROL_CLOCK_VALID))
return 0;
cval = kzalloc(sizeof(*cval), GFP_KERNEL);
if (!cval)
return -ENOMEM;
snd_usb_mixer_elem_init_std(&cval->head, state->mixer, hdr->bClockID);
cval->min = 0;
cval->max = 1;
cval->channels = 1;
cval->val_type = USB_MIXER_BOOLEAN;
cval->control = UAC2_CS_CONTROL_CLOCK_VALID;
cval->master_readonly = 1;
/* From UAC2 5.2.5.1.2 "Only the get request is supported." */
kctl = snd_ctl_new1(&usb_bool_master_control_ctl_ro, cval);
if (!kctl) {
usb_mixer_elem_info_free(cval);
return -ENOMEM;
}
kctl->private_free = snd_usb_mixer_elem_free;
ret = snd_usb_copy_string_desc(state->chip, hdr->iClockSource,
kctl->id.name, sizeof(kctl->id.name));
if (ret > 0)
append_ctl_name(kctl, " Validity");
else
snprintf(kctl->id.name, sizeof(kctl->id.name),
"Clock Source %d Validity", hdr->bClockID);
return snd_usb_mixer_add_control(&cval->head, kctl);
}
/*
* parse a feature unit
*
* most of controls are defined here.
*/
static int parse_audio_feature_unit(struct mixer_build *state, int unitid,
void *_ftr)
{
int channels, i, j;
struct usb_audio_term iterm;
unsigned int master_bits;
int err, csize;
struct uac_feature_unit_descriptor *hdr = _ftr;
__u8 *bmaControls;
if (state->mixer->protocol == UAC_VERSION_1) {
csize = hdr->bControlSize;
channels = (hdr->bLength - 7) / csize - 1;
bmaControls = hdr->bmaControls;
} else if (state->mixer->protocol == UAC_VERSION_2) {
struct uac2_feature_unit_descriptor *ftr = _ftr;
csize = 4;
channels = (hdr->bLength - 6) / 4 - 1;
bmaControls = ftr->bmaControls;
} else { /* UAC_VERSION_3 */
struct uac3_feature_unit_descriptor *ftr = _ftr;
csize = 4;
channels = (ftr->bLength - 7) / 4 - 1;
bmaControls = ftr->bmaControls;
}
if (channels > 32) {
usb_audio_info(state->chip,
"usbmixer: too many channels (%d) in unit %d\n",
channels, unitid);
return -EINVAL;
}
/* parse the source unit */
err = parse_audio_unit(state, hdr->bSourceID);
if (err < 0)
return err;
/* determine the input source type and name */
err = check_input_term(state, hdr->bSourceID, &iterm);
if (err < 0)
return err;
master_bits = snd_usb_combine_bytes(bmaControls, csize);
/* master configuration quirks */
switch (state->chip->usb_id) {
case USB_ID(0x08bb, 0x2702):
usb_audio_info(state->chip,
"usbmixer: master volume quirk for PCM2702 chip\n");
/* disable non-functional volume control */
master_bits &= ~UAC_CONTROL_BIT(UAC_FU_VOLUME);
break;
case USB_ID(0x1130, 0xf211):
usb_audio_info(state->chip,
"usbmixer: volume control quirk for Tenx TP6911 Audio Headset\n");
/* disable non-functional volume control */
channels = 0;
break;
}
if (state->mixer->protocol == UAC_VERSION_1) {
/* check all control types */
for (i = 0; i < 10; i++) {
unsigned int ch_bits = 0;
int control = audio_feature_info[i].control;
for (j = 0; j < channels; j++) {
unsigned int mask;
mask = snd_usb_combine_bytes(bmaControls +
csize * (j+1), csize);
if (mask & BIT(i))
ch_bits |= BIT(j);
}
/* audio class v1 controls are never read-only */
/*
* The first channel must be set
* (for ease of programming).
*/
if (ch_bits & 1)
build_feature_ctl(state, _ftr, ch_bits, control,
&iterm, unitid, 0);
if (master_bits & BIT(i))
build_feature_ctl(state, _ftr, 0, control,
&iterm, unitid, 0);
}
} else { /* UAC_VERSION_2/3 */
for (i = 0; i < ARRAY_SIZE(audio_feature_info); i++) {
unsigned int ch_bits = 0;
unsigned int ch_read_only = 0;
int control = audio_feature_info[i].control;
for (j = 0; j < channels; j++) {
unsigned int mask;
mask = snd_usb_combine_bytes(bmaControls +
csize * (j+1), csize);
if (uac_v2v3_control_is_readable(mask, control)) {
ch_bits |= BIT(j);
if (!uac_v2v3_control_is_writeable(mask, control))
ch_read_only |= BIT(j);
}
}
/*
* NOTE: build_feature_ctl() will mark the control
* read-only if all channels are marked read-only in
* the descriptors. Otherwise, the control will be
* reported as writeable, but the driver will not
* actually issue a write command for read-only
* channels.
*/
/*
* The first channel must be set
* (for ease of programming).
*/
if (ch_bits & 1)
build_feature_ctl(state, _ftr, ch_bits, control,
&iterm, unitid, ch_read_only);
if (uac_v2v3_control_is_readable(master_bits, control))
build_feature_ctl(state, _ftr, 0, control,
&iterm, unitid,
!uac_v2v3_control_is_writeable(master_bits,
control));
}
}
return 0;
}
/*
* Mixer Unit
*/
/* check whether the given in/out overflows bmMixerControls matrix */
static bool mixer_bitmap_overflow(struct uac_mixer_unit_descriptor *desc,
int protocol, int num_ins, int num_outs)
{
u8 *hdr = (u8 *)desc;
u8 *c = uac_mixer_unit_bmControls(desc, protocol);
size_t rest; /* remaining bytes after bmMixerControls */
switch (protocol) {
case UAC_VERSION_1:
default:
rest = 1; /* iMixer */
break;
case UAC_VERSION_2:
rest = 2; /* bmControls + iMixer */
break;
case UAC_VERSION_3:
rest = 6; /* bmControls + wMixerDescrStr */
break;
}
/* overflow? */
return c + (num_ins * num_outs + 7) / 8 + rest > hdr + hdr[0];
}
/*
* build a mixer unit control
*
* the callbacks are identical with feature unit.
* input channel number (zero based) is given in control field instead.
*/
static void build_mixer_unit_ctl(struct mixer_build *state,
struct uac_mixer_unit_descriptor *desc,
int in_pin, int in_ch, int num_outs,
int unitid, struct usb_audio_term *iterm)
{
struct usb_mixer_elem_info *cval;
unsigned int i, len;
struct snd_kcontrol *kctl;
const struct usbmix_name_map *map;
map = find_map(state->map, unitid, 0);
if (check_ignored_ctl(map))
return;
cval = kzalloc(sizeof(*cval), GFP_KERNEL);
if (!cval)
return;
snd_usb_mixer_elem_init_std(&cval->head, state->mixer, unitid);
cval->control = in_ch + 1; /* based on 1 */
cval->val_type = USB_MIXER_S16;
for (i = 0; i < num_outs; i++) {
__u8 *c = uac_mixer_unit_bmControls(desc, state->mixer->protocol);
if (check_matrix_bitmap(c, in_ch, i, num_outs)) {
cval->cmask |= BIT(i);
cval->channels++;
}
}
/* get min/max values */
get_min_max(cval, 0);
kctl = snd_ctl_new1(&usb_feature_unit_ctl, cval);
if (!kctl) {
usb_audio_err(state->chip, "cannot malloc kcontrol\n");
usb_mixer_elem_info_free(cval);
return;
}
kctl->private_free = snd_usb_mixer_elem_free;
len = check_mapped_name(map, kctl->id.name, sizeof(kctl->id.name));
if (!len)
len = get_term_name(state->chip, iterm, kctl->id.name,
sizeof(kctl->id.name), 0);
if (!len)
len = sprintf(kctl->id.name, "Mixer Source %d", in_ch + 1);
append_ctl_name(kctl, " Volume");
usb_audio_dbg(state->chip, "[%d] MU [%s] ch = %d, val = %d/%d\n",
cval->head.id, kctl->id.name, cval->channels, cval->min, cval->max);
snd_usb_mixer_add_control(&cval->head, kctl);
}
static int parse_audio_input_terminal(struct mixer_build *state, int unitid,
void *raw_desc)
{
struct usb_audio_term iterm;
unsigned int control, bmctls, term_id;
if (state->mixer->protocol == UAC_VERSION_2) {
struct uac2_input_terminal_descriptor *d_v2 = raw_desc;
control = UAC2_TE_CONNECTOR;
term_id = d_v2->bTerminalID;
bmctls = le16_to_cpu(d_v2->bmControls);
} else if (state->mixer->protocol == UAC_VERSION_3) {
struct uac3_input_terminal_descriptor *d_v3 = raw_desc;
control = UAC3_TE_INSERTION;
term_id = d_v3->bTerminalID;
bmctls = le32_to_cpu(d_v3->bmControls);
} else {
return 0; /* UAC1. No Insertion control */
}
check_input_term(state, term_id, &iterm);
/* Check for jack detection. */
if ((iterm.type & 0xff00) != 0x0100 &&
uac_v2v3_control_is_readable(bmctls, control))
build_connector_control(state->mixer, state->map, &iterm, true);
return 0;
}
/*
* parse a mixer unit
*/
static int parse_audio_mixer_unit(struct mixer_build *state, int unitid,
void *raw_desc)
{
struct uac_mixer_unit_descriptor *desc = raw_desc;
struct usb_audio_term iterm;
int input_pins, num_ins, num_outs;
int pin, ich, err;
err = uac_mixer_unit_get_channels(state, desc);
if (err < 0) {
usb_audio_err(state->chip,
"invalid MIXER UNIT descriptor %d\n",
unitid);
return err;
}
num_outs = err;
input_pins = desc->bNrInPins;
num_ins = 0;
ich = 0;
for (pin = 0; pin < input_pins; pin++) {
err = parse_audio_unit(state, desc->baSourceID[pin]);
if (err < 0)
continue;
/* no bmControls field (e.g. Maya44) -> ignore */
if (!num_outs)
continue;
err = check_input_term(state, desc->baSourceID[pin], &iterm);
if (err < 0)
return err;
num_ins += iterm.channels;
if (mixer_bitmap_overflow(desc, state->mixer->protocol,
num_ins, num_outs))
break;
for (; ich < num_ins; ich++) {
int och, ich_has_controls = 0;
for (och = 0; och < num_outs; och++) {
__u8 *c = uac_mixer_unit_bmControls(desc,
state->mixer->protocol);
if (check_matrix_bitmap(c, ich, och, num_outs)) {
ich_has_controls = 1;
break;
}
}
if (ich_has_controls)
build_mixer_unit_ctl(state, desc, pin, ich, num_outs,
unitid, &iterm);
}
}
return 0;
}
/*
* Processing Unit / Extension Unit
*/
/* get callback for processing/extension unit */
static int mixer_ctl_procunit_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
int err, val;
err = get_cur_ctl_value(cval, cval->control << 8, &val);
if (err < 0) {
ucontrol->value.integer.value[0] = cval->min;
return filter_error(cval, err);
}
val = get_relative_value(cval, val);
ucontrol->value.integer.value[0] = val;
return 0;
}
/* put callback for processing/extension unit */
static int mixer_ctl_procunit_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
int val, oval, err;
err = get_cur_ctl_value(cval, cval->control << 8, &oval);
if (err < 0)
return filter_error(cval, err);
val = ucontrol->value.integer.value[0];
val = get_abs_value(cval, val);
if (val != oval) {
set_cur_ctl_value(cval, cval->control << 8, val);
return 1;
}
return 0;
}
/* alsa control interface for processing/extension unit */
static const struct snd_kcontrol_new mixer_procunit_ctl = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "", /* will be filled later */
.info = mixer_ctl_feature_info,
.get = mixer_ctl_procunit_get,
.put = mixer_ctl_procunit_put,
};
/*
* predefined data for processing units
*/
struct procunit_value_info {
int control;
const char *suffix;
int val_type;
int min_value;
};
struct procunit_info {
int type;
char *name;
const struct procunit_value_info *values;
};
static const struct procunit_value_info undefined_proc_info[] = {
{ 0x00, "Control Undefined", 0 },
{ 0 }
};
static const struct procunit_value_info updown_proc_info[] = {
{ UAC_UD_ENABLE, "Switch", USB_MIXER_BOOLEAN },
{ UAC_UD_MODE_SELECT, "Mode Select", USB_MIXER_U8, 1 },
{ 0 }
};
static const struct procunit_value_info prologic_proc_info[] = {
{ UAC_DP_ENABLE, "Switch", USB_MIXER_BOOLEAN },
{ UAC_DP_MODE_SELECT, "Mode Select", USB_MIXER_U8, 1 },
{ 0 }
};
static const struct procunit_value_info threed_enh_proc_info[] = {
{ UAC_3D_ENABLE, "Switch", USB_MIXER_BOOLEAN },
{ UAC_3D_SPACE, "Spaciousness", USB_MIXER_U8 },
{ 0 }
};
static const struct procunit_value_info reverb_proc_info[] = {
{ UAC_REVERB_ENABLE, "Switch", USB_MIXER_BOOLEAN },
{ UAC_REVERB_LEVEL, "Level", USB_MIXER_U8 },
{ UAC_REVERB_TIME, "Time", USB_MIXER_U16 },
{ UAC_REVERB_FEEDBACK, "Feedback", USB_MIXER_U8 },
{ 0 }
};
static const struct procunit_value_info chorus_proc_info[] = {
{ UAC_CHORUS_ENABLE, "Switch", USB_MIXER_BOOLEAN },
{ UAC_CHORUS_LEVEL, "Level", USB_MIXER_U8 },
{ UAC_CHORUS_RATE, "Rate", USB_MIXER_U16 },
{ UAC_CHORUS_DEPTH, "Depth", USB_MIXER_U16 },
{ 0 }
};
static const struct procunit_value_info dcr_proc_info[] = {
{ UAC_DCR_ENABLE, "Switch", USB_MIXER_BOOLEAN },
{ UAC_DCR_RATE, "Ratio", USB_MIXER_U16 },
{ UAC_DCR_MAXAMPL, "Max Amp", USB_MIXER_S16 },
{ UAC_DCR_THRESHOLD, "Threshold", USB_MIXER_S16 },
{ UAC_DCR_ATTACK_TIME, "Attack Time", USB_MIXER_U16 },
{ UAC_DCR_RELEASE_TIME, "Release Time", USB_MIXER_U16 },
{ 0 }
};
static const struct procunit_info procunits[] = {
{ UAC_PROCESS_UP_DOWNMIX, "Up Down", updown_proc_info },
{ UAC_PROCESS_DOLBY_PROLOGIC, "Dolby Prologic", prologic_proc_info },
{ UAC_PROCESS_STEREO_EXTENDER, "3D Stereo Extender", threed_enh_proc_info },
{ UAC_PROCESS_REVERB, "Reverb", reverb_proc_info },
{ UAC_PROCESS_CHORUS, "Chorus", chorus_proc_info },
{ UAC_PROCESS_DYN_RANGE_COMP, "DCR", dcr_proc_info },
{ 0 },
};
static const struct procunit_value_info uac3_updown_proc_info[] = {
{ UAC3_UD_MODE_SELECT, "Mode Select", USB_MIXER_U8, 1 },
{ 0 }
};
static const struct procunit_value_info uac3_stereo_ext_proc_info[] = {
{ UAC3_EXT_WIDTH_CONTROL, "Width Control", USB_MIXER_U8 },
{ 0 }
};
static const struct procunit_info uac3_procunits[] = {
{ UAC3_PROCESS_UP_DOWNMIX, "Up Down", uac3_updown_proc_info },
{ UAC3_PROCESS_STEREO_EXTENDER, "3D Stereo Extender", uac3_stereo_ext_proc_info },
{ UAC3_PROCESS_MULTI_FUNCTION, "Multi-Function", undefined_proc_info },
{ 0 },
};
/*
* predefined data for extension units
*/
static const struct procunit_value_info clock_rate_xu_info[] = {
{ USB_XU_CLOCK_RATE_SELECTOR, "Selector", USB_MIXER_U8, 0 },
{ 0 }
};
static const struct procunit_value_info clock_source_xu_info[] = {
{ USB_XU_CLOCK_SOURCE_SELECTOR, "External", USB_MIXER_BOOLEAN },
{ 0 }
};
static const struct procunit_value_info spdif_format_xu_info[] = {
{ USB_XU_DIGITAL_FORMAT_SELECTOR, "SPDIF/AC3", USB_MIXER_BOOLEAN },
{ 0 }
};
static const struct procunit_value_info soft_limit_xu_info[] = {
{ USB_XU_SOFT_LIMIT_SELECTOR, " ", USB_MIXER_BOOLEAN },
{ 0 }
};
static const struct procunit_info extunits[] = {
{ USB_XU_CLOCK_RATE, "Clock rate", clock_rate_xu_info },
{ USB_XU_CLOCK_SOURCE, "DigitalIn CLK source", clock_source_xu_info },
{ USB_XU_DIGITAL_IO_STATUS, "DigitalOut format:", spdif_format_xu_info },
{ USB_XU_DEVICE_OPTIONS, "AnalogueIn Soft Limit", soft_limit_xu_info },
{ 0 }
};
/*
* build a processing/extension unit
*/
static int build_audio_procunit(struct mixer_build *state, int unitid,
void *raw_desc, const struct procunit_info *list,
bool extension_unit)
{
struct uac_processing_unit_descriptor *desc = raw_desc;
int num_ins;
struct usb_mixer_elem_info *cval;
struct snd_kcontrol *kctl;
int i, err, nameid, type, len, val;
const struct procunit_info *info;
const struct procunit_value_info *valinfo;
const struct usbmix_name_map *map;
static const struct procunit_value_info default_value_info[] = {
{ 0x01, "Switch", USB_MIXER_BOOLEAN },
{ 0 }
};
static const struct procunit_info default_info = {
0, NULL, default_value_info
};
const char *name = extension_unit ?
"Extension Unit" : "Processing Unit";
num_ins = desc->bNrInPins;
for (i = 0; i < num_ins; i++) {
err = parse_audio_unit(state, desc->baSourceID[i]);
if (err < 0)
return err;
}
type = le16_to_cpu(desc->wProcessType);
for (info = list; info && info->type; info++)
if (info->type == type)
break;
if (!info || !info->type)
info = &default_info;
for (valinfo = info->values; valinfo->control; valinfo++) {
__u8 *controls = uac_processing_unit_bmControls(desc, state->mixer->protocol);
if (state->mixer->protocol == UAC_VERSION_1) {
if (!(controls[valinfo->control / 8] &
BIT((valinfo->control % 8) - 1)))
continue;
} else { /* UAC_VERSION_2/3 */
if (!uac_v2v3_control_is_readable(controls[valinfo->control / 8],
valinfo->control))
continue;
}
map = find_map(state->map, unitid, valinfo->control);
if (check_ignored_ctl(map))
continue;
cval = kzalloc(sizeof(*cval), GFP_KERNEL);
if (!cval)
return -ENOMEM;
snd_usb_mixer_elem_init_std(&cval->head, state->mixer, unitid);
cval->control = valinfo->control;
cval->val_type = valinfo->val_type;
cval->channels = 1;
if (state->mixer->protocol > UAC_VERSION_1 &&
!uac_v2v3_control_is_writeable(controls[valinfo->control / 8],
valinfo->control))
cval->master_readonly = 1;
/* get min/max values */
switch (type) {
case UAC_PROCESS_UP_DOWNMIX: {
bool mode_sel = false;
switch (state->mixer->protocol) {
case UAC_VERSION_1:
case UAC_VERSION_2:
default:
if (cval->control == UAC_UD_MODE_SELECT)
mode_sel = true;
break;
case UAC_VERSION_3:
if (cval->control == UAC3_UD_MODE_SELECT)
mode_sel = true;
break;
}
if (mode_sel) {
__u8 *control_spec = uac_processing_unit_specific(desc,
state->mixer->protocol);
cval->min = 1;
cval->max = control_spec[0];
cval->res = 1;
cval->initialized = 1;
break;
}
get_min_max(cval, valinfo->min_value);
break;
}
case USB_XU_CLOCK_RATE:
/*
* E-Mu USB 0404/0202/TrackerPre/0204
* samplerate control quirk
*/
cval->min = 0;
cval->max = 5;
cval->res = 1;
cval->initialized = 1;
break;
default:
get_min_max(cval, valinfo->min_value);
break;
}
err = get_cur_ctl_value(cval, cval->control << 8, &val);
if (err < 0) {
usb_mixer_elem_info_free(cval);
return -EINVAL;
}
kctl = snd_ctl_new1(&mixer_procunit_ctl, cval);
if (!kctl) {
usb_mixer_elem_info_free(cval);
return -ENOMEM;
}
kctl->private_free = snd_usb_mixer_elem_free;
if (check_mapped_name(map, kctl->id.name, sizeof(kctl->id.name))) {
/* nothing */ ;
} else if (info->name) {
strscpy(kctl->id.name, info->name, sizeof(kctl->id.name));
} else {
if (extension_unit)
nameid = uac_extension_unit_iExtension(desc, state->mixer->protocol);
else
nameid = uac_processing_unit_iProcessing(desc, state->mixer->protocol);
len = 0;
if (nameid)
len = snd_usb_copy_string_desc(state->chip,
nameid,
kctl->id.name,
sizeof(kctl->id.name));
if (!len)
strscpy(kctl->id.name, name, sizeof(kctl->id.name));
}
append_ctl_name(kctl, " ");
append_ctl_name(kctl, valinfo->suffix);
usb_audio_dbg(state->chip,
"[%d] PU [%s] ch = %d, val = %d/%d\n",
cval->head.id, kctl->id.name, cval->channels,
cval->min, cval->max);
err = snd_usb_mixer_add_control(&cval->head, kctl);
if (err < 0)
return err;
}
return 0;
}
static int parse_audio_processing_unit(struct mixer_build *state, int unitid,
void *raw_desc)
{
switch (state->mixer->protocol) {
case UAC_VERSION_1:
case UAC_VERSION_2:
default:
return build_audio_procunit(state, unitid, raw_desc,
procunits, false);
case UAC_VERSION_3:
return build_audio_procunit(state, unitid, raw_desc,
uac3_procunits, false);
}
}
static int parse_audio_extension_unit(struct mixer_build *state, int unitid,
void *raw_desc)
{
/*
* Note that we parse extension units with processing unit descriptors.
* That's ok as the layout is the same.
*/
return build_audio_procunit(state, unitid, raw_desc, extunits, true);
}
/*
* Selector Unit
*/
/*
* info callback for selector unit
* use an enumerator type for routing
*/
static int mixer_ctl_selector_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
const char **itemlist = (const char **)kcontrol->private_value;
if (snd_BUG_ON(!itemlist))
return -EINVAL;
return snd_ctl_enum_info(uinfo, 1, cval->max, itemlist);
}
/* get callback for selector unit */
static int mixer_ctl_selector_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
int val, err;
err = get_cur_ctl_value(cval, cval->control << 8, &val);
if (err < 0) {
ucontrol->value.enumerated.item[0] = 0;
return filter_error(cval, err);
}
val = get_relative_value(cval, val);
ucontrol->value.enumerated.item[0] = val;
return 0;
}
/* put callback for selector unit */
static int mixer_ctl_selector_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
int val, oval, err;
err = get_cur_ctl_value(cval, cval->control << 8, &oval);
if (err < 0)
return filter_error(cval, err);
val = ucontrol->value.enumerated.item[0];
val = get_abs_value(cval, val);
if (val != oval) {
set_cur_ctl_value(cval, cval->control << 8, val);
return 1;
}
return 0;
}
/* alsa control interface for selector unit */
static const struct snd_kcontrol_new mixer_selectunit_ctl = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "", /* will be filled later */
.info = mixer_ctl_selector_info,
.get = mixer_ctl_selector_get,
.put = mixer_ctl_selector_put,
};
/*
* private free callback.
* free both private_data and private_value
*/
static void usb_mixer_selector_elem_free(struct snd_kcontrol *kctl)
{
int i, num_ins = 0;
if (kctl->private_data) {
struct usb_mixer_elem_info *cval = kctl->private_data;
num_ins = cval->max;
usb_mixer_elem_info_free(cval);
kctl->private_data = NULL;
}
if (kctl->private_value) {
char **itemlist = (char **)kctl->private_value;
for (i = 0; i < num_ins; i++)
kfree(itemlist[i]);
kfree(itemlist);
kctl->private_value = 0;
}
}
/*
* parse a selector unit
*/
static int parse_audio_selector_unit(struct mixer_build *state, int unitid,
void *raw_desc)
{
struct uac_selector_unit_descriptor *desc = raw_desc;
unsigned int i, nameid, len;
int err;
struct usb_mixer_elem_info *cval;
struct snd_kcontrol *kctl;
const struct usbmix_name_map *map;
char **namelist;
for (i = 0; i < desc->bNrInPins; i++) {
err = parse_audio_unit(state, desc->baSourceID[i]);
if (err < 0)
return err;
}
if (desc->bNrInPins == 1) /* only one ? nonsense! */
return 0;
map = find_map(state->map, unitid, 0);
if (check_ignored_ctl(map))
return 0;
cval = kzalloc(sizeof(*cval), GFP_KERNEL);
if (!cval)
return -ENOMEM;
snd_usb_mixer_elem_init_std(&cval->head, state->mixer, unitid);
cval->val_type = USB_MIXER_U8;
cval->channels = 1;
cval->min = 1;
cval->max = desc->bNrInPins;
cval->res = 1;
cval->initialized = 1;
switch (state->mixer->protocol) {
case UAC_VERSION_1:
default:
cval->control = 0;
break;
case UAC_VERSION_2:
case UAC_VERSION_3:
if (desc->bDescriptorSubtype == UAC2_CLOCK_SELECTOR ||
desc->bDescriptorSubtype == UAC3_CLOCK_SELECTOR)
cval->control = UAC2_CX_CLOCK_SELECTOR;
else /* UAC2/3_SELECTOR_UNIT */
cval->control = UAC2_SU_SELECTOR;
break;
}
namelist = kcalloc(desc->bNrInPins, sizeof(char *), GFP_KERNEL);
if (!namelist) {
err = -ENOMEM;
goto error_cval;
}
#define MAX_ITEM_NAME_LEN 64
for (i = 0; i < desc->bNrInPins; i++) {
struct usb_audio_term iterm;
namelist[i] = kmalloc(MAX_ITEM_NAME_LEN, GFP_KERNEL);
if (!namelist[i]) {
err = -ENOMEM;
goto error_name;
}
len = check_mapped_selector_name(state, unitid, i, namelist[i],
MAX_ITEM_NAME_LEN);
if (! len && check_input_term(state, desc->baSourceID[i], &iterm) >= 0)
len = get_term_name(state->chip, &iterm, namelist[i],
MAX_ITEM_NAME_LEN, 0);
if (! len)
sprintf(namelist[i], "Input %u", i);
}
kctl = snd_ctl_new1(&mixer_selectunit_ctl, cval);
if (! kctl) {
usb_audio_err(state->chip, "cannot malloc kcontrol\n");
err = -ENOMEM;
goto error_name;
}
kctl->private_value = (unsigned long)namelist;
kctl->private_free = usb_mixer_selector_elem_free;
/* check the static mapping table at first */
len = check_mapped_name(map, kctl->id.name, sizeof(kctl->id.name));
if (!len) {
/* no mapping ? */
switch (state->mixer->protocol) {
case UAC_VERSION_1:
case UAC_VERSION_2:
default:
/* if iSelector is given, use it */
nameid = uac_selector_unit_iSelector(desc);
if (nameid)
len = snd_usb_copy_string_desc(state->chip,
nameid, kctl->id.name,
sizeof(kctl->id.name));
break;
case UAC_VERSION_3:
/* TODO: Class-Specific strings not yet supported */
break;
}
/* ... or pick up the terminal name at next */
if (!len)
len = get_term_name(state->chip, &state->oterm,
kctl->id.name, sizeof(kctl->id.name), 0);
/* ... or use the fixed string "USB" as the last resort */
if (!len)
strscpy(kctl->id.name, "USB", sizeof(kctl->id.name));
/* and add the proper suffix */
if (desc->bDescriptorSubtype == UAC2_CLOCK_SELECTOR ||
desc->bDescriptorSubtype == UAC3_CLOCK_SELECTOR)
append_ctl_name(kctl, " Clock Source");
else if ((state->oterm.type & 0xff00) == 0x0100)
append_ctl_name(kctl, " Capture Source");
else
append_ctl_name(kctl, " Playback Source");
}
usb_audio_dbg(state->chip, "[%d] SU [%s] items = %d\n",
cval->head.id, kctl->id.name, desc->bNrInPins);
return snd_usb_mixer_add_control(&cval->head, kctl);
error_name:
for (i = 0; i < desc->bNrInPins; i++)
kfree(namelist[i]);
kfree(namelist);
error_cval:
usb_mixer_elem_info_free(cval);
return err;
}
/*
* parse an audio unit recursively
*/
static int parse_audio_unit(struct mixer_build *state, int unitid)
{
unsigned char *p1;
int protocol = state->mixer->protocol;
if (test_and_set_bit(unitid, state->unitbitmap))
return 0; /* the unit already visited */
p1 = find_audio_control_unit(state, unitid);
if (!p1) {
usb_audio_err(state->chip, "unit %d not found!\n", unitid);
return -EINVAL;
}
if (!snd_usb_validate_audio_desc(p1, protocol)) {
usb_audio_dbg(state->chip, "invalid unit %d\n", unitid);
return 0; /* skip invalid unit */
}
switch (PTYPE(protocol, p1[2])) {
case PTYPE(UAC_VERSION_1, UAC_INPUT_TERMINAL):
case PTYPE(UAC_VERSION_2, UAC_INPUT_TERMINAL):
case PTYPE(UAC_VERSION_3, UAC_INPUT_TERMINAL):
return parse_audio_input_terminal(state, unitid, p1);
case PTYPE(UAC_VERSION_1, UAC_MIXER_UNIT):
case PTYPE(UAC_VERSION_2, UAC_MIXER_UNIT):
case PTYPE(UAC_VERSION_3, UAC3_MIXER_UNIT):
return parse_audio_mixer_unit(state, unitid, p1);
case PTYPE(UAC_VERSION_2, UAC2_CLOCK_SOURCE):
case PTYPE(UAC_VERSION_3, UAC3_CLOCK_SOURCE):
return parse_clock_source_unit(state, unitid, p1);
case PTYPE(UAC_VERSION_1, UAC_SELECTOR_UNIT):
case PTYPE(UAC_VERSION_2, UAC_SELECTOR_UNIT):
case PTYPE(UAC_VERSION_3, UAC3_SELECTOR_UNIT):
case PTYPE(UAC_VERSION_2, UAC2_CLOCK_SELECTOR):
case PTYPE(UAC_VERSION_3, UAC3_CLOCK_SELECTOR):
return parse_audio_selector_unit(state, unitid, p1);
case PTYPE(UAC_VERSION_1, UAC_FEATURE_UNIT):
case PTYPE(UAC_VERSION_2, UAC_FEATURE_UNIT):
case PTYPE(UAC_VERSION_3, UAC3_FEATURE_UNIT):
return parse_audio_feature_unit(state, unitid, p1);
case PTYPE(UAC_VERSION_1, UAC1_PROCESSING_UNIT):
case PTYPE(UAC_VERSION_2, UAC2_PROCESSING_UNIT_V2):
case PTYPE(UAC_VERSION_3, UAC3_PROCESSING_UNIT):
return parse_audio_processing_unit(state, unitid, p1);
case PTYPE(UAC_VERSION_1, UAC1_EXTENSION_UNIT):
case PTYPE(UAC_VERSION_2, UAC2_EXTENSION_UNIT_V2):
case PTYPE(UAC_VERSION_3, UAC3_EXTENSION_UNIT):
return parse_audio_extension_unit(state, unitid, p1);
case PTYPE(UAC_VERSION_2, UAC2_EFFECT_UNIT):
case PTYPE(UAC_VERSION_3, UAC3_EFFECT_UNIT):
return 0; /* FIXME - effect units not implemented yet */
default:
usb_audio_err(state->chip,
"unit %u: unexpected type 0x%02x\n",
unitid, p1[2]);
return -EINVAL;
}
}
static void snd_usb_mixer_free(struct usb_mixer_interface *mixer)
{
/* kill pending URBs */
snd_usb_mixer_disconnect(mixer);
kfree(mixer->id_elems);
if (mixer->urb) {
kfree(mixer->urb->transfer_buffer);
usb_free_urb(mixer->urb);
}
usb_free_urb(mixer->rc_urb);
kfree(mixer->rc_setup_packet);
kfree(mixer);
}
static int snd_usb_mixer_dev_free(struct snd_device *device)
{
struct usb_mixer_interface *mixer = device->device_data;
snd_usb_mixer_free(mixer);
return 0;
}
/* UAC3 predefined channels configuration */
struct uac3_badd_profile {
int subclass;
const char *name;
int c_chmask; /* capture channels mask */
int p_chmask; /* playback channels mask */
int st_chmask; /* side tone mixing channel mask */
};
static const struct uac3_badd_profile uac3_badd_profiles[] = {
{
/*
* BAIF, BAOF or combination of both
* IN: Mono or Stereo cfg, Mono alt possible
* OUT: Mono or Stereo cfg, Mono alt possible
*/
.subclass = UAC3_FUNCTION_SUBCLASS_GENERIC_IO,
.name = "GENERIC IO",
.c_chmask = -1, /* dynamic channels */
.p_chmask = -1, /* dynamic channels */
},
{
/* BAOF; Stereo only cfg, Mono alt possible */
.subclass = UAC3_FUNCTION_SUBCLASS_HEADPHONE,
.name = "HEADPHONE",
.p_chmask = 3,
},
{
/* BAOF; Mono or Stereo cfg, Mono alt possible */
.subclass = UAC3_FUNCTION_SUBCLASS_SPEAKER,
.name = "SPEAKER",
.p_chmask = -1, /* dynamic channels */
},
{
/* BAIF; Mono or Stereo cfg, Mono alt possible */
.subclass = UAC3_FUNCTION_SUBCLASS_MICROPHONE,
.name = "MICROPHONE",
.c_chmask = -1, /* dynamic channels */
},
{
/*
* BAIOF topology
* IN: Mono only
* OUT: Mono or Stereo cfg, Mono alt possible
*/
.subclass = UAC3_FUNCTION_SUBCLASS_HEADSET,
.name = "HEADSET",
.c_chmask = 1,
.p_chmask = -1, /* dynamic channels */
.st_chmask = 1,
},
{
/* BAIOF; IN: Mono only; OUT: Stereo only, Mono alt possible */
.subclass = UAC3_FUNCTION_SUBCLASS_HEADSET_ADAPTER,
.name = "HEADSET ADAPTER",
.c_chmask = 1,
.p_chmask = 3,
.st_chmask = 1,
},
{
/* BAIF + BAOF; IN: Mono only; OUT: Mono only */
.subclass = UAC3_FUNCTION_SUBCLASS_SPEAKERPHONE,
.name = "SPEAKERPHONE",
.c_chmask = 1,
.p_chmask = 1,
},
{ 0 } /* terminator */
};
static bool uac3_badd_func_has_valid_channels(struct usb_mixer_interface *mixer,
const struct uac3_badd_profile *f,
int c_chmask, int p_chmask)
{
/*
* If both playback/capture channels are dynamic, make sure
* at least one channel is present
*/
if (f->c_chmask < 0 && f->p_chmask < 0) {
if (!c_chmask && !p_chmask) {
usb_audio_warn(mixer->chip, "BAAD %s: no channels?",
f->name);
return false;
}
return true;
}
if ((f->c_chmask < 0 && !c_chmask) ||
(f->c_chmask >= 0 && f->c_chmask != c_chmask)) {
usb_audio_warn(mixer->chip, "BAAD %s c_chmask mismatch",
f->name);
return false;
}
if ((f->p_chmask < 0 && !p_chmask) ||
(f->p_chmask >= 0 && f->p_chmask != p_chmask)) {
usb_audio_warn(mixer->chip, "BAAD %s p_chmask mismatch",
f->name);
return false;
}
return true;
}
/*
* create mixer controls for UAC3 BADD profiles
*
* UAC3 BADD device doesn't contain CS descriptors thus we will guess everything
*
* BADD device may contain Mixer Unit, which doesn't have any controls, skip it
*/
static int snd_usb_mixer_controls_badd(struct usb_mixer_interface *mixer,
int ctrlif)
{
struct usb_device *dev = mixer->chip->dev;
struct usb_interface_assoc_descriptor *assoc;
int badd_profile = mixer->chip->badd_profile;
const struct uac3_badd_profile *f;
const struct usbmix_ctl_map *map;
int p_chmask = 0, c_chmask = 0, st_chmask = 0;
int i;
assoc = usb_ifnum_to_if(dev, ctrlif)->intf_assoc;
/* Detect BADD capture/playback channels from AS EP descriptors */
for (i = 0; i < assoc->bInterfaceCount; i++) {
int intf = assoc->bFirstInterface + i;
struct usb_interface *iface;
struct usb_host_interface *alts;
struct usb_interface_descriptor *altsd;
unsigned int maxpacksize;
char dir_in;
int chmask, num;
if (intf == ctrlif)
continue;
iface = usb_ifnum_to_if(dev, intf);
if (!iface)
continue;
num = iface->num_altsetting;
if (num < 2)
return -EINVAL;
/*
* The number of Channels in an AudioStreaming interface
* and the audio sample bit resolution (16 bits or 24
* bits) can be derived from the wMaxPacketSize field in
* the Standard AS Audio Data Endpoint descriptor in
* Alternate Setting 1
*/
alts = &iface->altsetting[1];
altsd = get_iface_desc(alts);
if (altsd->bNumEndpoints < 1)
return -EINVAL;
/* check direction */
dir_in = (get_endpoint(alts, 0)->bEndpointAddress & USB_DIR_IN);
maxpacksize = le16_to_cpu(get_endpoint(alts, 0)->wMaxPacketSize);
switch (maxpacksize) {
default:
usb_audio_err(mixer->chip,
"incorrect wMaxPacketSize 0x%x for BADD profile\n",
maxpacksize);
return -EINVAL;
case UAC3_BADD_EP_MAXPSIZE_SYNC_MONO_16:
case UAC3_BADD_EP_MAXPSIZE_ASYNC_MONO_16:
case UAC3_BADD_EP_MAXPSIZE_SYNC_MONO_24:
case UAC3_BADD_EP_MAXPSIZE_ASYNC_MONO_24:
chmask = 1;
break;
case UAC3_BADD_EP_MAXPSIZE_SYNC_STEREO_16:
case UAC3_BADD_EP_MAXPSIZE_ASYNC_STEREO_16:
case UAC3_BADD_EP_MAXPSIZE_SYNC_STEREO_24:
case UAC3_BADD_EP_MAXPSIZE_ASYNC_STEREO_24:
chmask = 3;
break;
}
if (dir_in)
c_chmask = chmask;
else
p_chmask = chmask;
}
usb_audio_dbg(mixer->chip,
"UAC3 BADD profile 0x%x: detected c_chmask=%d p_chmask=%d\n",
badd_profile, c_chmask, p_chmask);
/* check the mapping table */
for (map = uac3_badd_usbmix_ctl_maps; map->id; map++) {
if (map->id == badd_profile)
break;
}
if (!map->id)
return -EINVAL;
for (f = uac3_badd_profiles; f->name; f++) {
if (badd_profile == f->subclass)
break;
}
if (!f->name)
return -EINVAL;
if (!uac3_badd_func_has_valid_channels(mixer, f, c_chmask, p_chmask))
return -EINVAL;
st_chmask = f->st_chmask;
/* Playback */
if (p_chmask) {
/* Master channel, always writable */
build_feature_ctl_badd(mixer, 0, UAC_FU_MUTE,
UAC3_BADD_FU_ID2, map->map);
/* Mono/Stereo volume channels, always writable */
build_feature_ctl_badd(mixer, p_chmask, UAC_FU_VOLUME,
UAC3_BADD_FU_ID2, map->map);
}
/* Capture */
if (c_chmask) {
/* Master channel, always writable */
build_feature_ctl_badd(mixer, 0, UAC_FU_MUTE,
UAC3_BADD_FU_ID5, map->map);
/* Mono/Stereo volume channels, always writable */
build_feature_ctl_badd(mixer, c_chmask, UAC_FU_VOLUME,
UAC3_BADD_FU_ID5, map->map);
}
/* Side tone-mixing */
if (st_chmask) {
/* Master channel, always writable */
build_feature_ctl_badd(mixer, 0, UAC_FU_MUTE,
UAC3_BADD_FU_ID7, map->map);
/* Mono volume channel, always writable */
build_feature_ctl_badd(mixer, 1, UAC_FU_VOLUME,
UAC3_BADD_FU_ID7, map->map);
}
/* Insertion Control */
if (f->subclass == UAC3_FUNCTION_SUBCLASS_HEADSET_ADAPTER) {
struct usb_audio_term iterm, oterm;
/* Input Term - Insertion control */
memset(&iterm, 0, sizeof(iterm));
iterm.id = UAC3_BADD_IT_ID4;
iterm.type = UAC_BIDIR_TERMINAL_HEADSET;
build_connector_control(mixer, map->map, &iterm, true);
/* Output Term - Insertion control */
memset(&oterm, 0, sizeof(oterm));
oterm.id = UAC3_BADD_OT_ID3;
oterm.type = UAC_BIDIR_TERMINAL_HEADSET;
build_connector_control(mixer, map->map, &oterm, false);
}
return 0;
}
/*
* create mixer controls
*
* walk through all UAC_OUTPUT_TERMINAL descriptors to search for mixers
*/
static int snd_usb_mixer_controls(struct usb_mixer_interface *mixer)
{
struct mixer_build state;
int err;
const struct usbmix_ctl_map *map;
void *p;
memset(&state, 0, sizeof(state));
state.chip = mixer->chip;
state.mixer = mixer;
state.buffer = mixer->hostif->extra;
state.buflen = mixer->hostif->extralen;
/* check the mapping table */
for (map = usbmix_ctl_maps; map->id; map++) {
if (map->id == state.chip->usb_id) {
state.map = map->map;
state.selector_map = map->selector_map;
mixer->connector_map = map->connector_map;
break;
}
}
p = NULL;
while ((p = snd_usb_find_csint_desc(mixer->hostif->extra,
mixer->hostif->extralen,
p, UAC_OUTPUT_TERMINAL)) != NULL) {
if (!snd_usb_validate_audio_desc(p, mixer->protocol))
continue; /* skip invalid descriptor */
if (mixer->protocol == UAC_VERSION_1) {
struct uac1_output_terminal_descriptor *desc = p;
/* mark terminal ID as visited */
set_bit(desc->bTerminalID, state.unitbitmap);
state.oterm.id = desc->bTerminalID;
state.oterm.type = le16_to_cpu(desc->wTerminalType);
state.oterm.name = desc->iTerminal;
err = parse_audio_unit(&state, desc->bSourceID);
if (err < 0 && err != -EINVAL)
return err;
} else if (mixer->protocol == UAC_VERSION_2) {
struct uac2_output_terminal_descriptor *desc = p;
/* mark terminal ID as visited */
set_bit(desc->bTerminalID, state.unitbitmap);
state.oterm.id = desc->bTerminalID;
state.oterm.type = le16_to_cpu(desc->wTerminalType);
state.oterm.name = desc->iTerminal;
err = parse_audio_unit(&state, desc->bSourceID);
if (err < 0 && err != -EINVAL)
return err;
/*
* For UAC2, use the same approach to also add the
* clock selectors
*/
err = parse_audio_unit(&state, desc->bCSourceID);
if (err < 0 && err != -EINVAL)
return err;
if ((state.oterm.type & 0xff00) != 0x0100 &&
uac_v2v3_control_is_readable(le16_to_cpu(desc->bmControls),
UAC2_TE_CONNECTOR)) {
build_connector_control(state.mixer, state.map,
&state.oterm, false);
}
} else { /* UAC_VERSION_3 */
struct uac3_output_terminal_descriptor *desc = p;
/* mark terminal ID as visited */
set_bit(desc->bTerminalID, state.unitbitmap);
state.oterm.id = desc->bTerminalID;
state.oterm.type = le16_to_cpu(desc->wTerminalType);
state.oterm.name = le16_to_cpu(desc->wTerminalDescrStr);
err = parse_audio_unit(&state, desc->bSourceID);
if (err < 0 && err != -EINVAL)
return err;
/*
* For UAC3, use the same approach to also add the
* clock selectors
*/
err = parse_audio_unit(&state, desc->bCSourceID);
if (err < 0 && err != -EINVAL)
return err;
if ((state.oterm.type & 0xff00) != 0x0100 &&
uac_v2v3_control_is_readable(le32_to_cpu(desc->bmControls),
UAC3_TE_INSERTION)) {
build_connector_control(state.mixer, state.map,
&state.oterm, false);
}
}
}
return 0;
}
static int delegate_notify(struct usb_mixer_interface *mixer, int unitid,
u8 *control, u8 *channel)
{
const struct usbmix_connector_map *map = mixer->connector_map;
if (!map)
return unitid;
for (; map->id; map++) {
if (map->id == unitid) {
if (control && map->control)
*control = map->control;
if (channel && map->channel)
*channel = map->channel;
return map->delegated_id;
}
}
return unitid;
}
void snd_usb_mixer_notify_id(struct usb_mixer_interface *mixer, int unitid)
{
struct usb_mixer_elem_list *list;
unitid = delegate_notify(mixer, unitid, NULL, NULL);
for_each_mixer_elem(list, mixer, unitid) {
struct usb_mixer_elem_info *info;
if (!list->is_std_info)
continue;
info = mixer_elem_list_to_info(list);
/* invalidate cache, so the value is read from the device */
info->cached = 0;
snd_ctl_notify(mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
&list->kctl->id);
}
}
static void snd_usb_mixer_dump_cval(struct snd_info_buffer *buffer,
struct usb_mixer_elem_list *list)
{
struct usb_mixer_elem_info *cval = mixer_elem_list_to_info(list);
static const char * const val_types[] = {
[USB_MIXER_BOOLEAN] = "BOOLEAN",
[USB_MIXER_INV_BOOLEAN] = "INV_BOOLEAN",
[USB_MIXER_S8] = "S8",
[USB_MIXER_U8] = "U8",
[USB_MIXER_S16] = "S16",
[USB_MIXER_U16] = "U16",
[USB_MIXER_S32] = "S32",
[USB_MIXER_U32] = "U32",
[USB_MIXER_BESPOKEN] = "BESPOKEN",
};
snd_iprintf(buffer, " Info: id=%i, control=%i, cmask=0x%x, "
"channels=%i, type=\"%s\"\n", cval->head.id,
cval->control, cval->cmask, cval->channels,
val_types[cval->val_type]);
snd_iprintf(buffer, " Volume: min=%i, max=%i, dBmin=%i, dBmax=%i\n",
cval->min, cval->max, cval->dBmin, cval->dBmax);
}
static void snd_usb_mixer_proc_read(struct snd_info_entry *entry,
struct snd_info_buffer *buffer)
{
struct snd_usb_audio *chip = entry->private_data;
struct usb_mixer_interface *mixer;
struct usb_mixer_elem_list *list;
int unitid;
list_for_each_entry(mixer, &chip->mixer_list, list) {
snd_iprintf(buffer,
"USB Mixer: usb_id=0x%08x, ctrlif=%i, ctlerr=%i\n",
chip->usb_id, mixer_ctrl_intf(mixer),
mixer->ignore_ctl_error);
snd_iprintf(buffer, "Card: %s\n", chip->card->longname);
for (unitid = 0; unitid < MAX_ID_ELEMS; unitid++) {
for_each_mixer_elem(list, mixer, unitid) {
snd_iprintf(buffer, " Unit: %i\n", list->id);
if (list->kctl)
snd_iprintf(buffer,
" Control: name=\"%s\", index=%i\n",
list->kctl->id.name,
list->kctl->id.index);
if (list->dump)
list->dump(buffer, list);
}
}
}
}
static void snd_usb_mixer_interrupt_v2(struct usb_mixer_interface *mixer,
int attribute, int value, int index)
{
struct usb_mixer_elem_list *list;
__u8 unitid = (index >> 8) & 0xff;
__u8 control = (value >> 8) & 0xff;
__u8 channel = value & 0xff;
unsigned int count = 0;
if (channel >= MAX_CHANNELS) {
usb_audio_dbg(mixer->chip,
"%s(): bogus channel number %d\n",
__func__, channel);
return;
}
unitid = delegate_notify(mixer, unitid, &control, &channel);
for_each_mixer_elem(list, mixer, unitid)
count++;
if (count == 0)
return;
for_each_mixer_elem(list, mixer, unitid) {
struct usb_mixer_elem_info *info;
if (!list->kctl)
continue;
if (!list->is_std_info)
continue;
info = mixer_elem_list_to_info(list);
if (count > 1 && info->control != control)
continue;
switch (attribute) {
case UAC2_CS_CUR:
/* invalidate cache, so the value is read from the device */
if (channel)
info->cached &= ~BIT(channel);
else /* master channel */
info->cached = 0;
snd_ctl_notify(mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
&info->head.kctl->id);
break;
case UAC2_CS_RANGE:
/* TODO */
break;
case UAC2_CS_MEM:
/* TODO */
break;
default:
usb_audio_dbg(mixer->chip,
"unknown attribute %d in interrupt\n",
attribute);
break;
} /* switch */
}
}
static void snd_usb_mixer_interrupt(struct urb *urb)
{
struct usb_mixer_interface *mixer = urb->context;
int len = urb->actual_length;
int ustatus = urb->status;
if (ustatus != 0)
goto requeue;
if (mixer->protocol == UAC_VERSION_1) {
struct uac1_status_word *status;
for (status = urb->transfer_buffer;
len >= sizeof(*status);
len -= sizeof(*status), status++) {
dev_dbg(&urb->dev->dev, "status interrupt: %02x %02x\n",
status->bStatusType,
status->bOriginator);
/* ignore any notifications not from the control interface */
if ((status->bStatusType & UAC1_STATUS_TYPE_ORIG_MASK) !=
UAC1_STATUS_TYPE_ORIG_AUDIO_CONTROL_IF)
continue;
if (status->bStatusType & UAC1_STATUS_TYPE_MEM_CHANGED)
snd_usb_mixer_rc_memory_change(mixer, status->bOriginator);
else
snd_usb_mixer_notify_id(mixer, status->bOriginator);
}
} else { /* UAC_VERSION_2 */
struct uac2_interrupt_data_msg *msg;
for (msg = urb->transfer_buffer;
len >= sizeof(*msg);
len -= sizeof(*msg), msg++) {
/* drop vendor specific and endpoint requests */
if ((msg->bInfo & UAC2_INTERRUPT_DATA_MSG_VENDOR) ||
(msg->bInfo & UAC2_INTERRUPT_DATA_MSG_EP))
continue;
snd_usb_mixer_interrupt_v2(mixer, msg->bAttribute,
le16_to_cpu(msg->wValue),
le16_to_cpu(msg->wIndex));
}
}
requeue:
if (ustatus != -ENOENT &&
ustatus != -ECONNRESET &&
ustatus != -ESHUTDOWN) {
urb->dev = mixer->chip->dev;
usb_submit_urb(urb, GFP_ATOMIC);
}
}
/* create the handler for the optional status interrupt endpoint */
static int snd_usb_mixer_status_create(struct usb_mixer_interface *mixer)
{
struct usb_endpoint_descriptor *ep;
void *transfer_buffer;
int buffer_length;
unsigned int epnum;
/* we need one interrupt input endpoint */
if (get_iface_desc(mixer->hostif)->bNumEndpoints < 1)
return 0;
ep = get_endpoint(mixer->hostif, 0);
if (!usb_endpoint_dir_in(ep) || !usb_endpoint_xfer_int(ep))
return 0;
epnum = usb_endpoint_num(ep);
buffer_length = le16_to_cpu(ep->wMaxPacketSize);
transfer_buffer = kmalloc(buffer_length, GFP_KERNEL);
if (!transfer_buffer)
return -ENOMEM;
mixer->urb = usb_alloc_urb(0, GFP_KERNEL);
if (!mixer->urb) {
kfree(transfer_buffer);
return -ENOMEM;
}
usb_fill_int_urb(mixer->urb, mixer->chip->dev,
usb_rcvintpipe(mixer->chip->dev, epnum),
transfer_buffer, buffer_length,
snd_usb_mixer_interrupt, mixer, ep->bInterval);
usb_submit_urb(mixer->urb, GFP_KERNEL);
return 0;
}
int snd_usb_create_mixer(struct snd_usb_audio *chip, int ctrlif)
{
static const struct snd_device_ops dev_ops = {
.dev_free = snd_usb_mixer_dev_free
};
struct usb_mixer_interface *mixer;
int err;
strcpy(chip->card->mixername, "USB Mixer");
mixer = kzalloc(sizeof(*mixer), GFP_KERNEL);
if (!mixer)
return -ENOMEM;
mixer->chip = chip;
mixer->ignore_ctl_error = !!(chip->quirk_flags & QUIRK_FLAG_IGNORE_CTL_ERROR);
mixer->id_elems = kcalloc(MAX_ID_ELEMS, sizeof(*mixer->id_elems),
GFP_KERNEL);
if (!mixer->id_elems) {
kfree(mixer);
return -ENOMEM;
}
mixer->hostif = &usb_ifnum_to_if(chip->dev, ctrlif)->altsetting[0];
switch (get_iface_desc(mixer->hostif)->bInterfaceProtocol) {
case UAC_VERSION_1:
default:
mixer->protocol = UAC_VERSION_1;
break;
case UAC_VERSION_2:
mixer->protocol = UAC_VERSION_2;
break;
case UAC_VERSION_3:
mixer->protocol = UAC_VERSION_3;
break;
}
if (mixer->protocol == UAC_VERSION_3 &&
chip->badd_profile >= UAC3_FUNCTION_SUBCLASS_GENERIC_IO) {
err = snd_usb_mixer_controls_badd(mixer, ctrlif);
if (err < 0)
goto _error;
} else {
err = snd_usb_mixer_controls(mixer);
if (err < 0)
goto _error;
}
err = snd_usb_mixer_status_create(mixer);
if (err < 0)
goto _error;
err = snd_usb_mixer_apply_create_quirk(mixer);
if (err < 0)
goto _error;
err = snd_device_new(chip->card, SNDRV_DEV_CODEC, mixer, &dev_ops);
if (err < 0)
goto _error;
if (list_empty(&chip->mixer_list))
snd_card_ro_proc_new(chip->card, "usbmixer", chip,
snd_usb_mixer_proc_read);
list_add(&mixer->list, &chip->mixer_list);
return 0;
_error:
snd_usb_mixer_free(mixer);
return err;
}
void snd_usb_mixer_disconnect(struct usb_mixer_interface *mixer)
{
if (mixer->disconnected)
return;
if (mixer->urb)
usb_kill_urb(mixer->urb);
if (mixer->rc_urb)
usb_kill_urb(mixer->rc_urb);
if (mixer->private_free)
mixer->private_free(mixer);
mixer->disconnected = true;
}
/* stop any bus activity of a mixer */
static void snd_usb_mixer_inactivate(struct usb_mixer_interface *mixer)
{
usb_kill_urb(mixer->urb);
usb_kill_urb(mixer->rc_urb);
}
static int snd_usb_mixer_activate(struct usb_mixer_interface *mixer)
{
int err;
if (mixer->urb) {
err = usb_submit_urb(mixer->urb, GFP_NOIO);
if (err < 0)
return err;
}
return 0;
}
int snd_usb_mixer_suspend(struct usb_mixer_interface *mixer)
{
snd_usb_mixer_inactivate(mixer);
if (mixer->private_suspend)
mixer->private_suspend(mixer);
return 0;
}
static int restore_mixer_value(struct usb_mixer_elem_list *list)
{
struct usb_mixer_elem_info *cval = mixer_elem_list_to_info(list);
int c, err, idx;
if (cval->val_type == USB_MIXER_BESPOKEN)
return 0;
if (cval->cmask) {
idx = 0;
for (c = 0; c < MAX_CHANNELS; c++) {
if (!(cval->cmask & BIT(c)))
continue;
if (cval->cached & BIT(c + 1)) {
err = snd_usb_set_cur_mix_value(cval, c + 1, idx,
cval->cache_val[idx]);
if (err < 0)
break;
}
idx++;
}
} else {
/* master */
if (cval->cached)
snd_usb_set_cur_mix_value(cval, 0, 0, *cval->cache_val);
}
return 0;
}
int snd_usb_mixer_resume(struct usb_mixer_interface *mixer)
{
struct usb_mixer_elem_list *list;
int id, err;
/* restore cached mixer values */
for (id = 0; id < MAX_ID_ELEMS; id++) {
for_each_mixer_elem(list, mixer, id) {
if (list->resume) {
err = list->resume(list);
if (err < 0)
return err;
}
}
}
snd_usb_mixer_resume_quirk(mixer);
return snd_usb_mixer_activate(mixer);
}
void snd_usb_mixer_elem_init_std(struct usb_mixer_elem_list *list,
struct usb_mixer_interface *mixer,
int unitid)
{
list->mixer = mixer;
list->id = unitid;
list->dump = snd_usb_mixer_dump_cval;
list->resume = restore_mixer_value;
}